NCBI C++ ToolKit
Public Member Functions | Public Attributes | List of all members
mbedtls_ecp_group Struct Reference

Search Toolkit Book for mbedtls_ecp_group

The ECP group structure. More...

#include "ecp.h"
(Private to src/connect/mbedtls/mbedtls.)

+ Collaboration diagram for mbedtls_ecp_group:

Public Member Functions

unsigned int MBEDTLS_PRIVATE (h)
 
void * MBEDTLS_PRIVATE (t_data)
 
mbedtls_ecp_pointMBEDTLS_PRIVATE (T)
 
size_t MBEDTLS_PRIVATE (T_size)
 

Public Attributes

mbedtls_ecp_group_id id
 
mbedtls_mpi P
 
mbedtls_mpi A
 
mbedtls_mpi B
 
mbedtls_ecp_point G
 
mbedtls_mpi N
 
size_t pbits
 
size_t nbits
 
int(*)(mbedtls_mpi *) MBEDTLS_PRIVATE (modp)
 
int(*)(mbedtls_ecp_point *, void *) MBEDTLS_PRIVATE (t_pre)
 

Detailed Description

The ECP group structure.

We consider two types of curve equations:

In both cases, the generator (G) for a prime-order subgroup is fixed.

For Short Weierstrass, this subgroup is the whole curve, and its cardinality is denoted by N. Our code requires that N is an odd prime as mbedtls_ecp_mul() requires an odd number, and mbedtls_ecdsa_sign() requires that it is prime for blinding purposes.

The default implementation only initializes A without setting it to the authentic value for curves with A = -3(SECP256R1, etc), in which case you need to load A by yourself when using domain parameters directly, for example:

CHECK_RETURN(mbedtls_ecp_group_load(&grp, grp_id));
if (mbedtls_ecp_group_a_is_minus_3(&grp)) {
CHECK_RETURN(mbedtls_mpi_sub_int(&A, &grp.P, 3));
} else {
CHECK_RETURN(mbedtls_mpi_copy(&A, &grp.A));
}
do_something_with_a(&A);
int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Perform a signed subtraction of an MPI and an integer: X = A - b.
int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
Make a copy of an MPI.
void mbedtls_mpi_init(mbedtls_mpi *X)
Initialize an MPI context.
void mbedtls_mpi_free(mbedtls_mpi *X)
This function frees the components of an MPI context.
void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
This function initializes an ECP group context without loading any domain parameters.
int mbedtls_ecp_group_load(mbedtls_ecp_group *grp, mbedtls_ecp_group_id id)
This function sets up an ECP group context from a standardized set of domain parameters.
void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
This function frees the components of an ECP group.
static void cleanup(void)
Definition: ct_dynamic.c:30
mbedtls_mpi A
Definition: ecp.h:236

For Montgomery curves, we do not store A, but (A + 2) / 4, which is the quantity used in the formulas. Additionally, nbits is not the size of N but the required size for private keys.

If modp is NULL, reduction modulo P is done using a generic algorithm. Otherwise, modp must point to a function that takes an mbedtls_mpi in the range of 0..2^(2*pbits)-1, and transforms it in-place to an integer which is congruent mod P to the given MPI, and is close enough to pbits in size, so that it may be efficiently brought in the 0..P-1 range by a few additions or subtractions. Therefore, it is only an approximative modular reduction. It must return 0 on success and non-zero on failure.

Note
Alternative implementations of the ECP module must obey the following constraints. * Group IDs must be distinct: if two group structures have the same ID, then they must be identical. * The fields id, P, A, B, G, N, pbits and nbits must have the same type and semantics as in the built-in implementation. They must be available for reading, but direct modification of these fields does not need to be supported. They do not need to be at the same offset in the structure.

Definition at line 233 of file ecp.h.

Member Function Documentation

◆ MBEDTLS_PRIVATE() [1/4]

unsigned int mbedtls_ecp_group::MBEDTLS_PRIVATE ( )

◆ MBEDTLS_PRIVATE() [2/4]

mbedtls_ecp_point* mbedtls_ecp_group::MBEDTLS_PRIVATE ( T  )

Pre-computed points for ecp_mul_comb().

◆ MBEDTLS_PRIVATE() [3/4]

void* mbedtls_ecp_group::MBEDTLS_PRIVATE ( t_data  )

Unused.

◆ MBEDTLS_PRIVATE() [4/4]

size_t mbedtls_ecp_group::MBEDTLS_PRIVATE ( T_size  )

The number of dynamic allocated pre-computed points.

Member Data Documentation

◆ A

mbedtls_mpi mbedtls_ecp_group::A

For Short Weierstrass: A in the equation. Note that A is not set to the authentic value in some cases. Refer to detailed description of mbedtls_ecp_group if using domain parameters in the structure. For Montgomery curves: (A + 2) / 4.

Definition at line 236 of file ecp.h.

◆ B

mbedtls_mpi mbedtls_ecp_group::B

For Short Weierstrass: B in the equation. For Montgomery curves: unused.

Definition at line 241 of file ecp.h.

◆ G

mbedtls_ecp_point mbedtls_ecp_group::G

The generator of the subgroup used.

Definition at line 243 of file ecp.h.

◆ id

mbedtls_ecp_group_id mbedtls_ecp_group::id

An internal group identifier.

Definition at line 234 of file ecp.h.

◆ MBEDTLS_PRIVATE [1/2]

int(*)(mbedtls_mpi *) mbedtls_ecp_group::MBEDTLS_PRIVATE(modp)

The function for fast pseudo-reduction mod P (see above).

Definition at line 252 of file ecp.h.

◆ MBEDTLS_PRIVATE [2/2]

int(*)(mbedtls_ecp_point *, void *) mbedtls_ecp_group::MBEDTLS_PRIVATE(t_post)

Unused.

Definition at line 254 of file ecp.h.

◆ N

mbedtls_mpi mbedtls_ecp_group::N

The order of G.

Definition at line 244 of file ecp.h.

◆ nbits

size_t mbedtls_ecp_group::nbits

For Short Weierstrass: The number of bits in P. For Montgomery curves: the number of bits in the private keys.

Definition at line 246 of file ecp.h.

◆ P

mbedtls_mpi mbedtls_ecp_group::P

The prime modulus of the base field.

Definition at line 235 of file ecp.h.

◆ pbits

size_t mbedtls_ecp_group::pbits

The number of bits in P.

Definition at line 245 of file ecp.h.


The documentation for this struct was generated from the following file:
Modified on Wed Sep 04 15:01:15 2024 by modify_doxy.py rev. 669887