NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|4884142|emb|CAB43279|]
View 

hypothetical protein, partial [Homo sapiens]

Protein Classification

NAD(+) diphosphatase( domain architecture ID 11458060)

NAD(+) diphosphatase catalyzes the cleavage of NADH into reduced nicotinamide mononucleotide (NMNH) and AMP and/or and NADPH into NMNH and 2',5'-ADP; belongs to the NUDIX hydrolase superfamily of proteins that catalyze the hydrolysis of nucleoside diphosphates linked to other moieties (X)

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
NPY1 COG2816
NADH pyrophosphatase NudC, Nudix superfamily [Nucleotide transport and metabolism];
5-263 3.09e-90

NADH pyrophosphatase NudC, Nudix superfamily [Nucleotide transport and metabolism];


:

Pssm-ID: 442065 [Multi-domain]  Cd Length: 288  Bit Score: 269.09  E-value: 3.09e-90
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142    5 QDAQRIEDSVLIGcSEQQEAWFALDLGldssfsisaslhkPEMETELKGSFIELRKALFQLNARDASLLSTAQALLRWHD 84
Cdd:COG2816  58 ADLGPPAEAVFLG-LDDGRPVFAVDLP-------------AELELPEGAEFVDLRELGGLLDPRDAGLAARAVALLNWHR 123
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142   85 AHQFCSRSGQPTKKNVAGSKRVCPSNNIIYYPQMAPVAITLVSDGTRCLLARQSSFPKGMYSALAGFCDIGESVEETIRR 164
Cdd:COG2816 124 THRFCGRCGAPTVVAAAGWARRCPACGAEHYPRTDPAVIVLVTDGDRILLARQARWPPGRYSLLAGFVEPGETLEQAVRR 203
                       170       180       190       200       210       220       230       240
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  165 EVAEEVGLEVESLQYYASQHWPFPSgSLMIACHATVKPGqtEIQVNLRELETAAWFSHDEVATALKRkgpytqqqngtfp 244
Cdd:COG2816 204 EVFEEVGVRVKNVRYVGSQPWPFPS-SLMLGFTAEADSG--EITVDGDEIEDARWFSRDELPAALAG------------- 267
                       250
                ....*....|....*....
gi 4884142  245 FWLPPKLAISHQLIKEWVE 263
Cdd:COG2816 268 LLLPPPGSIARRLIEAWLA 286
 
Name Accession Description Interval E-value
NPY1 COG2816
NADH pyrophosphatase NudC, Nudix superfamily [Nucleotide transport and metabolism];
5-263 3.09e-90

NADH pyrophosphatase NudC, Nudix superfamily [Nucleotide transport and metabolism];


Pssm-ID: 442065 [Multi-domain]  Cd Length: 288  Bit Score: 269.09  E-value: 3.09e-90
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142    5 QDAQRIEDSVLIGcSEQQEAWFALDLGldssfsisaslhkPEMETELKGSFIELRKALFQLNARDASLLSTAQALLRWHD 84
Cdd:COG2816  58 ADLGPPAEAVFLG-LDDGRPVFAVDLP-------------AELELPEGAEFVDLRELGGLLDPRDAGLAARAVALLNWHR 123
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142   85 AHQFCSRSGQPTKKNVAGSKRVCPSNNIIYYPQMAPVAITLVSDGTRCLLARQSSFPKGMYSALAGFCDIGESVEETIRR 164
Cdd:COG2816 124 THRFCGRCGAPTVVAAAGWARRCPACGAEHYPRTDPAVIVLVTDGDRILLARQARWPPGRYSLLAGFVEPGETLEQAVRR 203
                       170       180       190       200       210       220       230       240
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  165 EVAEEVGLEVESLQYYASQHWPFPSgSLMIACHATVKPGqtEIQVNLRELETAAWFSHDEVATALKRkgpytqqqngtfp 244
Cdd:COG2816 204 EVFEEVGVRVKNVRYVGSQPWPFPS-SLMLGFTAEADSG--EITVDGDEIEDARWFSRDELPAALAG------------- 267
                       250
                ....*....|....*....
gi 4884142  245 FWLPPKLAISHQLIKEWVE 263
Cdd:COG2816 268 LLLPPPGSIARRLIEAWLA 286
NUDIX_NADH_pyrophosphatase_Nudt13 cd03429
NADH pyrophosphatase; NADH pyrophosphatase, also known as NUDIX (nucleoside diphosphate linked ...
119-262 1.50e-58

NADH pyrophosphatase; NADH pyrophosphatase, also known as NUDIX (nucleoside diphosphate linked moiety X)) motif 13/Nudt13, is thought to have NADH pyrophosphatase activity, be involved in NADH metabolic process and NADP catabolic process, catalyzing the cleavage of NADH into reduced nicotinamide mononucleotide (NMNH) and AMP, and located in mitochondrion. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity. Members of this family are also recognized by the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. A block of 8 conserved amino acids downstream of the NUDIX motif is thought to give NADH pyrophosphatase its specificity for NADH. NADH pyrophosphatase forms a dimer.


Pssm-ID: 467535 [Multi-domain]  Cd Length: 126  Bit Score: 182.69  E-value: 1.50e-58
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  119 APVAITLVSDGT-RCLLARQSSFPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSgSLMIACH 197
Cdd:cd03429   1 DPAVIVLVTNGEdKILLARQPRWPPGRYSLLAGFVEPGETLEEAVRREVKEEVGLRVKNVRYVGSQPWPFPS-SLMLGFT 79
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 4884142  198 ATVKPGqtEIQVNLRELETAAWFSHDEVATALkrkgpytqqqngtfpfWLPPKLAISHQLIKEWV 262
Cdd:cd03429  80 AEADSG--EITVDDDELEDARWFSRDELPEAL----------------FLPPPGSIARRLIRAWL 126
nudC PRK00241
NAD(+) diphosphatase;
43-263 1.00e-57

NAD(+) diphosphatase;


Pssm-ID: 234699 [Multi-domain]  Cd Length: 256  Bit Score: 185.06  E-value: 1.00e-57
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142    43 HKPEMETELKGsfieLRKALfQLNARDASLLSTAQALLRWHDAHQFCSRSGQPTKKNVAGSKRVCPSNNIIYYPQMAPVA 122
Cdd:PRK00241  61 QDPLRGHEMGS----LRQLL-DLDDGLFQLLGRAVQLAEFYRSHRFCGYCGHPMHPSKTEWAMLCPHCRERYYPRIAPCI 135
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142   123 ITLVSDGTRCLLARQSSFPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSgSLMIACHATVKP 202
Cdd:PRK00241 136 IVAVRRGDEILLARHPRHRNGVYTVLAGFVEVGETLEQCVAREVMEESGIKVKNLRYVGSQPWPFPH-SLMLGFHADYDS 214
                        170       180       190       200       210       220
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 4884142   203 GqtEIQVNLRELETAAWFSHDEVatalkrkgpytqqqngtfPFwLPPKLAISHQLIKEWVE 263
Cdd:PRK00241 215 G--EIVFDPKEIADAQWFRYDEL------------------PL-LPPSGTIARRLIEDTVA 254
NUDIX pfam00293
NUDIX domain;
121-235 2.10e-18

NUDIX domain;


Pssm-ID: 395229 [Multi-domain]  Cd Length: 132  Bit Score: 79.06  E-value: 2.10e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142    121 VAITLVSDGTRCLLARQSSFP-KGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGSLMIACH-- 197
Cdd:pfam00293   6 VGVVLLNEKGRVLLVRRSKKPfPGWWSLPGGKVEPGETPEEAARRELEEETGLEPELLELLGSLHYLAPFDGRFPDEHei 85
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 4884142    198 ---ATVKPGQTEIQVNLRELETAAWFSHDEVATALKRKGPY 235
Cdd:pfam00293  86 lyvFLAEVEGELEPDPDGEVEEVRWVPLEELLLLKLAPGDR 126
 
Name Accession Description Interval E-value
NPY1 COG2816
NADH pyrophosphatase NudC, Nudix superfamily [Nucleotide transport and metabolism];
5-263 3.09e-90

NADH pyrophosphatase NudC, Nudix superfamily [Nucleotide transport and metabolism];


Pssm-ID: 442065 [Multi-domain]  Cd Length: 288  Bit Score: 269.09  E-value: 3.09e-90
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142    5 QDAQRIEDSVLIGcSEQQEAWFALDLGldssfsisaslhkPEMETELKGSFIELRKALFQLNARDASLLSTAQALLRWHD 84
Cdd:COG2816  58 ADLGPPAEAVFLG-LDDGRPVFAVDLP-------------AELELPEGAEFVDLRELGGLLDPRDAGLAARAVALLNWHR 123
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142   85 AHQFCSRSGQPTKKNVAGSKRVCPSNNIIYYPQMAPVAITLVSDGTRCLLARQSSFPKGMYSALAGFCDIGESVEETIRR 164
Cdd:COG2816 124 THRFCGRCGAPTVVAAAGWARRCPACGAEHYPRTDPAVIVLVTDGDRILLARQARWPPGRYSLLAGFVEPGETLEQAVRR 203
                       170       180       190       200       210       220       230       240
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  165 EVAEEVGLEVESLQYYASQHWPFPSgSLMIACHATVKPGqtEIQVNLRELETAAWFSHDEVATALKRkgpytqqqngtfp 244
Cdd:COG2816 204 EVFEEVGVRVKNVRYVGSQPWPFPS-SLMLGFTAEADSG--EITVDGDEIEDARWFSRDELPAALAG------------- 267
                       250
                ....*....|....*....
gi 4884142  245 FWLPPKLAISHQLIKEWVE 263
Cdd:COG2816 268 LLLPPPGSIARRLIEAWLA 286
NUDIX_NADH_pyrophosphatase_Nudt13 cd03429
NADH pyrophosphatase; NADH pyrophosphatase, also known as NUDIX (nucleoside diphosphate linked ...
119-262 1.50e-58

NADH pyrophosphatase; NADH pyrophosphatase, also known as NUDIX (nucleoside diphosphate linked moiety X)) motif 13/Nudt13, is thought to have NADH pyrophosphatase activity, be involved in NADH metabolic process and NADP catabolic process, catalyzing the cleavage of NADH into reduced nicotinamide mononucleotide (NMNH) and AMP, and located in mitochondrion. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity. Members of this family are also recognized by the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. A block of 8 conserved amino acids downstream of the NUDIX motif is thought to give NADH pyrophosphatase its specificity for NADH. NADH pyrophosphatase forms a dimer.


Pssm-ID: 467535 [Multi-domain]  Cd Length: 126  Bit Score: 182.69  E-value: 1.50e-58
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  119 APVAITLVSDGT-RCLLARQSSFPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSgSLMIACH 197
Cdd:cd03429   1 DPAVIVLVTNGEdKILLARQPRWPPGRYSLLAGFVEPGETLEEAVRREVKEEVGLRVKNVRYVGSQPWPFPS-SLMLGFT 79
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 4884142  198 ATVKPGqtEIQVNLRELETAAWFSHDEVATALkrkgpytqqqngtfpfWLPPKLAISHQLIKEWV 262
Cdd:cd03429  80 AEADSG--EITVDDDELEDARWFSRDELPEAL----------------FLPPPGSIARRLIRAWL 126
nudC PRK00241
NAD(+) diphosphatase;
43-263 1.00e-57

NAD(+) diphosphatase;


Pssm-ID: 234699 [Multi-domain]  Cd Length: 256  Bit Score: 185.06  E-value: 1.00e-57
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142    43 HKPEMETELKGsfieLRKALfQLNARDASLLSTAQALLRWHDAHQFCSRSGQPTKKNVAGSKRVCPSNNIIYYPQMAPVA 122
Cdd:PRK00241  61 QDPLRGHEMGS----LRQLL-DLDDGLFQLLGRAVQLAEFYRSHRFCGYCGHPMHPSKTEWAMLCPHCRERYYPRIAPCI 135
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142   123 ITLVSDGTRCLLARQSSFPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSgSLMIACHATVKP 202
Cdd:PRK00241 136 IVAVRRGDEILLARHPRHRNGVYTVLAGFVEVGETLEQCVAREVMEESGIKVKNLRYVGSQPWPFPH-SLMLGFHADYDS 214
                        170       180       190       200       210       220
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 4884142   203 GqtEIQVNLRELETAAWFSHDEVatalkrkgpytqqqngtfPFwLPPKLAISHQLIKEWVE 263
Cdd:PRK00241 215 G--EIVFDPKEIADAQWFRYDEL------------------PL-LPPSGTIARRLIEDTVA 254
NUDIX pfam00293
NUDIX domain;
121-235 2.10e-18

NUDIX domain;


Pssm-ID: 395229 [Multi-domain]  Cd Length: 132  Bit Score: 79.06  E-value: 2.10e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142    121 VAITLVSDGTRCLLARQSSFP-KGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGSLMIACH-- 197
Cdd:pfam00293   6 VGVVLLNEKGRVLLVRRSKKPfPGWWSLPGGKVEPGETPEEAARRELEEETGLEPELLELLGSLHYLAPFDGRFPDEHei 85
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 4884142    198 ---ATVKPGQTEIQVNLRELETAAWFSHDEVATALKRKGPY 235
Cdd:pfam00293  86 lyvFLAEVEGELEPDPDGEVEEVRWVPLEELLLLKLAPGDR 126
YjhB COG1051
ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism];
121-226 1.40e-17

ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism];


Pssm-ID: 440671 [Multi-domain]  Cd Length: 125  Bit Score: 76.56  E-value: 1.40e-17
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  121 VAITLVSDGtRCLLARQSSFP-KGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGSLMIACHAT 199
Cdd:COG1051  10 DAVIFRKDG-RVLLVRRADEPgKGLWALPGGKVEPGETPEEAALRELREETGLEVEVLELLGVFDHPDRGHVVSVAFLAE 88
                        90       100
                ....*....|....*....|....*..
gi 4884142  200 VKPGQTEIqvnLRELETAAWFSHDEVA 226
Cdd:COG1051  89 VLSGEPRA---DDEIDEARWFPLDELP 112
NUDIX_Hydrolase cd02883
NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three ...
121-221 8.55e-13

NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467528 [Multi-domain]  Cd Length: 106  Bit Score: 63.19  E-value: 8.55e-13
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  121 VAITLVSDGTRCLLARQSSFP-KGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGS---LMIAC 196
Cdd:cd02883   3 VGAVVFDDEGRVLLVRRSDGPgPGGWELPGGGVEPGETPEEAAVREVREETGLDVEVLRLLGVYEFPDPDEGrhvVVLVF 82
                        90       100
                ....*....|....*....|....*
gi 4884142  197 HATVKPGQTEIQVNlRELETAAWFS 221
Cdd:cd02883  83 LARVVGGEPPPLDD-EEISEVRWVP 106
MutT COG0494
8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX ...
121-231 2.74e-11

8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX family [Defense mechanisms];


Pssm-ID: 440260 [Multi-domain]  Cd Length: 143  Bit Score: 60.05  E-value: 2.74e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  121 VAITLVSDGTRCLLARQSSFP--KGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGSLMI--AC 196
Cdd:COG0494  16 VVVVLLDDDGRVLLVRRYRYGvgPGLWEFPGGKIEPGESPEEAALRELREETGLTAEDLELLGELPSPGYTDEKVHvfLA 95
                        90       100       110
                ....*....|....*....|....*....|....*
gi 4884142  197 HATVKPGQTEIQVNlRELETAAWFSHDEVATALKR 231
Cdd:COG0494  96 RGLGPGEEVGLDDE-DEFIEVRWVPLDEALALVTA 129
NUDIX_Hydrolase cd04681
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
114-183 3.19e-11

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467564 [Multi-domain]  Cd Length: 135  Bit Score: 59.51  E-value: 3.19e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 4884142  114 YYPQMAPVAITLVSDGTRCLLARQSSFP-KGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQ 183
Cdd:cd04681   1 YFHNVAAAVGVIIRNEGEILFVRRAKEPgKGKLDLPGGFVDPGESAEEALRRELREELGLKIPKLRYLCSL 71
NUDIX_Hydrolase cd18884
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
120-227 8.31e-11

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467595 [Multi-domain]  Cd Length: 125  Bit Score: 58.19  E-value: 8.31e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  120 PVAITLVSDGTRCLLARQSSFPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYAsqHWPFPS-GSLMIACHA 198
Cdd:cd18884  10 PVVAAIVEHDGHIVLARNKAWPEGWYGLVTGFLEAGESPEEAVLREVKEELGLDGHEAKFIG--HYAFPErNQLIIAYHV 87
                        90       100
                ....*....|....*....|....*....
gi 4884142  199 TVKpgqTEIQVNlRELETAAWFSHDEVAT 227
Cdd:cd18884  88 RAR---GNVKLN-EELDDYKIVPIDKLRP 112
NUDIX-like pfam09296
NADH pyrophosphatase-like rudimentary NUDIX domain; The N-terminal domain in NADH ...
10-82 8.88e-11

NADH pyrophosphatase-like rudimentary NUDIX domain; The N-terminal domain in NADH pyrophosphatase, which has a rudiment Nudix fold according to SCOP.


Pssm-ID: 462747  Cd Length: 96  Bit Score: 57.37  E-value: 8.88e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 4884142     10 IEDSVLIGCSEQQeAWFALDLGLdssfsisaslhKPEMETELKGSFIELRKALFQLNARDASLLSTAQALLRW 82
Cdd:pfam09296  36 LTEPVFLGLDEGA-PVFAVDVSA-----------AAELALPEGGEFADLRALMLALDAEDAGLAAQARALLYW 96
zf-NADH-PPase pfam09297
NADH pyrophosphatase zinc ribbon domain; This domain is found in between two duplicated NUDIX ...
84-115 7.57e-09

NADH pyrophosphatase zinc ribbon domain; This domain is found in between two duplicated NUDIX domains. It has a zinc ribbon structure.


Pssm-ID: 430510 [Multi-domain]  Cd Length: 32  Bit Score: 50.29  E-value: 7.57e-09
                          10        20        30
                  ....*....|....*....|....*....|..
gi 4884142     84 DAHQFCSRSGQPTKKNVAGSKRVCPSNNIIYY 115
Cdd:pfam09297   1 RTHRFCGRCGAPTVPAEGGWARVCPSCGHEHY 32
NUDIX_MutT_Nudt1 cd18886
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ...
133-227 2.40e-08

MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467596 [Multi-domain]  Cd Length: 147  Bit Score: 51.85  E-value: 2.40e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  133 LLARQSSFPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGS---LMIACHATVKPGqtEIQV 209
Cdd:cd18886  15 LLNRNKKPNMGKWNGVGGKLEPGESPEECAIREVFEETGLELEDLQLRGIVTFPSFDGGedwLMYVFLAEAFSG--ELVE 92
                        90
                ....*....|....*...
gi 4884142  210 NLRElETAAWFSHDEVAT 227
Cdd:cd18886  93 SDRE-GILAWVPIDWLLN 109
NUDIX_Ap6A_hydrolase cd03673
diadenosine hexaphosphate (Ap6A) hydrolase; Diadenosine hexaphosphate (Ap6A) hydrolase is a ...
139-232 3.56e-08

diadenosine hexaphosphate (Ap6A) hydrolase; Diadenosine hexaphosphate (Ap6A) hydrolase is a member of the NUDIX hydrolase superfamily. Ap6A hydrolase specifically hydrolyzes diadenosine polyphosphates, but not ATP or diadenosine triphosphate, and it generates ATP as the product. Ap6A, the most preferred substrate, hydrolyzes to produce two ATP molecules, which is a novel hydrolysis mode for Ap6A. These results indicate that Ap6A hydrolase is a diadenosine polyphosphate hydrolase. It requires the presence of a divalent cation, such as Mn2+, Mg2+, Zn2+, and Co2+, for activity. Members of the NUDIX hydrolase superfamily are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site.


Pssm-ID: 467541 [Multi-domain]  Cd Length: 131  Bit Score: 51.02  E-value: 3.56e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  139 SFPKGMysalagfCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGSLMI--ACH---ATVKPGQTEIQVNlRE 213
Cdd:cd03673  30 SLPKGK-------LEPGETPEEAAVREVEEETGLRVRLGRPLGTTRYTYTRKGKGIlkKVHywlMRALGGEFLPQPE-EE 101
                        90
                ....*....|....*....
gi 4884142  214 LETAAWFSHDEVATALKRK 232
Cdd:cd03673 102 IDEVRWLPPDEARRLLTYP 120
NUDIX_MTH2_Nudt15 cd04678
MutT homolog 2; MutT Homolog 2 (MTH2; EC 3.6.1.9), also known as NUDIX (nucleoside ...
121-181 5.97e-08

MutT homolog 2; MutT Homolog 2 (MTH2; EC 3.6.1.9), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 15/Nudt15, may catalyze the hydrolysis of nucleoside diphosphates, triphosphates including dGTP, dTTP, dCTP, their oxidized forms like 8-oxo-dGTP, and prodrug thiopurine derivatives 6-thio-dGTP and 6-thio-GTP. MTH2 may also play a role in DNA synthesis and cell cycle progression by stabilizing PCNA. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467561 [Multi-domain]  Cd Length: 128  Bit Score: 50.25  E-value: 5.97e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 4884142  121 VAITLVSDGTRCLLA-RQSSFPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYA 181
Cdd:cd04678   5 VGVIVLNDDGKVLLGrRKGSHGAGTWALPGGHLEFGESFEECAAREVLEETGLEIRNVRFLT 66
NUDIX_MutT_NudA_like cd03425
MutT pyrophosphohydrolase; The MutT pyrophosphohydrolase is a prototypical NUDIX hydrolase ...
121-227 6.07e-08

MutT pyrophosphohydrolase; The MutT pyrophosphohydrolase is a prototypical NUDIX hydrolase that catalyzes the hydrolysis of nucleoside and deoxynucleoside triphosphates (NTPs and dNTPs) by substitution at a beta-phosphorus to yield a nucleotide monophosphate (NMP) and inorganic pyrophosphate (PPi). This enzyme requires two divalent cations for activity; one coordinates the phosphoryl groups of the NTP/dNTP substrate, and the other coordinates to the enzyme. It also contains the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as metal binding and catalytic site. MutT pyrophosphohydrolase is important in preventing errors in DNA replication by hydrolyzing mutagenic nucleotides such as 8-oxo-dGTP (a product of oxidative damage), which can mispair with template adenine during DNA replication, to guanine nucleotides.


Pssm-ID: 467531 [Multi-domain]  Cd Length: 123  Bit Score: 50.14  E-value: 6.07e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  121 VAITLVSDGTRCLLARQssfPKGMYsaLAGF-------CDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGSL- 192
Cdd:cd03425   3 VVAAIIVDDGRVLIAQR---PEGKH--LAGLwefpggkVEPGETPEQALVRELREELGIEVEVGEPLGTVEHDYPDFHVr 77
                        90       100       110
                ....*....|....*....|....*....|....*
gi 4884142  193 MIACHATVKPGqtEIQvnLRELETAAWFSHDEVAT 227
Cdd:cd03425  78 LHVYLCTLWSG--EPQ--LLEHQELRWVTPEELDD 108
NUDIX_MTH1_Nudt1 cd03427
MutT homolog-1 (MTH1); MutT homolog-1 (MTH1; EC 3.6.1.- ), also called nucleoside ...
125-197 3.37e-07

MutT homolog-1 (MTH1); MutT homolog-1 (MTH1; EC 3.6.1.- ), also called nucleoside diphosphate-linked moiety X)) motif 1 (Nudt1), is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467533 [Multi-domain]  Cd Length: 136  Bit Score: 48.29  E-value: 3.37e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 4884142  125 LVSDGTRCLLAR-QSSFPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGSLMIACH 197
Cdd:cd03427   8 VLRGDDRVLLGLkKRGFGAGKWNGFGGKVEPGETIEEAAVRELEEEAGLTATELEKVGRLKFEFPDDPEAMDVH 81
NUDIX_Hydrolase cd18882
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
121-247 4.13e-07

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467593 [Multi-domain]  Cd Length: 130  Bit Score: 48.02  E-value: 4.13e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  121 VAITLVSDGTRCLLARQSSFPK----GMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGSLMIAC 196
Cdd:cd18882   4 AIAILYDDRGKVLLQLRDDKPGipypGYWGLFGGHLEPGETPEEAIRRELEEEIGYEPGEFRFFLLYTEDDGEDRIRHVF 83
                        90       100       110       120       130
                ....*....|....*....|....*....|....*....|....*....|...
gi 4884142  197 HA--TVKPGqteiQVNLRELETAAWFSHDEVatalkRKGPYTQQQNGTFPFWL 247
Cdd:cd18882  84 HAplDVDLS----DLVLNEGQALRLFSPEEI-----LQGPLYSNLAGILRPLL 127
NUDIX_ADPRase cd24155
Adp Ribose Pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ...
149-191 4.74e-07

Adp Ribose Pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site.


Pssm-ID: 467603 [Multi-domain]  Cd Length: 187  Bit Score: 49.06  E-value: 4.74e-07
                        10        20        30        40
                ....*....|....*....|....*....|....*....|...
gi 4884142  149 AGFCDIGESVEETIRREVAEEVGLEVESLQyYASQHWPFPSGS 191
Cdd:cd24155  82 AGMIDAGETPEDVARREAEEEAGLTLDALE-PIASYYPSPGGS 123
NUDIX_Nudt17 cd04694
nucleoside diphosphate-linked moiety X)) motif 17; Nucleoside diphosphate-linked moiety X)) ...
121-226 9.72e-07

nucleoside diphosphate-linked moiety X)) motif 17; Nucleoside diphosphate-linked moiety X)) motif 17 (EC 3.6.1.-) encoded by the NUDT17 gene on chromosome 1q21.1 and encodes an enzyme thought to hydrolyse some nucleoside diphosphate derivatives. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467576 [Multi-domain]  Cd Length: 135  Bit Score: 46.90  E-value: 9.72e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  121 VAITLVSDGTRCLLARQS----SFPkGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQY------YASQHWPFPSG 190
Cdd:cd04694   5 VVVLIEDSDDRVLLTRRAkhmrTFP-GVWVPPGGHVELGESLLEAGLRELQEETGLEVSDIQSlsllglWESVYPTLLSI 83
                        90       100       110       120
                ....*....|....*....|....*....|....*....|....*
gi 4884142  191 SLMIACHATV-------KPGQTEIQVNL--RELETAAWFSHDEVA 226
Cdd:cd04694  84 GLPKRHHIVVyylvklsESHENQEQLKLqeDEVDAAVWLPKSLLA 128
NUDIX_Hydrolase cd04677
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
149-178 1.02e-06

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467560 [Multi-domain]  Cd Length: 137  Bit Score: 47.12  E-value: 1.02e-06
                        10        20        30
                ....*....|....*....|....*....|
gi 4884142  149 AGFCDIGESVEETIRREVAEEVGLEVESLQ 178
Cdd:cd04677  41 GGAMELGESLEETARREVFEETGLTVEELE 70
NUDIX_ADPRase cd04691
ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1. ...
121-226 1.04e-06

ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer.


Pssm-ID: 467573 [Multi-domain]  Cd Length: 122  Bit Score: 46.52  E-value: 1.04e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  121 VAITLVSDGtRCLLARQSSFP-KGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGSLMIACHAT 199
Cdd:cd04691   4 VGGVVVKEG-KVLLVKRAYGPgKGRWTLPGGFVEEGETLDEAIVREVLEETGIDAKPVGIIGVRSGVIRDGKSDNYVVFL 82
                        90       100
                ....*....|....*....|....*..
gi 4884142  200 VKPGQTEIQVNLRELETAAWFSHDEVA 226
Cdd:cd04691  83 LEYVGGEPKPDERENSEAGFLTLEEAL 109
NUDIX_Hydrolase cd04683
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
121-175 1.24e-06

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467566 [Multi-domain]  Cd Length: 137  Bit Score: 46.83  E-value: 1.24e-06
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*..
gi 4884142  121 VAITLVSDGtRCLLAR--QSSFPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVE 175
Cdd:cd04683   3 VHLLLVRGD-EVLLLRraNTGYDDGWWHLPAGHVEAGETVRAAAVREAKEELGVEID 58
NUDIX_Hydrolase cd03674
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
128-226 2.46e-06

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467542 [Multi-domain]  Cd Length: 130  Bit Score: 45.71  E-value: 2.46e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  128 DGTRCLLARQssfPK-GMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYasQHWPF------PSGSLMIACH--- 197
Cdd:cd03674  12 DRGKVLLVHH---RKlGRWLQPGGHVEPDEDPLEAALREAREETGLDVELLSPL--SPDPLdidvhpIPANPGEPAHlhl 86
                        90       100       110
                ....*....|....*....|....*....|....
gi 4884142  198 -----ATVKPGQTEIQvnLRELETAAWFSHDEVA 226
Cdd:cd03674  87 dvrylAVADGDEALRK--SDESSDVRWFPLDELE 118
NUDIX_Hydrolase cd18879
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
121-224 1.22e-05

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467590 [Multi-domain]  Cd Length: 142  Bit Score: 44.11  E-value: 1.22e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  121 VAITLVSDGTRCLLARQSSfpKGMYSALAGFCDIGESVEETIRREVAEEVGLEVES---LQYYASQHWPFPSG------S 191
Cdd:cd18879  21 VTAVVLRDAGRVLLVRRAD--NGRWTPVTGIVEPGEQPADAAVREVLEETGVDVEVerlASVGASPPVTYPNGdqcqylD 98
                        90       100       110
                ....*....|....*....|....*....|...
gi 4884142  192 LMIACHATvkPGQTEiqVNLRELETAAWFSHDE 224
Cdd:cd18879  99 LTFRCRPV--GGEAR--VNDDESLEVGWFPVDA 127
NUDIX_ADPRase_Nudt5_UGPPase_Nudt14 cd03424
ADP-ribose pyrophosphatase, UDP-glucose pyrophosphatase, and similar proteins; ADP-ribose ...
121-182 1.57e-05

ADP-ribose pyrophosphatase, UDP-glucose pyrophosphatase, and similar proteins; ADP-ribose pyrophosphatase (ADPRase) ( NUDIX (Nucleoside diphosphate-linked moiety X)) motif 5; Nudt5) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site.


Pssm-ID: 467530 [Multi-domain]  Cd Length: 134  Bit Score: 43.65  E-value: 1.57e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 4884142  121 VAITLVSDGTRCLLARQssFPKGMYSAL----AGFCDIGESVEETIRREVAEEVGLEVESLQYYAS 182
Cdd:cd03424   5 VAVLAITDDGKVVLVRQ--YRHPVGRVLlelpAGKIDPGEDPEEAARRELEEETGYTAGDLELLGS 68
NUDIX_Hydrolase cd04686
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
153-177 1.60e-05

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467569 [Multi-domain]  Cd Length: 130  Bit Score: 43.43  E-value: 1.60e-05
                        10        20
                ....*....|....*....|....*
gi 4884142  153 DIGESVEETIRREVAEEVGLEVESL 177
Cdd:cd04686  36 EFGESLEDALKREFAEETGMTVTSY 60
NUDIX_CDP-Chase_like cd04672
CDP-Choline Pyrophosphatase and similar proteins; Members include: CDP-Choline Pyrophosphatase, ...
150-224 1.97e-05

CDP-Choline Pyrophosphatase and similar proteins; Members include: CDP-Choline Pyrophosphatase, ADP-ribose pyrophosphatase, and UDP-X diphosphatase. CDP-choline pyrophosphatase catalyzes the hydrolysis of CDP-choline to produce CMP and phosphocholine. ADP-ribose pyrophosphatase catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. UDP-X diphosphatase hydrolyzes UDP-N-acetylmuramic acid and UDP-N-acetylmuramoyl-L-alanine. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467556 [Multi-domain]  Cd Length: 128  Bit Score: 43.32  E-value: 1.97e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  150 GFCDIGESVEETIRREVAEEVGLEVESLQYYA------SQHWPFPSG--SLMIACHATVKPGQTEIqvnlrELETAAWFS 221
Cdd:cd04672  31 GWADVGLSPAENAVKEVREESGYEVRARKLLAvfdrnkGGHPPSPFHvyKLFFLCELIGGEAQTSI-----ETSEVGFFA 105

                ...
gi 4884142  222 HDE 224
Cdd:cd04672 106 LDD 108
NUDIX_DR1025_like cd04700
DR1025 and similar proteins; DR1025 from Deinococcus radiodurans, a member of the NUDIX ...
133-226 2.20e-05

DR1025 and similar proteins; DR1025 from Deinococcus radiodurans, a member of the NUDIX hydrolase superfamily, show nucleoside triphosphatase and dinucleoside polyphosphate pyrophosphatase activities. Like other enzymes belonging to this superfamily, it requires a divalent cation, in this case Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. In general, substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467580 [Multi-domain]  Cd Length: 147  Bit Score: 43.36  E-value: 2.20e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  133 LLARQSSFP-----KGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGSLMI--ACHATVKPGQT 205
Cdd:cd04700  28 LLVQEKGISghpekAGLWHIPSGAVEDGENPQDAAVREACEETGLRVRLVKFLGAYLGRFPDGVLVLrhVWLAEPEPGQV 107
                        90       100
                ....*....|....*....|.
gi 4884142  206 EIQVNLRELETAAWFSHDEVA 226
Cdd:cd04700 108 LAPAFTDEIAEASFVSREEFA 128
PLN02325 PLN02325
nudix hydrolase
116-179 2.56e-05

nudix hydrolase


Pssm-ID: 215184 [Multi-domain]  Cd Length: 144  Bit Score: 43.31  E-value: 2.56e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 4884142   116 PQMAPVAITLvsDGTRCLLARQ-SSFPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQY 179
Cdd:PLN02325   8 PRVAVVVFLL--KGNSVLLGRRrSSIGDSTFALPGGHLEFGESFEECAAREVKEETGLEIEKIEL 70
NUDIX_Hydrolase cd04674
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
119-175 5.21e-05

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467558 [Multi-domain]  Cd Length: 118  Bit Score: 41.68  E-value: 5.21e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 4884142  119 APVAITLVSDGTRCLLARQSSFP-KGMYSALAGFCDIGESVEETIRREVAEEVGLEVE 175
Cdd:cd04674   4 LPVVVALLPVRDGLLVIRRGIEPgHGELALPGGYIEYGETWQEAAVRELREETGVEAD 61
NUDIX_NadM_like cd18873
bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase and similar proteins; ...
121-181 5.74e-05

bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase and similar proteins; Bacterial NadM-Nudix is a bifunctional enzyme containing a nicotinamide mononucleotide (NMN) adenylyltransferase (NMNAT) and an ADP-ribose pyrophosphatase (ADPRase) domain. NMNAT was initially identified as an NAD+ synthase that catalyzes the reversible conversion of NMN to NAD+ in the final step of both the de novo biosynthesis and salvage pathways in most organisms across all three kingdoms of life ADPRase is a member of the NUDIX family proteins, catalyzes the metal-induced and concerted general acid-base hydrolysis of ADP ribose (ADPR) into AMP and ribose-5'-phosphate (R5P). Additional members in this cd include bacterial transcriptional regulator, NrtR, which represses the transcription of NAD biosynthetic genes in vitro and adenosine diphosphate ribose (ADPR), as well as NadQ, a NUDIX-like ATP-responsive regulator of NAD biosynthesis. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belong to this superfamily requires a divalent cation, such as Mg2+ or Mn2+ for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, U=I, L or V) which functions as metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467585 [Multi-domain]  Cd Length: 132  Bit Score: 41.76  E-value: 5.74e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 4884142  121 VAITLVSDGTRCLLARQSSFP-KGMYSALAGFCDIGESVEETIRREVAEEVGLEVESL-QYYA 181
Cdd:cd18873   8 VIFGFDDGELKVLLIKRKNEPfKGGWALPGGFVREDETLEDAARRELREETGLKDIYLeQLGT 70
NUDIX_ADPRase cd04673
ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the ...
122-177 1.23e-04

ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer.


Pssm-ID: 467557 [Multi-domain]  Cd Length: 128  Bit Score: 40.96  E-value: 1.23e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*..
gi 4884142  122 AITLVSDGTRCLLARQSSFP-KGMYSALAGFCDIGESVEETIRREVAEEVGLEVESL 177
Cdd:cd04673   4 VGAVVFRDGRVLLVRRGNPPdAGLWSFPGGKVELGETLEDAALRELREETGLEAEVV 60
NUDIX_Hydrolase cd04511
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
121-231 1.60e-04

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467545 [Multi-domain]  Cd Length: 123  Bit Score: 40.64  E-value: 1.60e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  121 VAITLVSDGTRCLLARQSSFP-KGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGSLMI----A 195
Cdd:cd04511   4 VVGCLPEWEGKVLLCRRAIEPrKGYWTLPAGFMELGETTEQGAARETREEAGARVEIGSLYAVYSLPHISQVYIIfrarL 83
                        90       100       110       120
                ....*....|....*....|....*....|....*....|.
gi 4884142  196 CHATVKPGQTEIQVNLRELETAAWfshDEVA-----TALKR 231
Cdd:cd04511  84 LSPDFSPGPESLEVRLFDEEEIPW---DELAfpsvrWALKH 121
NUDIX_Hydrolase cd04680
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
122-232 1.65e-04

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467563 [Multi-domain]  Cd Length: 121  Bit Score: 40.31  E-value: 1.65e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  122 AITLVSDGtRCLLARQSSFPkGMYSAlAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGS----LMIACH 197
Cdd:cd04680   5 AIVLDDAG-RVLLVRHTYVP-GWYLP-GGGVDKGETAEEAARRELREEAGVVLTGPPRLFGVYFNRRVSPrdhvALYRVR 81
                        90       100       110
                ....*....|....*....|....*....|....*....
gi 4884142  198 ATVkpgQTEIQVNLRELETAAWFSHD----EVATALKRK 232
Cdd:cd04680  82 EFE---QTEPPEPNGEIAEAGFFALDalpeDTTPATRRR 117
NUDIX_ADPRase cd18880
ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1. ...
145-214 1.81e-04

ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer.


Pssm-ID: 467591 [Multi-domain]  Cd Length: 126  Bit Score: 40.20  E-value: 1.81e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  145 YSALAGFCDIGESVEETIRREVAEEVGLEVE--SLQY---YASQHWPFPSGSLMIACHATV---------KPGQTEIQ-V 209
Cdd:cd18880  27 YILPGGGQEHGETLPEALKRECLEETGLDVEvgDLLFvreYIGPNKPVHQVELFFLCTLEGgeltlgsdpDLNQVGVEwI 106

                ....*
gi 4884142  210 NLREL 214
Cdd:cd18880 107 PLEEL 111
NUDIX_Hydrolase cd04692
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
139-179 2.12e-04

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467574 [Multi-domain]  Cd Length: 142  Bit Score: 40.62  E-value: 2.12e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|...
gi 4884142  139 SFPkGMY--SAlAGFCDIGESVEETIRREVAEEVGLEVESLQY 179
Cdd:cd04692  52 DFP-GLWdiSA-AGHIDAGETYEEAAVRELEEELGLTVSPEDL 92
NUDIX_Hydrolase cd18874
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
122-183 2.64e-04

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467586 [Multi-domain]  Cd Length: 125  Bit Score: 39.96  E-value: 2.64e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 4884142  122 AITLVSDGtRCLLARQSSFpKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQ 183
Cdd:cd18874   7 ALIFNPDG-KVLLVRSHKW-NDLYGIPGGKVEWGETLEEALKREVKEETGLDITDIRFILVQ 66
NUDIX_CDP-Chase cd18890
CDP-choline pyrophosphatase; CDP-choline pyrophosphatase catalyzes the hydrolysis of ...
128-224 3.32e-04

CDP-choline pyrophosphatase; CDP-choline pyrophosphatase catalyzes the hydrolysis of CDP-choline to produce CMP and phosphocholine. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467600 [Multi-domain]  Cd Length: 129  Bit Score: 39.71  E-value: 3.32e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  128 DGTRCLLARQSSfpKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYA---SQHWPFPSG-----SLMIACHAT 199
Cdd:cd18890  12 DKEEILLVKEKE--DGKWTLPGGWADVGYTPTEVAAKEVEEETGLEVSPKKLLAildKRKHPHPPQptyvyKLFILCEIE 89
                        90       100
                ....*....|....*....|....*
gi 4884142  200 VKPGQTEIqvnlrELETAAWFSHDE 224
Cdd:cd18890  90 GGELKPSF-----ETGEVRFFSENE 109
NUDIX_Hydrolase cd04688
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
133-179 4.71e-04

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467570 [Multi-domain]  Cd Length: 130  Bit Score: 39.07  E-value: 4.71e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*..
gi 4884142  133 LLARQSSFPKgmYSALAGFCDIGESVEETIRREVAEEVGLEVESLQY 179
Cdd:cd04688  16 LLARGEDDDY--YRLPGGRVEFGETSEDALVREFKEELGVEVEVVRL 60
NUDIX_ADPRase_Ndx2 cd24161
NUDIX family Ndx2; NUDIX family protein Ndx2 found in Thermus thermophilus has ADP-ribose ...
133-217 5.16e-04

NUDIX family Ndx2; NUDIX family protein Ndx2 found in Thermus thermophilus has ADP-ribose pyrophosphatase (ADPRase) as well as flavin adenine dinucleotide (FAD) activity. ADPRase (EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity.Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467609 [Multi-domain]  Cd Length: 137  Bit Score: 39.08  E-value: 5.16e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  133 LLARQSSFPKGMYSaL---AGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHwpfPSGSLMIA-CH---AT-VKPGQ 204
Cdd:cd24161  18 VLVEQYRYPLGGWS-WeipAGGWPEGEDPEEAARRELREETGLRAERWTPLGRFY---PSNGVSDErAHvflATgLTPGE 93
                        90
                ....*....|....*...
gi 4884142  205 -----TEIQVNLRELETA 217
Cdd:cd24161  94 papeeTEEDLEVRRVPLA 111
NUDIX_Hydrolase cd04690
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
153-224 5.25e-04

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467572 [Multi-domain]  Cd Length: 123  Bit Score: 39.06  E-value: 5.25e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  153 DIGESVEETIRREVAEEVGLEV--ESLQYY------ASQHWPFPsgSLMIACHATVKPgqtEIQVNlRELETAAWFSHDE 224
Cdd:cd04690  33 EPGETPLQALVRELKEELGLDLdpDSLRFLgtfeapAANEPGTT--VRMTCFTADYDG---EPQPA-AEIEELRWLDPAD 106
NUDIX_Ap4A_Nudt2 cd03428
diadenosine tetraphosphate; Diadenosine tetraphosphate (Ap4A; EC 3.6.1.17), also called NUDIX ...
139-179 5.28e-04

diadenosine tetraphosphate; Diadenosine tetraphosphate (Ap4A; EC 3.6.1.17), also called NUDIX (nucleoside diphosphate-linked moiety X)) motif 2/Nudt2, is a member of the NUDIX hydrolase superfamily. Ap4A hydrolases are well represented in a variety of prokaryotic and eukaryotic organisms. Phylogenetic analysis reveals two distinct subgroups where plant enzymes fall into one subfamily and fungi/animals/archaea enzymes, represented by this subfamily, fall into another. Bacterial enzymes are found in both subfamilies. Ap4A is a potential by-product of aminoacyl tRNA synthesis, and accumulation of Ap4A has been implicated in a range of biological events, such as DNA replication, cellular differentiation, heat shock, metabolic stress, and apoptosis. Ap4A hydrolase cleaves Ap4A asymmetrically into ATP and AMP. It is important in the invasive properties of bacteria and thus presents a potential target for inhibition of such invasive bacteria. Besides the signature NUDIX motif (G[X5]E[X7]REUXEEXGU, where U is Ile, Leu, or Val) that functions as a metal binding and catalytic site, and a required divalent cation, Ap4A hydrolase is structurally similar to the other members of the NUDIX hydrolase superfamily with some degree of variation. Several regions in the sequences are poorly defined and substrate and metal binding sites are only predicted based on kinetic studies.


Pssm-ID: 467534 [Multi-domain]  Cd Length: 132  Bit Score: 39.07  E-value: 5.28e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|.
gi 4884142  139 SFPKGMysalagfCDIGESVEETIRREVAEEVGLEVESLQY 179
Cdd:cd03428  31 DFPKGH-------VEPGESELETALRETKEETGLTVDDLPP 64
nudB PRK09438
dihydroneopterin triphosphate pyrophosphatase; Provisional
150-179 5.46e-04

dihydroneopterin triphosphate pyrophosphatase; Provisional


Pssm-ID: 236516 [Multi-domain]  Cd Length: 148  Bit Score: 39.49  E-value: 5.46e-04
                         10        20        30
                 ....*....|....*....|....*....|
gi 4884142   150 GFCDIGESVEETIRREVAEEVGLEVESLQY 179
Cdd:PRK09438  38 GSLEEGETPAQTAIREVKEETGIDVLAEQL 67
NUDIX_DHNTPase_like cd04664
dihydroneopterin hydrolase; DHNTP pyrophosphatase (DHNTPase) catalyzes the hydrolysis of ...
149-184 7.92e-04

dihydroneopterin hydrolase; DHNTP pyrophosphatase (DHNTPase) catalyzes the hydrolysis of dihydroneopterin triphosphate (DHNTP) to dihydroneopterin monophosphate (DHNMP) and pyrophosphate,the second step in the pterin branch of the folate synthesis pathway in bacteria. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467549 [Multi-domain]  Cd Length: 132  Bit Score: 38.77  E-value: 7.92e-04
                        10        20        30
                ....*....|....*....|....*....|....*.
gi 4884142  149 AGFCDIGESVEETIRREVAEEVGLEVESLQYYASQH 184
Cdd:cd04664  32 TGGIEDGETPWQAALRELKEETGLDPLELQLIDLNV 67
NUDIX_Hydrolase cd04697
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
140-236 9.00e-04

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467578 [Multi-domain]  Cd Length: 157  Bit Score: 38.75  E-value: 9.00e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  140 FPkGMYSALAGFC-DIGESVEETIRREVAEEVGLEVESL-----QYYASQHwpfpsGSLMIACHATVKPGqtEIQVNLRE 213
Cdd:cd04697  52 CP-GYLDPATGGVvGAGESYEENARRELEEELGIDGVPLrplftFYYEDDR-----SRVWGALFECVYDG--PLKLQPEE 123
                        90       100
                ....*....|....*....|...
gi 4884142  214 LETAAWFSHDEVAtALKRKGPYT 236
Cdd:cd04697 124 VAEVDWMSEDEIL-QAARGEEFT 145
NUDIX_ASFGF2_Nudt6 cd04670
Antisense Basic Fibroblast Growth Factor; Antisense Basic Fibroblast Growth Factor (ASFGF2; EC ...
150-224 1.19e-03

Antisense Basic Fibroblast Growth Factor; Antisense Basic Fibroblast Growth Factor (ASFGF2; EC 3.6.1.-), also known as nucleoside diphosphate-linked moiety X)) motif 6/Nudt6, and similar proteins including peroxisomal coenzyme A diphosphatase/Nudt7 and mitochondrial coenzyme A diphosphatase/Nudt8. The Nudt6 gene overlaps and lies on the opposite strand from FGF2 gene, and is thought to be the FGF2 antisense gene. The two genes are independently transcribed, and their expression shows an inverse relationship, suggesting that this antisense transcript may regulate FGF2 expression. This gene has also been shown to have hormone-regulatory and antiproliferative actions in the pituitary that are independent of FGF2 expression. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467554 [Multi-domain]  Cd Length: 131  Bit Score: 38.29  E-value: 1.19e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 4884142  150 GFCDIGESVEETIRREVAEEVGLEVE--SLQYYASQHwPFPSG--SLMIACHATVKpGQTEIQVNLRELETAAWFSHDE 224
Cdd:cd04670  34 GLVDPGEDIGEAAVREVFEETGIDTEfvSILGFRHQH-PGRFGksDLYFVCRLRPL-SDEEIKICPEEIAEAKWMPLEE 110
NUDIX_ADPRase_Rv1700 cd24158
ADP-ribose pyrophosphatase from Mycobacterium tuberculosis (Mt-ADPRase), and similar proteins; ...
121-191 1.22e-03

ADP-ribose pyrophosphatase from Mycobacterium tuberculosis (Mt-ADPRase), and similar proteins; Mycobacterium tuberculosis ADP-ribose pyrophosphatase mt-ADPRase(also called Rv1700) is a NUDIX protein that catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site.


Pssm-ID: 467606 [Multi-domain]  Cd Length: 174  Bit Score: 38.74  E-value: 1.22e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 4884142  121 VAITLVSDGTRCLLARQSSFPKGMYsaL----AGFCDI-GESVEETIRREVAEEVGLEVESLQYYASQHwPFPSGS 191
Cdd:cd24158  40 VAVVALDDDGRVLLIRQYRHPVRRR--LwelpAGLLDVaGEPPLEAAARELAEEADLEAARWEVLVDLF-TSPGFS 112
NUDIX_Hydrolase cd04684
uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase ...
125-185 1.30e-03

uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase from Enterococcus faecalis, which has an unknown function. NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467567 [Multi-domain]  Cd Length: 140  Bit Score: 37.99  E-value: 1.30e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 4884142  125 LVSDGTRCLLARQssfPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQY--YASQHW 185
Cdd:cd04684  22 IFNDEGKVLLVQT---PNGGYFLPGGGIEPGETPEEALHREVLEETGWEIEIGEFlgNASRYF 81
NUDIX_MutT_Nudt1 cd04679
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ...
128-178 1.35e-03

MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467562 [Multi-domain]  Cd Length: 126  Bit Score: 38.06  E-value: 1.35e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 4884142  128 DGTRCLLARQSSFPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQ 178
Cdd:cd04679  12 DGRLLLVLRLRAPEAGHWGLPGGKVDWLETVEDAVRREILEELGLEIELTR 62
NUDIX_Hydrolase cd04676
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
117-178 1.60e-03

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467559 [Multi-domain]  Cd Length: 144  Bit Score: 38.15  E-value: 1.60e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 4884142  117 QMAPVAITLVSDGTRCLLARQSSFPKgmYSALAGFCDIGESVEETIRREVAEEVGLEVESLQ 178
Cdd:cd04676  16 FTPSVAAVILNEDGRILLQRKGGLGL--WSLPAGAIEPGEHPAEAVIREVREETGLLVKPTR 75
nudF PRK10729
ADP-ribose pyrophosphatase NudF; Provisional
148-182 1.63e-03

ADP-ribose pyrophosphatase NudF; Provisional


Pssm-ID: 182682 [Multi-domain]  Cd Length: 202  Bit Score: 38.56  E-value: 1.63e-03
                         10        20        30
                 ....*....|....*....|....*....|....*....
gi 4884142   148 LAGFCDIGESVEETIRREVAEEVGLEVES----LQYYAS 182
Cdd:PRK10729  87 VAGMIEEGESVEDVARREAIEEAGLIVGRtkpvLSYLAS 125
NUDIX_Hydrolase cd18875
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
155-191 2.21e-03

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467587 [Multi-domain]  Cd Length: 144  Bit Score: 37.55  E-value: 2.21e-03
                        10        20        30
                ....*....|....*....|....*....|....*..
gi 4884142  155 GESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGS 191
Cdd:cd18875  39 GESFVDSVIREVKEETGLTIKNPELCGIKQWINPDGE 75
NUDIX_ADPRase cd24160
Adp-ribose pyrophosphatase (ADPRase) found in Thermus thermophilus, and similar proteins; ...
121-182 2.28e-03

Adp-ribose pyrophosphatase (ADPRase) found in Thermus thermophilus, and similar proteins; ADP-ribose pyrophosphatase (ADPRase) such as found in extreme thermophile Thermus thermophilus (TtADPRase) catalyzes the hydrolysis of ADPR to AMP and ribose 5'-phosphate in the presence of Mg2+ and Zn2+ ions. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site.


Pssm-ID: 467608 [Multi-domain]  Cd Length: 151  Bit Score: 37.48  E-value: 2.28e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 4884142  121 VAITLVSDGtRCLLARQSSFPKGMYS--ALAGFCDIGESVEETIRREVAEEVGL--EVESL-QYYAS 182
Cdd:cd24160  24 VAVLALREG-RMLFVRQMRPAVGAATleIPAGLIDPGETPEEAARRELAEETGLsgDLTYLtRFYVS 89
NUDIX_MutT_Nudt1 cd04699
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ...
119-175 2.31e-03

MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467579 [Multi-domain]  Cd Length: 118  Bit Score: 37.22  E-value: 2.31e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 4884142  119 APVAI--TLVSDGtRCLLARQSSFPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVE 175
Cdd:cd04699   1 FPVSVkgVIFDNG-RVLLLRRSRAGAGEWELPGGRLEPGESPEEALKREVKEETGLDVS 58
NUDIX_ADPRase cd18889
ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the ...
133-224 3.76e-03

ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer.


Pssm-ID: 467599 [Multi-domain]  Cd Length: 127  Bit Score: 36.43  E-value: 3.76e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  133 LLARQSSfpkGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHW------PFPSG--SLMIACHATvkpgQ 204
Cdd:cd18889  16 LLVQEKD---GRWSLPGGWVDVNQSIKENTIKEAKEEAGLDVEPKRIIAVLDRnkhnkpPYAYGiyKIFVLCELL----G 88
                        90       100
                ....*....|....*....|
gi 4884142  205 TEIQVNLrELETAAWFSHDE 224
Cdd:cd18889  89 GEFQPNI-ETIESGYFSLDE 107
NUDIX_Hydrolase cd04685
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
155-175 4.69e-03

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467568 [Multi-domain]  Cd Length: 138  Bit Score: 36.40  E-value: 4.69e-03
                        10        20
                ....*....|....*....|.
gi 4884142  155 GESVEETIRREVAEEVGLEVE 175
Cdd:cd04685  40 GESPEQAAVRELREETGLRLE 60
NUDIX_GDPMK cd24157
GDP-mannose hydrolase (GDPMK), and similar proteins; GDP-mannose hydrolase (GDPMK) is a NUDIX ...
147-191 6.10e-03

GDP-mannose hydrolase (GDPMK), and similar proteins; GDP-mannose hydrolase (GDPMK) is a NUDIX enzyme that uses GDP-mannose as the preferred substrate. It is distinct from Nudix ADP-ribose hydrolases. GDPMK and ADP-ribose pyrophosphatase seem to use similar catalytic mechanism. However, GDPMK hydrolysis does not rely on a single glutamate as the catalytic base; rather, it is dependent on residues that coordinate the magnesium ions and residues that position the substrate properly for catalysis. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467605  Cd Length: 146  Bit Score: 36.38  E-value: 6.10e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*
gi 4884142  147 ALAGFCDiGESVEETIRREVAEEVGLEVESLQyYASQHWPFPSGS 191
Cdd:cd24157  41 ACAGLLD-GDDPEDCIRREAEEETGYRLGDLE-KVFTAYSSPGIV 83
NUDIX_Hydrolase cd04663
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
149-188 6.17e-03

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467548 [Multi-domain]  Cd Length: 132  Bit Score: 36.12  E-value: 6.17e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|.
gi 4884142  149 AGFCDIGESVEETIRREVAEEVGLEVES-LQYYASQHWPFP 188
Cdd:cd04663  32 KGTVEPGESPEEAALRELAEETGLTGARvVVDLGSHDEGFE 72
NUDIX_DR0079 cd24154
NUDIX domain family found in Deinococcus radiodurans, and similar proteins; Deinococcus ...
135-179 8.54e-03

NUDIX domain family found in Deinococcus radiodurans, and similar proteins; Deinococcus radiodurans protein DR_0079 is one of 21 NUDIX hydrolases that it encodes, and it has been observed to have a marked preference for cytosine ribonucleoside 5'-diphosphate (CDP) and cytosine ribonucleoside 5'-triphosphate (CTP), and for their corresponding deoxyribose nucleotides, dCDP and dCTP, to a lesser degree. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467602 [Multi-domain]  Cd Length: 121  Bit Score: 35.27  E-value: 8.54e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*
gi 4884142  135 ARQSSFPKGMYSALAGFCDIGESVEETIRREVAEEVGLEVESLQY 179
Cdd:cd24154  23 ADKRIFPLALDMSVGGHVSSGETYEQAFVRELQEELNLDLDQLSY 67
NUDIX_Hydrolase cd03675
uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase ...
149-226 9.09e-03

uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase from Nitrosomonas europaea, which has an unknown function. NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467543 [Multi-domain]  Cd Length: 138  Bit Score: 35.58  E-value: 9.09e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 4884142  149 AGFCDIGESVEETIRREVAEEVGLEVESLQYYASQHWPFPSGS---LMIACHATVKPgqteiQVNLRELET----AAWFS 221
Cdd:cd03675  30 AGHLEPGESLLEAAIRETLEETGWEVEPTALLGIYQWTAPDNGvtyLRFAFAGELLE-----HLPDQPLDSgiirAHWLT 104

                ....*
gi 4884142  222 HDEVA 226
Cdd:cd03675 105 LEEIL 109
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH