2-deoxyribose-5-phosphate aldolase (DERA) catalyzes a reversible aldol reaction between acetaldehyde and glyceraldehyde 3-phosphate to generate 2-deoxyribose 5-phosphate.
2-deoxyribose-5-phosphate aldolase (DERA) of the DeoC family; 2-deoxyribose-5-phosphate ...
44-248
2.62e-98
2-deoxyribose-5-phosphate aldolase (DERA) of the DeoC family; 2-deoxyribose-5-phosphate aldolase (DERA) of the DeoC family. DERA belongs to the class I aldolases and catalyzes a reversible aldol reaction between acetaldehyde and glyceraldehyde 3-phosphate to generate 2-deoxyribose 5-phosphate. DERA is unique in catalyzing the aldol reaction between two aldehydes, and its broad substrate specificity confers considerable utility as a biocatalyst, offering an environmentally benign alternative to chiral transition metal catalysis of the asymmetric aldol reaction.
Pssm-ID: 188646 Cd Length: 203 Bit Score: 285.96 E-value: 2.62e-98
deoxyribose-phosphate aldolase; Deoxyribose-phosphate aldolase is involved in the catabolism ...
43-254
7.28e-90
deoxyribose-phosphate aldolase; Deoxyribose-phosphate aldolase is involved in the catabolism of nucleotides and deoxyriibonucleotides. The catalytic process is as follows: 2-deoxy-D-ribose 5-phosphate = D-glyceraldehyde 3-phosphate + acetaldehyde. It is found in both gram-postive and gram-negative bacteria. [Purines, pyrimidines, nucleosides, and nucleotides, Other, Energy metabolism, Other]
Pssm-ID: 272921 Cd Length: 211 Bit Score: 265.10 E-value: 7.28e-90
DeoC/LacD family aldolase; This family includes diverse aldolase enzymes. This family includes ...
44-254
1.50e-11
DeoC/LacD family aldolase; This family includes diverse aldolase enzymes. This family includes the enzyme deoxyribose-phosphate aldolase EC:4.1.2.4, which is involved in nucleotide metabolism. The family also includes a group of related bacterial proteins of unknown function, see examples Swiss:Q57843 and Swiss:P76143. The family also includes tagatose 1,6-diphosphate aldolase (EC:4.1.2.40) is part of the tagatose-6-phosphate pathway of galactose-6-phosphate degradation.
Pssm-ID: 460332 Cd Length: 230 Bit Score: 62.40 E-value: 1.50e-11
2-deoxyribose-5-phosphate aldolase (DERA) of the DeoC family; 2-deoxyribose-5-phosphate ...
44-248
2.62e-98
2-deoxyribose-5-phosphate aldolase (DERA) of the DeoC family; 2-deoxyribose-5-phosphate aldolase (DERA) of the DeoC family. DERA belongs to the class I aldolases and catalyzes a reversible aldol reaction between acetaldehyde and glyceraldehyde 3-phosphate to generate 2-deoxyribose 5-phosphate. DERA is unique in catalyzing the aldol reaction between two aldehydes, and its broad substrate specificity confers considerable utility as a biocatalyst, offering an environmentally benign alternative to chiral transition metal catalysis of the asymmetric aldol reaction.
Pssm-ID: 188646 Cd Length: 203 Bit Score: 285.96 E-value: 2.62e-98
deoxyribose-phosphate aldolase; Deoxyribose-phosphate aldolase is involved in the catabolism ...
43-254
7.28e-90
deoxyribose-phosphate aldolase; Deoxyribose-phosphate aldolase is involved in the catabolism of nucleotides and deoxyriibonucleotides. The catalytic process is as follows: 2-deoxy-D-ribose 5-phosphate = D-glyceraldehyde 3-phosphate + acetaldehyde. It is found in both gram-postive and gram-negative bacteria. [Purines, pyrimidines, nucleosides, and nucleotides, Other, Energy metabolism, Other]
Pssm-ID: 272921 Cd Length: 211 Bit Score: 265.10 E-value: 7.28e-90
Class I aldolases; Class I aldolases. The class I aldolases use an active-site lysine which ...
48-248
7.93e-70
Class I aldolases; Class I aldolases. The class I aldolases use an active-site lysine which stabilizes a reaction intermediates via Schiff base formation, and have TIM beta/alpha barrel fold. The members of this family include 2-keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-4-hydroxyglutarate (KHG) aldolases, transaldolase, dihydrodipicolinate synthase sub-family, Type I 3-dehydroquinate dehydratase, DeoC and DhnA proteins, and metal-independent fructose-1,6-bisphosphate aldolase. Although structurally similar, the class II aldolases use a different mechanism and are believed to have an independent evolutionary origin.
Pssm-ID: 188634 [Multi-domain] Cd Length: 201 Bit Score: 213.73 E-value: 7.93e-70
DeoC/LacD family aldolase; This family includes diverse aldolase enzymes. This family includes ...
44-254
1.50e-11
DeoC/LacD family aldolase; This family includes diverse aldolase enzymes. This family includes the enzyme deoxyribose-phosphate aldolase EC:4.1.2.4, which is involved in nucleotide metabolism. The family also includes a group of related bacterial proteins of unknown function, see examples Swiss:Q57843 and Swiss:P76143. The family also includes tagatose 1,6-diphosphate aldolase (EC:4.1.2.40) is part of the tagatose-6-phosphate pathway of galactose-6-phosphate degradation.
Pssm-ID: 460332 Cd Length: 230 Bit Score: 62.40 E-value: 1.50e-11
Dihydroorotate dehydrogenase (DHOD) class 2. DHOD catalyzes the oxidation of (S) ...
148-243
1.52e-05
Dihydroorotate dehydrogenase (DHOD) class 2. DHOD catalyzes the oxidation of (S)-dihydroorotate to orotate. This is the fourth step and the only redox reaction in the de novo biosynthesis of UMP, the precursor of all pyrimidine nucleotides. DHOD requires FMN as co-factor. DHOD divides into class 1 and class 2 based on their amino acid sequences, their cellular location and their natural electron acceptor used to reoxidize the flavin group. Members of class 1 are cytosolic enzymes and multimers, while class 2 enzymes are membrane associated, monomeric and use respiratory quinones as their physiological electron acceptors.
Pssm-ID: 240089 Cd Length: 327 Bit Score: 45.57 E-value: 1.52e-05
Biotin synthase or related enzyme [Coenzyme transport and metabolism]; Biotin synthase or ...
172-244
3.42e-03
Biotin synthase or related enzyme [Coenzyme transport and metabolism]; Biotin synthase or related enzyme is part of the Pathway/BioSystem: Biotin biosynthesis
Pssm-ID: 440268 [Multi-domain] Cd Length: 308 Bit Score: 38.11 E-value: 3.42e-03
Old yellow enzyme (OYE)-like FMN binding domain. OYE was the first flavin-dependent enzyme ...
173-241
5.11e-03
Old yellow enzyme (OYE)-like FMN binding domain. OYE was the first flavin-dependent enzyme identified, however its true physiological role remains elusive to this day. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase.
Pssm-ID: 239201 [Multi-domain] Cd Length: 327 Bit Score: 37.55 E-value: 5.11e-03
Dihydroorotate dehydrogenase (DHOD) and Dihydropyrimidine dehydrogenase (DHPD) FMN-binding ...
81-256
6.32e-03
Dihydroorotate dehydrogenase (DHOD) and Dihydropyrimidine dehydrogenase (DHPD) FMN-binding domain. DHOD catalyzes the oxidation of (S)-dihydroorotate to orotate. This is the fourth step and the only redox reaction in the de novo biosynthesis of UMP, the precursor of all pyrimidine nucleotides. DHOD requires FMN as co-factor. DHOD divides into class 1 and class 2 based on their amino acid sequences and cellular location. Members of class 1 are cytosolic enzymes and multimers while class 2 enzymes are membrane associated and monomeric. The class 1 enzymes can be further divided into subtypes 1A and 1B which are homodimers and heterotetrameric proteins, respectively. DHPD catalyzes the first step in pyrimidine degradation: the NADPH-dependent reduction of uracil and thymine to the corresponding 5,6-dihydropyrimidines. DHPD contains two FAD, two FMN and eight [4Fe-4S] clusters, arranged in two electron transfer chains that pass its homodimeric interface twice. Two of the Fe-S clusters show a hitherto unobserved coordination involving a glutamine residue.
Pssm-ID: 239204 [Multi-domain] Cd Length: 289 Bit Score: 37.33 E-value: 6.32e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options