DNA repair protein RecN; All proteins in this family for which functions are known are ATP ...
1-439
5.89e-129
DNA repair protein RecN; All proteins in this family for which functions are known are ATP binding proteins involved in the initiation of recombination and recombinational repair. [DNA metabolism, DNA replication, recombination, and repair]
Pssm-ID: 273187 [Multi-domain] Cd Length: 563 Bit Score: 384.47 E-value: 5.89e-129
ATP-binding cassette domain of RecN; RecN ATPase involved in DNA repair; similar to ABC ...
1-140
8.18e-50
ATP-binding cassette domain of RecN; RecN ATPase involved in DNA repair; similar to ABC (ATP-binding cassette) transporter nucleotide-binding domain; ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds including sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins.
Pssm-ID: 213208 [Multi-domain] Cd Length: 276 Bit Score: 170.46 E-value: 8.18e-50
DNA repair protein RecN; All proteins in this family for which functions are known are ATP ...
1-439
5.89e-129
DNA repair protein RecN; All proteins in this family for which functions are known are ATP binding proteins involved in the initiation of recombination and recombinational repair. [DNA metabolism, DNA replication, recombination, and repair]
Pssm-ID: 273187 [Multi-domain] Cd Length: 563 Bit Score: 384.47 E-value: 5.89e-129
ATP-binding cassette domain of RecN; RecN ATPase involved in DNA repair; similar to ABC ...
1-140
8.18e-50
ATP-binding cassette domain of RecN; RecN ATPase involved in DNA repair; similar to ABC (ATP-binding cassette) transporter nucleotide-binding domain; ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds including sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins.
Pssm-ID: 213208 [Multi-domain] Cd Length: 276 Bit Score: 170.46 E-value: 8.18e-50
ATP-binding cassette domain of RecN; RecN ATPase involved in DNA repair; similar to ABC ...
361-445
2.34e-10
ATP-binding cassette domain of RecN; RecN ATPase involved in DNA repair; similar to ABC (ATP-binding cassette) transporter nucleotide-binding domain; ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds including sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins.
Pssm-ID: 213208 [Multi-domain] Cd Length: 276 Bit Score: 61.06 E-value: 2.34e-10
ATP-binding cassette domain of eukaryotic SM6 proteins; The structural maintenance of ...
3-60
1.03e-05
ATP-binding cassette domain of eukaryotic SM6 proteins; The structural maintenance of chromosomes (SMC) proteins are large (approximately 110 to 170 kDa), and each is arranged into five recognizable domains. Amino-acid sequence homology of SMC proteins between species is largely confined to the amino- and carboxy-terminal globular domains. The amino-terminal domain contains a 'Walker A' nucleotide-binding domain (GxxGxGKS/T, in the single-letter amino-acid code), which by mutational studies has been shown to be essential in several proteins. The carboxy-terminal domain contains a sequence (the DA-box) that resembles a 'Walker B' motif, and a motif with homology to the signature sequence of the ATP-binding cassette (ABC) family of ATPases. The sequence homology within the carboxy-terminal domain is relatively high within the SMC1-SMC4 group, whereas SMC5 and SMC6 show some divergence in both of these sequences. In eukaryotic cells, the proteins are found as heterodimers of SMC1 paired with SMC3, SMC2 with SMC4, and SMC5 with SMC6 (formerly known as Rad18).
Pssm-ID: 213243 [Multi-domain] Cd Length: 198 Bit Score: 46.05 E-value: 1.03e-05
ATP-binding cassette domain of barmotin, a member of the SMC protein family; Barmotin is a ...
6-57
1.38e-03
ATP-binding cassette domain of barmotin, a member of the SMC protein family; Barmotin is a tight junction-associated protein expressed in rat epithelial cells which is thought to have an important regulatory role in tight junction barrier function. Barmotin belongs to the SMC protein family. SMC proteins are large (approximately 110 to 170 kDa), and each is arranged into five recognizable domains. Amino-acid sequence homology of SMC proteins between species is largely confined to the amino- and carboxy-terminal globular domains. The amino-terminal domain contains a 'Walker A' nucleotide-binding domain (GxxGxGKS/T, in the single-letter amino-acid code), which by mutational studies has been shown to be essential in several proteins. The carboxy-terminal domain contains a sequence (the DA-box) that resembles a 'Walker B' motif, and a motif with homology to the signature sequence of the ATP-binding cassette (ABC) family of ATPases. The sequence homology within the carboxy-terminal domain is relatively high within the SMC1-SMC4 group, whereas SMC5 and SMC6 show some divergence in both of these sequences. In eukaryotic cells, the proteins are found as heterodimers of SMC1 paired with SMC3, SMC2 with SMC4, and SMC5 with SMC6 (formerly known as Rad18).
Pssm-ID: 213245 [Multi-domain] Cd Length: 197 Bit Score: 39.76 E-value: 1.38e-03
ATP-binding cassette domain of RecF; RecF is a recombinational DNA repair ATPase that ...
4-120
3.50e-03
ATP-binding cassette domain of RecF; RecF is a recombinational DNA repair ATPase that maintains replication in the presence of DNA damage. When replication is prematurely disrupted by DNA damage, several recF pathway gene products play critical roles processing the arrested replication fork, allowing it to resume and complete its task. This CD represents the nucleotide binding domain of RecF. RecF belongs to a large superfamily of ABC transporters involved in the transport of a wide variety of different compounds including sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases with a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins.
Pssm-ID: 213209 [Multi-domain] Cd Length: 270 Bit Score: 39.20 E-value: 3.50e-03
ATP-binding cassette domain of Rad50; The catalytic domains of Rad50 are similar to the ...
3-58
9.48e-03
ATP-binding cassette domain of Rad50; The catalytic domains of Rad50 are similar to the ATP-binding cassette of ABC transporters, but are not associated with membrane-spanning domains. The conserved ATP-binding motifs common to Rad50 and the ABC transporter family include the Walker A and Walker B motifs, the Q loop, a histidine residue in the switch region, a D-loop, and a conserved LSGG sequence. This conserved sequence, LSGG, is the most specific and characteristic motif of this family and is thus known as the ABC signature sequence.
Pssm-ID: 213207 [Multi-domain] Cd Length: 204 Bit Score: 37.20 E-value: 9.48e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options