c-mos, partial [Gallotia galloti palmae]
protein kinase family protein( domain architecture ID 229378)
protein kinase family protein may catalyze the transfer of the gamma-phosphoryl group from ATP to substrates such as serine/threonine and/or tyrosine residues on proteins, or may be a pseudokinase
List of domain hits
Name | Accession | Description | Interval | E-value | |||
PKc_like super family | cl21453 | Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the ... |
1-111 | 3.30e-45 | |||
Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the catalytic domains of serine/threonine-specific and tyrosine-specific protein kinases. It also includes RIO kinases, which are atypical serine protein kinases, aminoglycoside phosphotransferases, and choline kinases. These proteins catalyze the transfer of the gamma-phosphoryl group from ATP to hydroxyl groups in specific substrates such as serine, threonine, or tyrosine residues of proteins. The actual alignment was detected with superfamily member cd13979: Pssm-ID: 473864 [Multi-domain] Cd Length: 265 Bit Score: 146.76 E-value: 3.30e-45
|
|||||||
Name | Accession | Description | Interval | E-value | |||
STKc_Mos | cd13979 | Catalytic domain of the Serine/Threonine kinase, Oocyte maturation factor Mos; STKs catalyze ... |
1-111 | 3.30e-45 | |||
Catalytic domain of the Serine/Threonine kinase, Oocyte maturation factor Mos; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mos (or c-Mos) is a germ-cell specific kinase that plays roles in both the release of primary arrest and the induction of secondary arrest in oocytes. It is expressed towards the end of meiosis I and is quickly degraded upon fertilization. It is a component of the cytostatic factor (CSF), which is responsible for metaphase II arrest. In addition, Mos activates a phoshorylation cascade that leads to the activation of the p34 subunit of MPF (mitosis-promoting factor or maturation promoting factor), a cyclin-dependent kinase that is responsible for the release of primary arrest in meiosis I. The Mos subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270881 [Multi-domain] Cd Length: 265 Bit Score: 146.76 E-value: 3.30e-45
|
|||||||
SPS1 | COG0515 | Serine/threonine protein kinase [Signal transduction mechanisms]; |
3-110 | 2.87e-18 | |||
Serine/threonine protein kinase [Signal transduction mechanisms]; Pssm-ID: 440281 [Multi-domain] Cd Length: 482 Bit Score: 78.52 E-value: 2.87e-18
|
|||||||
S_TKc | smart00220 | Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ... |
3-110 | 9.45e-18 | |||
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily. Pssm-ID: 214567 [Multi-domain] Cd Length: 254 Bit Score: 75.26 E-value: 9.45e-18
|
|||||||
PknB_PASTA_kin | NF033483 | Stk1 family PASTA domain-containing Ser/Thr kinase; |
11-110 | 1.70e-13 | |||
Stk1 family PASTA domain-containing Ser/Thr kinase; Pssm-ID: 468045 [Multi-domain] Cd Length: 563 Bit Score: 64.82 E-value: 1.70e-13
|
|||||||
PK_Tyr_Ser-Thr | pfam07714 | Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role ... |
2-111 | 7.86e-13 | |||
Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyze the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyze the reverse process. Protein kinases fall into three broad classes, characterized with respect to substrate specificity; Serine/threonine-protein kinases, tyrosine-protein kinases, and dual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins). This entry represents the catalytic domain found in a number of serine/threonine- and tyrosine-protein kinases. It does not include the catalytic domain of dual specificity kinases. Pssm-ID: 462242 [Multi-domain] Cd Length: 258 Bit Score: 62.13 E-value: 7.86e-13
|
|||||||
PTZ00024 | PTZ00024 | cyclin-dependent protein kinase; Provisional |
81-111 | 3.05e-06 | |||
cyclin-dependent protein kinase; Provisional Pssm-ID: 240233 [Multi-domain] Cd Length: 335 Bit Score: 43.98 E-value: 3.05e-06
|
|||||||
arch_bud32 | TIGR03724 | Kae1-associated kinase Bud32; Members of this protein family are the Bud32 protein associated ... |
38-111 | 8.34e-03 | |||
Kae1-associated kinase Bud32; Members of this protein family are the Bud32 protein associated with Kae1 (kinase-associated endopeptidase 1) in the Archaea. In many Archaeal genomes, Kae1 and Bud32 are fused. The complex is homologous to the Kae1 and Bud32 subunits of the eukaryotic KEOPS complex, an apparently ancient protein kinase-containing molecular machine. [Unknown function, General] Pssm-ID: 274749 [Multi-domain] Cd Length: 199 Bit Score: 34.11 E-value: 8.34e-03
|
|||||||
Name | Accession | Description | Interval | E-value | |||
STKc_Mos | cd13979 | Catalytic domain of the Serine/Threonine kinase, Oocyte maturation factor Mos; STKs catalyze ... |
1-111 | 3.30e-45 | |||
Catalytic domain of the Serine/Threonine kinase, Oocyte maturation factor Mos; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mos (or c-Mos) is a germ-cell specific kinase that plays roles in both the release of primary arrest and the induction of secondary arrest in oocytes. It is expressed towards the end of meiosis I and is quickly degraded upon fertilization. It is a component of the cytostatic factor (CSF), which is responsible for metaphase II arrest. In addition, Mos activates a phoshorylation cascade that leads to the activation of the p34 subunit of MPF (mitosis-promoting factor or maturation promoting factor), a cyclin-dependent kinase that is responsible for the release of primary arrest in meiosis I. The Mos subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270881 [Multi-domain] Cd Length: 265 Bit Score: 146.76 E-value: 3.30e-45
|
|||||||
PKc | cd00180 | Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group ... |
3-111 | 7.07e-20 | |||
Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. PKs make up a large family of serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins. Majority of protein phosphorylation occurs on serine residues while only 1% occurs on tyrosine residues. Protein phosphorylation is a mechanism by which a wide variety of cellular proteins, such as enzymes and membrane channels, are reversibly regulated in response to certain stimuli. PKs often function as components of signal transduction pathways in which one kinase activates a second kinase, which in turn, may act on other kinases; this sequential action transmits a signal from the cell surface to target proteins, which results in cellular responses. The PK family is one of the largest known protein families with more than 100 homologous yeast enzymes and more than 500 human proteins. A fraction of PK family members are pseudokinases that lack crucial residues for catalytic activity. The mutiplicity of kinases allows for specific regulation according to substrate, tissue distribution, and cellular localization. PKs regulate many cellular processes including proliferation, division, differentiation, motility, survival, metabolism, cell-cycle progression, cytoskeletal rearrangement, immunity, and neuronal functions. Many kinases are implicated in the development of various human diseases including different types of cancer. The PK family is part of a larger superfamily that includes the catalytic domains of RIO kinases, aminoglycoside phosphotransferase, choline kinase, phosphoinositide 3-kinase (PI3K), and actin-fragmin kinase. Pssm-ID: 270622 [Multi-domain] Cd Length: 215 Bit Score: 80.39 E-value: 7.07e-20
|
|||||||
SPS1 | COG0515 | Serine/threonine protein kinase [Signal transduction mechanisms]; |
3-110 | 2.87e-18 | |||
Serine/threonine protein kinase [Signal transduction mechanisms]; Pssm-ID: 440281 [Multi-domain] Cd Length: 482 Bit Score: 78.52 E-value: 2.87e-18
|
|||||||
S_TKc | smart00220 | Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ... |
3-110 | 9.45e-18 | |||
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily. Pssm-ID: 214567 [Multi-domain] Cd Length: 254 Bit Score: 75.26 E-value: 9.45e-18
|
|||||||
STKc_PknB_like | cd14014 | Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs ... |
11-109 | 1.48e-15 | |||
Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270916 [Multi-domain] Cd Length: 260 Bit Score: 69.54 E-value: 1.48e-15
|
|||||||
PTKc | cd00192 | Catalytic domain of Protein Tyrosine Kinases; PTKs catalyze the transfer of the ... |
3-111 | 5.89e-14 | |||
Catalytic domain of Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. They can be classified into receptor and non-receptor tyr kinases. PTKs play important roles in many cellular processes including, lymphocyte activation, epithelium growth and maintenance, metabolism control, organogenesis regulation, survival, proliferation, differentiation, migration, adhesion, motility, and morphogenesis. Receptor tyr kinases (RTKs) are integral membrane proteins which contain an extracellular ligand-binding region, a transmembrane segment, and an intracellular tyr kinase domain. RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain, leading to intracellular signaling. Some RTKs are orphan receptors with no known ligands. Non-receptor (or cytoplasmic) tyr kinases are distributed in different intracellular compartments and are usually multi-domain proteins containing a catalytic tyr kinase domain as well as various regulatory domains such as SH3 and SH2. PTKs are usually autoinhibited and require a mechanism for activation. In many PTKs, the phosphorylation of tyr residues in the activation loop is essential for optimal activity. Aberrant expression of PTKs is associated with many development abnormalities and cancers.The PTK family is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270623 [Multi-domain] Cd Length: 262 Bit Score: 65.25 E-value: 5.89e-14
|
|||||||
STKc_LKB1_CaMKK | cd14008 | Catalytic domain of the Serine/Threonine kinases, Liver Kinase B1, Calmodulin Dependent ... |
14-111 | 9.87e-14 | |||
Catalytic domain of the Serine/Threonine kinases, Liver Kinase B1, Calmodulin Dependent Protein Kinase Kinase, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Both LKB1 and CaMKKs can phosphorylate and activate AMP-activated protein kinase (AMPK). LKB1, also called STK11, serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. LKB1 and AMPK are part of an energy-sensing pathway that links cell energy to metabolism and cell growth. They play critical roles in the establishment and maintenance of cell polarity, cell proliferation, cytoskeletal organization, as well as T-cell metabolism, including T-cell development, homeostasis, and effector function. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMPK. Vertebrates contain two CaMKKs, CaMKK1 (or alpha) and CaMKK2 (or beta). CaMKK1 is involved in the regulation of glucose uptake in skeletal muscles. CaMKK2 is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. The LKB1/CaMKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270910 [Multi-domain] Cd Length: 267 Bit Score: 64.88 E-value: 9.87e-14
|
|||||||
PknB_PASTA_kin | NF033483 | Stk1 family PASTA domain-containing Ser/Thr kinase; |
11-110 | 1.70e-13 | |||
Stk1 family PASTA domain-containing Ser/Thr kinase; Pssm-ID: 468045 [Multi-domain] Cd Length: 563 Bit Score: 64.82 E-value: 1.70e-13
|
|||||||
PKc_Wee1_like | cd13997 | Catalytic domain of the Wee1-like Protein Kinases; PKs catalyze the transfer of the ... |
17-111 | 3.51e-13 | |||
Catalytic domain of the Wee1-like Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. This subfamily is composed of the dual-specificity kinase Myt1, the protein tyrosine kinase Wee1, and similar proteins. These proteins are cell cycle checkpoint kinases that are involved in the regulation of cyclin-dependent kinase CDK1, the master engine for mitosis. CDK1 is kept inactivated through phosphorylation of N-terminal thr (T14 by Myt1) and tyr (Y15 by Myt1 and Wee1) residues. Mitosis progression is ensured through activation of CDK1 by dephoshorylation and inactivation of Myt1/Wee1. The Wee1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270899 [Multi-domain] Cd Length: 252 Bit Score: 63.17 E-value: 3.51e-13
|
|||||||
STKc_MAP3K-like | cd13999 | Catalytic domain of Mitogen-Activated Protein Kinase (MAPK) Kinase Kinase-like Serine ... |
3-111 | 4.40e-13 | |||
Catalytic domain of Mitogen-Activated Protein Kinase (MAPK) Kinase Kinase-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed mainly of MAP3Ks and similar proteins, including TGF-beta Activated Kinase-1 (TAK1, also called MAP3K7), MAP3K12, MAP3K13, Mixed lineage kinase (MLK), MLK-Like mitogen-activated protein Triple Kinase (MLTK), and Raf (Rapidly Accelerated Fibrosarcoma) kinases. MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Also included in this subfamily is the pseudokinase Kinase Suppressor of Ras (KSR), which is a scaffold protein that functions downstream of Ras and upstream of Raf in the Extracellular signal-Regulated Kinase (ERK) pathway. Pssm-ID: 270901 [Multi-domain] Cd Length: 245 Bit Score: 62.56 E-value: 4.40e-13
|
|||||||
PK_Tyr_Ser-Thr | pfam07714 | Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role ... |
2-111 | 7.86e-13 | |||
Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyze the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyze the reverse process. Protein kinases fall into three broad classes, characterized with respect to substrate specificity; Serine/threonine-protein kinases, tyrosine-protein kinases, and dual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins). This entry represents the catalytic domain found in a number of serine/threonine- and tyrosine-protein kinases. It does not include the catalytic domain of dual specificity kinases. Pssm-ID: 462242 [Multi-domain] Cd Length: 258 Bit Score: 62.13 E-value: 7.86e-13
|
|||||||
TyrKc | smart00219 | Tyrosine kinase, catalytic domain; Phosphotransferases. Tyrosine-specific kinase subfamily. |
3-111 | 2.22e-12 | |||
Tyrosine kinase, catalytic domain; Phosphotransferases. Tyrosine-specific kinase subfamily. Pssm-ID: 197581 [Multi-domain] Cd Length: 257 Bit Score: 61.01 E-value: 2.22e-12
|
|||||||
STKc_MAPKKK | cd06606 | Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase Kinase ... |
14-111 | 2.47e-12 | |||
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase Kinase Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPKKKs (MKKKs or MAP3Ks) are also called MAP/ERK kinase kinases (MEKKs) in some cases. They phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. This subfamily is composed of the Apoptosis Signal-regulating Kinases ASK1 (or MAPKKK5) and ASK2 (or MAPKKK6), MEKK1, MEKK2, MEKK3, MEKK4, as well as plant and fungal MAPKKKs. Also included in this subfamily are the cell division control proteins Schizosaccharomyces pombe Cdc7 and Saccharomyces cerevisiae Cdc15. The MAPKKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270783 [Multi-domain] Cd Length: 258 Bit Score: 61.00 E-value: 2.47e-12
|
|||||||
STYKc | smart00221 | Protein kinase; unclassified specificity; Phosphotransferases. The specificity of this class ... |
3-111 | 2.71e-12 | |||
Protein kinase; unclassified specificity; Phosphotransferases. The specificity of this class of kinases can not be predicted. Possible dual-specificity Ser/Thr/Tyr kinase. Pssm-ID: 214568 [Multi-domain] Cd Length: 258 Bit Score: 60.64 E-value: 2.71e-12
|
|||||||
STKc_Nek | cd08215 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase; ... |
13-110 | 5.34e-12 | |||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Nek family is composed of 11 different mammalian members (Nek1-11) with similarity to the catalytic domain of Aspergillus nidulans NIMA kinase, the founding member of the Nek family, which was identified in a screen for cell cycle mutants that were prevented from entering mitosis. Neks contain a conserved N-terminal catalytic domain and a more divergent C-terminal regulatory region of various sizes and structures. They are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270855 [Multi-domain] Cd Length: 258 Bit Score: 59.78 E-value: 5.34e-12
|
|||||||
STKc_EIF2AK4_GCN2_rpt2 | cd14046 | Catalytic domain, repeat 2, of the Serine/Threonine kinase, eukaryotic translation Initiation ... |
11-109 | 9.83e-12 | |||
Catalytic domain, repeat 2, of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or General Control Non-derepressible-2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GCN2 (or EIF2AK4) is activated by amino acid or serum starvation and UV irradiation. It induces GCN4, a transcriptional activator of amino acid biosynthetic genes, leading to increased production of amino acids under amino acid-deficient conditions. In serum-starved cells, GCN2 activation induces translation of the stress-responsive transcription factor ATF4, while under UV stress, GCN2 triggers transcriptional rescue via NF-kB signaling. GCN2 contains an N-terminal RWD, a degenerate kinase-like (repeat 1), the catalytic kinase (repeat 2), a histidyl-tRNA synthetase (HisRS)-like, and a C-terminal ribosome-binding and dimerization (RB/DD) domains. Its kinase domain is activated via conformational changes as a result of the binding of uncharged tRNA to the HisRS-like domain. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the overall downregulation of protein synthesis. The GCN2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270948 [Multi-domain] Cd Length: 278 Bit Score: 59.31 E-value: 9.83e-12
|
|||||||
STKc_CCRK | cd07832 | Catalytic domain of the Serine/Threonine Kinase, Cell Cycle-Related Kinase; STKs catalyze the ... |
16-107 | 3.56e-11 | |||
Catalytic domain of the Serine/Threonine Kinase, Cell Cycle-Related Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CCRK was previously called p42. It is a Cyclin-Dependent Kinase (CDK)-Activating Kinase (CAK) which is essential for the activation of CDK2. It is indispensable for cell growth and has been implicated in the progression of glioblastoma multiforme. In the heart, a splice variant of CCRK with a different C-terminal half is expressed; this variant promotes cardiac cell growth and survival and is significantly down-regulated during the development of heart failure. The CCRK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270826 [Multi-domain] Cd Length: 287 Bit Score: 57.72 E-value: 3.56e-11
|
|||||||
STKc_HAL4_like | cd13994 | Catalytic domain of Fungal Halotolerance protein 4-like Serine/Threonine kinases; STKs ... |
3-111 | 5.05e-11 | |||
Catalytic domain of Fungal Halotolerance protein 4-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of HAL4, Saccharomyces cerevisiae Ptk2/Stk2, and similar fungal proteins. Proteins in this subfamily are involved in regulating ion transporters. In budding and fission yeast, HAL4 promotes potassium ion uptake, which increases cellular resistance to other cations such as sodium, lithium, and calcium ions. HAL4 stabilizes the major high-affinity K+ transporter Trk1 at the plasma membrane under low K+ conditions, which prevents endocytosis and vacuolar degradation. Budding yeast Ptk2 phosphorylates and regulates the plasma membrane H+ ATPase, Pma1. The HAL4-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270896 [Multi-domain] Cd Length: 265 Bit Score: 57.32 E-value: 5.05e-11
|
|||||||
STKc_LKB1 | cd14119 | Catalytic domain of the Serine/Threonine kinase, Liver Kinase B1; STKs catalyze the transfer ... |
14-106 | 1.28e-10 | |||
Catalytic domain of the Serine/Threonine kinase, Liver Kinase B1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LKB1, also called STK11, was first identified as a tumor suppressor responsible for Peutz-Jeghers syndrome, a disorder that leads to an increased risk of spontaneous epithelial cancer. It serves as a master upstream kinase that activates AMP-activated protein kinase (AMPK) and most AMPK-like kinases. LKB1 and AMPK are part of an energy-sensing pathway that links cell energy to metabolism and cell growth. They play critical roles in the establishment and maintenance of cell polarity, cell proliferation, cytoskeletal organization, as well as T-cell metabolism, including T-cell development, homeostasis, and effector function. To be activated, LKB1 requires the adaptor proteins STe20-Related ADaptor (STRAD) and mouse protein 25 (MO25). The LKB1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271021 [Multi-domain] Cd Length: 255 Bit Score: 56.11 E-value: 1.28e-10
|
|||||||
STKc_Cdc7_like | cd06627 | Catalytic domain of Cell division control protein 7-like Serine/Threonine Kinases; STKs ... |
14-111 | 2.45e-10 | |||
Catalytic domain of Cell division control protein 7-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily include Schizosaccharomyces pombe Cdc7, Saccharomyces cerevisiae Cdc15, Arabidopsis thaliana mitogen-activated protein kinase kinase kinase (MAPKKK) epsilon, and related proteins. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Fission yeast Cdc7 is essential for cell division by playing a key role in the initiation of septum formation and cytokinesis. Budding yeast Cdc15 functions to coordinate mitotic exit with cytokinesis. Arabidopsis MAPKKK epsilon is required for pollen development in the plasma membrane. The Cdc7-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270797 [Multi-domain] Cd Length: 254 Bit Score: 55.31 E-value: 2.45e-10
|
|||||||
PKc_Myt1 | cd14050 | Catalytic domain of the Dual-specificity protein kinase, Myt1; Dual-specificity PKs catalyze ... |
65-111 | 6.07e-10 | |||
Catalytic domain of the Dual-specificity protein kinase, Myt1; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. Myt1 is a cytoplasmic cell cycle checkpoint kinase that can keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of N-terminal thr (T14) and tyr (Y15) residues, leading to the delay of meiosis I entry. Meiotic progression is ensured by a two-step inhibition and downregulation of Myt1 by CDK1/XRINGO and p90Rsk during oocyte maturation. In addition, Myt1 targets cyclin B1/B2 and is essential for Golgi and ER assembly during telophase. In Drosophila, Myt1 may be a downstream target of Notch during eye development. The Myt1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270952 [Multi-domain] Cd Length: 249 Bit Score: 54.24 E-value: 6.07e-10
|
|||||||
STKc_MEKK4 | cd06626 | Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP) ... |
40-110 | 7.08e-10 | |||
Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK4 is a MAPK kinase kinase that phosphorylates and activates the c-Jun N-terminal kinase (JNK) and p38 MAPK signaling pathways by directly activating their respective MAPKKs, MKK4/MKK7 and MKK3/MKK6. JNK and p38 are collectively known as stress-activated MAPKs, as they are activated in response to a variety of environmental stresses and pro-inflammatory cytokines. MEKK4 also plays roles in the re-polarization of the actin cytoskeleton in response to osmotic stress, in the proper closure of the neural tube, in cardiovascular development, and in immune responses. The MEKK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270796 [Multi-domain] Cd Length: 265 Bit Score: 54.23 E-value: 7.08e-10
|
|||||||
STKc_IRAK | cd14066 | Catalytic domain of the Serine/Threonine kinases, Interleukin-1 Receptor Associated Kinases ... |
1-107 | 7.69e-10 | |||
Catalytic domain of the Serine/Threonine kinases, Interleukin-1 Receptor Associated Kinases and related STKs; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. Some IRAKs may also play roles in T- and B-cell signaling, and adaptive immunity. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK-1, -2, and -4 are ubiquitously expressed and are active kinases, while IRAK-M is only induced in monocytes and macrophages and is an inactive kinase. Variations in IRAK genes are linked to diverse diseases including infection, sepsis, cancer, and autoimmune diseases. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain (a pseudokinase domain in the case of IRAK3), and a C-terminal domain; IRAK-4 lacks the C-terminal domain. This subfamily includes plant receptor-like kinases (RLKs) including Arabidopsis thaliana BAK1 and CLAVATA1 (CLV1). BAK1 functions in BR (brassinosteroid)-regulated plant development and in pathways involved in plant resistance to pathogen infection and herbivore attack. CLV1, directly binds small signaling peptides, CLAVATA3 (CLV3) and CLAVATA3/EMBRYO SURROUNDING REGI0N (CLE), to restrict stem cell proliferation: the CLV3-CLV1-WUS (WUSCHEL) module influences stem cell maintenance in the shoot apical meristem, and the CLE40 (CLAVATA3/EMBRYO SURROUNDING REGION40) -ACR4 (CRINKLY4) -CLV1- WOX5 (WUSCHEL-RELATED HOMEOBOX5) module at the root apical meristem. The IRAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270968 [Multi-domain] Cd Length: 272 Bit Score: 54.20 E-value: 7.69e-10
|
|||||||
STKc_AMPK-like | cd14003 | Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze ... |
14-109 | 1.26e-09 | |||
Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The AMPK-like subfamily is composed of AMPK, MARK, BRSK, NUAK, MELK, SNRK, TSSK, and SIK, among others. LKB1 serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. AMPK, also called SNF1 (sucrose non-fermenting1) in yeasts and SnRK1 (SNF1-related kinase1) in plants, is a heterotrimeric enzyme composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It is a stress-activated kinase that serves as master regulator of glucose and lipid metabolism by monitoring carbon and energy supplies, via sensing the cell's AMP:ATP ratio. MARKs phosphorylate tau and related microtubule-associated proteins (MAPs), and regulates microtubule-based intracellular transport. They are involved in embryogenesis, epithelial cell polarization, cell signaling, and neuronal differentiation. BRSKs play important roles in establishing neuronal polarity. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. The AMPK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270905 [Multi-domain] Cd Length: 252 Bit Score: 53.29 E-value: 1.26e-09
|
|||||||
STKc_EIF2AK | cd13996 | Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor ... |
13-107 | 1.72e-09 | |||
Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. eIF-2 phosphorylation is induced in response to cellular stresses including virus infection, heat shock, nutrient deficiency, and the accummulation of unfolded proteins, among others. There are four distinct kinases that phosphorylate eIF-2 and control protein synthesis under different stress conditions: General Control Non-derepressible-2 (GCN2) which is activated during amino acid or serum starvation; protein kinase regulated by RNA (PKR) which is activated by double stranded RNA; heme-regulated inhibitor kinase (HRI) which is activated under heme-deficient conditions; and PKR-like endoplasmic reticulum kinase (PERK) which is activated when misfolded proteins accumulate in the ER. The EIF2AK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270898 [Multi-domain] Cd Length: 273 Bit Score: 53.07 E-value: 1.72e-09
|
|||||||
STKc_GAK_like | cd13985 | Catalytic domain of cyclin G-Associated Kinase-like proteins; STKs catalyze the transfer of ... |
36-111 | 1.74e-09 | |||
Catalytic domain of cyclin G-Associated Kinase-like proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes cyclin G-Associated Kinase (GAK), Drosophila melanogaster Numb-Associated Kinase (NAK)-like proteins, and similar protein kinases. GAK plays regulatory roles in clathrin-mediated membrane trafficking, the maintenance of centrosome integrity and chromosome congression, neural patterning, survival of neurons, and immune responses. NAK plays a role in asymmetric cell division through its association with Numb. It also regulates the localization of Dlg, a protein essential for septate junction formation. The GAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270887 [Multi-domain] Cd Length: 272 Bit Score: 53.11 E-value: 1.74e-09
|
|||||||
STKc_MAST_like | cd05579 | Catalytic domain of Microtubule-associated serine/threonine (MAST) kinase-like proteins; STKs ... |
8-108 | 4.98e-09 | |||
Catalytic domain of Microtubule-associated serine/threonine (MAST) kinase-like proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes MAST kinases, MAST-like (MASTL) kinases (also called greatwall kinase or Gwl), and fungal kinases with similarity to Saccharomyces cerevisiae Rim15 and Schizosaccharomyces pombe cek1. MAST kinases contain an N-terminal domain of unknown function, a central catalytic domain, and a C-terminal PDZ domain that mediates protein-protein interactions. MASTL kinases carry only a catalytic domain which contains a long insert relative to other kinases. The fungal kinases in this subfamily harbor other domains in addition to a central catalytic domain, which like in MASTL, also contains an insert relative to MAST kinases. Rim15 contains a C-terminal signal receiver (REC) domain while cek1 contains an N-terminal PAS domain. MAST kinases are cytoskeletal associated kinases of unknown function that are also expressed at neuromuscular junctions and postsynaptic densities. MASTL/Gwl is involved in the regulation of mitotic entry, mRNA stabilization, and DNA checkpoint recovery. The fungal proteins Rim15 and cek1 are involved in the regulation of meiosis and mitosis, respectively. The MAST-like kinase subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270731 [Multi-domain] Cd Length: 272 Bit Score: 51.83 E-value: 4.98e-09
|
|||||||
STKc_MLCK | cd14103 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase; STKs catalyze the ... |
15-109 | 5.12e-09 | |||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. In vertebrates, different MLCKs function in smooth (MLCK1), skeletal (MLCK2), and cardiac (MLCK3) muscles. A fourth protein, MLCK4, has also been identified through comprehensive genome analysis although it has not been biochemically characterized. The MLCK1 gene expresses three transcripts in a cell-specific manner: a short MLCK1 which contains three immunoglobulin (Ig)-like and one fibronectin type III (FN3) domains, PEVK and actin-binding regions, and a kinase domain near the C-terminus; a long MLCK1 containing six additional Ig-like domains at the N-terminus compared to the short MLCK1; and the C-terminal Ig module. MLCK2, MLCK3, and MLCK4 share a simpler domain architecture of a single kinase domain near the C-terminus and the absence of Ig-like or FN3 domains. The MLCK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271005 [Multi-domain] Cd Length: 250 Bit Score: 51.84 E-value: 5.12e-09
|
|||||||
STKc_TBK1 | cd13988 | Catalytic domain of the Serine/Threonine kinase, TANK Binding Kinase 1; STKs catalyze the ... |
14-103 | 1.17e-08 | |||
Catalytic domain of the Serine/Threonine kinase, TANK Binding Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TBK1 is also called T2K and NF-kB-activating kinase. It is widely expressed in most cell types and acts as an IkappaB kinase (IKK)-activating kinase responsible for NF-kB activation in response to growth factors. It plays a role in modulating inflammatory responses through the NF-kB pathway. TKB1 is also a major player in innate immune responses since it functions as a virus-activated kinase necessary for establishing an antiviral state. It phosphorylates IRF-3 and IRF-7, which are important transcription factors for inducing type I interferon during viral infection. In addition, TBK1 may also play roles in cell transformation and oncogenesis. The TBK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270890 [Multi-domain] Cd Length: 316 Bit Score: 50.95 E-value: 1.17e-08
|
|||||||
STKc_TAK1 | cd14058 | Catalytic domain of the Serine/Threonine Kinase, Transforming Growth Factor beta Activated ... |
1-108 | 1.31e-08 | |||
Catalytic domain of the Serine/Threonine Kinase, Transforming Growth Factor beta Activated Kinase-1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAK1 is also known as mitogen-activated protein kinase kinase kinase 7 (MAPKKK7 or MAP3K7), TAK, or MEKK7. As a MAPKKK, it is an important mediator of cellular responses to extracellular signals. It regulates both the c-Jun N-terminal kinase and p38 MAPK cascades by activating the MAPK kinases, MKK4 and MKK3/6. In addition, TAK1 plays diverse roles in immunity and development, in different biological contexts, through many signaling pathways including TGFbeta/BMP, Wnt/Fz, and NF-kB. It is also implicated in the activation of the tumor suppressor kinase, LKB1. The TAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270960 [Multi-domain] Cd Length: 253 Bit Score: 50.51 E-value: 1.31e-08
|
|||||||
STKc_MAP3K12_13 | cd14059 | Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase ... |
14-110 | 1.56e-08 | |||
Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase Kinases 12 and 13; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP3K12 is also called MAPK upstream kinase (MUK), dual leucine zipper-bearing kinase (DLK) or leucine-zipper protein kinase (ZPK). It is involved in the c-Jun N-terminal kinase (JNK) pathway that directly regulates axonal regulation through the phosphorylation of microtubule-associated protein 1B (MAP1B). It also regulates the differentiation of many cell types including adipocytes and may play a role in adipogenesis. MAP3K13, also called leucine zipper-bearing kinase (LZK), directly phosphorylates and activates MKK7, which in turn activates the JNK pathway. It also activates NF-kB through IKK activation and this activity is enhanced by antioxidant protein-1 (AOP-1). MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAP2Ks (MAPKKs or MKKs), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The MAP3K12/13 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270961 [Multi-domain] Cd Length: 237 Bit Score: 50.19 E-value: 1.56e-08
|
|||||||
STKc_CAMK | cd05117 | The catalytic domain of CAMK family Serine/Threonine Kinases; STKs catalyze the transfer of ... |
2-109 | 2.35e-08 | |||
The catalytic domain of CAMK family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. CaMKII is a signaling molecule that translates upstream calcium and reactive oxygen species (ROS) signals into downstream responses that play important roles in synaptic function and cardiovascular physiology. CAMKIV is implicated in regulating several transcription factors like CREB, MEF2, and retinoid orphan receptors, as well as in T-cell development and signaling. The CAMK family also consists of other related kinases including the Phosphorylase kinase Gamma subunit (PhKG), the C-terminal kinase domains of Ribosomal S6 kinase (RSK) and Mitogen and stress-activated kinase (MSK), Doublecortin-like kinase (DCKL), and the MAPK-activated protein kinases MK2, MK3, and MK5, among others. The CAMK family is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270687 [Multi-domain] Cd Length: 258 Bit Score: 49.78 E-value: 2.35e-08
|
|||||||
STKc_FA2-like | cd08529 | Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii FA2 and similar ... |
13-107 | 5.25e-08 | |||
Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii FA2 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chlamydomonas reinhardtii FA2 was discovered in a genetic screen for deflagellation-defective mutants. It is essential for basal-body/centriole-associated microtubule severing, and plays a role in cell cycle progression. No cellular function has yet been ascribed to CNK4. The Chlamydomonas reinhardtii FA2-like subfamily belongs to the (NIMA)-related kinase (Nek) family, which includes seven different Chlamydomonas Neks (CNKs 1-6 and Fa2). This subfamily contains FA2 and CNK4. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270868 [Multi-domain] Cd Length: 256 Bit Score: 48.95 E-value: 5.25e-08
|
|||||||
PKc_LIMK_like | cd14065 | Catalytic domain of the LIM domain kinase-like protein kinases; PKs catalyze the transfer of ... |
3-109 | 6.39e-08 | |||
Catalytic domain of the LIM domain kinase-like protein kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. Members of this subfamily include LIMK, Testicular or testis-specific protein kinase (TESK), and similar proteins. LIMKs are characterized as serine/threonine kinases (STKs) while TESKs are dual-specificity protein kinases. Both LIMK and TESK phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They are implicated in many cellular functions including cell spreading, motility, morphogenesis, meiosis, mitosis, and spermatogenesis. The LIMK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270967 [Multi-domain] Cd Length: 252 Bit Score: 48.64 E-value: 6.39e-08
|
|||||||
STKc_PLK | cd14099 | Catalytic domain of the Serine/Threonine Kinases, Polo-like kinases; STKs catalyze the ... |
2-107 | 9.02e-08 | |||
Catalytic domain of the Serine/Threonine Kinases, Polo-like kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. PLKs derive their names from homology to polo, a kinase first identified in Drosophila. There are five mammalian PLKs (PLK1-5) from distinct genes. There is good evidence that PLK1 may function as an oncogene while PLK2-5 have tumor suppressive properties. PLK1 functions as a positive regulator of mitosis, meiosis, and cytokinesis. PLK2 functions in G1 progression, S-phase arrest, and centriole duplication. PLK3 regulates angiogenesis and responses to DNA damage. PLK4 is required for late mitotic progression, cell survival, and embryonic development. PLK5 was first identified as a pseudogene containing a stop codon within the kinase domain, however, both murine and human genes encode expressed proteins. PLK5 functions in cell cycle arrest. Pssm-ID: 271001 [Multi-domain] Cd Length: 258 Bit Score: 48.32 E-value: 9.02e-08
|
|||||||
STKc_LIMK | cd14154 | Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase; STKs catalyze the transfer ... |
2-107 | 9.52e-08 | |||
Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LIMKs phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They act downstream of Rho GTPases and are expressed ubiquitously. As regulators of actin dynamics, they contribute to diverse cellular functions such as cell motility, morphogenesis, differentiation, apoptosis, meiosis, mitosis, and neurite extension. LIMKs contain the LIM (two repeats), PDZ, and catalytic kinase domains. Vertebrate have two members, LIMK1 and LIMK2. The LIMK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271056 [Multi-domain] Cd Length: 272 Bit Score: 48.27 E-value: 9.52e-08
|
|||||||
PKc_STE | cd05122 | Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the ... |
40-107 | 1.09e-07 | |||
Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. This family is composed of STKs, and some dual-specificity PKs that phosphorylate both threonine and tyrosine residues of target proteins. Most members are kinases involved in mitogen-activated protein kinase (MAPK) signaling cascades, acting as MAPK kinases (MAPKKs), MAPKK kinases (MAPKKKs), or MAPKKK kinases (MAP4Ks). The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPKK, which itself is phosphorylated and activated by a MAPKKK. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAPKKK to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Other STE family members include p21-activated kinases (PAKs) and class III myosins, among others. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. Class III myosins are motor proteins containing an N-terminal kinase catalytic domain and a C-terminal actin-binding domain, which can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, as well as autophosphorylate the C-terminal motor domain. They play an important role in maintaining the structural integrity of photoreceptor cell microvilli. The STE family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270692 [Multi-domain] Cd Length: 254 Bit Score: 47.97 E-value: 1.09e-07
|
|||||||
STKc_Aurora | cd14007 | Catalytic domain of the Serine/Threonine kinase, Aurora kinase; STKs catalyze the transfer of ... |
40-111 | 1.19e-07 | |||
Catalytic domain of the Serine/Threonine kinase, Aurora kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Aurora kinases are key regulators of mitosis and are essential for the accurate and equal division of genomic material from parent to daughter cells. Yeast contains only one Aurora kinase while most higher eukaryotes have two. Vertebrates contain at least 2 Aurora kinases (A and B); mammals contains a third Aurora kinase gene (C). Aurora-A regulates cell cycle events from the late S-phase through the M-phase including centrosome maturation, mitotic entry, centrosome separation, spindle assembly, chromosome alignment, cytokinesis, and mitotic exit. Aurora-A activation depends on its autophosphorylation and binding to the microtubule-associated protein TPX2. Aurora-B is most active at the transition during metaphase to the end of mitosis. It is critical for accurate chromosomal segregation, cytokinesis, protein localization to the centrosome and kinetochore, correct microtubule-kinetochore attachments, and regulation of the mitotic checkpoint. Aurora-C is mainly expressed in meiotically dividing cells; it was originally discovered in mice as a testis-specific STK called Aie1. Both Aurora-B and -C are chromosomal passenger proteins that can form complexes with INCENP and survivin, and they may have redundant cellular functions. The Aurora subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270909 [Multi-domain] Cd Length: 253 Bit Score: 47.85 E-value: 1.19e-07
|
|||||||
STKc_AGC | cd05123 | Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
41-108 | 1.27e-07 | |||
Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. AGC kinases regulate many cellular processes including division, growth, survival, metabolism, motility, and differentiation. Many are implicated in the development of various human diseases. Members of this family include cAMP-dependent Protein Kinase (PKA), cGMP-dependent Protein Kinase (PKG), Protein Kinase C (PKC), Protein Kinase B (PKB), G protein-coupled Receptor Kinase (GRK), Serum- and Glucocorticoid-induced Kinase (SGK), and 70 kDa ribosomal Protein S6 Kinase (p70S6K or S6K), among others. AGC kinases share an activation mechanism based on the phosphorylation of up to three sites: the activation loop (A-loop), the hydrophobic motif (HM) and the turn motif. Phosphorylation at the A-loop is required of most AGC kinases, which results in a disorder-to-order transition of the A-loop. The ordered conformation results in the access of substrates and ATP to the active site. A subset of AGC kinases with C-terminal extensions containing the HM also requires phosphorylation at this site. Phosphorylation at the HM allows the C-terminal extension to form an ordered structure that packs into the hydrophobic pocket of the catalytic domain, which then reconfigures the kinase into an active bi-lobed state. In addition, growth factor-activated AGC kinases such as PKB, p70S6K, RSK, MSK, PKC, and SGK, require phosphorylation at the turn motif (also called tail or zipper site), located N-terminal to the HM at the C-terminal extension. The AGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and Phosphoinositide 3-Kinase. Pssm-ID: 270693 [Multi-domain] Cd Length: 250 Bit Score: 47.90 E-value: 1.27e-07
|
|||||||
PKc_Pek1_like | cd06621 | Catalytic domain of fungal Pek1-like dual-specificity Mitogen-Activated Protein Kinase Kinases; ... |
9-108 | 1.57e-07 | |||
Catalytic domain of fungal Pek1-like dual-specificity Mitogen-Activated Protein Kinase Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. Members of this group include the MAPKKs Pek1/Skh1 from Schizosaccharomyces pombe and MKK2 from Saccharomyces cerevisiae, and related proteins. Both fission yeast Pek1 and baker's yeast MKK2 are components of the cell integrity MAPK pathway. In fission yeast, Pek1 phosphorylates and activates Pmk1/Spm1 and is regulated by the MAPKK kinase Mkh1. In baker's yeast, the pathway involves the MAPK Slt2, the MAPKKs MKK1 and MKK2, and the MAPKK kinase Bck1. The cell integrity MAPK cascade is activated by multiple stress conditions, and is essential in cell wall construction, morphogenesis, cytokinesis, and ion homeostasis. MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The MAPKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270793 [Multi-domain] Cd Length: 287 Bit Score: 47.80 E-value: 1.57e-07
|
|||||||
STKc_LIMK1 | cd14221 | Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase 1; STKs catalyze the ... |
2-107 | 2.78e-07 | |||
Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LIMK1 activation is induced by bone morphogenic protein, vascular endothelial growth factor, and thrombin. It plays roles in microtubule disassembly and cell cycle progression, and is critical in the regulation of neurite outgrowth. LIMK1 knockout mice show abnormalities in dendritic spine morphology and synaptic function. LIMK1 is one of the genes deleted in patients with Williams Syndrome, which is characterized by distinct craniofacial features, cardiovascular problems, as well as behavioral and neurological abnormalities. LIMKs phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They act downstream of Rho GTPases and are expressed ubiquitously. As regulators of actin dynamics, they contribute to diverse cellular functions such as cell motility, morphogenesis, differentiation, apoptosis, meiosis, mitosis, and neurite extension. LIMKs contain the LIM (two repeats), PDZ, and catalytic kinase domains. The LIMK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271123 [Multi-domain] Cd Length: 267 Bit Score: 46.87 E-value: 2.78e-07
|
|||||||
STKc_LIMK2 | cd14222 | Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase 2; STKs catalyze the ... |
2-105 | 2.78e-07 | |||
Catalytic domain of the Serine/Threonine Kinase, LIM domain kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LIMK2 activation is induced by transforming growth factor-beta l (TGFb-l) and shares the same subcellular location as the cofilin family member twinfilin, which may be its biological substrate. LIMK2 plays a role in spermatogenesis, and may contribute to tumor progression and metastasis formation in some cancer cells. LIMKs phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They act downstream of Rho GTPases and are expressed ubiquitously. As regulators of actin dynamics, they contribute to diverse cellular functions such as cell motility, morphogenesis, differentiation, apoptosis, meiosis, mitosis, and neurite extension. LIMKs contain the LIM (two repeats), PDZ, and catalytic kinase domains. The LIMK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271124 [Multi-domain] Cd Length: 272 Bit Score: 46.86 E-value: 2.78e-07
|
|||||||
STKc_TLK | cd13990 | Catalytic domain of the Serine/Threonine kinase, Tousled-Like Kinase; STKs catalyze the ... |
9-111 | 3.15e-07 | |||
Catalytic domain of the Serine/Threonine kinase, Tousled-Like Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TLKs play important functions during the cell cycle and are implicated in chromatin remodeling, DNA replication and repair, and mitosis. They phosphorylate and regulate Anti-silencing function 1 protein (Asf1), a histone H3/H4 chaperone that helps facilitate the assembly of chromatin following DNA replication during S phase. TLKs also phosphorylate the H3 histone tail and are essential in transcription. Vertebrates contain two subfamily members, TLK1 and TLK2. The TLK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270892 [Multi-domain] Cd Length: 279 Bit Score: 46.93 E-value: 3.15e-07
|
|||||||
PTKc_Src_like | cd05034 | Catalytic domain of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of ... |
2-111 | 4.20e-07 | |||
Catalytic domain of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Src subfamily members include Src, Lck, Hck, Blk, Lyn, Fgr, Fyn, Yrk, and Yes. Src (or c-Src) proteins are cytoplasmic (or non-receptor) PTKs which are anchored to the plasma membrane. They contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. They were identified as the first proto-oncogene products, and they regulate cell adhesion, invasion, and motility in cancer cells and tumor vasculature, contributing to cancer progression and metastasis. Src kinases are overexpressed in a variety of human cancers, making them attractive targets for therapy. They are also implicated in acute inflammatory responses and osteoclast function. Src, Fyn, Yes, and Yrk are widely expressed, while Blk, Lck, Hck, Fgr, and Lyn show a limited expression pattern. The Src-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270630 [Multi-domain] Cd Length: 248 Bit Score: 46.51 E-value: 4.20e-07
|
|||||||
STKc_CDK_like | cd07829 | Catalytic domain of Cyclin-Dependent protein Kinase-like Serine/Threonine Kinases; STKs ... |
14-110 | 4.41e-07 | |||
Catalytic domain of Cyclin-Dependent protein Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. CDKs are partly regulated by their subcellular localization, which defines substrate phosphorylation and the resulting specific function. CDK1, CDK2, CDK4, and CDK6 have well-defined functions in the cell cycle, such as the regulation of the early G1 phase by CDK4 or CDK6, the G1/S phase transition by CDK2, or the entry of mitosis by CDK1. They also exhibit overlapping cyclin specificity and functions in certain conditions. Knockout mice with a single CDK deleted remain viable with specific phenotypes, showing that some CDKs can compensate for each other. For example, CDK4 can compensate for the loss of CDK6, however, double knockout mice with both CDK4 and CDK6 deleted die in utero. CDK8 and CDK9 are mainly involved in transcription while CDK5 is implicated in neuronal function. CDK7 plays essential roles in both the cell cycle as a CDK-Activating Kinase (CAK) and in transcription as a component of the general transcription factor TFIIH. The CDK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270823 [Multi-domain] Cd Length: 282 Bit Score: 46.32 E-value: 4.41e-07
|
|||||||
PTKc_Lyn | cd05072 | Catalytic domain of the Protein Tyrosine Kinase, Lyn; PTKs catalyze the transfer of the ... |
2-111 | 5.47e-07 | |||
Catalytic domain of the Protein Tyrosine Kinase, Lyn; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Lyn is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Lyn is expressed in B lymphocytes and myeloid cells. It exhibits both positive and negative regulatory roles in B cell receptor (BCR) signaling. Lyn, as well as Fyn and Blk, promotes B cell activation by phosphorylating ITAMs (immunoreceptor tyr activation motifs) in CD19 and in Ig components of BCR. It negatively regulates signaling by its unique ability to phosphorylate ITIMs (immunoreceptor tyr inhibition motifs) in cell surface receptors like CD22 and CD5. Lyn also plays an important role in G-CSF receptor signaling by phosphorylating a variety of adaptor molecules. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Lyn subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270657 [Multi-domain] Cd Length: 272 Bit Score: 46.19 E-value: 5.47e-07
|
|||||||
STKc_SPEG_rpt2 | cd14111 | Catalytic kinase domain, second repeat, of Giant Serine/Threonine Kinase Striated muscle ... |
40-110 | 6.20e-07 | |||
Catalytic kinase domain, second repeat, of Giant Serine/Threonine Kinase Striated muscle preferentially expressed protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Striated muscle preferentially expressed gene (SPEG) generates 4 different isoforms through alternative promoter use and splicing in a tissue-specific manner: SPEGalpha and SPEGbeta are expressed in cardiac and skeletal striated muscle; Aortic Preferentially Expressed Protein-1 (APEG-1) is expressed in vascular smooth muscle; and Brain preferentially expressed gene (BPEG) is found in the brain and aorta. SPEG proteins have mutliple immunoglobulin (Ig), 2 fibronectin type III (FN3), and two kinase domains. They are necessary for cardiac development and survival. The SPEG subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271013 [Multi-domain] Cd Length: 257 Bit Score: 45.97 E-value: 6.20e-07
|
|||||||
STKc_CDK4_6_like | cd07838 | Catalytic domain of Cyclin-Dependent protein Kinase 4 and 6-like Serine/Threonine Kinases; ... |
81-108 | 7.35e-07 | |||
Catalytic domain of Cyclin-Dependent protein Kinase 4 and 6-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK4 and CDK6 partner with D-type cyclins to regulate the early G1 phase of the cell cycle. They are the first kinases activated by mitogenic signals to release cells from the G0 arrested state. CDK4 and CDK6 are both expressed ubiquitously, associate with all three D cyclins (D1, D2 and D3), and phosphorylate the retinoblastoma (pRb) protein. They are also regulated by the INK4 family of inhibitors which associate with either the CDK alone or the CDK/cyclin complex. CDK4 and CDK6 show differences in subcellular localization, sensitivity to some inhibitors, timing in activation, tumor selectivity, and possibly substrate profiles. Although CDK4 and CDK6 seem to show some redundancy, they also have discrete, nonoverlapping functions. CDK6 plays an important role in cell differentiation. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK4/6-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270831 [Multi-domain] Cd Length: 287 Bit Score: 45.73 E-value: 7.35e-07
|
|||||||
STKc_EIF2AK2_PKR | cd14047 | Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor ... |
12-107 | 8.59e-07 | |||
Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 2 or Protein Kinase regulated by RNA; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKR (or EIF2AK2) contains an N-terminal double-stranded RNA (dsRNA) binding domain and a C-terminal catalytic kinase domain. It is activated by dsRNA, which is produced as a replication intermediate in virally infected cells. It plays a key role in mediating innate immune responses to viral infection. PKR is also directly activated by PACT (protein activator of PKR) and heparin, and is inhibited by viral proteins and RNAs. PKR also regulates transcription and signal transduction in diseased cells, playing roles in tumorigenesis and neurodegenerative diseases. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. The PKR subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270949 [Multi-domain] Cd Length: 267 Bit Score: 45.56 E-value: 8.59e-07
|
|||||||
STKc_MAPK4_6 | cd07854 | Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinases 4 (also ... |
14-110 | 8.80e-07 | |||
Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinases 4 (also called ERK4) and 6 (also called ERK3); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK4 (also called ERK4 or p63MAPK) and MAPK6 (also called ERK3 or p97MAPK) are atypical MAPKs that are not regulated by MAPK kinases. MAPK6 is expressed ubiquitously with highest amounts in brain and skeletal muscle. It may be involved in the control of cell differentiation by negatively regulating cell cycle progression in certain conditions. It may also play a role in glucose-induced insulin secretion. MAPK6 and MAPK4 cooperate to regulate the activity of MAPK-activated protein kinase 5 (MK5), leading to its relocation to the cytoplasm and exclusion from the nucleus. The MAPK6/MK5 and MAPK4/MK5 pathways may play critical roles in embryonic and post-natal development. MAPKs are important mediators of cellular responses to extracellular signals. The MAPK4/6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143359 [Multi-domain] Cd Length: 342 Bit Score: 45.54 E-value: 8.80e-07
|
|||||||
STKc_CDK9_like | cd07840 | Catalytic domain of Cyclin-Dependent protein Kinase 9-like Serine/Threonine Kinases; STKs ... |
15-110 | 9.15e-07 | |||
Catalytic domain of Cyclin-Dependent protein Kinase 9-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK9 and CDK12 from higher eukaryotes, yeast BUR1, C-type plant CDKs (CdkC), and similar proteins. CDK9, BUR1, and CdkC are functionally equivalent. They act as a kinase for the C-terminal domain of RNA polymerase II and participate in regulating mutliple steps of gene expression including transcription elongation and RNA processing. CDK9 and CdkC associate with T-type cyclins while BUR1 associates with the cyclin BUR2. CDK12 is a unique CDK that contains an arginine/serine-rich (RS) domain, which is predominantly found in splicing factors. CDK12 interacts with cyclins L1 and L2, and participates in regulating transcription and alternative splicing. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK9-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270832 [Multi-domain] Cd Length: 291 Bit Score: 45.63 E-value: 9.15e-07
|
|||||||
STKc_Nek2 | cd08217 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ... |
8-110 | 9.41e-07 | |||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Nek2 subfamily includes Aspergillus nidulans NIMA kinase, the founding member of the Nek family, which was identified in a screen for cell cycle mutants prevented from entering mitosis. NIMA is essential for mitotic entry and progression through mitosis, and its degradation is essential for mitotic exit. NIMA is involved in nuclear membrane fission. Vertebrate Nek2 is a cell cycle-regulated STK, localized in centrosomes and kinetochores, that regulates centrosome splitting at the G2/M phase. It also interacts with other mitotic kinases such as Polo-like kinase 1 and may play a role in spindle checkpoint. An increase in the expression of the human NEK2 gene is strongly associated with the progression of non-Hodgkin lymphoma. Nek2 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. It The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270857 [Multi-domain] Cd Length: 265 Bit Score: 45.22 E-value: 9.41e-07
|
|||||||
STKc_STK36 | cd14002 | Catalytic domain of Serine/Threonine Kinase 36; STKs catalyze the transfer of the ... |
13-111 | 1.14e-06 | |||
Catalytic domain of Serine/Threonine Kinase 36; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK36, also called Fused (or Fu) kinase, is involved in the Hedgehog signaling pathway. It is activated by the Smoothened (SMO) signal transducer, resulting in the stabilization of GLI transcription factors and the phosphorylation of SUFU to facilitate the nuclear accumulation of GLI. In Drosophila, Fused kinase is maternally required for proper segmentation during embryonic development and for the development of legs and wings during the larval stage. In mice, STK36 is not necessary for embryonic development, although mice deficient in STK36 display growth retardation postnatally. The STK36 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270904 [Multi-domain] Cd Length: 253 Bit Score: 45.32 E-value: 1.14e-06
|
|||||||
PTKc_Tyk2_rpt2 | cd05080 | Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Tyrosine kinase 2; PTKs catalyze ... |
3-110 | 1.50e-06 | |||
Catalytic (repeat 2) domain of the Protein Tyrosine Kinase, Tyrosine kinase 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Tyk2 is widely expressed in many tissues. It is involved in signaling via the cytokine receptors IFN-alphabeta, IL-6, IL-10, IL-12, IL-13, and IL-23. It mediates cell surface urokinase receptor (uPAR) signaling and plays a role in modulating vascular smooth muscle cell (VSMC) functional behavior in response to injury. Tyk2 is also important in dendritic cell function and T helper (Th)1 cell differentiation. A homozygous mutation of Tyk2 was found in a patient with hyper-IgE syndrome (HIES), a primary immunodeficiency characterized by recurrent skin abscesses, pneumonia, and elevated serum IgE. This suggests that Tyk2 may play important roles in multiple cytokine signaling involved in innate and adaptive immunity. Tyk2 is a member of the Janus kinase (Jak) subfamily of proteins, which are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase catalytic domain. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). The Tyk2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270664 [Multi-domain] Cd Length: 283 Bit Score: 44.89 E-value: 1.50e-06
|
|||||||
STKc_CAMKK | cd14118 | Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase; ... |
14-109 | 1.53e-06 | |||
Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMP-activated protein kinase (AMPK). Vertebrates contain two CaMKKs, CaMKK1 (or alpha) and CaMKK2 (or beta). CaMKK1 is involved in the regulation of glucose uptake in skeletal muscles. CaMKK2 is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. The CaMKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271020 [Multi-domain] Cd Length: 275 Bit Score: 44.66 E-value: 1.53e-06
|
|||||||
STKc_CNK2-like | cd08530 | Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii CNK2 and similar ... |
40-106 | 2.05e-06 | |||
Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii CNK2 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chlamydomonas reinhardtii CNK2 has both cilliary and cell cycle functions. It influences flagellar length through promoting flagellar disassembly, and it regulates cell size, through influencing the size threshold at which cells commit to mitosis. This subfamily belongs to the (NIMA)-related kinase (Nek) family, which includes seven different Chlamydomonas Neks (CNKs 1-6 and Fa2). This subfamily includes CNK1, and -2. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270869 [Multi-domain] Cd Length: 256 Bit Score: 44.30 E-value: 2.05e-06
|
|||||||
STKc_MLCK1 | cd14191 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 1; STKs catalyze ... |
65-103 | 2.45e-06 | |||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK1 (or MYLK1) phosphorylates myosin regulatory light chain and controls the contraction of smooth muscles. The MLCK1 gene expresses three transcripts in a cell-specific manner: a short MLCK1 which contains three immunoglobulin (Ig)-like and one fibronectin type III (FN3) domains, PEVK and actin-binding regions, and a kinase domain near the C-terminus followed by a regulatory segment containing an autoinhibitory Ca2+/calmodulin binding site; a long MLCK1 containing six additional Ig-like domains at the N-terminus compared to the short MLCK1; and the C-terminal Ig module which results in the expression of telokin in phasic smooth muscles, leading to Ca2+ desensitization by cyclic nucleotides of smooth muscle force. MLCK1 is also responsible for myosin regulatory light chain phosphorylation in nonmuscle cells and may play a role in regulating myosin II ATPase activity. The MLCK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271093 [Multi-domain] Cd Length: 259 Bit Score: 44.22 E-value: 2.45e-06
|
|||||||
PTKc_Lck_Blk | cd05067 | Catalytic domain of the Protein Tyrosine Kinases, Lymphocyte-specific kinase and Blk; PTKs ... |
2-111 | 2.63e-06 | |||
Catalytic domain of the Protein Tyrosine Kinases, Lymphocyte-specific kinase and Blk; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Lck and Blk are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Lck is expressed in T-cells and natural killer cells. It plays a critical role in T-cell maturation, activation, and T-cell receptor (TCR) signaling. Lck phosphorylates ITAM (immunoreceptor tyr activation motif) sequences on several subunits of TCRs, leading to the activation of different second messenger cascades. Phosphorylated ITAMs serve as binding sites for other signaling factor such as Syk and ZAP-70, leading to their activation and propagation of downstream events. In addition, Lck regulates drug-induced apoptosis by interfering with the mitochondrial death pathway. The apototic role of Lck is independent of its primary function in T-cell signaling. Blk is expressed specifically in B-cells. It is involved in pre-BCR (B-cell receptor) signaling. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Lck/Blk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270652 [Multi-domain] Cd Length: 264 Bit Score: 44.11 E-value: 2.63e-06
|
|||||||
PTKc_Wee1 | cd14051 | Catalytic domain of the Protein Tyrosine Kinase, Wee1; PTKs catalyze the transfer of the ... |
81-106 | 2.72e-06 | |||
Catalytic domain of the Protein Tyrosine Kinase, Wee1; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Wee1 is a nuclear cell cycle checkpoint kinase that helps keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of an N-terminal tyr (Y15) residue. During the late G2 phase, CDK1 is activated and mitotic entry is promoted by the removal of this inhibitory phosphorylation by the phosphatase Cdc25. Although Wee1 is functionally a tyr kinase, it is more closely related to serine/threonine kinases (STKs). It contains a catalytic kinase domain sandwiched in between N- and C-terminal regulatory domains. It is regulated by phosphorylation and degradation, and its expression levels are also controlled by circadian clock proteins. There are two distinct Wee1 proteins in vertebrates showing different expression patterns, called Wee1a and Wee1b. They are functionally dstinct and are implicated in different steps of egg maturation and embryo development. The Wee1 subfamily is part of a larger superfamily that includes the catalytic domains of STKs, other PTKs, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270953 [Multi-domain] Cd Length: 275 Bit Score: 44.32 E-value: 2.72e-06
|
|||||||
PTZ00024 | PTZ00024 | cyclin-dependent protein kinase; Provisional |
81-111 | 3.05e-06 | |||
cyclin-dependent protein kinase; Provisional Pssm-ID: 240233 [Multi-domain] Cd Length: 335 Bit Score: 43.98 E-value: 3.05e-06
|
|||||||
STKc_MEKK3_like | cd06625 | Catalytic domain of Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) ... |
15-103 | 3.23e-06 | |||
Catalytic domain of Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 3-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MEKK3, MEKK2, and related proteins; all contain an N-terminal PB1 domain, which mediates oligomerization, and a C-terminal catalytic domain. MEKK2 and MEKK3 are MAPK kinase kinases (MAPKKKs or MKKK) that activate MEK5 (also called MKK5), which activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK3 plays an essential role in embryonic angiogenesis and early heart development. MEKK2 and MEKK3 can also activate the MAPKs, c-Jun N-terminal kinase (JNK) and p38, through their respective MAPKKs. The MEKK3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270795 [Multi-domain] Cd Length: 260 Bit Score: 43.88 E-value: 3.23e-06
|
|||||||
STKc_Yank1 | cd05578 | Catalytic domain of the Serine/Threonine Kinase, Yank1; STKs catalyze the transfer of the ... |
77-108 | 3.34e-06 | |||
Catalytic domain of the Serine/Threonine Kinase, Yank1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily contains uncharacterized STKs with similarity to the human protein designated as Yank1 or STK32A. The Yank1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270730 [Multi-domain] Cd Length: 257 Bit Score: 43.78 E-value: 3.34e-06
|
|||||||
PTKc_DDR | cd05051 | Catalytic domain of the Protein Tyrosine Kinases, Discoidin Domain Receptors; PTKs catalyze ... |
3-98 | 3.39e-06 | |||
Catalytic domain of the Protein Tyrosine Kinases, Discoidin Domain Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The DDR subfamily consists of homologs of mammalian DDR1, DDR2, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular discoidin homology domain, a transmembrane segment, an extended juxtamembrane region, and an intracellular catalytic domain. The binding of the ligand, collagen, to DDRs results in a slow but sustained receptor activation. DDRs regulate cell adhesion, proliferation, and extracellular matrix remodeling. They have been linked to a variety of human cancers including breast, colon, ovarian, brain, and lung. There is no evidence showing that DDRs act as transforming oncogenes. They are more likely to play a role in the regulation of tumor growth and metastasis. The DDR subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270644 [Multi-domain] Cd Length: 297 Bit Score: 43.87 E-value: 3.39e-06
|
|||||||
STKc_ULK4 | cd14010 | Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 4; STKs catalyze the ... |
40-107 | 3.60e-06 | |||
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ULK4 is a functionally uncharacterized kinase that shows similarity to ATG1/ULKs. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. The ULK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270912 [Multi-domain] Cd Length: 269 Bit Score: 43.82 E-value: 3.60e-06
|
|||||||
PK_KSR | cd14063 | Pseudokinase domain of Kinase Suppressor of Ras; The pseudokinase domain shows similarity to ... |
40-105 | 3.73e-06 | |||
Pseudokinase domain of Kinase Suppressor of Ras; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. KSR is a scaffold protein that functions downstream of Ras and upstream of Raf in the Extracellular signal-Regulated Kinase (ERK) pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. KSR proteins regulate the assembly and activation of the Raf/MEK/ERK module upon Ras activation at the membrane by direct association of its components. They are widely regarded as pseudokinases, but there is some debate in this designation as a few groups have reported detecting kinase catalytic activity for KSRs, specifically KSR1. Vertebrates contain two KSR proteins, KSR1 and KSR2. The KSR subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270965 [Multi-domain] Cd Length: 271 Bit Score: 43.88 E-value: 3.73e-06
|
|||||||
PTKc_Wee1_fungi | cd14052 | Catalytic domain of the Protein Tyrosine Kinases, Fungal Wee1 proteins; PTKs catalyze the ... |
84-108 | 4.11e-06 | |||
Catalytic domain of the Protein Tyrosine Kinases, Fungal Wee1 proteins; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of fungal Wee1 proteins, also called Swe1 in budding yeast and Mik1 in fission yeast. Yeast Wee1 is required to control cell size. Wee1 is a cell cycle checkpoint kinase that helps keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of an N-terminal tyr (Y15) residue. During the late G2 phase, CDK1 is activated and mitotic entry is promoted by the removal of this inhibitory phosphorylation by the phosphatase Cdc25. Although Wee1 is functionally a tyr kinase, it is more closely related to serine/threonine kinases (STKs). It contains a catalytic kinase domain sandwiched in between N- and C-terminal regulatory domains. It is regulated by phosphorylation and degradation, and its expression levels are also controlled by circadian clock proteins. The fungal Wee1 subfamily is part of a larger superfamily that includes the catalytic domains of STKs, other PTKs, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270954 [Multi-domain] Cd Length: 278 Bit Score: 43.56 E-value: 4.11e-06
|
|||||||
STKc_IRE1 | cd13982 | Catalytic domain of the Serine/Threonine kinase, Inositol-requiring protein 1; STKs catalyze ... |
80-109 | 4.23e-06 | |||
Catalytic domain of the Serine/Threonine kinase, Inositol-requiring protein 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRE1, also called Endoplasmic reticulum (ER)-to-nucleus signaling protein (or ERN), is an ER-localized type I transmembrane protein with kinase and endoribonuclease domains in the cytoplasmic side. It acts as an ER stress sensor and is the oldest and most conserved component of the unfolded protein response (UPR) in eukaryotes. The UPR is activated when protein misfolding is detected in the ER in order to decrease the synthesis of new proteins and increase the capacity of the ER to cope with the stress. During ER stress, IRE1 dimerizes and forms oligomers, allowing the kinase domain to undergo trans-autophosphorylation. This leads to a conformational change that stimulates its endoribonuclease activity and results in the cleavage of its mRNA substrate, HAC1 in yeast and XBP1 in metazoans, promoting a splicing event that enables translation into a transcription factor which activates the UPR. Mammals contain two IRE1 proteins, IRE1alpha (or ERN1) and IRE1beta (or ERN2). The Ire1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270884 [Multi-domain] Cd Length: 269 Bit Score: 43.41 E-value: 4.23e-06
|
|||||||
STKc_Nek8 | cd08220 | Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA) ... |
3-105 | 4.30e-06 | |||
Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 8; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek8 contains an N-terminal kinase catalytic domain and a C-terminal RCC1 (regulator of chromosome condensation) domain. A double point mutation in Nek8 causes cystic kidney disease in mice that genetically resembles human autosomal recessive polycystic kidney disease (ARPKD). Nek8 is also associated with a rare form of juvenile renal cystic disease, nephronophthisis type 9. It has been suggested that a defect in the ciliary localization of Nek8 contributes to the development of cysts manifested by these diseases. Nek8 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270859 [Multi-domain] Cd Length: 256 Bit Score: 43.57 E-value: 4.30e-06
|
|||||||
STKc_NIM1 | cd14075 | Catalytic domain of the Serine/Threonine Kinase, NIM1; STKs catalyze the transfer of the ... |
40-111 | 4.88e-06 | |||
Catalytic domain of the Serine/Threonine Kinase, NIM1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NIM1 is a widely-expressed kinase belonging to the AMP-activated protein kinase (AMPK) subfamily. Although present in most tissues, NIM1 kinase activity is only observed in the brain and testis. NIM1 is capable of autophosphorylating and activating itself, but may be present in other tissues in the inactive form. The physiological function of NIM1 has yet to be elucidated. The NIM1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270977 [Multi-domain] Cd Length: 255 Bit Score: 43.48 E-value: 4.88e-06
|
|||||||
STKc_ATG1_ULK_like | cd14009 | Catalytic domain of the Serine/Threonine kinases, Autophagy-related protein 1 and Unc-51-like ... |
14-107 | 4.89e-06 | |||
Catalytic domain of the Serine/Threonine kinases, Autophagy-related protein 1 and Unc-51-like kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes yeast ATG1 and metazoan homologs including vertebrate ULK1-3. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. It is involved in nutrient sensing and signaling, the assembly of autophagy factors and the execution of autophagy. In metazoans, ATG1 homologs display additional functions. Unc-51 and ULKs have been implicated in neuronal and axonal development. The ATG1/ULK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270911 [Multi-domain] Cd Length: 251 Bit Score: 43.37 E-value: 4.89e-06
|
|||||||
STKc_CDK8_like | cd07842 | Catalytic domain of Cyclin-Dependent protein Kinase 8-like Serine/Threonine Kinases; STKs ... |
81-106 | 4.98e-06 | |||
Catalytic domain of Cyclin-Dependent protein Kinase 8-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK8, CDC2L6, and similar proteins. CDK8 functions as a negative or positive regulator of transcription, depending on the scenario. Together with its regulator, cyclin C, it reversibly associates with the multi-subunit core Mediator complex, a cofactor that is involved in regulating RNA polymerase II-dependent transcription. CDC2L6 also associates with Mediator in complexes lacking CDK8. In VP16-dependent transcriptional activation, CDK8 and CDC2L6 exerts opposing effects by positive and negative regulation, respectively, in similar conditions. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK8-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270834 [Multi-domain] Cd Length: 316 Bit Score: 43.43 E-value: 4.98e-06
|
|||||||
STKc_MLTK | cd14060 | Catalytic domain of the Serine/Threonine Kinase, Mixed lineage kinase-Like mitogen-activated ... |
15-110 | 5.59e-06 | |||
Catalytic domain of the Serine/Threonine Kinase, Mixed lineage kinase-Like mitogen-activated protein Triple Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLTK, also called zipper sterile-alpha-motif kinase (ZAK), contains a catalytic kinase domain and a leucine zipper. There are two alternatively-spliced variants, MLTK-alpha and MLTK-beta. MLTK-alpha contains a sterile-alpha-motif (SAM) at the C-terminus. MLTK regulates the c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38 MAPK, and NF-kB pathways. ZAK is the MAP3K involved in the signaling cascade that leads to the ribotoxic stress response initiated by cellular damage due to Shiga toxins and ricin. It may also play a role in cell transformation and cancer development. MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals.The MLTK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270962 [Multi-domain] Cd Length: 242 Bit Score: 43.02 E-value: 5.59e-06
|
|||||||
STKc_MEKK1 | cd06630 | Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP) ... |
4-105 | 5.60e-06 | |||
Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK1 is a MAPK kinase kinase (MAPKKK or MKKK) that phosphorylates and activates activates the ERK1/2 and c-Jun N-terminal kinase (JNK) pathways by activating their respective MAPKKs, MEK1/2 and MKK4/MKK7, respectively. MEKK1 is important in regulating cell survival and apoptosis. MEKK1 also plays a role in cell migration, tissue maintenance and homeostasis, and wound healing. The MEKK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270800 [Multi-domain] Cd Length: 268 Bit Score: 43.19 E-value: 5.60e-06
|
|||||||
Bud32 | COG3642 | tRNA A-37 threonylcarbamoyl transferase component Bud32 [Translation, ribosomal structure and ... |
38-111 | 5.73e-06 | |||
tRNA A-37 threonylcarbamoyl transferase component Bud32 [Translation, ribosomal structure and biogenesis]; tRNA A-37 threonylcarbamoyl transferase component Bud32 is part of the Pathway/BioSystem: tRNA modification Pssm-ID: 442859 [Multi-domain] Cd Length: 159 Bit Score: 42.64 E-value: 5.73e-06
|
|||||||
STKc_IKK | cd13989 | Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase ... |
14-109 | 7.34e-06 | |||
Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase (IKK); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The IKK complex functions as a master regulator of Nuclear Factor-KappaB (NF-kB) proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. It is composed of two kinases, IKKalpha and IKKbeta, and the regulatory subunit IKKgamma or NEMO (NF-kB Essential MOdulator). IKKs facilitate the release of NF-kB dimers from an inactive state, allowing them to migrate to the nucleus where they regulate gene transcription. There are two IKK pathways that regulate NF-kB signaling, called the classical (involving IKKbeta and NEMO) and non-canonical (involving IKKalpha) pathways. The classical pathway regulates the majority of genes activated by NF-kB. The IKK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270891 [Multi-domain] Cd Length: 289 Bit Score: 42.82 E-value: 7.34e-06
|
|||||||
STKc_MST3_like | cd06609 | Catalytic domain of Mammalian Ste20-like protein kinase 3-like Serine/Threonine Kinases; STKs ... |
40-108 | 8.96e-06 | |||
Catalytic domain of Mammalian Ste20-like protein kinase 3-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MST3, MST4, STK25, Schizosaccharomyces pombe Nak1 and Sid1, Saccharomyces cerevisiae sporulation-specific protein 1 (SPS1), and related proteins. Nak1 is required by fission yeast for polarizing the tips of actin cytoskeleton and is involved in cell growth, cell separation, cell morphology and cell-cycle progression. Sid1 is a component in the septation initiation network (SIN) signaling pathway, and plays a role in cytokinesis. SPS1 plays a role in regulating proteins required for spore wall formation. MST4 plays a role in mitogen-activated protein kinase (MAPK) signaling during cytoskeletal rearrangement, morphogenesis, and apoptosis. MST3 phosphorylates the STK NDR and may play a role in cell cycle progression and cell morphology. STK25 may play a role in the regulation of cell migration and polarization. The MST3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270786 [Multi-domain] Cd Length: 274 Bit Score: 42.62 E-value: 8.96e-06
|
|||||||
PKc_LIMK_like_unk | cd14156 | Catalytic domain of an unknown subfamily of LIM domain kinase-like protein kinases; PKs ... |
14-105 | 1.04e-05 | |||
Catalytic domain of an unknown subfamily of LIM domain kinase-like protein kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. This group is composed of uncharacterized proteins with similarity to LIMK and Testicular or testis-specific protein kinase (TESK). LIMKs are characterized as serine/threonine kinases (STKs) while TESKs are dual-specificity protein kinases. Both LIMK and TESK phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They are implicated in many cellular functions including cell spreading, motility, morphogenesis, meiosis, mitosis, and spermatogenesis. The LIMK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271058 [Multi-domain] Cd Length: 256 Bit Score: 42.51 E-value: 1.04e-05
|
|||||||
PTKc_Fer | cd05085 | Catalytic domain of the Protein Tyrosine Kinase, Fer; Protein Tyrosine Kinase (PTK) family; ... |
16-110 | 1.04e-05 | |||
Catalytic domain of the Protein Tyrosine Kinase, Fer; Protein Tyrosine Kinase (PTK) family; Fer kinase; catalytic (c) domain. The PTKc family is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fer kinase is a member of the Fes subfamily of proteins which are cytoplasmic (or nonreceptor) tyr kinases containing an N-terminal region with FCH (Fes/Fer/CIP4 homology) and coiled-coil domains, followed by a SH2 domain, and a C-terminal catalytic domain. Fer kinase is expressed in a wide variety of tissues, and is found to reside in both the cytoplasm and the nucleus. It plays important roles in neuronal polarization and neurite development, cytoskeletal reorganization, cell migration, growth factor signaling, and the regulation of cell-cell interactions mediated by adherens junctions and focal adhesions. Fer kinase also regulates cell cycle progression in malignant cells. Pssm-ID: 270668 [Multi-domain] Cd Length: 251 Bit Score: 42.30 E-value: 1.04e-05
|
|||||||
PKc_like | cd13968 | Catalytic domain of the Protein Kinase superfamily; The PK superfamily contains the large ... |
31-110 | 1.08e-05 | |||
Catalytic domain of the Protein Kinase superfamily; The PK superfamily contains the large family of typical PKs that includes serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins, as well as pseudokinases that lack crucial residues for catalytic activity and/or ATP binding. It also includes phosphoinositide 3-kinases (PI3Ks), aminoglycoside 3'-phosphotransferases (APHs), choline kinase (ChoK), Actin-Fragmin Kinase (AFK), and the atypical RIO and Abc1p-like protein kinases. These proteins catalyze the transfer of the gamma-phosphoryl group from ATP to their target substrates; these include serine/threonine/tyrosine residues in proteins for typical or atypical PKs, the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives for PI3Ks, the 4-hydroxyl of PtdIns for PI4Ks, and other small molecule substrates for APH/ChoK and similar proteins such as aminoglycosides, macrolides, choline, ethanolamine, and homoserine. Pssm-ID: 270870 [Multi-domain] Cd Length: 136 Bit Score: 41.66 E-value: 1.08e-05
|
|||||||
PKc_TNNI3K | cd14064 | Catalytic domain of the Dual-specificity protein kinase, TNNI3-interacting kinase; ... |
14-107 | 1.08e-05 | |||
Catalytic domain of the Dual-specificity protein kinase, TNNI3-interacting kinase; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. TNNI3K, also called cardiac ankyrin repeat kinase (CARK), is a cardiac-specific troponin I-interacting kinase that promotes cardiac myogenesis, improves cardiac performance, and protects the myocardium from ischemic injury. It contains N-terminal ankyrin repeats, a catalytic kinase domain, and a C-terminal serine-rich domain. TNNI3K exerts a disease-accelerating effect on cardiac dysfunction and reduced survival in mouse models of cardiomyopathy. The TNNI3K subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270966 [Multi-domain] Cd Length: 254 Bit Score: 42.52 E-value: 1.08e-05
|
|||||||
STKc_EIF2AK3_PERK | cd14048 | Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor ... |
12-106 | 1.20e-05 | |||
Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 3 or PKR-like Endoplasmic Reticulum Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PERK (or EIF2AK3) is a type-I ER transmembrane protein containing a luminal domain bound with the chaperone BiP under unstressed conditions and a cytoplasmic catalytic kinase domain. In response to the accumulation of misfolded or unfolded proteins in the ER, PERK is activated through the release of BiP, allowing it to dimerize and autophosphorylate. It functions as the central regulator of translational control during the Unfolded Protein Response (UPR) pathway. In addition to the eIF-2 alpha subunit, PERK also phosphorylates Nrf2, a leucine zipper transcription factor which regulates cellular redox status and promotes cell survival during the UPR. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. The PERK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270950 [Multi-domain] Cd Length: 281 Bit Score: 42.17 E-value: 1.20e-05
|
|||||||
STKc_PDK1 | cd05581 | Catalytic domain of the Serine/Threonine Kinase, Phosphoinositide-dependent kinase 1; STKs ... |
41-107 | 1.24e-05 | |||
Catalytic domain of the Serine/Threonine Kinase, Phosphoinositide-dependent kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PDK1 carries an N-terminal catalytic domain and a C-terminal pleckstrin homology (PH) domain that binds phosphoinositides. It phosphorylates the activation loop of AGC kinases that are regulated by PI3K such as PKB, SGK, and PKC, among others, and is crucial for their activation. Thus, it contributes in regulating many processes including metabolism, growth, proliferation, and survival. PDK1 also has the ability to autophosphorylate and is constitutively active in mammalian cells. It is essential for normal embryo development and is important in regulating cell volume. The PDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270733 [Multi-domain] Cd Length: 278 Bit Score: 42.20 E-value: 1.24e-05
|
|||||||
STKc_MAP4K4_6_N | cd06636 | N-terminal Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase ... |
31-107 | 1.29e-05 | |||
N-terminal Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 and 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. MAP4K4 is also called Nck Interacting kinase (NIK). It facilitates the activation of the MAPKs, extracellular signal-regulated kinase (ERK) 1, ERK2, and c-Jun N-terminal kinase (JNK), by phosphorylating and activating MEKK1. MAP4K4 plays a role in tumor necrosis factor (TNF) alpha-induced insulin resistance. MAP4K4 silencing in skeletal muscle cells from type II diabetic patients restores insulin-mediated glucose uptake. MAP4K4, through JNK, also plays a broad role in cell motility, which impacts inflammation, homeostasis, as well as the invasion and spread of cancer. MAP4K4 is found to be highly expressed in most tumor cell lines relative to normal tissue. MAP4K6 (also called MINK for Misshapen/NIKs-related kinase) is activated after Ras induction and mediates activation of p38 MAPK. MAP4K6 plays a role in cell cycle arrest, cytoskeleton organization, cell adhesion, and cell motility. The MAP4K4/6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270806 [Multi-domain] Cd Length: 282 Bit Score: 42.30 E-value: 1.29e-05
|
|||||||
STKc_Nek6_7 | cd08224 | Catalytic domain of the Serine/Threonine Kinases, Never In Mitosis gene A (NIMA)-related ... |
81-110 | 1.43e-05 | |||
Catalytic domain of the Serine/Threonine Kinases, Never In Mitosis gene A (NIMA)-related kinase 6 and 7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek6 and Nek7 are the shortest Neks, consisting only of the catalytic domain and a very short N-terminal extension. They show distinct expression patterns and both appear to be downstream substrates of Nek9. They are required for mitotic spindle formation and cytokinesis. They may also be regulators of the p70 ribosomal S6 kinase. Nek6/7 is part of a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270863 [Multi-domain] Cd Length: 262 Bit Score: 41.87 E-value: 1.43e-05
|
|||||||
STKc_MLCK3 | cd14192 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 3; STKs catalyze ... |
39-108 | 1.44e-05 | |||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK3 (or MYLK3) phosphorylates myosin regulatory light chain 2 and controls the contraction of cardiac muscles. It is expressed specifically in both the atrium and ventricle of the heart and its expression is regulated by the cardiac protein Nkx2-5. MLCK3 plays an important role in cardiogenesis by regulating the assembly of cardiac sarcomeres, the repeating contractile unit of striated muscle. MLCK3 contains a single kinase domain near the C-terminus and a unique N-terminal half, and unlike MLCK1/2, it does not appear to be regulated by Ca2+/calmodulin. The MLCK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271094 [Multi-domain] Cd Length: 261 Bit Score: 42.26 E-value: 1.44e-05
|
|||||||
STKc_RIP1 | cd14027 | Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein 1; STKs catalyze ... |
14-107 | 1.59e-05 | |||
Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RIP1 harbors a C-terminal Death domain (DD), which binds death receptors (DRs) including TNF receptor 1, Fas, TNF-related apoptosis-inducing ligand receptor 1 (TRAILR1), and TRAILR2. It also interacts with other DD-containing adaptor proteins such as TRADD and FADD. RIP1 can also recruit other kinases including MEKK1, MEKK3, and RIP3 through an intermediate domain (ID) that bears a RIP homotypic interaction motif (RHIM). RIP1 plays a crucial role in determining a cell's fate, between survival or death, following exposure to stress signals. It is important in the signaling of NF-kappaB and MAPKs, and it links DR-associated signaling to reactive oxygen species (ROS) production. Abnormal RIP1 function may result in ROS accummulation affecting inflammatory responses, innate immunity, stress responses, and cell survival. RIP kinases serve as essential sensors of cellular stress. The RIP1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270929 [Multi-domain] Cd Length: 267 Bit Score: 42.10 E-value: 1.59e-05
|
|||||||
STKc_GSK3 | cd14137 | The catalytic domain of the Serine/Threonine Kinase, Glycogen Synthase Kinase 3; STKs catalyze ... |
14-105 | 1.60e-05 | |||
The catalytic domain of the Serine/Threonine Kinase, Glycogen Synthase Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GSK3 is a mutifunctional kinase involved in many cellular processes including cell division, proliferation, differentiation, adhesion, and apoptosis. In plants, GSK3 plays a role in the response to osmotic stress. In Caenorhabditis elegans, it plays a role in regulating normal oocyte-to-embryo transition and response to oxidative stress. In Chlamydomonas reinhardtii, GSK3 regulates flagellar length and assembly. In mammals, there are two isoforms, GSK3alpha and GSK3beta, which show both distinct and redundant functions. The two isoforms differ mainly in their N-termini. They are both involved in axon formation and in Wnt signaling.They play distinct roles in cardiogenesis, with GSKalpha being essential in cardiomyocyte survival, and GSKbeta regulating heart positioning and left-right symmetry. GSK3beta was first identified as a regulator of glycogen synthesis, but has since been determined to play other roles. It regulates the degradation of beta-catenin and IkB. Beta-catenin is the main effector of Wnt, which is involved in normal haematopoiesis and stem cell function. IkB is a central inhibitor of NF-kB, which is critical in maintaining leukemic cell growth. GSK3beta is enriched in the brain and is involved in regulating neuronal signaling pathways. It is implicated in the pathogenesis of many diseases including Type II diabetes, obesity, mood disorders, Alzheimer's disease, osteoporosis, and some types of cancer, among others. The GSK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271039 [Multi-domain] Cd Length: 293 Bit Score: 42.10 E-value: 1.60e-05
|
|||||||
STKc_ULK3 | cd14121 | Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 3; STKs catalyze the ... |
40-109 | 1.69e-05 | |||
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK3 mRNA is up-regulated in fibroblasts after Ras-induced senescence, and its overexpression induces both autophagy and senescence in a fibroblast cell line. ULK3, through its kinase activity, positively regulates Gli proteins, mediators of the Sonic hedgehog (Shh) signaling pathway that is implicated in tissue homeostasis maintenance and neurogenesis. It is inhibited by binding to Suppressor of Fused (Sufu). The ULK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271023 [Multi-domain] Cd Length: 252 Bit Score: 41.89 E-value: 1.69e-05
|
|||||||
STKc_MST1_2 | cd06612 | Catalytic domain of the Serine/Threonine Kinases, Mammalian STe20-like protein kinase 1 and 2; ... |
40-111 | 1.70e-05 | |||
Catalytic domain of the Serine/Threonine Kinases, Mammalian STe20-like protein kinase 1 and 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MST1, MST2, and related proteins including Drosophila Hippo and Dictyostelium discoideum Krs1 (kinase responsive to stress 1). MST1/2 and Hippo are involved in a conserved pathway that governs cell contact inhibition, organ size control, and tumor development. MST1 activates the mitogen-activated protein kinases (MAPKs) p38 and c-Jun N-terminal kinase (JNK) through MKK7 and MEKK1 by acting as a MAPK kinase kinase kinase. Activation of JNK by MST1 leads to caspase activation and apoptosis. MST1 has also been implicated in cell proliferation and differentiation. Krs1 may regulate cell growth arrest and apoptosis in response to cellular stress. The MST1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132943 [Multi-domain] Cd Length: 256 Bit Score: 41.87 E-value: 1.70e-05
|
|||||||
PTKc_Wee1a | cd14138 | Catalytic domain of the Protein Tyrosine Kinase, Wee1a; PTKs catalyze the transfer of the ... |
17-110 | 1.79e-05 | |||
Catalytic domain of the Protein Tyrosine Kinase, Wee1a; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of human Wee1a, Xenopus laevis Wee1b (XeWee1b) and similar vertebrate proteins. Members of this subfamily show a wide expression pattern. XeWee1b functions after the first zygotic cell divisions. It is expressed in all tissues and is also present after the gastrulation stage of embryos. Wee1 is a cell cycle checkpoint kinase that helps keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of an N-terminal tyr (Y15) residue. During the late G2 phase, CDK1 is activated and mitotic entry is promoted by the removal of this inhibitory phosphorylation by the phosphatase Cdc25. Although Wee1 is functionally a tyr kinase, it is more closely related to serine/threonine kinases (STKs). It contains a catalytic kinase domain sandwiched in between N- and C-terminal regulatory domains. It is regulated by phosphorylation and degradation, and its expression levels are also controlled by circadian clock proteins. The Wee1a subfamily is part of a larger superfamily that includes the catalytic domains of STKs, other PTKs, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271040 [Multi-domain] Cd Length: 276 Bit Score: 41.93 E-value: 1.79e-05
|
|||||||
PHA03209 | PHA03209 | serine/threonine kinase US3; Provisional |
64-111 | 1.91e-05 | |||
serine/threonine kinase US3; Provisional Pssm-ID: 177557 [Multi-domain] Cd Length: 357 Bit Score: 41.79 E-value: 1.91e-05
|
|||||||
STKc_DRAK | cd14106 | Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related ... |
40-111 | 2.21e-05 | |||
Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related Apoptosis-inducing protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DRAKs, also called STK17, were named based on their similarity (around 50% identity) to the kinase domain of DAPKs. They contain an N-terminal kinase domain and a C-terminal regulatory domain. Vertebrates contain two subfamily members, DRAK1 and DRAK2. Both DRAKs are localized to the nucleus, autophosphorylate themselves, and phosphorylate myosin light chain as a substrate. They may play a role in apoptotic signaling. The DRAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271008 [Multi-domain] Cd Length: 268 Bit Score: 41.57 E-value: 2.21e-05
|
|||||||
STKc_Twitchin_like | cd14114 | The catalytic domain of the Giant Serine/Threonine Kinases, Twitchin and Projectin; STKs ... |
40-106 | 2.25e-05 | |||
The catalytic domain of the Giant Serine/Threonine Kinases, Twitchin and Projectin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Caenorhabditis elegans and Aplysia californica Twitchin, Drosophila melanogaster Projectin, and similar proteins. These are very large muscle proteins containing multiple immunoglobulin (Ig)-like and fibronectin type III (FN3) domains and a single kinase domain near the C-terminus. Twitchin and Projectin are both associated with thick filaments. Twitchin is localized in the outer parts of A-bands and is involved in regulating muscle contraction. It interacts with the myofibrillar proteins myosin and actin in a phosphorylation-dependent manner, and may be involved in regulating the myosin cross-bridge cycle. The kinase activity of Twitchen is activated by Ca2+ and the Ca2+ binding protein S100A1. Projectin is associated with the end of thick filaments and is a component of flight muscle connecting filaments. The kinase domain of Projectin may play roles in autophosphorylation and transphosphorylation, which impact the formation of myosin filaments. The Twitchin-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271016 [Multi-domain] Cd Length: 259 Bit Score: 41.42 E-value: 2.25e-05
|
|||||||
STKc_Bck1_like | cd06629 | Catalytic domain of the Serine/Threonine Kinases, fungal Bck1-like Mitogen-Activated Protein ... |
15-111 | 2.79e-05 | |||
Catalytic domain of the Serine/Threonine Kinases, fungal Bck1-like Mitogen-Activated Protein Kinase Kinase Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include the MAPKKKs Saccharomyces cerevisiae Bck1 and Schizosaccharomyces pombe Mkh1, and related proteins. Budding yeast Bck1 is part of the cell integrity MAPK pathway, which is activated by stresses and aggressions to the cell wall. The MAPKKK Bck1, MAPKKs Mkk1 and Mkk2, and the MAPK Slt2 make up the cascade that is important in the maintenance of cell wall homeostasis. Fission yeast Mkh1 is involved in MAPK cascades regulating cell morphology, cell wall integrity, salt resistance, and filamentous growth in response to stress. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The Bck1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270799 [Multi-domain] Cd Length: 270 Bit Score: 41.21 E-value: 2.79e-05
|
|||||||
PK_eIF2AK_GCN2_rpt1 | cd14012 | Pseudokinase domain, repeat 1, of eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or ... |
14-105 | 3.02e-05 | |||
Pseudokinase domain, repeat 1, of eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or General Control Non-derepressible-2; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the overall downregulation of protein synthesis. eIF-2 phosphorylation is induced in response to cellular stresses including virus infection, heat shock, nutrient deficiency, and the accummulation of unfolded proteins, among others. There are four distinct kinases that phosphorylate eIF-2 and control protein synthesis under different stress conditions: GCN2, protein kinase regulated by RNA (PKR), heme-regulated inhibitor kinase (HRI), and PKR-like endoplasmic reticulum kinase (PERK). GCN2 is activated by amino acid or serum starvation and UV irradiation. It induces GCN4, a transcriptional activator of amino acid biosynthetic genes, leading to increased production of amino acids under amino acid-deficient conditions. In serum-starved cells, GCN2 activation induces translation of the stress-responsive transcription factor ATF4, while under UV stress, GCN2 triggers transcriptional rescue via NF-kappaB signaling. GCN2 contains an N-terminal RWD, a degenerate kinase-like (repeat 1), the catalytic kinase (repeat 2), a histidyl-tRNA synthetase (HisRS)-like, and a C-terminal ribosome-binding and dimerization (RB/DD) domains. The degenerate pseudokinase domain of GCN2 may function as a regulatory domain. The GCN2 subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270914 [Multi-domain] Cd Length: 254 Bit Score: 41.19 E-value: 3.02e-05
|
|||||||
STKc_MAP4K3_like | cd06613 | Catalytic domain of Mitogen-activated protein kinase kinase kinase kinase (MAP4K) 3-like ... |
40-108 | 3.20e-05 | |||
Catalytic domain of Mitogen-activated protein kinase kinase kinase kinase (MAP4K) 3-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes MAP4K3, MAP4K1, MAP4K2, MAP4K5, and related proteins. Vertebrate members contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. MAP4K1, also called haematopoietic progenitor kinase 1 (HPK1), is a hematopoietic-specific STK involved in many cellular signaling cascades including MAPK, antigen receptor, apoptosis, growth factor, and cytokine signaling. It participates in the regulation of T cell receptor signaling and T cell-mediated immune responses. MAP4K2 was referred to as germinal center (GC) kinase because of its preferred location in GC B cells. MAP4K3 plays a role in the nutrient-responsive pathway of mTOR (mammalian target of rapamycin) signaling. It is required in the activation of S6 kinase by amino acids and for the phosphorylation of the mTOR-regulated inhibitor of eukaryotic initiation factor 4E. MAP4K5, also called germinal center kinase-related enzyme (GCKR), has been shown to activate the MAPK c-Jun N-terminal kinase (JNK). The MAP4K3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270788 [Multi-domain] Cd Length: 259 Bit Score: 41.14 E-value: 3.20e-05
|
|||||||
STKc_AMPK_alpha | cd14079 | Catalytic domain of the Alpha subunit of the Serine/Threonine Kinase, AMP-activated protein ... |
40-109 | 3.43e-05 | |||
Catalytic domain of the Alpha subunit of the Serine/Threonine Kinase, AMP-activated protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. AMPK, also called SNF1 (sucrose non-fermenting1) in yeasts and SnRK1 (SNF1-related kinase1) in plants, is a heterotrimeric enzyme composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It is a stress-activated kinase that serves as master regulator of glucose and lipid metabolism by monitoring carbon and energy supplies, via sensing the cell's AMP:ATP ratio. In response to decreased ATP levels, it enhances energy-producing processes and inhibits energy-consuming pathways. Once activated, AMPK phosphorylates a broad range of downstream targets, with effects in carbohydrate metabolism and uptake, lipid and fatty acid biosynthesis, carbon energy storage, and inflammation, among others. Defects in energy homeostasis underlie many human diseases including Type 2 diabetes, obesity, heart disease, and cancer. As a result, AMPK has emerged as a therapeutic target in the treatment of these diseases. The AMPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270981 [Multi-domain] Cd Length: 256 Bit Score: 41.10 E-value: 3.43e-05
|
|||||||
STKc_CMGC | cd05118 | Catalytic domain of CMGC family Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
40-109 | 3.46e-05 | |||
Catalytic domain of CMGC family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The CMGC family consists of Cyclin-Dependent protein Kinases (CDKs), Mitogen-activated protein kinases (MAPKs) such as Extracellular signal-regulated kinase (ERKs), c-Jun N-terminal kinases (JNKs), and p38, and other kinases. CDKs belong to a large subfamily of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. MAPKs serve as important mediators of cellular responses to extracellular signals. They control critical cellular functions including differentiation, proliferation, migration, and apoptosis. They are also implicated in the pathogenesis of many diseases including multiple types of cancer, stroke, diabetes, and chronic inflammation. Other members of the CMGC family include casein kinase 2 (CK2), Dual-specificity tYrosine-phosphorylated and -Regulated Kinase (DYRK), Glycogen Synthase Kinase 3 (GSK3), among many others. The CMGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270688 [Multi-domain] Cd Length: 249 Bit Score: 41.07 E-value: 3.46e-05
|
|||||||
STKc_obscurin_rpt2 | cd14110 | Catalytic kinase domain, second repeat, of the Giant Serine/Threonine Kinase Obscurin; STKs ... |
3-110 | 3.59e-05 | |||
Catalytic kinase domain, second repeat, of the Giant Serine/Threonine Kinase Obscurin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Obscurin, approximately 800 kDa in size, is one of three giant proteins expressed in vetebrate striated muscle, together with titin and nebulin. It is a multidomain protein composed of tandem adhesion and signaling domains, including 49 immunoglobulin (Ig) and 2 fibronectin type III (FN3) domains at the N-terminus followed by a more complex region containing more Ig domains, a conserved SH3 domain near a RhoGEF and PH domains, non-modular regions, as well as IQ and phosphorylation motifs. The obscurin gene also encode two kinase domains, which are not expressed as part of the 800 kDa protein, but as a smaller, alternatively spliced product present mainly in the heart muscle, also called obscurin-MLCK. Obscurin is localized at the peripheries of Z-disks and M-lines, where it is able to communicate with the surrounding myoplasm. It interacts with diverse proteins including sAnk1, myosin, titin, and MyBP-C. It may act as a scaffold for the assembly of elements of the contractile apparatus. The obscurin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271012 [Multi-domain] Cd Length: 257 Bit Score: 41.06 E-value: 3.59e-05
|
|||||||
STKc_Chk1 | cd14069 | Catalytic domain of the Serine/Threonine kinase, Checkpoint kinase 1; STKs catalyze the ... |
14-107 | 3.83e-05 | |||
Catalytic domain of the Serine/Threonine kinase, Checkpoint kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chk1 is implicated in many major checkpoints of the cell cycle, providing a link between upstream sensors and the cell cycle engine. It plays an important role in DNA damage response and maintaining genomic stability. Chk1 acts as an effector of the sensor kinase, ATR (ATM and Rad3-related), a member of the PI3K family, which is activated upon DNA replication stress. Chk1 delays mitotic entry in response to replication blocks by inhibiting cyclin dependent kinase (Cdk) activity. In addition, Chk1 contributes to the function of centrosome and spindle-based checkpoints, inhibits firing of origins of DNA replication (Ori), and represses transcription of cell cycle proteins including cyclin B and Cdk1. The Chk1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270971 [Multi-domain] Cd Length: 261 Bit Score: 40.78 E-value: 3.83e-05
|
|||||||
PTKc_Hck | cd05073 | Catalytic domain of the Protein Tyrosine Kinase, Hematopoietic cell kinase; PTKs catalyze the ... |
2-111 | 4.52e-05 | |||
Catalytic domain of the Protein Tyrosine Kinase, Hematopoietic cell kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Hck is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Hck is present in myeloid and lymphoid cells that play a role in the development of cancer. It may be important in the oncogenic signaling of the protein Tel-Abl, which induces a chronic myelogenous leukemia (CML)-like disease. Hck also acts as a negative regulator of G-CSF-induced proliferation of granulocytic precursors, suggesting a possible role in the development of acute myeloid leukemia (AML). In addition, Hck is essential in regulating the degranulation of polymorphonuclear leukocytes. Genetic polymorphisms affect the expression level of Hck, which affects PMN mediator release and influences the development of chronic obstructive pulmonary disease (COPD). Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Hck subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270658 [Multi-domain] Cd Length: 265 Bit Score: 40.78 E-value: 4.52e-05
|
|||||||
STKc_MAP4K5 | cd06646 | Catalytic domain of the Serine/Threonine Kinase, Mitogen-activated protein kinase kinase ... |
40-108 | 4.75e-05 | |||
Catalytic domain of the Serine/Threonine Kinase, Mitogen-activated protein kinase kinase kinase kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP4K5, also called germinal center kinase-related enzyme (GCKR), has been shown to activate the MAPK c-Jun N-terminal kinase (JNK). MAP4K5 also facilitates Wnt signaling in B cells, and may therefore be implicated in the control of cell fate, proliferation, and polarity. MAP4Ks are involved in some MAPK signaling pathways by activating a MAPK kinase kinase. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAP3K to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Members of this subfamily contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. The MAP4K5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270813 [Multi-domain] Cd Length: 268 Bit Score: 40.78 E-value: 4.75e-05
|
|||||||
STKc_CDKL | cd07833 | Catalytic domain of Cyclin-Dependent protein Kinase Like Serine/Threonine Kinases; STKs ... |
9-110 | 4.90e-05 | |||
Catalytic domain of Cyclin-Dependent protein Kinase Like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDKL1-5 and similar proteins. Some CDKLs, like CDKL1 and CDKL3, may be implicated in transformation and others, like CDKL3 and CDKL5, are associated with mental retardation when impaired. CDKL2 plays a role in learning and memory. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270827 [Multi-domain] Cd Length: 288 Bit Score: 40.76 E-value: 4.90e-05
|
|||||||
STKc_nPKC_theta_like | cd05592 | Catalytic domain of the Serine/Threonine Kinases, Novel Protein Kinase C theta, delta, and ... |
41-103 | 5.08e-05 | |||
Catalytic domain of the Serine/Threonine Kinases, Novel Protein Kinase C theta, delta, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. There are four nPKC isoforms, delta, epsilon, eta, and theta. The nPKC-theta-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270744 [Multi-domain] Cd Length: 320 Bit Score: 40.45 E-value: 5.08e-05
|
|||||||
PTKc_Chk | cd05083 | Catalytic domain of the Protein Tyrosine Kinase, Csk homologous kinase; PTKs catalyze the ... |
4-110 | 5.61e-05 | |||
Catalytic domain of the Protein Tyrosine Kinase, Csk homologous kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Chk is also referred to as megakaryocyte-associated tyrosine kinase (Matk). Chk inhibits Src kinases using a noncatalytic mechanism by simply binding to them. As a negative regulator of Src kinases, Chk may play important roles in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. Chk is expressed in brain and hematopoietic cells. Like Csk, it is a cytoplasmic (or nonreceptor) tyr kinase containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. To inhibit Src kinases that are anchored to the plasma membrane, Chk is translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. Studies in mice reveal that Chk is not functionally redundant with Csk and that it plays an important role as a regulator of immune responses. Chk also plays a role in neural differentiation in a manner independent of Src by enhancing Mapk activation via Ras-mediated signaling. The Chk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270666 [Multi-domain] Cd Length: 254 Bit Score: 40.24 E-value: 5.61e-05
|
|||||||
STKc_MAK_like | cd07830 | Catalytic domain of Male germ cell-Associated Kinase-like Serine/Threonine Kinases; STKs ... |
40-110 | 6.28e-05 | |||
Catalytic domain of Male germ cell-Associated Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of human MAK and MAK-related kinase (MRK), Saccharomyces cerevisiae Ime2p, Schizosaccharomyces pombe Mei4-dependent protein 3 (Mde3) and Pit1, Caenorhabditis elegans dyf-5, Arabidopsis thaliana MHK, and similar proteins. These proteins play important roles during meiosis. MAK is highly expressed in testicular cells specifically in the meiotic phase, but is not essential for spermatogenesis and fertility. It functions as a coactivator of the androgen receptor in prostate cells. MRK, also called Intestinal Cell Kinase (ICK), is expressed ubiquitously, with highest expression in the ovary and uterus. A missense mutation in MRK causes endocrine-cerebro-osteodysplasia, suggesting that this protein plays an important role in the development of many organs. MAK and MRK may be involved in regulating cell cycle and cell fate. Ime2p is a meiosis-specific kinase that is important during meiotic initiation and during the later stages of meiosis. Mde3 functions downstream of the transcription factor Mei-4 which is essential for meiotic prophase I. The MAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270824 [Multi-domain] Cd Length: 283 Bit Score: 40.21 E-value: 6.28e-05
|
|||||||
STKc_Mnk | cd14090 | Catalytic domain of the Serine/Threonine kinases, Mitogen-activated protein kinase ... |
80-109 | 6.32e-05 | |||
Catalytic domain of the Serine/Threonine kinases, Mitogen-activated protein kinase signal-integrating kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK signal-integrating kinases (Mnks) are MAPK-activated protein kinases and is comprised by a group of four proteins, produced by alternative splicing from two genes (Mnk1 and Mnk2). The isoforms of Mnk1 (1a/1b) and Mnk2 (2a/2b) differ at their C-termini, with the a-form having a longer C-terminus containing a MAPK-binding region. All Mnks contain a catalytic kinase domain and a polybasic region at the N-terminus which binds importin and the eukaryotic initiation factor eIF4G. The best characterized Mnk substrate is eIF4G, whose phosphorylation may promote the export of certain mRNAs from the nucleus. Mnk also phosphorylate substrates that bind to AU-rich elements that regulate mRNA stability and translation. Mnks have also been implicated in tyrosine kinase receptor signaling, inflammation, and cell prolieration or survival. The Mnk subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270992 [Multi-domain] Cd Length: 289 Bit Score: 40.09 E-value: 6.32e-05
|
|||||||
STKc_MLCK2 | cd14190 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 2; STKs catalyze ... |
40-104 | 6.42e-05 | |||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK2 (or MYLK2) phosphorylates myosin regulatory light chain and controls the contraction of skeletal muscles. MLCK2 contains a single kinase domain near the C-terminus followed by a regulatory segment containing an autoinhibitory Ca2+/calmodulin binding site. The MLCK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271092 [Multi-domain] Cd Length: 261 Bit Score: 40.29 E-value: 6.42e-05
|
|||||||
STKc_CDK7 | cd07841 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 7; STKs ... |
84-111 | 6.70e-05 | |||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK7 plays essential roles in the cell cycle and in transcription. It associates with cyclin H and MAT1 and acts as a CDK-Activating Kinase (CAK) by phosphorylating and activating cell cycle CDKs (CDK1/2/4/6). In the brain, it activates CDK5. CDK7 is also a component of the general transcription factor TFIIH, which phosphorylates the C-terminal domain (CTD) of RNA polymerase II when it is bound with unphosphorylated DNA, as present in the pre-initiation complex. Following phosphorylation, the CTD dissociates from the DNA which allows transcription initiation. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK7 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270833 [Multi-domain] Cd Length: 298 Bit Score: 40.25 E-value: 6.70e-05
|
|||||||
STKc_CDK6 | cd07862 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 6; STKs ... |
15-106 | 7.44e-05 | |||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK6 is regulated by D-type cyclins and INK4 inhibitors. It is active towards the retinoblastoma (pRb) protein, implicating it to function in regulating the early G1 phase of the cell cycle. It is expressed ubiquitously and is localized in the cytoplasm. It is also present in the ruffling edge of spreading fibroblasts and may play a role in cell spreading. It binds to the p21 inhibitor without any effect on its own activity and it is overexpressed in squamous cell carcinomas and neuroblastomas. CDK6 has also been shown to inhibit cell differentiation in many cell types. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270846 [Multi-domain] Cd Length: 290 Bit Score: 40.02 E-value: 7.44e-05
|
|||||||
STKc_Pat1_like | cd13993 | Catalytic domain of Fungal Pat1-like Serine/Threonine kinases; STKs catalyze the transfer of ... |
40-108 | 7.53e-05 | |||
Catalytic domain of Fungal Pat1-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Pat1 (also called Ran1), Saccharomyces cerevisiae VHS1 and KSP1, and similar fungal STKs. Pat1 blocks Mei2, an RNA-binding protein which is indispensable in the initiation of meiosis. Pat1 is inactivated and Mei2 activated, which initiates meiosis, under nutrient-deprived conditions through a signaling cascade involving Ste11. Meiosis induced by Pat1 inactivation may show different characteristics than normal meiosis including aberrant positioning of centromeres. VHS1 was identified in a screen for suppressors of cell cycle arrest at the G1/S transition, while KSP1 may be involved in regulating PRP20, which is required for mRNA export and maintenance of nuclear structure. The Pat1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270895 [Multi-domain] Cd Length: 267 Bit Score: 40.03 E-value: 7.53e-05
|
|||||||
STKc_MEKK1_plant | cd06632 | Catalytic domain of the Serine/Threonine Kinase, Plant Mitogen-Activated Protein (MAP) ... |
9-105 | 7.84e-05 | |||
Catalytic domain of the Serine/Threonine Kinase, Plant Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of plant MAPK kinase kinases (MAPKKKs) including Arabidopsis thaliana MEKK1 and MAPKKK3. Arabidopsis thaliana MEKK1 activates MPK4, a MAPK that regulates systemic acquired resistance. MEKK1 also participates in the regulation of temperature-sensitive and tissue-specific cell death. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The plant MEKK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270802 [Multi-domain] Cd Length: 259 Bit Score: 40.08 E-value: 7.84e-05
|
|||||||
STKc_PRKX_like | cd05612 | Catalytic domain of PRKX-like Protein Serine/Threonine Kinases; STKs catalyze the transfer of ... |
14-105 | 8.04e-05 | |||
Catalytic domain of PRKX-like Protein Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include human PRKX (X chromosome-encoded protein kinase), Drosophila DC2, and similar proteins. PRKX is present in many tissues including fetal and adult brain, kidney, and lung. The PRKX gene is located in the Xp22.3 subregion and has a homolog called PRKY on the Y chromosome. An abnormal interchange between PRKX aand PRKY leads to the sex reversal disorder of XX males and XY females. PRKX is implicated in granulocyte/macrophage lineage differentiation, renal cell epithelial migration, and tubular morphogenesis in the developing kidney. The PRKX-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270763 [Multi-domain] Cd Length: 292 Bit Score: 40.11 E-value: 8.04e-05
|
|||||||
STKc_BMPR2_AMHR2 | cd14054 | Catalytic domain of the Serine/Threonine Kinases, Bone Morphogenetic Protein and ... |
1-111 | 8.11e-05 | |||
Catalytic domain of the Serine/Threonine Kinases, Bone Morphogenetic Protein and Anti-Muellerian Hormone Type II Receptors; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BMPR2 and AMHR2 belong to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, BMPs, activins, growth and differentiation factors (GDFs), and AMH, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane region, and a cytoplasmic catalytic kinase domain. Type II receptors are high-affinity receptors which bind ligands, autophosphorylate, as well as trans-phosphorylate and activate low-affinity type I receptors. BMPR2 and AMHR2 act primarily as a receptor for BMPs and AMH, respectively. BMPs induce bone and cartilage formation, as well as regulate tooth, kidney, skin, hair, haematopoietic, and neuronal development. Mutations in BMPR2A is associated with familial pulmonary arterial hypertension. AMH is mainly responsible for the regression of Mullerian ducts during male sex differentiation. It is expressed exclusively by somatic cells of the gonads. Mutations in either AMH or AMHR2 cause persistent Mullerian duct syndrome (PMDS), a rare form of male pseudohermaphroditism characterized by the presence of Mullerian derivatives (ovary and tubes) in otherwise normally masculine males. The BMPR2/AMHR2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270956 [Multi-domain] Cd Length: 300 Bit Score: 40.04 E-value: 8.11e-05
|
|||||||
STKc_CDK4 | cd07863 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 4; STKs ... |
15-106 | 8.51e-05 | |||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK4 partners with all three D-type cyclins (D1, D2, and D3) and is also regulated by INK4 inhibitors. It is active towards the retinoblastoma (pRb) protein and plays a role in regulating the early G1 phase of the cell cycle. It is expressed ubiquitously and is localized in the nucleus. CDK4 also shows kinase activity towards Smad3, a signal transducer of TGF-beta signaling which modulates transcription and plays a role in cell proliferation and apoptosis. CDK4 is inhibited by the p21 inhibitor and is specifically mutated in human melanoma. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143368 [Multi-domain] Cd Length: 288 Bit Score: 39.95 E-value: 8.51e-05
|
|||||||
STKc_MELK | cd14078 | Catalytic domain of the Serine/Threonine Kinase, Maternal Embryonic Leucine zipper Kinase; ... |
40-107 | 8.57e-05 | |||
Catalytic domain of the Serine/Threonine Kinase, Maternal Embryonic Leucine zipper Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MELK is a cell cycle dependent protein which functions in cytokinesis, cell cycle, apoptosis, cell proliferation, and mRNA processing. It is found upregulated in many types of cancer cells, playing an indispensable role in cancer cell survival. It makes an attractive target in the design of inhibitors for use in the treatment of a wide range of human cancer. The MELK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270980 [Multi-domain] Cd Length: 257 Bit Score: 39.67 E-value: 8.57e-05
|
|||||||
STKc_PKA_like | cd05580 | Catalytic subunit of the Serine/Threonine Kinases, cAMP-dependent protein kinases; STKs ... |
40-105 | 9.12e-05 | |||
Catalytic subunit of the Serine/Threonine Kinases, cAMP-dependent protein kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the cAMP-dependent protein kinases, PKA and PRKX, and similar proteins. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. PRKX is also reulated by the R subunit and is is present in many tissues including fetal and adult brain, kidney, and lung. It is implicated in granulocyte/macrophage lineage differentiation, renal cell epithelial migration, and tubular morphogenesis in the developing kidney. The PKA-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270732 [Multi-domain] Cd Length: 290 Bit Score: 39.87 E-value: 9.12e-05
|
|||||||
STKc_beta_ARK | cd05606 | Catalytic domain of the Serine/Threonine Kinase, beta-adrenergic receptor kinase; STKs ... |
77-107 | 9.44e-05 | |||
Catalytic domain of the Serine/Threonine Kinase, beta-adrenergic receptor kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The beta-ARK group is composed of GRK2, GRK3, and similar proteins. GRK2 and GRK3 are both widely expressed in many tissues, although GRK2 is present at higher levels. They contain an N-terminal RGS homology (RH) domain, a central catalytic domain, and C-terminal pleckstrin homology (PH) domain that mediates PIP2 and G protein betagamma-subunit translocation to the membrane. GRK2 (also called beta-ARK or beta-ARK1) is important in regulating several cardiac receptor responses. It plays a role in cardiac development and in hypertension. Deletion of GRK2 in mice results in embryonic lethality, caused by hypoplasia of the ventricular myocardium. GRK2 also plays important roles in the liver (as a regulator of portal blood pressure), in immune cells, and in the nervous system. Altered GRK2 expression has been reported in several disorders including major depression, schizophrenia, bipolar disorder, and Parkinsonism. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The beta-ARK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270757 [Multi-domain] Cd Length: 279 Bit Score: 39.73 E-value: 9.44e-05
|
|||||||
STKc_Rad53_Cds1 | cd14098 | Catalytic domain of the yeast Serine/Threonine Kinases, Rad53 and Cds1; STKs catalyze the ... |
4-109 | 1.04e-04 | |||
Catalytic domain of the yeast Serine/Threonine Kinases, Rad53 and Cds1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Rad53 and Cds1 are the checkpoint kinase 2 (Chk2) homologs found in budding and fission yeast, respectively. They play a central role in the cell's response to DNA lesions to prevent genome rearrangements and maintain genome integrity. They are phosphorylated in response to DNA damage and incomplete replication, and are essential for checkpoint control. They help promote DNA repair by stalling the cell cycle prior to mitosis in the presence of DNA damage. The Rad53/Cds1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271000 [Multi-domain] Cd Length: 265 Bit Score: 39.77 E-value: 1.04e-04
|
|||||||
STKc_DAPK | cd14105 | Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase; STKs ... |
65-110 | 1.11e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK1 is the prototypical member of the subfamily and is also simply referred to as DAPK. DAPK2 is also called DAPK-related protein 1 (DRP-1), while DAPK3 has also been named DAP-like kinase (DLK) and zipper-interacting protein kinase (ZIPk). These proteins are ubiquitously expressed in adult tissues, are capable of cross talk with each other, and may act synergistically in regulating cell death. The DAPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271007 [Multi-domain] Cd Length: 269 Bit Score: 39.39 E-value: 1.11e-04
|
|||||||
STKc_MLCK-like | cd14006 | Catalytic kinase domain of Myosin Light Chain Kinase-like Serine/Threonine Kinases; STKs ... |
80-107 | 1.14e-04 | |||
Catalytic kinase domain of Myosin Light Chain Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This family is composed of MLCKs and related MLCK-like kinase domains from giant STKs such as titin, obscurin, SPEG, Unc-89, Trio, kalirin, and Twitchin. Also included in this family are Death-Associated Protein Kinases (DAPKs) and Death-associated protein kinase-Related Apoptosis-inducing protein Kinase (DRAKs). MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. Titin, obscurin, Twitchin, and SPEG are muscle proteins involved in the contractile apparatus. The giant STKs are multidomain proteins containing immunoglobulin (Ig), fibronectin type III (FN3), SH3, RhoGEF, PH and kinase domains. Titin, obscurin, Twitchin, and SPEG contain many Ig domain repeats at the N-terminus, while Trio and Kalirin contain spectrin-like repeats. The MLCK-like family is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270908 [Multi-domain] Cd Length: 247 Bit Score: 39.56 E-value: 1.14e-04
|
|||||||
STKc_SLK_like | cd06611 | Catalytic domain of Ste20-Like Kinase-like Serine/Threonine Kinases; STKs catalyze the ... |
84-109 | 1.16e-04 | |||
Catalytic domain of Ste20-Like Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of the subfamily include SLK, STK10 (also called LOK for Lymphocyte-Oriented Kinase), SmSLK (Schistosoma mansoni SLK), and related proteins. SLK promotes apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and the mitogen-activated protein kinase (MAPK) p38. It also plays a role in mediating actin reorganization. STK10 is responsible in regulating the CD28 responsive element in T cells, as well as leukocyte function associated antigen (LFA-1)-mediated lymphocyte adhesion. SmSLK is capable of activating the MAPK Jun N-terminal kinase (JNK) pathway in human embryonic kidney cells as well as in Xenopus oocytes. It may participate in regulating MAPK cascades during host-parasite interactions. The SLK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132942 [Multi-domain] Cd Length: 280 Bit Score: 39.34 E-value: 1.16e-04
|
|||||||
STKc_DAPK1 | cd14194 | Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 1; STKs ... |
40-110 | 1.16e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK1 is the prototypical member of the subfamily and is also simply referred to as DAPK. It is Ca2+/calmodulin (CaM)-regulated and actin-associated protein that contains an N-terminal kinase domain followed by an autoinhibitory CaM binding region and a large C-terminal extension with multiple functional domains including ankyrin (ANK) repeats, a cytoskeletal binding domain, a Death domain, and a serine-rich tail. Loss of DAPK1 expression, usually because of DNA methylation, is implicated in many tumor types. DAPK1 is highly abundant in the brain and has also been associated with neurodegeneration. The DAPK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271096 [Multi-domain] Cd Length: 269 Bit Score: 39.62 E-value: 1.16e-04
|
|||||||
STKc_PLK2 | cd14188 | Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 2; STKs catalyze the ... |
40-107 | 1.21e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. There are five mammalian PLKs (PLK1-5) from distinct genes. PLK2, also called Snk (serum-inducible kinase), functions in G1 progression, S-phase arrest, and centriole duplication. Its gene is responsive to both growth factors and cellular stress, is a transcriptional target of p53, and activates a G2-M checkpoint. The PLK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271090 [Multi-domain] Cd Length: 255 Bit Score: 39.61 E-value: 1.21e-04
|
|||||||
STKc_DRAK2 | cd14198 | The catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related ... |
40-109 | 1.23e-04 | |||
The catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related Apoptosis-inducing protein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DRAKs were named based on their similarity (around 50% identity) to the kinase domain of DAPKs. They contain an N-terminal kinase domain and a C-terminal regulatory domain. Vertebrates contain two subfamily members, DRAK1 and DRAK2 (also called STK17B). Both DRAKs are localized to the nucleus, autophosphorylate themselves, and phosphorylate myosin light chain as a substrate. DRAK2 has been implicated in inducing or enhancing apoptosis in beta cells, fibroblasts, and lymphoid cells, where it is highly expressed. It is involved in regulating many immune processes including the germinal center (GC) reaction, responses to thymus-dependent antigens, activated T cell survival, memory T cell responses. It may be involved in the development of autoimmunity. The DRAK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271100 [Multi-domain] Cd Length: 270 Bit Score: 39.52 E-value: 1.23e-04
|
|||||||
STKc_DRAK1 | cd14197 | Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related ... |
81-108 | 1.25e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related Apoptosis-inducing protein Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DRAKs were named based on their similarity (around 50% identity) to the kinase domain of DAPKs. They contain an N-terminal kinase domain and a C-terminal regulatory domain. Vertebrates contain two subfamily members, DRAK1 (also called STK17A) and DRAK2. Both DRAKs are localized to the nucleus, autophosphorylate themselves, and phosphorylate myosin light chain as a substrate. Rabbit DRAK1 has been shown to induce apoptosis in osteoclasts and overexpressio of human DRAK1 induces apoptosis in cultured fibroblast cells. DRAK1 may be involved in apoptotic signaling. The DRAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271099 [Multi-domain] Cd Length: 271 Bit Score: 39.53 E-value: 1.25e-04
|
|||||||
STKc_CaMKK2 | cd14199 | Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase 2; ... |
14-107 | 1.25e-04 | |||
Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMP-activated protein kinase (AMPK). CaMKK2, also called CaMKK beta, is one of the most versatile CaMKs. It is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. CaMKK2 contains unique N- and C-terminal domains and a central catalytic kinase domain that is followed by a regulatory domain that bears overlapping autoinhibitory and CaM-binding regions. It can be activated by signaling through G-coupled receptors, IP3 receptors, plasma membrane ion channels, and Toll-like receptors. Thus, CaMKK2 acts as a molecular hub that is capable of receiving and decoding signals from diverse pathways. The CaMKK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271101 [Multi-domain] Cd Length: 286 Bit Score: 39.56 E-value: 1.25e-04
|
|||||||
STKc_CaMKK1 | cd14200 | Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase 1; ... |
66-105 | 1.40e-04 | |||
Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMP-activated protein kinase (AMPK). CaMKK1, also called CaMKK alpha, is involved in the regulation of glucose uptake in skeletal muscles, independently of AMPK and PKB activation. It also play roles in learning and memory. Studies on CaMKK1 knockout mice reveal deficits in fear conditioning. The CaMKK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271102 [Multi-domain] Cd Length: 284 Bit Score: 39.16 E-value: 1.40e-04
|
|||||||
PKc_Dusty | cd13975 | Catalytic domain of the Dual-specificity Protein Kinase, Dusty; Dual-specificity PKs catalyze ... |
69-109 | 1.57e-04 | |||
Catalytic domain of the Dual-specificity Protein Kinase, Dusty; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. Dusty protein kinase is also called Receptor-interacting protein kinase 5 (RIPK5 or RIP5) or RIP-homologous kinase. It is widely distributed in the central nervous system, and may be involved in inducing both caspase-dependent and caspase-independent cell death. The Dusty subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270877 [Multi-domain] Cd Length: 262 Bit Score: 39.01 E-value: 1.57e-04
|
|||||||
PKc_MAPKK_plant_like | cd06623 | Catalytic domain of Plant dual-specificity Mitogen-Activated Protein Kinase Kinases and ... |
40-105 | 1.64e-04 | |||
Catalytic domain of Plant dual-specificity Mitogen-Activated Protein Kinase Kinases and similar proteins; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. Members of this group include MAPKKs from plants, kinetoplastids, alveolates, and mycetozoa. The MAPKK, LmxPK4, from Leishmania mexicana, is important in differentiation and virulence. Dictyostelium discoideum MEK1 is required for proper chemotaxis; MEK1 null mutants display severe defects in cell polarization and directional movement. Plants contain multiple MAPKKs like other eukaryotes. The Arabidopsis genome encodes for 10 MAPKKs while poplar and rice contain 13 MAPKKs each. The functions of these proteins have not been fully elucidated. There is evidence to suggest that MAPK cascades are involved in plant stress responses. In Arabidopsis, MKK3 plays a role in pathogen signaling; MKK2 is involved in cold and salt stress signaling; MKK4/MKK5 participates in innate immunity; and MKK7 regulates basal and systemic acquired resistance. The MAPKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132954 [Multi-domain] Cd Length: 264 Bit Score: 39.11 E-value: 1.64e-04
|
|||||||
STKc_16 | cd13986 | Catalytic domain of Serine/Threonine Kinase 16; STKs catalyze the transfer of the ... |
9-108 | 1.80e-04 | |||
Catalytic domain of Serine/Threonine Kinase 16; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK16 is associated with many names including Myristylated and Palmitylated Serine/threonine Kinase 1 (MPSK1), Kinase related to cerevisiae and thaliana (Krct), and Protein Kinase expressed in day 12 fetal liver (PKL12). It is widely expressed in mammals with highest levels found in liver, testis, and kidney. It is localized in the Golgi but is translocated to the nucleus upon disorganization of the Golgi. STK16 is constitutively active and is capable of phosphorylating itself and other substrates. It may be involved in regulating stromal-epithelial interactions during mammary gland ductal morphogenesis. It may also function as a transcriptional co-activator of type-C natriuretic peptide and VEGF. The STK16 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270888 [Multi-domain] Cd Length: 282 Bit Score: 38.82 E-value: 1.80e-04
|
|||||||
STKc_cPKC | cd05587 | Catalytic domain of the Serine/Threonine Kinase, Classical (or Conventional) Protein Kinase C; ... |
41-103 | 1.89e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Classical (or Conventional) Protein Kinase C; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. cPKCs are potent kinases for histones, myelin basic protein, and protamine. They depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. cPKCs contain a calcium-binding C2 region in their regulatory domain. There are four cPKC isoforms, named alpha, betaI, betaII, and gamma. PKC-gamma is mainly expressed in neuronal tissues. It plays a role in protection from ischemia. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. The cPKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270739 [Multi-domain] Cd Length: 320 Bit Score: 38.91 E-value: 1.89e-04
|
|||||||
STKc_TSSK4-like | cd14162 | Catalytic domain of testis-specific serine/threonine kinase 4 and similar proteins; STKs ... |
40-109 | 1.93e-04 | |||
Catalytic domain of testis-specific serine/threonine kinase 4 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK4, also called TSSK5, is expressed in testis from haploid round spermatids to mature spermatozoa. It phosphorylates Cre-Responsive Element Binding protein (CREB), facilitating the binding of CREB to the specific cis cAMP responsive element (CRE), which is important in activating genes related to germ cell differentiation. Mutations in the human TSSK4 gene is associated with infertile Chinese men with impaired spermatogenesis. The TSSK4-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271064 [Multi-domain] Cd Length: 259 Bit Score: 38.82 E-value: 1.93e-04
|
|||||||
PKc_MAPKK | cd06605 | Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein Kinase ... |
40-108 | 1.99e-04 | |||
Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein Kinase Kinase; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MAPKKs are dual-specificity PKs that phosphorylate their downstream targets, MAPKs, at specific threonine and tyrosine residues. The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising the MAPK, which is phosphorylated and activated by a MAPK kinase (MAPKK or MKK or MAP2K), which itself is phosphorylated and activated by a MAPKK kinase (MAPKKK or MKKK or MAP3K). There are three MAPK subfamilies: extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In mammalian cells, there are seven MAPKKs (named MKK1-7) and 20 MAPKKKs. Each MAPK subfamily can be activated by at least two cognate MAPKKs and by multiple MAPKKKs. The MAPKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270782 [Multi-domain] Cd Length: 265 Bit Score: 38.87 E-value: 1.99e-04
|
|||||||
PTKc_Csk | cd05082 | Catalytic domain of the Protein Tyrosine Kinase, C-terminal Src kinase; PTKs catalyze the ... |
1-110 | 2.08e-04 | |||
Catalytic domain of the Protein Tyrosine Kinase, C-terminal Src kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Csk catalyzes the tyr phosphorylation of the regulatory C-terminal tail of Src kinases, resulting in their inactivation. Csk is expressed in a wide variety of tissues. As a negative regulator of Src, Csk plays a role in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. Csk is a cytoplasmic (or nonreceptor) PTK containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. To inhibit Src kinases, Csk is translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. In addition, Csk also shows Src-independent functions. It is a critical component in G-protein signaling, and plays a role in cytoskeletal reorganization and cell migration. The Csk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133213 [Multi-domain] Cd Length: 256 Bit Score: 38.81 E-value: 2.08e-04
|
|||||||
STKc_WNK | cd13983 | Catalytic domain of the Serine/Threonine kinase, With No Lysine (WNK) kinase; STKs catalyze ... |
81-106 | 2.09e-04 | |||
Catalytic domain of the Serine/Threonine kinase, With No Lysine (WNK) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNKs comprise a subfamily of STKs with an unusual placement of a catalytic lysine relative to all other protein kinases. They are critical in regulating ion balance and are thus, important components in the control of blood pressure. They are also involved in cell signaling, survival, proliferation, and organ development. WNKs are activated by hyperosmotic or low-chloride hypotonic stress and they function upstream of SPAK and OSR1 kinases, which regulate the activity of cation-chloride cotransporters through direct interaction and phosphorylation. There are four vertebrate WNKs which show varying expression patterns. WNK1 and WNK2 are widely expressed while WNK3 and WNK4 show a more restricted expression pattern. Because mutations in human WNK1 and WNK4 cause PseudoHypoAldosteronism type II (PHAII), characterized by hypertension (due to increased sodium reabsorption) and hyperkalemia (due to impaired renal potassium secretion), there are more studies conducted on these two proteins, compared to WNK2 and WNK3. The WNK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270885 [Multi-domain] Cd Length: 258 Bit Score: 38.75 E-value: 2.09e-04
|
|||||||
STKc_MLCK4 | cd14193 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 4; STKs catalyze ... |
40-103 | 2.24e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. In vertebrates, different MLCKs function in smooth (MLCK1), skeletal (MLCK2), and cardiac (MLCK3) muscles. A fourth protein, MLCK4, has also been identified through comprehensive genome analysis although it has not been biochemically characterized. MLCK4 (or MYLK4 or SgK085) contains a single kinase domain near the C-terminus. The MLCK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271095 [Multi-domain] Cd Length: 261 Bit Score: 38.74 E-value: 2.24e-04
|
|||||||
STKc_NAK_like | cd14037 | Catalytic domain of Numb-Associated Kinase (NAK)-like Serine/Threonine kinases; STKs catalyze ... |
17-109 | 2.28e-04 | |||
Catalytic domain of Numb-Associated Kinase (NAK)-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Drosophila melanogaster NAK, human BMP-2-inducible protein kinase (BMP2K or BIKe) and similar vertebrate proteins, as well as the Saccharomyces cerevisiae proteins Prk1, Actin-regulating kinase 1 (Ark1), and Akl1. NAK was the first characterized member of this subfamily. It plays a role in asymmetric cell division through its association with Numb. It also regulates the localization of Dlg, a protein essential for septate junction formation. BMP2K contains a nuclear localization signal and a kinase domain that is capable of phosphorylating itself and myelin basic protein. The expression of the BMP2K gene is increase during BMP-2-induced osteoblast differentiation. It may function to control the rate of differentiation. Prk1, Ark1, and Akl1 comprise a subfamily of yeast proteins that are important regulators of the actin cytoskeleton and endocytosis. They share an N-terminal kinase domain but no significant homology in other regions of their sequences. The NAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270939 [Multi-domain] Cd Length: 277 Bit Score: 38.80 E-value: 2.28e-04
|
|||||||
STKc_MEKK2 | cd06652 | Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular ... |
22-104 | 2.72e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK2 is a MAPK kinase kinase (MAPKKK or MKKK), that phosphorylates and activates the MAPK kinase MEK5 (or MKK5), which in turn phosphorylates and activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK2 also activates ERK1/2, c-Jun N-terminal kinase (JNK) and p38 through their respective MAPKKs MEK1/2, JNK-activating kinase 2 (JNKK2), and MKK3/6. MEKK2 plays roles in T cell receptor signaling, immune synapse formation, cytokine gene expression, as well as in EGF and FGF receptor signaling. The MEKK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270818 [Multi-domain] Cd Length: 264 Bit Score: 38.49 E-value: 2.72e-04
|
|||||||
STKc_CDK1_CdkB_like | cd07835 | Catalytic domain of Cyclin-Dependent protein Kinase 1-like Serine/Threonine Kinases and of ... |
76-110 | 2.97e-04 | |||
Catalytic domain of Cyclin-Dependent protein Kinase 1-like Serine/Threonine Kinases and of Plant B-type Cyclin-Dependent protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK, CDK2, and CDK3. CDK1 is also called Cell division control protein 2 (Cdc2) or p34 protein kinase, and is regulated by cyclins A, B, and E. The CDK1/cyclin A complex controls G2 phase entry and progression while the CDK1/cyclin B complex is critical for G2 to M phase transition. CDK2 is regulated by cyclin E or cyclin A. Upon activation by cyclin E, it phosphorylates the retinoblastoma (pRb) protein which activates E2F mediated transcription and allows cells to move into S phase. The CDK2/cyclin A complex plays a role in regulating DNA replication. Studies in knockout mice revealed that CDK1 can compensate for the loss of the cdk2 gene as it can also bind cyclin E and drive G1 to S phase transition. CDK3 is regulated by cyclin C and it phosphorylates pRB specifically during the G0/G1 transition. This phosphorylation is required for cells to exit G0 efficiently and enter the G1 phase. The plant-specific B-type CDKs are expressed from the late S to the M phase of the cell cycle. They are characterized by the cyclin binding motif PPT[A/T]LRE. They play a role in controlling mitosis and integrating developmental pathways, such as stomata and leaf development. CdkB has been shown to associate with both cyclin B, which controls G2/M transition, and cyclin D, which acts as a mediator in linking extracellular signals to the cell cycle. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270829 [Multi-domain] Cd Length: 283 Bit Score: 38.43 E-value: 2.97e-04
|
|||||||
STKc_IKK_alpha | cd14039 | Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase ... |
69-109 | 3.29e-04 | |||
Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase (IKK) alpha; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IKKalpha is involved in the non-canonical or alternative pathway of regulating Nuclear Factor-KappaB (NF-kB) proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. The non-canonical pathway functions in cells lacking NEMO (NF-kB Essential MOdulator) and IKKbeta. It is induced by a subset of TNFR family members including CD40, RANK, and B cell-activating factor receptor. IKKalpha processes the Inhibitor of NF-kB (IkB)-like C-terminus of NF-kB2/p100 to produce p52, allowing the p52/RelB dimer to migrate to the nucleus. This pathway is dependent on NIK (NF-kB Inducing Kinase) which phosphorylates and activates IKKalpha. The IKKalpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270941 [Multi-domain] Cd Length: 289 Bit Score: 38.36 E-value: 3.29e-04
|
|||||||
STKc_DAPK3 | cd14195 | Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 3; STKs ... |
65-110 | 3.39e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK3, also called DAP-like kinase (DLK) and zipper-interacting protein kinase (ZIPk), contains an N-terminal kinase domain and a C-terminal region with nuclear localization signals (NLS) and a leucine zipper motif that mediates homodimerization and interaction with other leucine zipper proteins. It interacts with Par-4, a protein that contains a death domain and interacts with actin filaments. DAPK3 is present in both the cytoplasm and nucleus. Its co-expression with Par-4 results in the co-localization of the two proteins to actin filaments. In addition to cell death, DAPK3 is also implicated in mediating cell motility and the contraction of smooth muscles. The DAPK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271097 [Multi-domain] Cd Length: 271 Bit Score: 38.06 E-value: 3.39e-04
|
|||||||
STKc_DAPK2 | cd14196 | Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 2; STKs ... |
40-110 | 3.40e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK2, also called DAPK-related protein 1 (DRP-1), is a Ca2+/calmodulin (CaM)-regulated protein containing an N-terminal kinase domain, a CaM autoinhibitory site and a dimerization module. It lacks the cytoskeletal binding regions of DAPK1 and the exogenous protein has been shown to be soluble and cytoplasmic. FLAG-tagged DAPK2, however, accumulated within membrane-enclosed autophagic vesicles. It is unclear where endogenous DAPK2 is localized. DAPK2 participates in TNF-alpha and FAS-receptor induced cell death and enhances neutrophilic maturation in myeloid leukemic cells. It contributes to the induction of anoikis and its down-regulation is implicated in the beta-catenin induced resistance of malignant epithelial cells to anoikis. The DAPK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271098 [Multi-domain] Cd Length: 269 Bit Score: 38.01 E-value: 3.40e-04
|
|||||||
STKc_nPKC_theta | cd05619 | Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C theta; STKs catalyze ... |
41-105 | 3.41e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C theta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. Although T-cells also express other PKC isoforms, PKC-theta is unique in that upon antigen stimulation, it is translocated to the plasma membrane at the immunological synapse, where it mediates signals essential for T-cell activation. It is essential for TCR-induced proliferation, cytokine production, T-cell survival, and the differentiation and effector function of T-helper (Th) cells, particularly Th2 and Th17. PKC-theta is being developed as a therapeutic target for Th2-mediated allergic inflammation and Th17-mediated autoimmune diseases. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270770 [Multi-domain] Cd Length: 331 Bit Score: 38.37 E-value: 3.41e-04
|
|||||||
STKc_GRK | cd05577 | Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase; STKs ... |
69-111 | 3.42e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors, which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. GRKs play important roles in the cardiovascular, immune, respiratory, skeletal, and nervous systems. They contain a central catalytic domain, flanked by N- and C-terminal extensions. The N-terminus contains an RGS (regulator of G protein signaling) homology (RH) domain and several motifs. The C-terminus diverges among different groups of GRKs. There are seven types of GRKs, named GRK1 to GRK7, which are subdivided into three main groups: visual (GRK1/7); beta-adrenergic receptor kinases (GRK2/3); and GRK4-like (GRK4/5/6). Expression of GRK2/3/5/6 is widespread while GRK1/4/7 show a limited tissue distribution. The substrate spectrum of the widely expressed GRKs partially overlaps. The GRK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270729 [Multi-domain] Cd Length: 278 Bit Score: 38.28 E-value: 3.42e-04
|
|||||||
STKc_Sty1_Hog1 | cd07856 | Catalytic domain of the Serine/Threonine Kinases, Fungal Mitogen-Activated Protein Kinases ... |
81-107 | 3.47e-04 | |||
Catalytic domain of the Serine/Threonine Kinases, Fungal Mitogen-Activated Protein Kinases Sty1 and Hog1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the MAPKs Sty1 from Schizosaccharomyces pombe, Hog1 from Saccharomyces cerevisiae, and similar proteins. Sty1 and Hog1 are stress-activated MAPKs that partipate in transcriptional regulation in response to stress. Sty1 is activated in response to oxidative stress, osmotic stress, and UV radiation. It is regulated by the MAP2K Wis1, which is activated by the MAP3Ks Wis4 and Win1, which receive signals of the stress condition from membrane-spanning histidine kinases Mak1-3. Activated Sty1 stabilizes the Atf1 transcription factor and induces transcription of Atf1-dependent genes of the core environmetal stress response. Hog1 is the key element in the high osmolarity glycerol (HOG) pathway and is activated upon hyperosmotic stress. Activated Hog1 accumulates in the nucleus and regulates stress-induced transcription. The HOG pathway is mediated by two transmembrane osmosensors, Sln1 and Sho1. MAPKs are important mediators of cellular responses to extracellular signals. The Sty1/Hog1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270843 [Multi-domain] Cd Length: 328 Bit Score: 38.32 E-value: 3.47e-04
|
|||||||
STKc_PAK | cd06614 | Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase; STKs catalyze the ... |
40-106 | 3.65e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. PAKs are implicated in the regulation of many cellular processes including growth factor receptor-mediated proliferation, cell polarity, cell motility, cell death and survival, and actin cytoskeleton organization. PAK deregulation is associated with tumor development. PAKs from higher eukaryotes are classified into two groups (I and II), according to their biochemical and structural features. Group I PAKs contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). Group II PAKs contain a PBD and a catalytic domain, but lack other motifs found in group I PAKs. Since group II PAKs do not contain an obvious AID, they may be regulated differently from group I PAKs. Group I PAKs interact with the SH3 containing proteins Nck, Grb2 and PIX; no such binding has been demonstrated for group II PAKs. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270789 [Multi-domain] Cd Length: 255 Bit Score: 37.96 E-value: 3.65e-04
|
|||||||
STKc_A-Raf | cd14150 | Catalytic domain of the Serine/Threonine Kinase, A-Raf (Rapidly Accelerated Fibrosarcoma) ... |
40-107 | 3.86e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, A-Raf (Rapidly Accelerated Fibrosarcoma) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. A-Raf cooperates with C-Raf in regulating ERK transient phosphorylation that is associated with cyclin D expression and cell cycle progression. Mice deficient in A-Raf are born alive but show neurological and intestinal defects. A-Raf demonstrates low kinase activity to MEK, compared with B- and C-Raf, and may also have alternative functions other than in the ERK signaling cascade. It regulates the M2 type pyruvate kinase, a key glycolytic enzyme. It also plays a role in endocytic membrane trafficking. A-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. It functions in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The A-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271052 [Multi-domain] Cd Length: 265 Bit Score: 38.07 E-value: 3.86e-04
|
|||||||
STKc_MLK4 | cd14146 | Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 4; STKs catalyze the ... |
40-108 | 4.17e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK4 is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The specific function of MLK4 is yet to be determined. Mutations in the kinase domain of MLK4 have been detected in colorectal cancers. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation.The MLK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271048 [Multi-domain] Cd Length: 268 Bit Score: 38.09 E-value: 4.17e-04
|
|||||||
STKc_MAST | cd05609 | Catalytic domain of the Protein Serine/Threonine Kinase, Microtubule-associated serine ... |
77-106 | 4.19e-04 | |||
Catalytic domain of the Protein Serine/Threonine Kinase, Microtubule-associated serine/threonine kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAST kinases contain an N-terminal domain of unknown function, a central catalytic domain, and a C-terminal PDZ domain that mediates protein-protein interactions. There are four mammalian MAST kinases, named MAST1-MAST4. MAST1 is also called syntrophin-associated STK (SAST) while MAST2 is also called MAST205. MAST kinases are cytoskeletal associated kinases of unknown function that are also expressed at neuromuscular junctions and postsynaptic densities. MAST1, MAST2, and MAST3 bind and phosphorylate the tumor suppressor PTEN, and may contribute to the regulation and stabilization of PTEN. MAST2 is involved in the regulation of the Fc-gamma receptor of the innate immune response in macrophages, and may also be involved in the regulation of the Na+/H+ exchanger NHE3. The MAST kinase subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270760 [Multi-domain] Cd Length: 280 Bit Score: 37.77 E-value: 4.19e-04
|
|||||||
STKc_GRK4_like | cd05605 | Catalytic domain of G protein-coupled Receptor Kinase 4-like Serine/Threonine Kinases; STKs ... |
77-105 | 4.44e-04 | |||
Catalytic domain of G protein-coupled Receptor Kinase 4-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of the GRK4-like group include GRK4, GRK5, GRK6, and similar GRKs. They contain an N-terminal RGS homology (RH) domain and a catalytic domain, but lack a G protein betagamma-subunit binding domain. They are localized to the plasma membrane through post-translational lipid modification or direct binding to PIP2. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK4-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270756 [Multi-domain] Cd Length: 285 Bit Score: 37.72 E-value: 4.44e-04
|
|||||||
PTK_HER3 | cd05111 | Pseudokinase domain of the Protein Tyrosine Kinase, HER3; HER3 (ErbB3) is a member of the EGFR ... |
1-105 | 4.46e-04 | |||
Pseudokinase domain of the Protein Tyrosine Kinase, HER3; HER3 (ErbB3) is a member of the EGFR (HER, ErbB) subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular EGF-related ligand-binding region, a transmembrane helix, and a cytoplasmic region with a tyr kinase domain and a regulatory C-terminal tail. Unlike other PTKs, phosphorylation of the activation loop of EGFR proteins is not critical to their activation. Instead, they are activated by ligand-induced dimerization, leading to the phosphorylation of tyr residues in the C-terminal tail, which serve as binding sites for downstream signaling molecules. HER3 contains an impaired tyr kinase domain, which lacks crucial residues for catalytic activity against exogenous substrates but is still able to bind ATP and autophosphorylate. HER3 binds the neuregulin ligands, NRG1 and NRG2, and it relies on its heterodimerization partners for activity following ligand binding. The HER2-HER3 heterodimer constitutes a high affinity co-receptor capable of potent mitogenic signaling. HER3 participates in a signaling pathway involved in the proliferation, survival, adhesion, and motility of tumor cells. The HER3 subfamily is part of a larger superfamily that includes other pseudokinases and the the catalytic domains of active kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173656 [Multi-domain] Cd Length: 279 Bit Score: 38.01 E-value: 4.46e-04
|
|||||||
STKc_DCKL3 | cd14185 | Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 3 (also called ... |
40-105 | 4.60e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 3 (also called Doublecortin-like and CAM kinase-like 3); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL3 (or DCAMKL3) belongs to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. DCKL3 contains a single DCX domain (instead of a tandem) and a C-terminal kinase domain with similarity to CAMKs. It has been shown to interact with tubulin and JIP1/2. The DCKL3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271087 [Multi-domain] Cd Length: 258 Bit Score: 37.62 E-value: 4.60e-04
|
|||||||
PTKc_Wee1b | cd14139 | Catalytic domain of the Protein Tyrosine Kinase, Wee1b; PTKs catalyze the transfer of the ... |
17-105 | 4.62e-04 | |||
Catalytic domain of the Protein Tyrosine Kinase, Wee1b; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of human Wee1b (also called Wee2), Xenopus laevis Wee1a (XeWee1a) and similar vertebrate proteins. XeWee1a accumulates after exiting the metaphase II stage in oocytes and in early mitotic cells. It functions during the first zygotic cell division and not during subsequent divisions. Mammalian Wee2/Wee1b is an oocyte-specific inhibitor of meiosis that functions downstream of cAMP. Wee1 is a cell cycle checkpoint kinase that helps keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of an N-terminal tyr (Y15) residue. During the late G2 phase, CDK1 is activated and mitotic entry is promoted by the removal of this inhibitory phosphorylation by the phosphatase Cdc25. Although Wee1 is functionally a tyr kinase, it is more closely related to serine/threonine kinases (STKs). It contains a catalytic kinase domain sandwiched in between N- and C-terminal regulatory domains. It is regulated by phosphorylation and degradation, and its expression levels are also controlled by circadian clock proteins. The Wee1b subfamily is part of a larger superfamily that includes the catalytic domains of STKs, other PTKs, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271041 [Multi-domain] Cd Length: 274 Bit Score: 37.98 E-value: 4.62e-04
|
|||||||
STKc_LRRK2 | cd14068 | Catalytic domain of the Serine/Threonine Kinase, Leucine-Rich Repeat Kinase 2; STKs catalyze ... |
9-105 | 4.74e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Leucine-Rich Repeat Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LRRK2 is one of two vertebrate LRRKs which show complementary expression in the brain. Mutations in LRRK2, found in the kinase, ROC-COR, and WD40 domains, are linked to both familial and sporadic forms of Parkinson's disease. The most prevalent mutation, G2019S located in the activation loop of the kinase domain, increases kinase activity. The R1441C/G mutations in the GTPase domain have also been reported to influence kinase activity. LRRKs are also classified as ROCO proteins because they contain a ROC (Ras of complex proteins)/GTPase domain followed by a COR (C-terminal of ROC) domain of unknown function. In addition, LRRKs contain a catalytic kinase domain and protein-protein interaction motifs including a WD40 domain, LRRs and ankyrin (ANK) repeats. LRRKs possess both GTPase and kinase activities, with the ROC domain acting as a molecular switch for the kinase domain, cycling between a GTP-bound state which drives kinase activity and a GDP-bound state which decreases the activity. The LRRK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270970 [Multi-domain] Cd Length: 252 Bit Score: 37.62 E-value: 4.74e-04
|
|||||||
STKc_Titin | cd14104 | Catalytic domain of the Giant Serine/Threonine Kinase Titin; STKs catalyze the transfer of the ... |
69-103 | 5.04e-04 | |||
Catalytic domain of the Giant Serine/Threonine Kinase Titin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Titin, also called connectin, is a muscle-specific elastic protein and is the largest known protein to date. It contains multiple immunoglobulin (Ig)-like and fibronectin type III (FN3) domains, and a single kinase domain near the C-terminus. It spans half of the sarcomere, the repeating contractile unit of striated muscle, and performs mechanical and catalytic functions. Titin contributes to the passive force generated when muscle is stretched during relaxation. Its kinase domain phosphorylates and regulates the muscle protein telethonin, which is required for sarcomere formation in differentiating myocytes. In addition, titin binds many sarcomere proteins and acts as a molecular scaffold for filament formation during myofibrillogenesis. The Titin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271006 [Multi-domain] Cd Length: 277 Bit Score: 37.53 E-value: 5.04e-04
|
|||||||
STKc_PKC | cd05570 | Catalytic domain of the Serine/Threonine Kinase, Protein Kinase C; STKs catalyze the transfer ... |
41-103 | 5.21e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Protein Kinase C; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. PKCs undergo three phosphorylations in order to take mature forms. In addition, classical PKCs depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. Novel PKCs are calcium-independent, but require DAG and PS for activity, while atypical PKCs only require PS. PKCs phosphorylate and modify the activities of a wide variety of cellular proteins including receptors, enzymes, cytoskeletal proteins, transcription factors, and other kinases. They play a central role in signal transduction pathways that regulate cell migration and polarity, proliferation, differentiation, and apoptosis. Also included in this subfamily are the PKC-like proteins, called PKNs. The PKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270722 [Multi-domain] Cd Length: 318 Bit Score: 37.58 E-value: 5.21e-04
|
|||||||
STKc_TNIK | cd06637 | Catalytic domain of the Serine/Threonine Kinase, Traf2- and Nck-Interacting Kinase; STKs ... |
31-107 | 5.36e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Traf2- and Nck-Interacting Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TNIK is an effector of Rap2, a small GTP-binding protein from the Ras family. TNIK specifically activates the c-Jun N-terminal kinase (JNK) pathway and plays a role in regulating the actin cytoskeleton. The TNIK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270807 [Multi-domain] Cd Length: 296 Bit Score: 37.78 E-value: 5.36e-04
|
|||||||
STKc_CDK9 | cd07865 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 9; STKs ... |
84-110 | 5.60e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 9; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK9, together with a cyclin partner (cyclin T1, T2a, T2b, or K), is the main component of distinct positive transcription elongation factors (P-TEFb), which function as Ser2 C-terminal domain kinases of RNA polymerase II. P-TEFb participates in multiple steps of gene expression including transcription elongation, mRNA synthesis, processing, export, and translation. It also plays a role in mediating cytokine induced transcription networks such as IL6-induced STAT3 signaling. In addition, the CDK9/cyclin T2a complex promotes muscle differentiation and enhances the function of some myogenic regulatory factors. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK9 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270848 [Multi-domain] Cd Length: 310 Bit Score: 37.73 E-value: 5.60e-04
|
|||||||
STKc_BUR1 | cd07866 | Catalytic domain of the Serine/Threonine Kinase, Fungal Cyclin-Dependent protein Kinase (CDK), ... |
68-110 | 5.65e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Fungal Cyclin-Dependent protein Kinase (CDK), Bypass UAS Requirement 1, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BUR1, also called SGV1, is a yeast CDK that is functionally equivalent to mammalian CDK9. It associates with the cyclin BUR2. BUR genes were orginally identified in a genetic screen as factors involved in general transcription. The BUR1/BUR2 complex phosphorylates the C-terminal domain of RNA polymerase II. In addition, this complex regulates histone modification by phosporylating Rad6 and mediating the association of the Paf1 complex with chromatin. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The BUR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270849 [Multi-domain] Cd Length: 311 Bit Score: 37.68 E-value: 5.65e-04
|
|||||||
STKc_MST4 | cd06640 | Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 4; STKs ... |
40-108 | 5.68e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MST4 is sometimes referred to as MASK (MST3 and SOK1-related kinase). It plays a role in mitogen-activated protein kinase (MAPK) signaling during cytoskeletal rearrangement, morphogenesis, and apoptosis. It influences cell growth and transformation by modulating the extracellular signal-regulated kinase (ERK) pathway. MST4 may also play a role in tumor formation and progression. It localizes in the Golgi apparatus by interacting with the Golgi matrix protein GM130 and may play a role in cell migration. The MST4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132971 [Multi-domain] Cd Length: 277 Bit Score: 37.72 E-value: 5.68e-04
|
|||||||
STKc_myosinIII_N_like | cd06608 | N-terminal Catalytic domain of Class III myosin-like Serine/Threonine Kinases; STKs catalyze ... |
31-107 | 6.73e-04 | |||
N-terminal Catalytic domain of Class III myosin-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Class III myosins are motor proteins with an N-terminal kinase catalytic domain and a C-terminal actin-binding motor domain. Class III myosins are present in the photoreceptors of invertebrates and vertebrates and in the auditory hair cells of mammals. The kinase domain of myosin III can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, and can autophosphorylate the C-terminal motor domain. Myosin III may play an important role in maintaining the structural integrity of photoreceptor cell microvilli. It may also function as a cargo carrier during light-dependent translocation, in photoreceptor cells, of proteins such as transducin and arrestin. The Drosophila class III myosin, called NinaC (Neither inactivation nor afterpotential protein C), is critical in normal adaptation and termination of photoresponse. Vertebrates contain two isoforms of class III myosin, IIIA and IIIB. This subfamily also includes mammalian NIK-like embryo-specific kinase (NESK), Traf2- and Nck-interacting kinase (TNIK), and mitogen-activated protein kinase (MAPK) kinase kinase kinase 4/6. MAP4Ks are involved in some MAPK signaling pathways by activating a MAPK kinase kinase. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. The class III myosin-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270785 [Multi-domain] Cd Length: 275 Bit Score: 37.28 E-value: 6.73e-04
|
|||||||
STKc_GRK7 | cd05607 | Catalytic domain of the Protein Serine/Threonine Kinase, G protein-coupled Receptor Kinase 7; ... |
40-111 | 6.86e-04 | |||
Catalytic domain of the Protein Serine/Threonine Kinase, G protein-coupled Receptor Kinase 7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK7 (also called iodopsin kinase) belongs to the visual group of GRKs. It is primarily found in the retina and plays a role in the regulation of opsin light receptors. GRK7 is located in retinal cone outer segments and plays an important role in regulating photoresponse of the cones. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors, which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK7 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270758 [Multi-domain] Cd Length: 286 Bit Score: 37.19 E-value: 6.86e-04
|
|||||||
STKc_SnRK3 | cd14663 | Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein ... |
14-107 | 6.90e-04 | |||
Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein kinase subfamily 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The SnRKs form three different subfamilies designated SnRK1-3. SnRK3 is represented in this cd. The SnRK3 group contains members also known as CBL-interacting protein kinase, salt overly sensitive 2, SOS3-interacting proteins and protein kinase S. These kinases interact with calcium-binding proteins such as SOS3, SCaBPs, and CBL proteins, and are involved in responses to salt stress and in sugar and ABA signaling. The SnRKs belong to a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271133 [Multi-domain] Cd Length: 256 Bit Score: 37.38 E-value: 6.90e-04
|
|||||||
PKc_DYRK_like | cd14133 | Catalytic domain of Dual-specificity tYrosine-phosphorylated and -Regulated Kinase-like ... |
81-111 | 7.06e-04 | |||
Catalytic domain of Dual-specificity tYrosine-phosphorylated and -Regulated Kinase-like protein kinases; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. This subfamily is composed of the dual-specificity DYRKs and YAK1, as well as the S/T kinases (STKs), HIPKs. DYRKs and YAK1 autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. Proteins in this subfamily play important roles in cell proliferation, differentiation, survival, growth, and development. The DYRK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271035 [Multi-domain] Cd Length: 262 Bit Score: 37.25 E-value: 7.06e-04
|
|||||||
STKc_RSK3_C | cd14178 | C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 3 (also called ... |
40-109 | 8.06e-04 | |||
C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 3 (also called Ribosomal protein S6 kinase alpha-2 or 90kDa ribosomal protein S6 kinase 2); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSK3 is also called S6K-alpha-2, RPS6KA2, p90RSK2 or MAPK-activated protein kinase 1c (MAPKAPK-1c). RSK3 binds muscle A-kinase anchoring protein (mAKAP)-b directly and regulates concentric cardiac myocyte growth. The RSK3 gene, RPS6KA2, is a putative tumor suppressor gene in sporadic epithelial ovarian cancer and variations to the gene may be associated with rectal cancer risk. RSK3 is one of four RSK isoforms (RSK1-4) from distinct genes present in vertebrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. The RSK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271080 [Multi-domain] Cd Length: 293 Bit Score: 37.30 E-value: 8.06e-04
|
|||||||
STKc_GRK2 | cd14223 | Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 2; STKs ... |
77-108 | 9.02e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK2, also called beta-adrenergic receptor kinase (beta-ARK) or beta-ARK1, is important in regulating several cardiac receptor responses. It plays a role in cardiac development and in hypertension. Deletion of GRK2 in mice results in embryonic lethality, caused by hypoplasia of the ventricular myocardium. GRK2 also plays important roles in the liver (as a regulator of portal blood pressure), in immune cells, and in the nervous system. Altered GRK2 expression has been reported in several disorders including major depression, schizophrenia, bipolar disorder, and Parkinsonism. GRK2 contains an N-terminal RGS homology (RH) domain, a central catalytic domain, and C-terminal pleckstrin homology (PH) domain that mediates PIP2 and G protein betagamma-subunit translocation to the membrane. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. TheGRK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271125 [Multi-domain] Cd Length: 321 Bit Score: 36.95 E-value: 9.02e-04
|
|||||||
STKc_MAPK | cd07834 | Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase; STKs ... |
14-107 | 9.42e-04 | |||
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPKs serve as important mediators of cellular responses to extracellular signals. They control critical cellular functions including differentiation, proliferation, migration, and apoptosis. They are also implicated in the pathogenesis of many diseases including multiple types of cancer, stroke, diabetes, and chronic inflammation. Typical MAPK pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPK kinase (MAP2K or MKK), which itself is phosphorylated and activated by a MAPK kinase kinase (MAP3K or MKKK). Each cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAP3K to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. There are three typical MAPK subfamilies: Extracellular signal-Regulated Kinase (ERK), c-Jun N-terminal Kinase (JNK), and p38. Some MAPKs are atypical in that they are not regulated by MAP2Ks. These include MAPK4, MAPK6, NLK, and ERK7. The MAPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270828 [Multi-domain] Cd Length: 329 Bit Score: 36.73 E-value: 9.42e-04
|
|||||||
STKc_DCKL | cd14095 | Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase (also called ... |
14-107 | 1.04e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase (also called Doublecortin-like and CAM kinase-like); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL (or DCAMKL) proteins belong to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. In addition, DCKL proteins contain a C-terminal kinase domain with similarity to CAMKs. They are involved in the regulation of cAMP signaling. Vertebrates contain three DCKL proteins (DCKL1-3); DCKL1 and 2 also contain a serine, threonine, and proline rich domain (SP), while DCKL3 contains only a single DCX domain instead of tandem domains. The DCKL subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270997 [Multi-domain] Cd Length: 258 Bit Score: 36.92 E-value: 1.04e-03
|
|||||||
STKc_EIF2AK1_HRI | cd14049 | Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor ... |
80-105 | 1.04e-03 | |||
Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 2 or Heme-Regulated Inhibitor kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HRI (or EIF2AK1) contains an N-terminal regulatory heme-binding domain and a C-terminal catalytic kinase domain. It is suppressed under normal conditions by binding of the heme iron, and is activated during heme deficiency. It functions as a critical regulator that ensures balanced synthesis of globins and heme, in order to form stable hemoglobin during erythroid differentiation and maturation. HRI also protects cells and enhances survival under iron-deficient conditions. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. The HRI subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270951 [Multi-domain] Cd Length: 284 Bit Score: 36.72 E-value: 1.04e-03
|
|||||||
STKc_MEKK3 | cd06651 | Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular ... |
22-104 | 1.05e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK3 is a MAPK kinase kinase (MAPKKK or MKKK), that phosphorylates and activates the MAPK kinase MEK5 (or MKK5), which in turn phosphorylates and activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK3 plays an essential role in embryonic angiogenesis and early heart development. In addition, MEKK3 is involved in interleukin-1 receptor and Toll-like receptor 4 signaling. It is also a specific regulator of the proinflammatory cytokines IL-6 and GM-CSF in some immune cells. MEKK3 also regulates calcineurin, which plays a critical role in T cell activation, apoptosis, skeletal myocyte differentiation, and cardiac hypertrophy. The MEKK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270817 [Multi-domain] Cd Length: 271 Bit Score: 36.98 E-value: 1.05e-03
|
|||||||
STKc_IRAK4 | cd14158 | Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 4; ... |
3-107 | 1.05e-03 | |||
Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain, and a C-terminal domain; IRAK-4 lacks the C-terminal domain. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK4 plays a critical role in NFkB activation by its interaction with MyD88, which acts as a scaffold that enables IRAK4 to phosphorylate and activate IRAK1 and/or IRAK2. It also plays an important role in type I IFN production induced by TLR7/8/9. The IRAK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271060 [Multi-domain] Cd Length: 288 Bit Score: 36.71 E-value: 1.05e-03
|
|||||||
PTZ00036 | PTZ00036 | glycogen synthase kinase; Provisional |
40-105 | 1.06e-03 | |||
glycogen synthase kinase; Provisional Pssm-ID: 173333 [Multi-domain] Cd Length: 440 Bit Score: 36.94 E-value: 1.06e-03
|
|||||||
STKc_GRK3 | cd05633 | Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 3; STKs ... |
77-108 | 1.06e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, G protein-coupled Receptor Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GRK3, also called beta-adrenergic receptor kinase 2 (beta-ARK2), is widely expressed in many tissues. It is involved in modulating the cholinergic response of airway smooth muscles, and also plays a role in dopamine receptor regulation. GRK3-deficient mice show a lack of olfactory receptor desensitization and altered regulation of the M2 muscarinic airway. GRK3 promoter polymorphisms may also be associated with bipolar disorder. GRK3 contains an N-terminal RGS homology (RH) domain, a central catalytic domain, and C-terminal pleckstrin homology (PH) domain that mediates PIP2 and G protein betagamma-subunit translocation to the membrane. GRKs phosphorylate and regulate G protein-coupled receptors (GPCRs), the largest superfamily of cell surface receptors which regulate some part of nearly all physiological functions. Phosphorylated GPCRs bind to arrestins, which prevents further G protein signaling despite the presence of activating ligand. The GRK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270781 [Multi-domain] Cd Length: 346 Bit Score: 36.96 E-value: 1.06e-03
|
|||||||
STKc_cGK | cd05572 | Catalytic domain of the Serine/Threonine Kinase, cGMP-dependent protein kinase (cGK or PKG); ... |
42-108 | 1.07e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, cGMP-dependent protein kinase (cGK or PKG); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mammals have two cGK isoforms from different genes, cGKI and cGKII. cGKI exists as two splice variants, cGKI-alpha and cGKI-beta. cGK consists of an N-terminal regulatory domain containing a dimerization and an autoinhibitory pseudosubstrate region, two cGMP-binding domains, and a C-terminal catalytic domain. Binding of cGMP to both binding sites releases the inhibition of the catalytic center by the pseudosubstrate region, allowing autophosphorylation and activation of the kinase. cGKI is a soluble protein expressed in all smooth muscles, platelets, cerebellum, and kidney. It is also expressed at lower concentrations in other tissues. cGKII is a membrane-bound protein that is most abundantly expressed in the intestine. It is also present in the brain nuclei, adrenal cortex, kidney, lung, and prostate. cGKI is involved in the regulation of smooth muscle tone, smooth cell proliferation, and platelet activation. cGKII plays a role in the regulation of secretion, such as renin secretion by the kidney and aldosterone secretion by the adrenal. It also regulates bone growth and the circadian rhythm. The cGK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270724 [Multi-domain] Cd Length: 262 Bit Score: 36.82 E-value: 1.07e-03
|
|||||||
STKc_cPKC_alpha | cd05615 | Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C alpha; STKs ... |
41-105 | 1.09e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C alpha; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-alpha is expressed in many tissues and is associated with cell proliferation, apoptosis, and cell motility. It plays a role in the signaling of the growth factors PDGF, VEGF, EGF, and FGF. Abnormal levels of PKC-alpha have been detected in many transformed cell lines and several human tumors. In addition, PKC-alpha is required for HER2 dependent breast cancer invasion. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. PKCs undergo three phosphorylations in order to take mature forms. In addition, cPKCs depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. The cPKC-alpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270766 [Multi-domain] Cd Length: 341 Bit Score: 36.90 E-value: 1.09e-03
|
|||||||
PKc_DYRK | cd14210 | Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and ... |
84-109 | 1.10e-03 | |||
Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and -Regulated Kinase; Protein Kinases (PKs), Dual-specificity tYrosine-phosphorylated and -Regulated Kinase (DYRK) subfamily, catalytic (c) domain. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. The DYRK subfamily is part of a larger superfamily that includes the catalytic domains of other protein S/T PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). DYRKs autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. They play important roles in cell proliferation, differentiation, survival, and development. Vertebrates contain multiple DYRKs (DYRK1-4) and mammals contain two types of DYRK1 proteins, DYRK1A and DYRK1B. DYRK1A is involved in neuronal differentiation and is implicated in the pathogenesis of DS (Down syndrome). DYRK1B plays a critical role in muscle differentiation by regulating transcription, cell motility, survival, and cell cycle progression. It is overexpressed in many solid tumors where it acts as a tumor survival factor. DYRK2 promotes apoptosis in response to DNA damage by phosphorylating the tumor suppressor p53, while DYRK3 promotes cell survival by phosphorylating SIRT1 and promoting p53 deacetylation. DYRK4 is a testis-specific kinase that may function during spermiogenesis. Pssm-ID: 271112 [Multi-domain] Cd Length: 311 Bit Score: 36.75 E-value: 1.10e-03
|
|||||||
STKc_Kin1_2 | cd14077 | Catalytic domain of Kin1, Kin2, and simlar Serine/Threonine Kinases; STKs catalyze the ... |
40-107 | 1.12e-03 | |||
Catalytic domain of Kin1, Kin2, and simlar Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of yeast Kin1, Kin2, and similar proteins. Fission yeast Kin1 is a membrane-associated kinase that is involved in regulating cell surface cohesiveness during interphase. It also plays a role during mitosis, linking actomyosin ring assembly with septum synthesis and membrane closure to ensure separation of daughter cells. Budding yeast Kin1 and Kin2 act downstream of the Rab-GTPase Sec4 and are associated with the exocytic apparatus; they play roles in the secretory pathway. The Kin1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270979 [Multi-domain] Cd Length: 267 Bit Score: 36.66 E-value: 1.12e-03
|
|||||||
PTKc_EphR_A2 | cd05063 | Catalytic domain of the Protein Tyrosine Kinase, Ephrin Receptor A2; PTKs catalyze the ... |
3-111 | 1.14e-03 | |||
Catalytic domain of the Protein Tyrosine Kinase, Ephrin Receptor A2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The EphA2 receptor is overexpressed in tumor cells and tumor blood vessels in a variety of cancers including breast, prostate, lung, and colon. As a result, it is an attractive target for drug design since its inhibition could affect several aspects of tumor progression. EphRs comprise the largest subfamily of receptor PTKs (RTKs). Class EphA receptors bind GPI-anchored ephrin-A ligands. There are ten vertebrate EphA receptors (EphA1-10), which display promiscuous interactions with six ephrin-A ligands. EphRs contain an ephrin binding domain and two fibronectin repeats extracellularly, a transmembrane segment, and a cytoplasmic tyr kinase domain. Binding of the ephrin ligand to EphR requires cell-cell contact since both are anchored to the plasma membrane. The resulting downstream signals occur bidirectionally in both EphR-expressing cells (forward signaling) and ephrin-expressing cells (reverse signaling). Ephrin/EphR interaction mainly results in cell-cell repulsion or adhesion, making it important in neural development and plasticity, cell morphogenesis, cell-fate determination, embryonic development, tissue patterning, and angiogenesis. The EphA2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 133194 [Multi-domain] Cd Length: 268 Bit Score: 36.88 E-value: 1.14e-03
|
|||||||
STKc_B-Raf | cd14151 | Catalytic domain of the Serine/Threonine Kinase, B-Raf (Rapidly Accelerated Fibrosarcoma) ... |
40-109 | 1.14e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, B-Raf (Rapidly Accelerated Fibrosarcoma) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. B-Raf activates ERK with the strongest magnitude, compared with other Raf kinases. Mice embryos deficient in B-Raf die around midgestation due to vascular hemorrhage caused by apoptotic endothelial cells. Mutations in B-Raf have been implicated in initiating tumorigenesis and tumor progression, and are found in malignant cutaneous melanoma, papillary thyroid cancer, as well as in ovarian and colorectal carcinomas. Most oncogenic B-Raf mutations are located at the activation loop of the kinase and surrounding regions; the V600E mutation accounts for around 90% of oncogenic mutations. The V600E mutant constitutively activates MEK, resulting in sustained activation of ERK. B-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The B-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271053 [Multi-domain] Cd Length: 274 Bit Score: 36.58 E-value: 1.14e-03
|
|||||||
STKc_MAPK15-like | cd07852 | Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase 15 and ... |
85-105 | 1.17e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase 15 and similar MAPKs; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Human MAPK15 is also called Extracellular signal Regulated Kinase 8 (ERK8) while the rat protein is called ERK7. ERK7 and ERK8 display both similar and different biochemical properties. They autophosphorylate and activate themselves and do not require upstream activating kinases. ERK7 is constitutively active and is not affected by extracellular stimuli whereas ERK8 shows low basal activity and is activated by DNA-damaging agents. ERK7 and ERK8 also have different substrate profiles. Genome analysis shows that they are orthologs with similar gene structures. ERK7 and ERK 8 may be involved in the signaling of some nuclear receptor transcription factors. ERK7 regulates hormone-dependent degradation of estrogen receptor alpha while ERK8 down-regulates the transcriptional co-activation androgen and glucocorticoid receptors. MAPKs are important mediators of cellular responses to extracellular signals. The MAPK15 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270841 [Multi-domain] Cd Length: 337 Bit Score: 36.77 E-value: 1.17e-03
|
|||||||
PLN00034 | PLN00034 | mitogen-activated protein kinase kinase; Provisional |
81-105 | 1.17e-03 | |||
mitogen-activated protein kinase kinase; Provisional Pssm-ID: 215036 [Multi-domain] Cd Length: 353 Bit Score: 36.73 E-value: 1.17e-03
|
|||||||
STKc_nPKC_eta | cd05590 | Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C eta; STKs catalyze the ... |
41-111 | 1.20e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C eta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-eta is predominantly expressed in squamous epithelia, where it plays a crucial role in the signaling of cell-type specific differentiation. It is also expressed in pro-B cells and early-stage thymocytes, and acts as a key regulator in early B-cell development. PKC-eta increases glioblastoma multiforme (GBM) proliferation and resistance to radiation, and is being developed as a therapeutic target for the management of GBM. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC-eta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270742 [Multi-domain] Cd Length: 323 Bit Score: 36.81 E-value: 1.20e-03
|
|||||||
STKc_PKA | cd14209 | Catalytic subunit of the Serine/Threonine Kinase, cAMP-dependent protein kinase; STKs catalyze ... |
40-108 | 1.20e-03 | |||
Catalytic subunit of the Serine/Threonine Kinase, cAMP-dependent protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. The PKA subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271111 [Multi-domain] Cd Length: 290 Bit Score: 36.61 E-value: 1.20e-03
|
|||||||
PTKc_TrkB | cd05093 | Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase B; PTKs catalyze ... |
8-107 | 1.22e-03 | |||
Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase B; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. TrkB is a receptor PTK (RTK) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding of TrkB to its ligands, brain-derived neurotrophic factor (BDNF) or neurotrophin 4 (NT4), results in receptor oligomerization and activation of the catalytic domain. TrkB is broadly expressed in the nervous system and in some non-neural tissues. It plays important roles in cell proliferation, differentiation, and survival. BDNF/Trk signaling plays a key role in regulating activity-dependent synaptic plasticity. TrkB also contributes to protection against gp120-induced neuronal cell death. TrkB overexpression is associated with poor prognosis in neuroblastoma (NB) and other human cancers. It acts as a suppressor of anoikis (detachment-induced apoptosis) and contributes to tumor metastasis. The TrkB subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270675 [Multi-domain] Cd Length: 288 Bit Score: 36.56 E-value: 1.22e-03
|
|||||||
STKc_Rim15_like | cd05611 | Catalytic domain of fungal Rim15-like Protein Serine/Threonine Kinases; STKs catalyze the ... |
77-107 | 1.28e-03 | |||
Catalytic domain of fungal Rim15-like Protein Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include Saccharomyces cerevisiae Rim15, Schizosaccharomyces pombe cek1, and similar fungal proteins. They contain a central catalytic domain, which contains an insert relative to MAST kinases. In addition, Rim15 contains a C-terminal signal receiver (REC) domain while cek1 contains an N-terminal PAS domain. Rim15 (or Rim15p) functions as a regulator of meiosis. It acts as a downstream effector of PKA and regulates entry into stationary phase (G0). Thus, it plays a crucial role in regulating yeast proliferation, differentiation, and aging. Cek1 may facilitate progression of mitotic anaphase. The Rim15-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270762 [Multi-domain] Cd Length: 263 Bit Score: 36.69 E-value: 1.28e-03
|
|||||||
STKc_RIP | cd13978 | Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein; STKs catalyze ... |
40-105 | 1.31e-03 | |||
Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RIP kinases serve as essential sensors of cellular stress. They are involved in regulating NF-kappaB and MAPK signaling, and are implicated in mediating cellular processes such as apoptosis, necroptosis, differentiation, and survival. RIP kinases contain a homologous N-terminal kinase domain and varying C-terminal domains. Higher vertebrates contain multiple RIP kinases, with mammals harboring at least five members. RIP1 and RIP2 harbor C-terminal domains from the Death domain (DD) superfamily while RIP4 contains ankyrin (ANK) repeats. RIP3 contain a RIP homotypic interaction motif (RHIM) that facilitates binding to RIP1. RIP1 and RIP3 are important in apoptosis and necroptosis, while RIP2 and RIP4 play roles in keratinocyte differentiation and inflammatory immune responses. The RIP subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270880 [Multi-domain] Cd Length: 263 Bit Score: 36.66 E-value: 1.31e-03
|
|||||||
STKc_MSK_C | cd14092 | C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated ... |
81-109 | 1.33e-03 | |||
C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, in response to various stimuli such as growth factors, hormones, neurotransmitters, cellular stress, and pro-inflammatory cytokines. This triggers phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) in the C-terminal extension of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. MSKs are predominantly nuclear proteins. They are widely expressed in many tissues including heart, brain, lung, liver, kidney, and pancreas. There are two isoforms of MSK, called MSK1 and MSK2. The MSK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270994 [Multi-domain] Cd Length: 311 Bit Score: 36.51 E-value: 1.33e-03
|
|||||||
PTKc_Src | cd05071 | Catalytic domain of the Protein Tyrosine Kinase, Src; PTKs catalyze the transfer of the ... |
2-111 | 1.34e-03 | |||
Catalytic domain of the Protein Tyrosine Kinase, Src; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Src (or c-Src) is a cytoplasmic (or non-receptor) PTK, containing an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region with a conserved tyr. It is activated by autophosphorylation at the tyr kinase domain, and is negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). c-Src is the vertebrate homolog of the oncogenic protein (v-Src) from Rous sarcoma virus. Together with other Src subfamily proteins, it is involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. Src also play a role in regulating cell adhesion, invasion, and motility in cancer cells and tumor vasculature, contributing to cancer progression and metastasis. Elevated levels of Src kinase activity have been reported in a variety of human cancers. Several inhibitors of Src have been developed as anti-cancer drugs. Src is also implicated in acute inflammatory responses and osteoclast function. The Src subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270656 [Multi-domain] Cd Length: 277 Bit Score: 36.59 E-value: 1.34e-03
|
|||||||
STKc_SRPK | cd14136 | Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase; STKs catalyze ... |
80-111 | 1.40e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SRPKs phosphorylate and regulate splicing factors from the SR protein family by specifically phosphorylating multiple serine residues residing in SR/RS dipeptide motifs (also known as RS domains). Phosphorylation of the RS domains enhances interaction with transportin SR and facilitates entry of the SR proteins into the nucleus. SRPKs contain a nonconserved insert domain, within the well-conserved catalytic kinase domain, that regulates their subcellular localization. They play important roles in mediating pre-mRNA processing and mRNA maturation, as well as other cellular functions such as chromatin reorganization, cell cycle and p53 regulation, and metabolic signaling. Vertebrates contain three distinct SRPKs, called SRPK1-3. The SRPK homolog in budding yeast, Sky1p, recognizes and phosphorylates its substrate Npl3p, which lacks a classic RS domain but contains a single RS dipeptide at the C-terminus of its RGG domain. Npl3p is a shuttling heterogeneous nuclear ribonucleoprotein (hnRNP) that exports a distinct class of mRNA from the nucleus to the cytoplasm. The SRPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271038 [Multi-domain] Cd Length: 320 Bit Score: 36.40 E-value: 1.40e-03
|
|||||||
STKc_ULK1 | cd14202 | Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 1; STKs catalyze the ... |
40-106 | 1.48e-03 | |||
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK1 is required for efficient amino acid starvation-induced autophagy and mitochondrial clearance. It associates with three autophagy-related proteins (Atg13, FIP200 amd Atg101) to form the ULK1 complex. All fours proteins are essential for autophagosome formation. ULK1 is regulated by both mammalian target-of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK). mTORC1 negatively regulates the ULK1 complex in a nutrient-dependent manner while AMPK stimulates autophagy by inhibiting mTORC1. ULK1 also plays neuron-specific roles and is involved in non-clathrin-coated endocytosis in growth cones, filopodia extension, neurite extension, and axon branching. The ULK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271104 [Multi-domain] Cd Length: 267 Bit Score: 36.53 E-value: 1.48e-03
|
|||||||
PTKc_VEGFR1 | cd14207 | Catalytic domain of the Protein Tyrosine Kinases, Vascular Endothelial Growth Factor Receptors; ... |
69-110 | 1.50e-03 | |||
Catalytic domain of the Protein Tyrosine Kinases, Vascular Endothelial Growth Factor Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. VEGFR1 (or Flt1) binds VEGFA, VEGFB, and placenta growth factor (PLGF). It regulates monocyte and macrophage migration, vascular permeability, haematopoiesis, and the recruitment of haematopietic progenitor cells from the bone marrow. VEGFR1 is a member of the VEGFR subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. The VEGFR1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271109 [Multi-domain] Cd Length: 340 Bit Score: 36.52 E-value: 1.50e-03
|
|||||||
PTKc_FAK | cd05056 | Catalytic domain of the Protein Tyrosine Kinase, Focal Adhesion Kinase; PTKs catalyze the ... |
1-105 | 1.53e-03 | |||
Catalytic domain of the Protein Tyrosine Kinase, Focal Adhesion Kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. FAK is a cytoplasmic (or nonreceptor) PTK that contains an autophosphorylation site and a FERM domain at the N-terminus, a central tyr kinase domain, proline-rich regions, and a C-terminal FAT (focal adhesion targeting) domain. FAK activity is dependent on integrin-mediated cell adhesion, which facilitates N-terminal autophosphorylation. Full activation is achieved by the phosphorylation of its two adjacent A-loop tyrosines. FAK is important in mediating signaling initiated at sites of cell adhesions and at growth factor receptors. Through diverse molecular interactions, FAK functions as a biosensor or integrator to control cell motility. It is a key regulator of cell survival, proliferation, migration and invasion, and thus plays an important role in the development and progression of cancer. Src binds to autophosphorylated FAK forming the FAK-Src dual kinase complex, which is activated in a wide variety of tumor cells and generates signals promoting growth and metastasis. FAK is being developed as a target for cancer therapy. The FAK subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133187 [Multi-domain] Cd Length: 270 Bit Score: 36.25 E-value: 1.53e-03
|
|||||||
STKc_IKK_beta | cd14038 | Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase ... |
14-107 | 1.58e-03 | |||
Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase (IKK) beta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IKKbeta is involved in the classical pathway of regulating Nuclear Factor-KappaB (NF-kB) proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. The classical pathway regulates the majority of genes activated by NF-kB including those encoding cytokines, chemokines, leukocyte adhesion molecules, and anti-apoptotic factors. It involves NEMO (NF-kB Essential MOdulator)- and IKKbeta-dependent phosphorylation and degradation of the Inhibitor of NF-kB (IkB), which liberates NF-kB dimers (typified by the p50-p65 heterodimer) from an inactive IkB/dimeric NF-kB complex, enabling them to migrate to the nucleus where they regulate gene transcription. The IKKbeta subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270940 [Multi-domain] Cd Length: 290 Bit Score: 36.48 E-value: 1.58e-03
|
|||||||
STKc_p38 | cd07851 | Catalytic domain of the Serine/Threonine Kinase, p38 Mitogen-Activated Protein Kinase; STKs ... |
81-107 | 1.60e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, p38 Mitogen-Activated Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. p38 kinases are mitogen-activated protein kinases (MAPKs), serving as important mediators of cellular responses to extracellular signals. They function in the regulation of the cell cycle, cell development, cell differentiation, senescence, tumorigenesis, apoptosis, pain development and pain progression, and immune responses. p38 kinases are activated by the MAPK kinases MKK3 and MKK6, which in turn are activated by upstream MAPK kinase kinases including TAK1, ASK1, and MLK3, in response to cellular stresses or inflammatory cytokines. p38 substrates include other protein kinases and factors that regulate transcription, nuclear export, mRNA stability and translation. p38 kinases are drug targets for the inflammatory diseases psoriasis, rheumatoid arthritis, and chronic pulmonary disease. Vertebrates contain four isoforms of p38, named alpha, beta, gamma, and delta, which show varying substrate specificity and expression patterns. p38alpha and p38beta are ubiquitously expressed, p38gamma is predominantly found in skeletal muscle, and p38delta is found in the heart, lung, testis, pancreas, and small intestine. The p38 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143356 [Multi-domain] Cd Length: 343 Bit Score: 36.12 E-value: 1.60e-03
|
|||||||
PTKc_Frk_like | cd05068 | Catalytic domain of Fyn-related kinase-like Protein Tyrosine Kinases; PTKs catalyze the ... |
63-111 | 1.64e-03 | |||
Catalytic domain of Fyn-related kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Frk and Srk are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Frk, also known as Rak, is specifically expressed in liver, lung, kidney, intestine, mammary glands, and the islets of Langerhans. Rodent homologs were previously referred to as GTK (gastrointestinal tyr kinase), BSK (beta-cell Src-like kinase), or IYK (intestinal tyr kinase). Studies in mice reveal that Frk is not essential for viability. It plays a role in the signaling that leads to cytokine-induced beta-cell death in Type I diabetes. It also regulates beta-cell number during embryogenesis and early in life. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Frk-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270653 [Multi-domain] Cd Length: 267 Bit Score: 36.23 E-value: 1.64e-03
|
|||||||
STKc_CDKL1_4 | cd07847 | Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 1 and 4; ... |
81-110 | 1.71e-03 | |||
Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 1 and 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKL1, also called p42 KKIALRE, is a glial protein that is upregulated in gliosis. It is present in neuroblastoma and A431 human carcinoma cells, and may be implicated in neoplastic transformation. The function of CDKL4 is unknown. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL1/4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270837 [Multi-domain] Cd Length: 286 Bit Score: 36.20 E-value: 1.71e-03
|
|||||||
STKc_cPKC_beta | cd05616 | Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C beta; STKs ... |
41-108 | 1.72e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C beta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PKC beta isoforms (I and II), generated by alternative splicing of a single gene, are preferentially activated by hyperglycemia-induced DAG (1,2-diacylglycerol) in retinal tissues. This is implicated in diabetic microangiopathy such as ischemia, neovascularization, and abnormal vasodilator function. PKC-beta also plays an important role in VEGF signaling. In addition, glucose regulates proliferation in retinal endothelial cells via PKC-betaI. PKC-beta is also being explored as a therapeutic target in cancer. It contributes to tumor formation and is involved in the tumor host mechanisms of inflammation and angiogenesis. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. PKCs undergo three phosphorylations in order to take mature forms. In addition, cPKCs depend on calcium, DAG, and in most cases, phosphatidylserine (PS) for activation. The cPKC-beta subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270767 [Multi-domain] Cd Length: 323 Bit Score: 36.13 E-value: 1.72e-03
|
|||||||
STKc_TGFbR_I | cd14056 | Catalytic domain of the Serine/Threonine Kinases, Transforming Growth Factor beta family Type ... |
15-111 | 1.74e-03 | |||
Catalytic domain of the Serine/Threonine Kinases, Transforming Growth Factor beta family Type I Receptors; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of type I receptors for the TGFbeta family of secreted signaling molecules including TGFbeta, bone morphogenetic proteins, activins, growth and differentiation factors, and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation through trans-phosphorylation by type II receptors, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. They are inhibited by the immunophilin FKBP12, which is thought to control leaky signaling caused by receptor oligomerization in the absence of ligand. The TGFbR-I subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270958 [Multi-domain] Cd Length: 287 Bit Score: 36.10 E-value: 1.74e-03
|
|||||||
PTKc_TrkC | cd05094 | Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase C; PTKs catalyze ... |
1-105 | 1.89e-03 | |||
Catalytic domain of the Protein Tyrosine Kinase, Tropomyosin Related Kinase C; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. TrkC is a receptor PTK (RTK) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding of TrkC to its ligand, neurotrophin 3 (NT3), results in receptor oligomerization and activation of the catalytic domain. TrkC is broadly expressed in the nervous system and in some non-neural tissues including the developing heart. NT3/TrkC signaling plays an important role in the innervation of the cardiac conducting system and the development of smooth muscle cells. Mice deficient with NT3 and TrkC have multiple heart defects. NT3/TrkC signaling is also critical for the development and maintenance of enteric neurons that are important for the control of gut peristalsis. The TrkC subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270676 [Multi-domain] Cd Length: 287 Bit Score: 36.14 E-value: 1.89e-03
|
|||||||
STKc_TSSK-like | cd14080 | Catalytic domain of testis-specific serine/threonine kinases and similar proteins; STKs ... |
14-109 | 1.96e-03 | |||
Catalytic domain of testis-specific serine/threonine kinases and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK1 and TSSK2 are expressed specifically in meiotic and postmeiotic spermatogenic cells, respectively. TSSK3 has been reported to be expressed in the interstitial Leydig cells of adult testis. TSSK4, also called TSSK5, is expressed in testis from haploid round spermatids to mature spermatozoa. TSSK6, also called SSTK, is expressed at the head of elongated sperm. TSSK1/TSSK2 double knock-out and TSSK6 null mice are sterile without manifesting other defects, making these kinases viable targets for male contraception. The TSSK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270982 [Multi-domain] Cd Length: 262 Bit Score: 36.01 E-value: 1.96e-03
|
|||||||
STKc_CK2_alpha | cd14132 | Catalytic subunit (alpha) of the Serine/Threonine Kinase, Casein Kinase 2; STKs catalyze the ... |
39-105 | 1.97e-03 | |||
Catalytic subunit (alpha) of the Serine/Threonine Kinase, Casein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CK2 is a tetrameric protein with two catalytic (alpha) and two regulatory (beta) subunits. It is constitutively active and ubiquitously expressed, and is found in the cytoplasm, nucleus, as well as in the plasma membrane. It phosphorylates a wide variety of substrates including gylcogen synthase, cell cycle proteins, nuclear proteins (e.g. DNA topoisomerase II), and ion channels (e.g. ENaC), among others. It may be considered a master kinase controlling the activity or lifespan of many other kinases and exerting its effect over cell fate, gene expression, protein synthesis and degradation, and viral infection. CK2 is implicated in every stage of the cell cycle and is required for cell cycle progression. It plays crucial roles in cell differentiation, proliferation, and survival, and is thus implicated in cancer. CK2 is not an oncogene by itself but elevated CK2 levels create an environment that enhances the survival of tumor cells. The CK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271034 [Multi-domain] Cd Length: 306 Bit Score: 35.98 E-value: 1.97e-03
|
|||||||
STKc_MAP4K3 | cd06645 | Catalytic domain of the Serine/Threonine Kinase, Mitogen-activated protein kinase kinase ... |
40-107 | 2.04e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Mitogen-activated protein kinase kinase kinase kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP4K3 plays a role in the nutrient-responsive pathway of mTOR (mammalian target of rapamycin) signaling. MAP4K3 is required in the activation of S6 kinase by amino acids and for the phosphorylation of the mTOR-regulated inhibitor of eukaryotic initiation factor 4E. mTOR regulates ribosome biogenesis and protein translation, and is frequently deregulated in cancer. MAP4Ks are involved in MAPK signaling pathways by activating a MAPK kinase kinase. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAP3K to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Members of this subfamily contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. The MAP4K3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270812 [Multi-domain] Cd Length: 272 Bit Score: 36.18 E-value: 2.04e-03
|
|||||||
STKc_KIS | cd14020 | Catalytic domain of the Serine/Threonine Kinase, Kinase Interacting with Stathmin (also called ... |
80-111 | 2.04e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Kinase Interacting with Stathmin (also called U2AF homology motif (UHM) kinase 1); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. KIS (or UHMK1) contains an N-terminal kinase domain and a C-terminal domain with a UHM motif, a protein interaction motif initially found in the pre-mRNA splicing factor U2AF. It phosphorylates the splicing factor SF1, which enhances binding to the splice site to promote spliceosome assembly. KIS was first identified as a kinase that interacts with stathmin, a phosphoprotein that plays a role in axon development and microtubule dynamics. It localizes in RNA granules in neurons and is important in neurite outgrowth. The KIS/UHMK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270922 [Multi-domain] Cd Length: 285 Bit Score: 36.07 E-value: 2.04e-03
|
|||||||
STKc_Trio_C | cd14113 | C-terminal kinase domain of the Large Serine/Threonine Kinase and Rho Guanine Nucleotide ... |
77-107 | 2.05e-03 | |||
C-terminal kinase domain of the Large Serine/Threonine Kinase and Rho Guanine Nucleotide Exchange Factor, Triple functional domain protein; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Triple functional domain protein (Trio), also called PTPRF-interacting protein, is a large multidomain protein containing a series of spectrin-like repeats, two each of RhoGEF and SH3 domains, an immunoglobulin-like (Ig) domain and a C-terminal kinase. Trio plays important roles in neuronal cell migration and axon guidance. It was originally identified as an interacting partner of the of the receptor-like tyrosine phosphatase (RPTP) LAR (leukocyte-antigen-related protein), a family of receptors that function in the signaling to the actin cytoskeleton during development. Trio functions as a GEF for Rac1, RhoG, and RhoA, and is involved in the regulation of lamellipodia formation, mediating Rac1-dependent cell spreading and migration. The Trio subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271015 [Multi-domain] Cd Length: 263 Bit Score: 36.11 E-value: 2.05e-03
|
|||||||
PTKc_Src_Fyn_like | cd14203 | Catalytic domain of a subset of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the ... |
2-111 | 2.13e-03 | |||
Catalytic domain of a subset of Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily includes a subset of Src-like PTKs including Src, Fyn, Yrk, and Yes, which are all widely expressed. Yrk has been detected only in chickens. It is primarily found in neuronal and epithelial cells and in macrophages. It may play a role in inflammation and in response to injury. Src (or c-Src) proteins are cytoplasmic (or non-receptor) PTKs which are anchored to the plasma membrane. They contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. They were identified as the first proto-oncogene products, and they regulate cell adhesion, invasion, and motility in cancer cells and tumor vasculature, contributing to cancer progression and metastasis. They are also implicated in acute inflammatory responses and osteoclast function. The Src/Fyn-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271105 [Multi-domain] Cd Length: 248 Bit Score: 36.05 E-value: 2.13e-03
|
|||||||
STKc_RSK_C | cd14091 | C-terminal catalytic domain of the Serine/Threonine Kinases, Ribosomal S6 kinases; STKs ... |
87-103 | 2.16e-03 | |||
C-terminal catalytic domain of the Serine/Threonine Kinases, Ribosomal S6 kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. Mammals possess four RSK isoforms (RSK1-4) from distinct genes. RSK proteins are also referred to as MAP kinase-activated protein kinases (MAPKAPKs), 90 kDa ribosomal protein S6 kinases (p90-RSKs), or p90S6Ks. The RSK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270993 [Multi-domain] Cd Length: 291 Bit Score: 35.69 E-value: 2.16e-03
|
|||||||
STKc_PDIK1L | cd13977 | Catalytic domain of the Serine/Threonine kinase, PDLIM1 interacting kinase 1 like; STKs ... |
83-107 | 2.25e-03 | |||
Catalytic domain of the Serine/Threonine kinase, PDLIM1 interacting kinase 1 like; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PDIK1L is also called STK35 or CLIK-1. It is predominantly a nuclear protein which is capable of autophosphorylation. Through its interaction with the PDZ-LIM protein CLP-36, it is localized to actin stress fibers. The PDIK1L subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270879 [Multi-domain] Cd Length: 322 Bit Score: 35.99 E-value: 2.25e-03
|
|||||||
STKc_nPKC_delta | cd05620 | Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C delta; STKs catalyze ... |
41-105 | 2.29e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C delta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. It slows down cell proliferation, inducing cell cycle arrest and enhancing cell differentiation. PKC-delta is also involved in the regulation of transcription as well as immune and inflammatory responses. It plays a central role in the genotoxic stress response that leads to DNA damaged-induced apoptosis. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC-delta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173710 [Multi-domain] Cd Length: 316 Bit Score: 35.69 E-value: 2.29e-03
|
|||||||
PK_SCY1_like | cd14011 | Pseudokinase domain of Scy1-like proteins; The pseudokinase domain shows similarity to protein ... |
80-108 | 2.30e-03 | |||
Pseudokinase domain of Scy1-like proteins; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. This subfamily is composed of the catalytically inactive kinases with similarity to yeast Scy1. It includes four mammalian proteins called SCY1-like protein 1 (SCYL1), SCYL2, SCYL3, as well as Testis-EXpressed protein 14 (TEX14). SCYL1 binds to and co-localizes with the membrane trafficking coatomer I (COPI) complex, and regulates COPI-mediated vesicle trafficking. Null mutations in the SCYL1 gene are responsible for the pathology in mdf (muscle-deficient) mice which display progressive motor neuropathy. SCYL2, also called coated vesicle-associated kinase of 104 kDa (CVAK104), is involved in the trafficking of clathrin-coated vesicles. It also binds the HIV-1 accessory protein Vpu and acts as a regulatory factor that promotes the dephosphorylation of Vpu, facilitating the restriction of HIV-1 release. SCYL3, also called ezrin-binding protein PACE-1, may be involved in regulating cell adhesion and migration. TEX14 is required for spermatogenesis and male fertility. It localizes to kinetochores (KT) during mitosis and is a target of the mitotic kinase PLK1. It regulates the maturation of the outer KT and the KT-microtubule attachment. The SCY1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270913 [Multi-domain] Cd Length: 287 Bit Score: 35.76 E-value: 2.30e-03
|
|||||||
STKc_SNT7_plant | cd14013 | Catalytic domain of the Serine/Threonine kinase, Plant SNT7; STKs catalyze the transfer of the ... |
81-107 | 2.30e-03 | |||
Catalytic domain of the Serine/Threonine kinase, Plant SNT7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SNT7 is a plant thylakoid-associated kinase that is essential in short- and long-term acclimation responses to cope with various light conditions in order to maintain photosynthetic redox poise for optimal photosynthetic performance. Short-term response involves state transitions over periods of minutes while the long-term response (LTR) occurs over hours to days and involves changing the relative amounts of photosystems I and II. SNT7 acts as a redox sensor and a signal transducer for both responses, which are triggered by the redox state of the plastoquinone (PQ) pool. It is positioned at the top of a phosphorylation cascade that induces state transitions by phosphorylating light-harvesting complex II (LHCII), and triggers the LTR through the phosphorylation of chloroplast proteins. The SNT7 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270915 [Multi-domain] Cd Length: 318 Bit Score: 35.88 E-value: 2.30e-03
|
|||||||
STKc_OSR1_SPAK | cd06610 | Catalytic domain of the Serine/Threonine Kinases, Oxidative stress response kinase and ... |
40-107 | 2.31e-03 | |||
Catalytic domain of the Serine/Threonine Kinases, Oxidative stress response kinase and Ste20-related proline alanine-rich kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SPAK is also referred to as STK39 or PASK (proline-alanine-rich STE20-related kinase). OSR1 and SPAK regulate the activity of cation-chloride cotransporters through direct interaction and phosphorylation. They are also implicated in cytoskeletal rearrangement, cell differentiation, transformation and proliferation. OSR1 and SPAK contain a conserved C-terminal (CCT) domain, which recognizes a unique motif ([RK]FX[VI]) present in their activating kinases (WNK1/WNK4) and their substrates. The OSR1 and SPAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270787 [Multi-domain] Cd Length: 267 Bit Score: 35.80 E-value: 2.31e-03
|
|||||||
STKc_SGK | cd05575 | Catalytic domain of the Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase; ... |
77-108 | 2.43e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SGKs are activated by insulin and growth factors via phosphoinositide 3-kinase and PDK1. They activate ion channels, ion carriers, and the Na-K-ATPase, as well as regulate the activity of enzymes and transcription factors. SGKs play important roles in transport, hormone release, neuroexcitability, cell proliferation, and apoptosis. There are three isoforms of SGK, named SGK1, SGK2, and SGK3 (also called cytokine-independent survival kinase CISK). The SGK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270727 [Multi-domain] Cd Length: 323 Bit Score: 35.76 E-value: 2.43e-03
|
|||||||
STKc_Raf | cd14062 | Catalytic domain of the Serine/Threonine Kinases, Raf (Rapidly Accelerated Fibrosarcoma) ... |
40-107 | 2.49e-03 | |||
Catalytic domain of the Serine/Threonine Kinases, Raf (Rapidly Accelerated Fibrosarcoma) kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Raf kinases act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. Aberrant expression or activation of components in this pathway are associated with tumor initiation, progression, and metastasis. Raf proteins contain a Ras binding domain, a zinc finger cysteine-rich domain, and a catalytic kinase domain. Vertebrates have three Raf isoforms (A-, B-, and C-Raf) with different expression profiles, modes of regulation, and abilities to function in the ERK cascade, depending on cellular context and stimuli. They have essential and non-overlapping roles during embryo- and organogenesis. Knockout of each isoform results in a lethal phenotype or abnormality in most mouse strains. The Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270964 [Multi-domain] Cd Length: 253 Bit Score: 35.83 E-value: 2.49e-03
|
|||||||
STKc_SBK1 | cd13987 | Catalytic domain of the Serine/Threonine kinase, SH3 Binding Kinase 1; STKs catalyze the ... |
42-105 | 2.56e-03 | |||
Catalytic domain of the Serine/Threonine kinase, SH3 Binding Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SBK1, also called BSK146, is predominantly expressed in the brain. Its expression is increased in the developing brain during the late embryonic stage, coinciding with dramatic neuronal proliferation, migration, and maturation. SBK1 may play an important role in regulating brain development. The SBK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270889 [Multi-domain] Cd Length: 259 Bit Score: 35.76 E-value: 2.56e-03
|
|||||||
STKc_MEKK3_like_u1 | cd06653 | Catalytic domain of an Uncharacterized subfamily of Mitogen-Activated Protein (MAP) ... |
77-104 | 2.59e-03 | |||
Catalytic domain of an Uncharacterized subfamily of Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 3-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of uncharacterized proteins with similarity to MEKK3, MEKK2, and related proteins; they contain an N-terminal PB1 domain, which mediates oligomerization, and a C-terminal catalytic domain. MEKK2 and MEKK3 are MAPK kinase kinases (MAPKKKs or MKKKs), proteins that phosphorylate and activate MAPK kinases (MAPKKs or MKKs), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MEKK2 and MEKK3 activate MEK5 (also called MKK5), which activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK3 plays an essential role in embryonic angiogenesis and early heart development. MEKK2 and MEKK3 can also activate the MAPKs, c-Jun N-terminal kinase (JNK) and p38, through their respective MAPKKs. The MEKK3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270819 [Multi-domain] Cd Length: 264 Bit Score: 35.77 E-value: 2.59e-03
|
|||||||
STKc_Nek6 | cd08228 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ... |
77-110 | 2.73e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek6 is required for the transition from metaphase to anaphase. It also plays important roles in mitotic spindle formation and cytokinesis. Activated by Nek9 during mitosis, Nek6 phosphorylates Eg5, a kinesin that is important for spindle bipolarity. Nek6 localizes to spindle microtubules during metaphase and anaphase, and to the midbody during cytokinesis. It is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270865 [Multi-domain] Cd Length: 268 Bit Score: 35.77 E-value: 2.73e-03
|
|||||||
STKc_CDKL2_3 | cd07846 | Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 2 and 3; ... |
77-110 | 2.78e-03 | |||
Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 2 and 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKL2, also called p56 KKIAMRE, is expressed in testis, kidney, lung, and brain. It functions mainly in mature neurons and plays an important role in learning and memory. Inactivation of CDKL3, also called NKIAMRE (NKIATRE in rat), by translocation is associated with mild mental retardation. It has been reported that CDKL3 is lost in leukemic cells having a chromosome arm 5q deletion, and may contribute to the transformed phenotype. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL2/3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270836 [Multi-domain] Cd Length: 286 Bit Score: 35.48 E-value: 2.78e-03
|
|||||||
STKc_KSR1 | cd14152 | Catalytic domain of the Serine/Threonine Kinase, Kinase Suppressor of Ras 1; STKs catalyze the ... |
10-104 | 2.90e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Kinase Suppressor of Ras 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. KSR1 functions as a transducer of TNFalpha-stimulated C-Raf activation of ERK1/2 and NF-kB. Detected activity of KSR1 is cell type specific and context dependent. It is inactive in normal colon epithelial cells and becomes activated at the onset of inflammatory bowel disease (IBD). Similarly, KSR1 activity is undetectable prior to stimulation by EGF or ceramide in COS-7 or YAMC cells, respectively. KSR proteins are widely regarded as pseudokinases, however, this matter is up for debate as catalytic activity has been detected for KSR1 in some systems. The KSR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271054 [Multi-domain] Cd Length: 279 Bit Score: 35.71 E-value: 2.90e-03
|
|||||||
STKc_MAP3K8 | cd13995 | Catalytic domain of the Serine/Threonine kinase, Mitogen-Activated Protein Kinase (MAPK) ... |
81-103 | 2.95e-03 | |||
Catalytic domain of the Serine/Threonine kinase, Mitogen-Activated Protein Kinase (MAPK) Kinase Kinase 8; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP3K8 is also called Tumor progression locus 2 (Tpl2) or Cancer Osaka thyroid (Cot), and was first identified as a proto-oncogene in T-cell lymphoma induced by MoMuL virus and in breast carcinoma induced by MMTV. Activated MAP3K8 induces various MAPK pathways including Extracellular Regulated Kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK), and p38. It plays a pivotal role in innate immunity, linking Toll-like receptors to the production of TNF and the activation of ERK in macrophages. It is also required in interleukin-1beta production and is critical in host defense against Gram-positive bacteria. MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The MAP3K8 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270897 [Multi-domain] Cd Length: 256 Bit Score: 35.37 E-value: 2.95e-03
|
|||||||
STKc_Mnk1 | cd14174 | Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase ... |
80-104 | 3.03e-03 | |||
Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase signal-integrating kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK signal-integrating kinases (Mnks) are MAPK-activated protein kinases and is comprised by a group of four proteins, produced by alternative splicing from two genes (Mnk1 and Mnk2). The isoforms of Mnk1 (1a/1b) and Mnk2 (2a/2b) differ at their C-termini, with the a-form having a longer C-terminus containing a MAPK-binding region. All Mnks contain a catalytic kinase domain and a polybasic region at the N-terminus which binds importin and the eukaryotic initiation factor eIF4G. The best characterized Mnk substrate is eIF4G, whose phosphorylation may promote the export of certain mRNAs from the nucleus. Mnk also phosphorylate substrates that bind to AU-rich elements that regulate mRNA stability and translation. Mnks have also been implicated in tyrosine kinase receptor signaling, inflammation, and cell prolieration or survival. The Mnk subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271076 [Multi-domain] Cd Length: 289 Bit Score: 35.39 E-value: 3.03e-03
|
|||||||
STKc_PCTAIRE_like | cd07844 | Catalytic domain of PCTAIRE-like Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
84-108 | 3.03e-03 | |||
Catalytic domain of PCTAIRE-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PCTAIRE-like proteins show unusual expression patterns with high levels in post-mitotic tissues, suggesting that they may be involved in regulating post-mitotic cellular events. They share sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The association of PCTAIRE-like proteins with cyclins has not been widely studied, although PFTAIRE-1 has been shown to function as a CDK which is regulated by cyclin D3 as well as the membrane-associated cyclin Y. The PCTAIRE-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270835 [Multi-domain] Cd Length: 286 Bit Score: 35.43 E-value: 3.03e-03
|
|||||||
STKc_PKD | cd14082 | Catalytic domain of the Serine/Threonine kinase, Protein Kinase D; STKs catalyze the transfer ... |
81-105 | 3.16e-03 | |||
Catalytic domain of the Serine/Threonine kinase, Protein Kinase D; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKDs are important regulators of many intracellular signaling pathways such as ERK and JNK, and cellular processes including the organization of the trans-Golgi network, membrane trafficking, cell proliferation, migration, and apoptosis. They contain N-terminal cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. Mammals harbor three types of PKDs: PKD1 (or PKCmu), PKD2, and PKD3 (or PKCnu). PKDs are activated in a PKC-dependent manner by many agents including diacylglycerol (DAG), PDGF, neuropeptides, oxidative stress, and tumor-promoting phorbol esters, among others. The PKD subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270984 [Multi-domain] Cd Length: 260 Bit Score: 35.47 E-value: 3.16e-03
|
|||||||
STKc_MST3 | cd06641 | Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 3; STKs ... |
40-108 | 3.40e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MST3 phosphorylates the STK NDR and may play a role in cell cycle progression and cell morphology. It may also regulate paxillin and consequently, cell migration. MST3 is present in human placenta, where it plays an essential role in the oxidative stress-induced apoptosis of trophoblasts in normal spontaneous delivery. Dysregulation of trophoblast apoptosis may result in pregnancy complications such as preeclampsia and intrauterine growth retardation. The MST3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270809 [Multi-domain] Cd Length: 277 Bit Score: 35.43 E-value: 3.40e-03
|
|||||||
PTKc_FGFR2 | cd05101 | Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 2; PTKs ... |
17-110 | 3.49e-03 | |||
Catalytic domain of the Protein Tyrosine Kinase, Fibroblast Growth Factor Receptor 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. There are many splice variants of FGFR2 which show differential expression and binding to FGF ligands. Disruption of either FGFR2 or FGFR2b is lethal in mice, due to defects in the placenta or severe impairment of tissue development including lung, limb, and thyroid, respectively. Disruption of FGFR2c in mice results in defective bone and skull development. Genetic alterations of FGFR2 are associated with many human skeletal disorders including Apert syndrome, Crouzon syndrome, Jackson-Weiss syndrome, and Pfeiffer syndrome. FGFR2 is part of the FGFR subfamily, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with three immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of FGFRs to their ligands, the FGFs, results in receptor dimerization and activation, and intracellular signaling. The binding of FGFs to FGFRs is promiscuous, in that a receptor may be activated by several ligands and a ligand may bind to more that one type of receptor. The FGFR2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270679 [Multi-domain] Cd Length: 313 Bit Score: 35.38 E-value: 3.49e-03
|
|||||||
STKc_NUAK | cd14073 | Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK; STKs catalyze ... |
15-109 | 3.59e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NUAK proteins are classified as AMP-activated protein kinase (AMPK)-related kinases, which like AMPK are activated by the major tumor suppressor LKB1. Vertebrates contain two NUAK proteins, called NUAK1 and NUAK2. NUAK1, also called ARK5 (AMPK-related protein kinase 5), regulates cell proliferation and displays tumor suppression through direct interaction and phosphorylation of p53. It is also involved in cell senescence and motility. High NUAK1 expression is associated with invasiveness of nonsmall cell lung cancer (NSCLC) and breast cancer cells. NUAK2, also called SNARK (Sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase), is involved in energy metabolism. It is activated by hyperosmotic stress, DNA damage, and nutrients such as glucose and glutamine. NUAK2-knockout mice develop obesity, altered serum lipid profiles, hyperinsulinaemia, hyperglycaemia, and impaired glucose tolerance. The NUAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270975 [Multi-domain] Cd Length: 254 Bit Score: 35.06 E-value: 3.59e-03
|
|||||||
STKc_NIK | cd13991 | Catalytic domain of the Serine/Threonine kinase, NF-kappaB Inducing Kinase (NIK); STKs ... |
39-107 | 3.61e-03 | |||
Catalytic domain of the Serine/Threonine kinase, NF-kappaB Inducing Kinase (NIK); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NIK, also called mitogen activated protein kinase kinase kinase 14 (MAP3K14), phosphorylates and activates Inhibitor of NF-KappaB Kinase (IKK) alpha, which is a regulator of NF-kB proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. NIK is essential in the IKKalpha-mediated non-canonical NF-kB signaling pathway, in which IKKalpha processes the IkB-like C-terminus of NF-kB2/p100 to produce p52, allowing the p52/RelB dimer to migrate to the nucleus where it regulates gene transcription. NIK also plays an important role in Toll-like receptor 7/9 signaling cascades. The NIK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270893 [Multi-domain] Cd Length: 268 Bit Score: 35.18 E-value: 3.61e-03
|
|||||||
STKc_PhKG | cd14093 | Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma subunit; STKs ... |
80-107 | 3.64e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma subunit; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Phosphorylase kinase (PhK) catalyzes the phosphorylation of inactive phosphorylase b to form the active phosphorylase a. It coordinates hormonal, metabolic, and neuronal signals to initiate the breakdown of glycogen stores, which enables the maintenance of blood-glucose homeostasis during fasting, and is also used as a source of energy for muscle contraction. PhK is one of the largest and most complex protein kinases, composed of a heterotetramer containing four molecules each of four subunit types: one catalytic (gamma) and three regulatory (alpha, beta, and delta). Each subunit has tissue-specific isoforms or splice variants. Vertebrates contain two isoforms of the gamma subunit (gamma 1 and gamma 2). The gamma subunit, when isolated, is constitutively active and does not require phosphorylation of the A-loop for activity. The regulatory subunits restrain this kinase activity until signals are received to relieve this inhibition. For example, the kinase is activated in response to hormonal stimulation, after autophosphorylation or phosphorylation by cAMP-dependent kinase of the alpha and beta subunits. The high-affinity binding of ADP to the beta subunit also stimulates kinase activity, whereas calcium relieves inhibition by binding to the delta (calmodulin) subunit. The PhKG subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270995 [Multi-domain] Cd Length: 272 Bit Score: 35.41 E-value: 3.64e-03
|
|||||||
STKc_PLK3 | cd14189 | Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 3; STKs catalyze the ... |
81-107 | 3.68e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. There are five mammalian PLKs (PLK1-5) from distinct genes. PLK3, also called Prk or Fnk (FGF-inducible kinase), regulates angiogenesis and responses to DNA damage. Activated PLK3 mediates Chk2 phosphorylation by ATM and the resulting checkpoint activation. PLK3 phosphorylates DNA polymerase delta and may be involved in DNA repair. It also inhibits Cdc25c, thereby regulating the onset of mitosis. The PLK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271091 [Multi-domain] Cd Length: 255 Bit Score: 35.29 E-value: 3.68e-03
|
|||||||
STKc_Nek7 | cd08229 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ... |
77-110 | 3.82e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek7 is required for mitotic spindle formation and cytokinesis. It is enriched in the centrosome and is critical for microtubule nucleation. Nek7 is activated by Nek9 during mitosis, and may regulate the p70 ribosomal S6 kinase. It is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270866 [Multi-domain] Cd Length: 292 Bit Score: 35.39 E-value: 3.82e-03
|
|||||||
STKc_ACVR2 | cd14053 | Catalytic domain of the Serine/Threonine Kinase, Activin Type II Receptor; STKs catalyze the ... |
3-105 | 3.87e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Activin Type II Receptor; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ACVR2 belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, bone morphogenetic proteins (BMPs), activins, growth and differentiation factors (GDFs), and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane region, and a cytoplasmic catalytic kinase domain. Type II receptors, such as ACVR2, are high-affinity receptors which bind ligands, autophosphorylate, as well as trans-phosphorylate and activate low-affinity type I receptors. ACVR2 acts primarily as the receptors for activins, nodal, myostatin, GDF11, and a subset of BMPs. ACVR2 signaling impacts many cellular and physiological processes including reproductive and gonadal functions, myogenesis, bone remodeling and tooth development, kidney organogenesis, apoptosis, fibrosis, inflammation, and neurogenesis. Vertebrates contain two ACVR2 proteins, ACVR2a (or ActRIIA) and ACVR2b (or ActRIIB). The ACVR2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270955 [Multi-domain] Cd Length: 290 Bit Score: 35.00 E-value: 3.87e-03
|
|||||||
STKc_Nek4 | cd08223 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ... |
40-110 | 3.87e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek4 is highly abundant in the testis. Its specific function is unknown. Neks are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. Nek4 is one in a family of 11 different Neks (Nek1-11). The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270862 [Multi-domain] Cd Length: 257 Bit Score: 35.11 E-value: 3.87e-03
|
|||||||
PRK14879 | PRK14879 | Kae1-associated kinase Bud32; |
36-111 | 3.96e-03 | |||
Kae1-associated kinase Bud32; Pssm-ID: 237847 [Multi-domain] Cd Length: 211 Bit Score: 34.88 E-value: 3.96e-03
|
|||||||
STKc_SGK1 | cd05602 | Catalytic domain of the Protein Serine/Threonine Kinase, Serum- and Glucocorticoid-induced ... |
77-108 | 4.47e-03 | |||
Catalytic domain of the Protein Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SGK1 is ubiquitously expressed and is under transcriptional control of numerous stimuli including cell stress (cell shrinkage), serum, hormones (gluco- and mineralocorticoids), gonadotropins, growth factors, interleukin-6, and other cytokines. It plays roles in sodium retention and potassium elimination in the kidney, nutrient transport, salt sensitivity, memory consolidation, and cardiac repolarization. A common SGK1 variant is associated with increased blood pressure and body weight. SGK1 may also contribute to tumor growth, neurodegeneration, fibrosing disease, and ischemia. The SGK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270753 [Multi-domain] Cd Length: 339 Bit Score: 34.99 E-value: 4.47e-03
|
|||||||
PTKc_Fes | cd05084 | Catalytic domain of the Protein Tyrosine Kinase, Fes; PTKs catalyze the transfer of the ... |
16-110 | 4.48e-03 | |||
Catalytic domain of the Protein Tyrosine Kinase, Fes; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fes (or Fps) is a cytoplasmic (or nonreceptor) PTK containing an N-terminal region with FCH (Fes/Fer/CIP4 homology) and coiled-coil domains, followed by a SH2 domain, and a C-terminal catalytic domain. The genes for Fes (feline sarcoma) and Fps (Fujinami poultry sarcoma) were first isolated from tumor-causing retroviruses. The viral oncogenes encode chimeric Fes proteins consisting of Gag sequences at the N-termini, resulting in unregulated PTK activity. Fes kinase is expressed in myeloid, vascular endothelial, epithelial, and neuronal cells. It plays important roles in cell growth and differentiation, angiogenesis, inflammation and immunity, and cytoskeletal regulation. A recent study implicates Fes kinase as a tumor suppressor in colorectal cancer. The Fes subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270667 [Multi-domain] Cd Length: 252 Bit Score: 34.91 E-value: 4.48e-03
|
|||||||
STKc_SGK2 | cd05603 | Catalytic domain of the Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase 2; ... |
77-108 | 4.49e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SGK2 shows a more restricted distribution than SGK1 and is most abundantly expressed in epithelial tissues including kidney, liver, pancreas, and the choroid plexus of the brain. In vitro cellular assays show that SGK2 can stimulate the activity of ion channels, the glutamate transporter EEAT4, and the glutamate receptors, GluR6 and GLUR1. The SGK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270754 [Multi-domain] Cd Length: 321 Bit Score: 34.94 E-value: 4.49e-03
|
|||||||
STKc_ERK5 | cd07855 | Catalytic domain of the Serine/Threonine Kinase, Extracellular signal-Regulated Kinase 5; ... |
41-107 | 4.62e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Extracellular signal-Regulated Kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ERK5 (also called Big MAPK1 (BMK1) or MAPK7) has a unique C-terminal extension, making it approximately twice as big as other MAPKs. This extension contains transcriptional activation capability which is inhibited by the N-terminal half. ERK5 is activated in response to growth factors and stress by a cascade that leads to its phosphorylation by the MAP2K MEK5, which in turn is regulated by the MAP3Ks MEKK2 and MEKK3. Activated ERK5 phosphorylates its targets including myocyte enhancer factor 2 (MEF2), Sap1a, c-Myc, and RSK. It plays a role in EGF-induced cell proliferation during the G1/S phase transition. Studies on knockout mice revealed that ERK5 is essential for cardiovascular development and plays an important role in angiogenesis. It is also critical for neural differentiation and survival. The ERK5 pathway has been implicated in the pathogenesis of many diseases including cancer, cardiac hypertrophy, and atherosclerosis. MAPKs are important mediators of cellular responses to extracellular signals. The ERK5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270842 [Multi-domain] Cd Length: 336 Bit Score: 35.03 E-value: 4.62e-03
|
|||||||
STKc_CDK1_euk | cd07861 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 1 from higher ... |
77-105 | 4.70e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 1 from higher eukaryotes; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK1 is also called Cell division control protein 2 (Cdc2) or p34 protein kinase, and is regulated by cyclins A, B, and E. The CDK1/cyclin A complex controls G2 phase entry and progression. CDK1/cyclin A2 has also been implicated as an important regulator of S phase events. The CDK1/cyclin B complex is critical for G2 to M phase transition. It induces mitosis by activating nuclear enzymes that regulate chromatin condensation, nuclear membrane degradation, mitosis-specific microtubule and cytoskeletal reorganization. CDK1 also associates with cyclin E and plays a role in the entry into S phase. CDK1 transcription is stable throughout the cell cycle but is modulated in some pathological conditions. It may play a role in regulating apoptosis under these conditions. In breast cancer cells, HER2 can mediate apoptosis by inactivating CDK1. Activation of CDK1 may contribute to HIV-1 induced apoptosis as well as neuronal apoptosis in neurodegenerative diseases. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270845 [Multi-domain] Cd Length: 285 Bit Score: 35.09 E-value: 4.70e-03
|
|||||||
STKc_STK25 | cd06642 | Catalytic domain of Serine/Threonine Kinase 25 (also called Yeast Sps1/Ste20-related kinase 1); ... |
40-108 | 4.73e-03 | |||
Catalytic domain of Serine/Threonine Kinase 25 (also called Yeast Sps1/Ste20-related kinase 1); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK25 is also called Ste20/oxidant stress response kinase 1 (SOK1) or yeast Sps1/Ste20-related kinase 1 (YSK1). It is localized in the Golgi apparatus through its interaction with the Golgi matrix protein GM130. It may be involved in the regulation of cell migration and polarization. STK25 binds and phosphorylates CCM3 (cerebral cavernous malformation 3), also called PCD10 (programmed cell death 10), and may play a role in apoptosis. Human STK25 is a candidate gene responsible for pseudopseudohypoparathyroidism (PPHP), a disease that shares features with the Albright hereditary osteodystrophy (AHO) phenotype. The STK25 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270810 [Multi-domain] Cd Length: 277 Bit Score: 35.03 E-value: 4.73e-03
|
|||||||
STKc_Chk2 | cd14084 | Catalytic domain of the Serine/Threonine kinase, Cell cycle Checkpoint Kinase 2; STKs catalyze ... |
40-109 | 4.74e-03 | |||
Catalytic domain of the Serine/Threonine kinase, Cell cycle Checkpoint Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Checkpoint Kinase 2 (Chk2) plays an important role in cellular responses to DNA double-strand breaks and related lesions. It is phosphorylated and activated by ATM kinase, resulting in its dissociation from sites of damage to phosphorylate downstream targets such as BRCA1, p53, cell cycle transcription factor E2F1, the promyelocytic leukemia protein (PML) involved in apoptosis, and CDC25 phosphatases, among others. Mutations in Chk2 is linked to a variety of cancers including familial breast cancer, myelodysplastic syndromes, prostate cancer, lung cancer, and osteosarcomas. Chk2 contains an N-terminal SQ/TQ cluster domain (SCD), a central forkhead-associated (FHA) domain, and a C-terminal catalytic kinase domain. The Chk2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270986 [Multi-domain] Cd Length: 275 Bit Score: 35.06 E-value: 4.74e-03
|
|||||||
PTKc_VEGFR2 | cd05103 | Catalytic domain of the Protein Tyrosine Kinase, Vascular Endothelial Growth Factor Receptor 2; ... |
62-110 | 4.78e-03 | |||
Catalytic domain of the Protein Tyrosine Kinase, Vascular Endothelial Growth Factor Receptor 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. VEGFR2 (or Flk1) binds the ligands VEGFA, VEGFC, VEGFD and VEGFE. VEGFR2 signaling is implicated in all aspects of normal and pathological vascular endothelial cell biology. It induces a variety of cellular effects including migration, survival, and proliferation. It is critical in regulating embryonic vascular development and angiogenesis. VEGFR2 is the major signal transducer in pathological angiogenesis including cancer and diabetic retinopathy, and is a target for inhibition in cancer therapy. The carboxyl terminus of VEGFR2 plays an important role in its autophosphorylation and activation. VEGFR2 is a member of the VEGFR subfamily of proteins, which are receptor PTKs (RTKs) containing an extracellular ligand-binding region with seven immunoglobulin (Ig)-like domains, a transmembrane segment, and an intracellular catalytic domain. The binding of VEGFRs to their ligands, the VEGFs, leads to receptor dimerization, activation, and intracellular signaling. The VEGFR2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270681 [Multi-domain] Cd Length: 343 Bit Score: 34.96 E-value: 4.78e-03
|
|||||||
STKc_WNK4 | cd14033 | Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 4; STKs catalyze ... |
77-106 | 4.88e-03 | |||
Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNK4 shows a restricted expression pattern and is usually found in epithelial cells. It is expressed in nephrons and in extrarenal tissues including intestine, eye, mammary glands, and prostate. WNK4 regulates a variety of ion transport proteins including apical or basolateral ion transporters, ion channels in the transcellular pathway, and claudins in the paracellular pathway. Mutations in WNK4 cause PseudoHypoAldosteronism type II (PHAII), characterized by hypertension and hyperkalemia. WNK4 inhibits the activity of the thiazide-sensitive Na-Cl cotransporter (NCC), which is responsible for about 15% of NaCl reabsorption in the kidney. It also inhibits the renal outer medullary potassium channel (ROMK) and decreases its surface expression. Hypertension and hyperkalemia in PHAII patients with WNK4 mutations may be partly due to increased NaCl reabsorption through NCC and impaired renal potassium secretion by ROMK, respectively. The WNK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270935 [Multi-domain] Cd Length: 261 Bit Score: 34.98 E-value: 4.88e-03
|
|||||||
STKc_Nek9 | cd08221 | Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA) ... |
40-110 | 6.19e-03 | |||
Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 9; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek9, also called Nercc1, is primarily a cytoplasmic protein but can also localize in the nucleus. It is involved in modulating chromosome alignment and splitting during mitosis. It interacts with the gamma-tubulin ring complex and the Ran GTPase, and is implicated in microtubule organization. Nek9 associates with FACT (FAcilitates Chromatin Transcription) and modulates interphase progression. It also interacts with Nek6, and Nek7, during mitosis, resulting in their activation. Nek9 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270860 [Multi-domain] Cd Length: 256 Bit Score: 34.71 E-value: 6.19e-03
|
|||||||
STKc_Byr2_like | cd06628 | Catalytic domain of the Serine/Threonine Kinases, fungal Byr2-like Mitogen-Activated Protein ... |
81-105 | 6.60e-03 | |||
Catalytic domain of the Serine/Threonine Kinases, fungal Byr2-like Mitogen-Activated Protein Kinase Kinase Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include the MAPKKKs Schizosaccharomyces pombe Byr2, Saccharomyces cerevisiae and Cryptococcus neoformans Ste11, and related proteins. They contain an N-terminal SAM (sterile alpha-motif) domain, which mediates protein-protein interaction, and a C-terminal catalytic domain. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Fission yeast Byr2 is regulated by Ras1. It responds to pheromone signaling and controls mating through the MAPK pathway. Budding yeast Ste11 functions in MAPK cascades that regulate mating, high osmolarity glycerol, and filamentous growth responses. The Byr2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270798 [Multi-domain] Cd Length: 267 Bit Score: 34.43 E-value: 6.60e-03
|
|||||||
STKc_ACVR1_ALK1 | cd14142 | Catalytic domain of the Serine/Threonine Kinases, Activin Type I Receptor and Activin ... |
40-111 | 7.02e-03 | |||
Catalytic domain of the Serine/Threonine Kinases, Activin Type I Receptor and Activin receptor-Like Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ACVR1, also called Activin receptor-Like Kinase 2 (ALK2), and ALK1 act as receptors for bone morphogenetic proteins (BMPs) and they activate SMAD1/5/8. ACVR1 is widely expressed while ALK1 is limited mainly to endothelial cells. The specificity of BMP binding to type I receptors is affected by type II receptors. ACVR1 binds BMP6/7/9/10 and can also bind anti-Mullerian hormone (AMH) in the presence of AMHR2. ALK1 binds BMP9/10 as well as TGFbeta in endothelial cells. A missense mutation in the GS domain of ACVR1 causes fibrodysplasia ossificans progressiva, a complex and disabling disease characterized by congenital skeletal malformations and extraskeletal bone formation. ACVR1 belongs to a group of receptors for the TGFbeta family of secreted signaling molecules that includes TGFbeta, BMPs, activins, growth and differentiation factors, and AMH, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. Type I receptors, like ACVR1 and ALK1, are low-affinity receptors that bind ligands only after they are recruited by the ligand/type II high-affinity receptor complex. Following activation, they start intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. The ACVR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271044 [Multi-domain] Cd Length: 298 Bit Score: 34.34 E-value: 7.02e-03
|
|||||||
STKc_RCK1-like | cd14096 | Catalytic domain of RCK1-like Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
2-103 | 7.23e-03 | |||
Catalytic domain of RCK1-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of fungal STKs including Saccharomyces cerevisiae RCK1 and RCK2, Schizosaccharomyces pombe Sty1-regulated kinase 1 (Srk1), and similar proteins. RCK1, RCK2 (or Rck2p), and Srk1 are MAPK-activated protein kinases. RCK1 and RCK2 are involved in oxidative and metal stress resistance in budding yeast. RCK2 also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. Srk1 is activated by Sty1/Spc1 and is involved in negatively regulating cell cycle progression by inhibiting Cdc25. The RCK1-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270998 [Multi-domain] Cd Length: 295 Bit Score: 34.33 E-value: 7.23e-03
|
|||||||
STKc_CDK5 | cd07839 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 5; STKs ... |
84-106 | 7.99e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK5 is unusual in that it is regulated by non-cyclin proteins, p35 and p39. It is highly expressed in the nervous system and is critical in normal neural development and function. It plays a role in neuronal migration and differentiation, and is also important in synaptic plasticity and learning. CDK5 also participates in protecting against cell death and promoting angiogenesis. Impaired CDK5 activity is implicated in Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease and acute neuronal injury. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143344 [Multi-domain] Cd Length: 284 Bit Score: 34.33 E-value: 7.99e-03
|
|||||||
arch_bud32 | TIGR03724 | Kae1-associated kinase Bud32; Members of this protein family are the Bud32 protein associated ... |
38-111 | 8.34e-03 | |||
Kae1-associated kinase Bud32; Members of this protein family are the Bud32 protein associated with Kae1 (kinase-associated endopeptidase 1) in the Archaea. In many Archaeal genomes, Kae1 and Bud32 are fused. The complex is homologous to the Kae1 and Bud32 subunits of the eukaryotic KEOPS complex, an apparently ancient protein kinase-containing molecular machine. [Unknown function, General] Pssm-ID: 274749 [Multi-domain] Cd Length: 199 Bit Score: 34.11 E-value: 8.34e-03
|
|||||||
STKc_obscurin_rpt1 | cd14107 | Catalytic kinase domain, first repeat, of the Giant Serine/Threonine Kinase Obscurin; STKs ... |
77-105 | 8.54e-03 | |||
Catalytic kinase domain, first repeat, of the Giant Serine/Threonine Kinase Obscurin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Obscurin, approximately 800 kDa in size, is one of three giant proteins expressed in vetebrate striated muscle, together with titin and nebulin. It is a multidomain protein composed of tandem adhesion and signaling domains, including 49 immunoglobulin (Ig) and 2 fibronectin type III (FN3) domains at the N-terminus followed by a more complex region containing more Ig domains, a conserved SH3 domain near a RhoGEF and PH domains, non-modular regions, as well as IQ and phosphorylation motifs. The obscurin gene also encode two kinase domains, which are not expressed as part of the 800 kDa protein, but as a smaller, alternatively spliced product present mainly in the heart muscle, also called obscurin-MLCK. Obscurin is localized at the peripheries of Z-disks and M-lines, where it is able to communicate with the surrounding myoplasm. It interacts with diverse proteins including sAnk1, myosin, titin, and MyBP-C. It may act as a scaffold for the assembly of elements of the contractile apparatus. The obscurin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271009 [Multi-domain] Cd Length: 257 Bit Score: 34.10 E-value: 8.54e-03
|
|||||||
STKc_SNRK | cd14074 | Catalytic domain of the Serine/Threonine Kinase, SNF1-related kinase; STKs catalyze the ... |
40-111 | 8.98e-03 | |||
Catalytic domain of the Serine/Threonine Kinase, SNF1-related kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SNRK is a kinase highly expressed in testis and brain that is found inactive in cells that lack the LKB1 tumour suppressor protein kinase. The regulatory subunits STRAD and MO25 are required for LKB1 to activate SNRK. The SNRK mRNA is increased 3-fold when granule neurons are cultured in low potassium, and may thus play a role in the survival responses in these cells. In some vertebrates, a second SNRK gene (snrkb or snrk-1) has been sequenced and/or identified. Snrk-1 is expressed specifically in embryonic zebrafish vasculature; it plays an essential role in angioblast differentiation, maintenance, and migration. The SNRK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270976 [Multi-domain] Cd Length: 258 Bit Score: 33.93 E-value: 8.98e-03
|
|||||||
STKc_SPEG_rpt1 | cd14108 | Catalytic kinase domain, first repeat, of Giant Serine/Threonine Kinase Striated muscle ... |
81-108 | 9.39e-03 | |||
Catalytic kinase domain, first repeat, of Giant Serine/Threonine Kinase Striated muscle preferentially expressed protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Striated muscle preferentially expressed gene (SPEG) generates 4 different isoforms through alternative promoter use and splicing in a tissue-specific manner: SPEGalpha and SPEGbeta are expressed in cardiac and skeletal striated muscle; Aortic Preferentially Expressed Protein-1 (APEG-1) is expressed in vascular smooth muscle; and Brain preferentially expressed gene (BPEG) is found in the brain and aorta. SPEG proteins have mutliple immunoglobulin (Ig), 2 fibronectin type III (FN3), and two kinase domains. They are necessary for cardiac development and survival. The SPEG subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271010 [Multi-domain] Cd Length: 255 Bit Score: 34.11 E-value: 9.39e-03
|
|||||||
STKc_CDC2L6 | cd07867 | Catalytic domain of Serine/Threonine Kinase, Cell Division Cycle 2-like 6; STKs catalyze the ... |
50-105 | 9.61e-03 | |||
Catalytic domain of Serine/Threonine Kinase, Cell Division Cycle 2-like 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDC2L6 is also called CDK8-like and was previously referred to as CDK11. However, this is a confusing nomenclature as CDC2L6 is distinct from CDC2L1, which is represented by the two protein products from its gene, called CDK11(p110) and CDK11(p58), as well as the caspase-processed CDK11(p46). CDK11(p110), CDK11(p58), and CDK11(p46)do not belong to this subfamily. CDC2L6 is an associated protein of Mediator, a multiprotein complex that provides a platform to connect transcriptional and chromatin regulators and cofactors, in order to activate and mediate RNA polymerase II transcription. CDC2L6 is localized mainly in the nucleus amd exerts an opposing effect to CDK8 in VP16-dependent transcriptional activation by being a negative regulator. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDC2L6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270850 [Multi-domain] Cd Length: 318 Bit Score: 34.27 E-value: 9.61e-03
|
|||||||
Blast search parameters | ||||
|