TPA: hypothetical protein N0F65_007604 [Lagenidium giganteum]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
CHD | cd07302 | cyclase homology domain; Catalytic domains of the mononucleotidyl cyclases (MNC's), also ... |
358-534 | 6.41e-35 | ||||
cyclase homology domain; Catalytic domains of the mononucleotidyl cyclases (MNC's), also called cyclase homology domains (CHDs), are part of the class III nucleotidyl cyclases. This class includes eukaryotic and prokaryotic adenylate cyclases (AC's) and guanylate cyclases (GC's). They seem to share a common catalytic mechanism in their requirement for two magnesium ions to bind the polyphosphate moiety of the nucleotide. : Pssm-ID: 143636 [Multi-domain] Cd Length: 177 Bit Score: 131.93 E-value: 6.41e-35
|
||||||||
AcyC | COG2114 | Adenylate cyclase, class 3 [Signal transduction mechanisms]; |
93-314 | 1.55e-31 | ||||
Adenylate cyclase, class 3 [Signal transduction mechanisms]; : Pssm-ID: 441717 [Multi-domain] Cd Length: 407 Bit Score: 129.15 E-value: 1.55e-31
|
||||||||
FYVE | pfam01363 | FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: ... |
1079-1133 | 2.03e-10 | ||||
FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn++ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. We have included members which do not conserve these histidine residues but are clearly related. : Pssm-ID: 426221 [Multi-domain] Cd Length: 68 Bit Score: 58.16 E-value: 2.03e-10
|
||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
1491-1588 | 3.95e-07 | ||||
PH domain; PH stands for pleckstrin homology. : Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 49.87 E-value: 3.95e-07
|
||||||||
COG3899 super family | cl28481 | Predicted ATPase [General function prediction only]; |
920-1070 | 5.10e-05 | ||||
Predicted ATPase [General function prediction only]; The actual alignment was detected with superfamily member COG3899: Pssm-ID: 443106 [Multi-domain] Cd Length: 1244 Bit Score: 48.32 E-value: 5.10e-05
|
||||||||
COG3899 super family | cl28481 | Predicted ATPase [General function prediction only]; |
1188-1324 | 5.03e-03 | ||||
Predicted ATPase [General function prediction only]; The actual alignment was detected with superfamily member COG3899: Pssm-ID: 443106 [Multi-domain] Cd Length: 1244 Bit Score: 41.77 E-value: 5.03e-03
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
CHD | cd07302 | cyclase homology domain; Catalytic domains of the mononucleotidyl cyclases (MNC's), also ... |
358-534 | 6.41e-35 | ||||
cyclase homology domain; Catalytic domains of the mononucleotidyl cyclases (MNC's), also called cyclase homology domains (CHDs), are part of the class III nucleotidyl cyclases. This class includes eukaryotic and prokaryotic adenylate cyclases (AC's) and guanylate cyclases (GC's). They seem to share a common catalytic mechanism in their requirement for two magnesium ions to bind the polyphosphate moiety of the nucleotide. Pssm-ID: 143636 [Multi-domain] Cd Length: 177 Bit Score: 131.93 E-value: 6.41e-35
|
||||||||
AcyC | COG2114 | Adenylate cyclase, class 3 [Signal transduction mechanisms]; |
317-537 | 2.03e-33 | ||||
Adenylate cyclase, class 3 [Signal transduction mechanisms]; Pssm-ID: 441717 [Multi-domain] Cd Length: 407 Bit Score: 134.55 E-value: 2.03e-33
|
||||||||
AcyC | COG2114 | Adenylate cyclase, class 3 [Signal transduction mechanisms]; |
93-314 | 1.55e-31 | ||||
Adenylate cyclase, class 3 [Signal transduction mechanisms]; Pssm-ID: 441717 [Multi-domain] Cd Length: 407 Bit Score: 129.15 E-value: 1.55e-31
|
||||||||
CHD | cd07302 | cyclase homology domain; Catalytic domains of the mononucleotidyl cyclases (MNC's), also ... |
127-314 | 5.40e-27 | ||||
cyclase homology domain; Catalytic domains of the mononucleotidyl cyclases (MNC's), also called cyclase homology domains (CHDs), are part of the class III nucleotidyl cyclases. This class includes eukaryotic and prokaryotic adenylate cyclases (AC's) and guanylate cyclases (GC's). They seem to share a common catalytic mechanism in their requirement for two magnesium ions to bind the polyphosphate moiety of the nucleotide. Pssm-ID: 143636 [Multi-domain] Cd Length: 177 Bit Score: 109.21 E-value: 5.40e-27
|
||||||||
FYVE | pfam01363 | FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: ... |
1079-1133 | 2.03e-10 | ||||
FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn++ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. We have included members which do not conserve these histidine residues but are clearly related. Pssm-ID: 426221 [Multi-domain] Cd Length: 68 Bit Score: 58.16 E-value: 2.03e-10
|
||||||||
Guanylate_cyc | pfam00211 | Adenylate and Guanylate cyclase catalytic domain; |
355-525 | 5.25e-10 | ||||
Adenylate and Guanylate cyclase catalytic domain; Pssm-ID: 425528 Cd Length: 183 Bit Score: 60.33 E-value: 5.25e-10
|
||||||||
FYVE_ZF21 | cd15727 | FYVE domain found in zinc finger FYVE domain-containing protein 21 (ZF21) and similar proteins; ... |
1071-1132 | 5.40e-10 | ||||
FYVE domain found in zinc finger FYVE domain-containing protein 21 (ZF21) and similar proteins; ZF21 is phosphoinositide-binding protein that functions as a regulator of focal adhesions and cell movement through interaction with focal adhesion kinase. It can also bind to the cytoplasmic tail of membrane type 1 matrix metalloproteinase, a potent invasion-promoting protease, and play a key role in regulating multiple aspects of cancer cell migration and invasion. ZF21 contains a FYVE domain, which corresponds to this model. Pssm-ID: 277266 [Multi-domain] Cd Length: 64 Bit Score: 56.62 E-value: 5.40e-10
|
||||||||
CYCc | smart00044 | Adenylyl- / guanylyl cyclase, catalytic domain; Present in two copies in mammalian adenylyl ... |
349-492 | 1.41e-08 | ||||
Adenylyl- / guanylyl cyclase, catalytic domain; Present in two copies in mammalian adenylyl cyclases. Eubacterial homologues are known. Two residues (Asn, Arg) are thought to be involved in catalysis. These cyclases have important roles in a diverse range of cellular processes. Pssm-ID: 214485 Cd Length: 194 Bit Score: 56.50 E-value: 1.41e-08
|
||||||||
FYVE | smart00064 | Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four ... |
1071-1133 | 3.26e-08 | ||||
Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four proteins where it was first found: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn2+ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. The FYVE finger is structurally related to the PHD finger and the RING finger. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. The FYVE finger functions in the membrane recruitment of cytosolic proteins by binding to phosphatidylinositol 3-phosphate (PI3P), which is prominent on endosomes. The R+HHC+XCG motif is critical for PI3P binding. Pssm-ID: 214499 [Multi-domain] Cd Length: 68 Bit Score: 51.66 E-value: 3.26e-08
|
||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
1491-1588 | 3.95e-07 | ||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 49.87 E-value: 3.95e-07
|
||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
1485-1587 | 1.40e-05 | ||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 45.62 E-value: 1.40e-05
|
||||||||
COG3899 | COG3899 | Predicted ATPase [General function prediction only]; |
920-1070 | 5.10e-05 | ||||
Predicted ATPase [General function prediction only]; Pssm-ID: 443106 [Multi-domain] Cd Length: 1244 Bit Score: 48.32 E-value: 5.10e-05
|
||||||||
CYCc | smart00044 | Adenylyl- / guanylyl cyclase, catalytic domain; Present in two copies in mammalian adenylyl ... |
92-294 | 7.51e-05 | ||||
Adenylyl- / guanylyl cyclase, catalytic domain; Present in two copies in mammalian adenylyl cyclases. Eubacterial homologues are known. Two residues (Asn, Arg) are thought to be involved in catalysis. These cyclases have important roles in a diverse range of cellular processes. Pssm-ID: 214485 Cd Length: 194 Bit Score: 45.33 E-value: 7.51e-05
|
||||||||
PH | cd00821 | Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ... |
1470-1580 | 2.50e-03 | ||||
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 38.68 E-value: 2.50e-03
|
||||||||
COG3899 | COG3899 | Predicted ATPase [General function prediction only]; |
1188-1324 | 5.03e-03 | ||||
Predicted ATPase [General function prediction only]; Pssm-ID: 443106 [Multi-domain] Cd Length: 1244 Bit Score: 41.77 E-value: 5.03e-03
|
||||||||
Guanylate_cyc | pfam00211 | Adenylate and Guanylate cyclase catalytic domain; |
131-260 | 6.37e-03 | ||||
Adenylate and Guanylate cyclase catalytic domain; Pssm-ID: 425528 Cd Length: 183 Bit Score: 39.53 E-value: 6.37e-03
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
CHD | cd07302 | cyclase homology domain; Catalytic domains of the mononucleotidyl cyclases (MNC's), also ... |
358-534 | 6.41e-35 | ||||
cyclase homology domain; Catalytic domains of the mononucleotidyl cyclases (MNC's), also called cyclase homology domains (CHDs), are part of the class III nucleotidyl cyclases. This class includes eukaryotic and prokaryotic adenylate cyclases (AC's) and guanylate cyclases (GC's). They seem to share a common catalytic mechanism in their requirement for two magnesium ions to bind the polyphosphate moiety of the nucleotide. Pssm-ID: 143636 [Multi-domain] Cd Length: 177 Bit Score: 131.93 E-value: 6.41e-35
|
||||||||
AcyC | COG2114 | Adenylate cyclase, class 3 [Signal transduction mechanisms]; |
317-537 | 2.03e-33 | ||||
Adenylate cyclase, class 3 [Signal transduction mechanisms]; Pssm-ID: 441717 [Multi-domain] Cd Length: 407 Bit Score: 134.55 E-value: 2.03e-33
|
||||||||
AcyC | COG2114 | Adenylate cyclase, class 3 [Signal transduction mechanisms]; |
93-314 | 1.55e-31 | ||||
Adenylate cyclase, class 3 [Signal transduction mechanisms]; Pssm-ID: 441717 [Multi-domain] Cd Length: 407 Bit Score: 129.15 E-value: 1.55e-31
|
||||||||
CHD | cd07302 | cyclase homology domain; Catalytic domains of the mononucleotidyl cyclases (MNC's), also ... |
127-314 | 5.40e-27 | ||||
cyclase homology domain; Catalytic domains of the mononucleotidyl cyclases (MNC's), also called cyclase homology domains (CHDs), are part of the class III nucleotidyl cyclases. This class includes eukaryotic and prokaryotic adenylate cyclases (AC's) and guanylate cyclases (GC's). They seem to share a common catalytic mechanism in their requirement for two magnesium ions to bind the polyphosphate moiety of the nucleotide. Pssm-ID: 143636 [Multi-domain] Cd Length: 177 Bit Score: 109.21 E-value: 5.40e-27
|
||||||||
Nucleotidyl_cyc_III | cd07556 | Class III nucleotidyl cyclases; Class III nucleotidyl cyclases are the largest, most diverse ... |
131-278 | 1.35e-10 | ||||
Class III nucleotidyl cyclases; Class III nucleotidyl cyclases are the largest, most diverse group of nucleotidyl cyclases (NC's) containing prokaryotic and eukaryotic proteins. They can be divided into two major groups; the mononucleotidyl cyclases (MNC's) and the diguanylate cyclases (DGC's). The MNC's, which include the adenylate cyclases (AC's) and the guanylate cyclases (GC's), have a conserved cyclase homology domain (CHD), while the DGC's have a conserved GGDEF domain, named after a conserved motif within this subgroup. Their products, cyclic guanylyl and adenylyl nucleotides, are second messengers that play important roles in eukaryotic signal transduction and prokaryotic sensory pathways. Pssm-ID: 143637 [Multi-domain] Cd Length: 133 Bit Score: 60.83 E-value: 1.35e-10
|
||||||||
FYVE | pfam01363 | FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: ... |
1079-1133 | 2.03e-10 | ||||
FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn++ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. We have included members which do not conserve these histidine residues but are clearly related. Pssm-ID: 426221 [Multi-domain] Cd Length: 68 Bit Score: 58.16 E-value: 2.03e-10
|
||||||||
Guanylate_cyc | pfam00211 | Adenylate and Guanylate cyclase catalytic domain; |
355-525 | 5.25e-10 | ||||
Adenylate and Guanylate cyclase catalytic domain; Pssm-ID: 425528 Cd Length: 183 Bit Score: 60.33 E-value: 5.25e-10
|
||||||||
FYVE_ZF21 | cd15727 | FYVE domain found in zinc finger FYVE domain-containing protein 21 (ZF21) and similar proteins; ... |
1071-1132 | 5.40e-10 | ||||
FYVE domain found in zinc finger FYVE domain-containing protein 21 (ZF21) and similar proteins; ZF21 is phosphoinositide-binding protein that functions as a regulator of focal adhesions and cell movement through interaction with focal adhesion kinase. It can also bind to the cytoplasmic tail of membrane type 1 matrix metalloproteinase, a potent invasion-promoting protease, and play a key role in regulating multiple aspects of cancer cell migration and invasion. ZF21 contains a FYVE domain, which corresponds to this model. Pssm-ID: 277266 [Multi-domain] Cd Length: 64 Bit Score: 56.62 E-value: 5.40e-10
|
||||||||
FYVE_like_SF | cd00065 | FYVE domain like superfamily; FYVE domain is a 60-80 residue double zinc finger ... |
1081-1132 | 1.16e-09 | ||||
FYVE domain like superfamily; FYVE domain is a 60-80 residue double zinc finger motif-containing module named after the four proteins, Fab1, YOTB, Vac1, and EEA1. The canonical FYVE domains are distinguished from other zinc fingers by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P, also termed PI3P)-binding site. They are found in many membrane trafficking regulators, including EEA1, Hrs, Vac1p, Vps27p, and FENS-1, which locate to early endosomes, specifically bind PtdIns3P, and play important roles in vesicular traffic and in signal transduction. Some proteins, such as rabphilin-3A and alpha-Rab3-interacting molecules (RIMs), are also involved in membrane trafficking and bind to members of the Rab subfamily of GTP hydrolases. However, they contain FYVE-related domains that are structurally similar to the canonical FYVE domains but lack the three signature sequences. At this point, they may not bind to phosphoinositides. In addition, this superfamily also contains the third group of proteins, caspase-associated ring proteins CARP1 and CARP2. They do not localize to membranes in the cell and are involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10, which are distinguished from other FYVE-type proteins. Moreover, these proteins have an altered sequence in the basic ligand binding patch and lack the WxxD motif that is conserved only in phosphoinositide binding FYVE domains. Thus they constitute a family of unique FYVE-type domains called FYVE-like domains. The FYVE domain is structurally similar to the RING domain and the PHD finger. This superfamily also includes ADDz zinc finger domain, which is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. Pssm-ID: 277249 [Multi-domain] Cd Length: 52 Bit Score: 55.23 E-value: 1.16e-09
|
||||||||
FYVE_MTMR4 | cd15733 | FYVE domain found in myotubularin-related protein 4 (MTMR4) and similar proteins; MTMR4, also ... |
1079-1132 | 1.34e-08 | ||||
FYVE domain found in myotubularin-related protein 4 (MTMR4) and similar proteins; MTMR4, also termed FYVE domain-containing dual specificity protein phosphatase 2 (FYVE-DSP2), or zinc finger FYVE domain-containing protein 11, is an dual specificity protein phosphatase that specifically dephosphorylates phosphatidylinositol 3-phosphate (PtdIns3P or PI3P). It is localizes to early endosomes, as well as to Rab11- and Sec15-positive recycling endosomes, and regulates sorting from early endosomes. Moreover, MTMR4 is preferentially associated with and dephosphorylated the activated regulatory Smad proteins (R-Smads) in cytoplasm to keep transforming growth factor (TGF) beta signaling in homeostasis. It also functions as an essential negative modulator for the homeostasis of bone morphogenetic protein (BMP)/decapentaplegic (Dpp) signaling. In addition, MTMR4 acts as a novel interactor of the ubiquitin ligase Nedd4 (neural-precursor-cell-expressed developmentally down-regulated 4) and may play a role in the biological process of muscle breakdown. MTMR4 contains an N-terminal PH-GRAM (PH-G) domain, a MTM phosphatase domain, a coiled-coil region, and a C-terminal FYVE domain. Pssm-ID: 277272 [Multi-domain] Cd Length: 60 Bit Score: 52.43 E-value: 1.34e-08
|
||||||||
CYCc | smart00044 | Adenylyl- / guanylyl cyclase, catalytic domain; Present in two copies in mammalian adenylyl ... |
349-492 | 1.41e-08 | ||||
Adenylyl- / guanylyl cyclase, catalytic domain; Present in two copies in mammalian adenylyl cyclases. Eubacterial homologues are known. Two residues (Asn, Arg) are thought to be involved in catalysis. These cyclases have important roles in a diverse range of cellular processes. Pssm-ID: 214485 Cd Length: 194 Bit Score: 56.50 E-value: 1.41e-08
|
||||||||
FYVE | smart00064 | Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four ... |
1071-1133 | 3.26e-08 | ||||
Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four proteins where it was first found: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn2+ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. The FYVE finger is structurally related to the PHD finger and the RING finger. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. The FYVE finger functions in the membrane recruitment of cytosolic proteins by binding to phosphatidylinositol 3-phosphate (PI3P), which is prominent on endosomes. The R+HHC+XCG motif is critical for PI3P binding. Pssm-ID: 214499 [Multi-domain] Cd Length: 68 Bit Score: 51.66 E-value: 3.26e-08
|
||||||||
FYVE_PKHF2 | cd15755 | FYVE domain found in protein containing both PH and FYVE domains 2 (phafin-2) and similar ... |
1072-1134 | 9.88e-08 | ||||
FYVE domain found in protein containing both PH and FYVE domains 2 (phafin-2) and similar proteins; Phafin-2, also termed endoplasmic reticulum-associated apoptosis-involved protein containing PH and FYVE domains (EAPF), or pleckstrin homology domain-containing family F member 2 (PKHF2), or PH domain-containing family F member 2, or PH and FYVE domain-containing protein 2, or zinc finger FYVE domain-containing protein 18, is a ubiquitously expressed endoplasmic reticulum-associated protein that facilitates tumor necrosis factor alpha (TNF-alpha)-triggered cellular apoptosis through endoplasmic reticulum (ER)-mitochondrial apoptotic pathway. It is an endosomal phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) effector, as well as an interactor of the endosomal-tethering protein EEA1. It regulates endosome fusion upstream of Rab5. Phafin-2 also functions as a novel regulator of endocytic epidermal growth factor receptor (EGFR) degradation through a role in endosomal fusion. Pssm-ID: 277294 [Multi-domain] Cd Length: 64 Bit Score: 50.42 E-value: 9.88e-08
|
||||||||
FYVE_PKHF | cd15717 | FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1), 2 (phafin-2), ... |
1071-1132 | 3.73e-07 | ||||
FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1), 2 (phafin-2), and similar proteins; This family includes protein containing both PH and FYVE domains 1 (phafin-1) and 2 (phafin-2). Phafin-1 is a representative of a novel family of PH and FYVE domain-containing proteins called phafins. It is a ubiquitously expressed pro-apoptotic protein via translocating to lysosomes, facilitating apoptosis induction through a lysosomal-mitochondrial apoptotic pathway. Phafin-2 is a ubiquitously expressed endoplasmic reticulum-associated protein that facilitates tumor necrosis factor alpha (TNF-alpha)-triggered cellular apoptosis through endoplasmic reticulum (ER)-mitochondrial apoptotic pathway. It is an endosomal phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) effector, as well as an interactor of the endosomal-tethering protein EEA1. It regulates endosome fusion upstream of Rab5. Phafin-2 also functions as a novel regulator of endocytic epidermal growth factor receptor (EGFR) degradation through a role in endosomal fusion. Pssm-ID: 277257 [Multi-domain] Cd Length: 61 Bit Score: 48.52 E-value: 3.73e-07
|
||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
1491-1588 | 3.95e-07 | ||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 49.87 E-value: 3.95e-07
|
||||||||
FYVE_Hrs | cd15720 | FYVE domain found in hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) ... |
1081-1132 | 7.89e-07 | ||||
FYVE domain found in hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) and similar proteins; Hrs, also termed protein pp110, is a tyrosine phosphorylated protein that plays an important role in the signaling pathway of HGF. It is localized to early endosomes and an essential component of the endosomal sorting and trafficking machinery. Hrs interacts with hypertonia-associated protein Trak1, a novel regulator of endosome-to-lysosome trafficking. It can also forms an Hrs/actinin-4/BERP/myosin V protein complex that is required for efficient transferrin receptor (TfR) recycling but not for epidermal growth factor receptor (EGFR) degradation. Moreover, Hrs, together with STAM proteins, STAM1 and STAM2, and EPs15, forms a multivalent ubiquitin-binding complex that sorts ubiquitinated proteins into the multivesicular body pathway, and plays a regulatory role in endocytosis/exocytosis. Furthermore, Hrs functions as an interactor of the neurofibromatosis 2 tumor suppressor protein schwannomin/merlin. It is also involved in the inhibition of citron kinase-mediated HIV-1 budding. Hrs contains a single ubiquitin-interacting motif (UIM) that is crucial for its function in receptor sorting, and a FYVE domain that harbors double Zn2+ binding sites. Pssm-ID: 277260 [Multi-domain] Cd Length: 61 Bit Score: 47.77 E-value: 7.89e-07
|
||||||||
FYVE_RUFY1_like | cd15721 | FYVE domain found in RUN and FYVE domain-containing protein RUFY1, RUFY2 and similar proteins; ... |
1072-1132 | 1.38e-06 | ||||
FYVE domain found in RUN and FYVE domain-containing protein RUFY1, RUFY2 and similar proteins; This family includes RUN and FYVE domain-containing protein RUFY1 and RUFY2. RUFY1, also termed FYVE-finger protein EIP1, or La-binding protein 1, or Rab4-interacting protein (Rabip4), or Zinc finger FYVE domain-containing protein 12 (ZFY12), a human homologue of mouse Rabip4, an effector of Rab4 GTPase that regulates recycling of endocytosed cargo. RUFY1 is an endosomal protein that functions as a dual effector of Rab4 and Rab14 and is involved in efficient recycling of transferrin (Tfn). It is a downstream effector of Etk, a downstream tyrosine kinase of PI3-kinase that is involved in regulation of vesicle trafficking. RUFY2, also termed Rab4-interacting protein related, is a novel embryonic factor that is present in the nucleus at early stages of embryonic development. It may have both endosomal functions in the cytoplasm and nuclear functions. Both RUFY1 and RUFY2 contain an N-terminal RUN domain and a C-terminal FYVE domain with two coiled-coil domains in-between. Pssm-ID: 277261 [Multi-domain] Cd Length: 58 Bit Score: 46.99 E-value: 1.38e-06
|
||||||||
FYVE_RABE_unchar | cd15739 | FYVE domain found in uncharacterized rab GTPase-binding effector proteins from bilateria; This ... |
1081-1134 | 2.68e-06 | ||||
FYVE domain found in uncharacterized rab GTPase-binding effector proteins from bilateria; This family includes a group of uncharacterized rab GTPase-binding effector proteins found in bilateria. Although their biological functions remain unclear, they all contain a FYVE domain that harbors a putative phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding site. Pssm-ID: 277278 [Multi-domain] Cd Length: 73 Bit Score: 46.57 E-value: 2.68e-06
|
||||||||
FYVE_PIKfyve_Fab1 | cd15725 | FYVE domain found in metazoan PIKfyve, fungal and plant Fab1, and similar proteins; PIKfyve, ... |
1074-1132 | 5.24e-06 | ||||
FYVE domain found in metazoan PIKfyve, fungal and plant Fab1, and similar proteins; PIKfyve, also termed FYVE finger-containing phosphoinositide kinase, or 1-phosphatidylinositol 3-phosphate 5-kinase, or phosphatidylinositol 3-phosphate 5-kinase (PIP5K3), or phosphatidylinositol 3-phosphate 5-kinase type III (PIPkin-III or type III PIP kinase), is a phosphoinositide 5-kinase that forms a complex with its regulators, the scaffolding protein Vac14 and the lipid phosphatase Fig4. The complex is responsible for synthesizing phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] from phosphatidylinositol 3-phosphate (PtdIns3P or PI3P). Then phosphatidylinositol-5-phosphate (PtdIns5P) is generated directly from PtdIns(3,5)P2. PtdIns(3,5)P2 and PtdIns5P regulate endosomal trafficking and responses to extracellular stimuli. At this point, PIKfyve is vital in early embryonic development. Moreover, PIKfyve forms a complex with ArPIKfyve (associated regulator of PIKfyve) and SAC3 at the endomembranes, which plays a role in receptor tyrosine kinase (RTK) degradation. The phosphorylation of PIKfyve by AKT can facilitate Epidermal growth factor receptor (EGFR) degradation. In addition, PIKfyve may participate in the regulation of the glutamate transporters EAAT2, EAAT3 and EAAT4, and the cystic fibrosis transmembrane conductance regulator (CFTR). It is also essential for systemic glucose homeostasis and insulin-regulated glucose uptake/GLUT4 translocation in skeletal muscle. It can be activated by protein kinase B (PKB/Akt) and further up-regulates human ether-a-go-go (hERG) channels. This family also includes the yeast and plant orthologs of human PIKfyve, Fab1. PIKfyve and its orthologs share a similar architecture. They contain an N-terminal FYVE domain, a middle region related to the CCT/TCP-1/Cpn60 chaperonins that are involved in productive folding of actin and tubulin, a second middle domain that contains a number of conserved cysteine residues (CCR) unique to this family, and a C-terminal lipid kinase domain related to PtdInsP kinases. Pssm-ID: 277264 [Multi-domain] Cd Length: 62 Bit Score: 45.39 E-value: 5.24e-06
|
||||||||
FYVE_RUFY1 | cd15758 | FYVE domain found in RUN and FYVE domain-containing protein 1 (RUFY1) and similar proteins; ... |
1072-1134 | 5.76e-06 | ||||
FYVE domain found in RUN and FYVE domain-containing protein 1 (RUFY1) and similar proteins; RUFY1, also termed FYVE-finger protein EIP1, or La-binding protein 1, or Rab4-interacting protein (Rabip4), or Zinc finger FYVE domain-containing protein 12 (ZFY12), a human homologue of mouse Rabip4, an effector of Rab4 GTPase that regulates recycling of endocytosed cargo. RUFY1 is an endosomal protein that functions as a dual effector of Rab4 and Rab14 and is involved in efficient recycling of transferrin (Tfn). It is a downstream effector of Etk, a downstream tyrosine kinase of PI3-kinase that is involved in regulation of vesicle trafficking. RUFY1 contains an N-terminal RUN domain and a C-terminal FYVE domain with two coiled-coil domains in-between. Pssm-ID: 277297 [Multi-domain] Cd Length: 71 Bit Score: 45.44 E-value: 5.76e-06
|
||||||||
FYVE_EEA1 | cd15730 | FYVE domain found in early endosome antigen 1 (EEA1) and similar proteins; EEA1, also termed ... |
1071-1132 | 6.73e-06 | ||||
FYVE domain found in early endosome antigen 1 (EEA1) and similar proteins; EEA1, also termed endosome-associated protein p162, or zinc finger FYVE domain-containing protein 2, is an essential component of the endosomal fusion machinery and required for the fusion and maturation of early endosomes in endocytosis. It forms a parallel coiled-coil homodimer in cells. EEA1 serves as the p97 ATPase substrate and the p97 ATPase may regulate the size of early endosomes by governing the oligomeric state of EEA1. It can interact with the GTP-bound form of Rab22a and be involved in endosomal membrane trafficking. EEA1 also functions as an obligate scaffold for angiotensin II-induced Akt activation in early endosomes. It can be phosphorylated by p38 mitogen-activated protein kinase (MAPK) and further regulate mu opioid receptor endocytosis. EEA1 consists of an N-terminal C2H2 Zn2+ finger, four long heptad repeats, and a C-terminal region containing a calmodulin binding (IQ) motif, a Rab5 interaction site, and a FYVE domain. This model corresponds to the FYVE domain that is responsible for binding phosphatidyl inositol-3-phosphate (PtdIns3P or PI3P) on the membrane. Pssm-ID: 277269 [Multi-domain] Cd Length: 63 Bit Score: 45.08 E-value: 6.73e-06
|
||||||||
FYVE_ANFY1 | cd15728 | FYVE domain found in ankyrin repeat and FYVE domain-containing protein 1 (ANFY1) and similar ... |
1071-1111 | 7.74e-06 | ||||
FYVE domain found in ankyrin repeat and FYVE domain-containing protein 1 (ANFY1) and similar proteins; ANFY1, also termed ankyrin repeats hooked to a zinc finger motif (Ankhzn), is a novel cytoplasmic protein that belongs to a new group of double zinc finger proteins involved in vesicle or protein transport. It is ubiquitously expressed in a spatiotemporal-specific manner and is located on endosomes. ANFY1 contains an N-terminal coiled-coil region and a BTB/POZ domain, ankyrin repeats in the middle, and a C-terminal FYVE domain. Pssm-ID: 277267 [Multi-domain] Cd Length: 63 Bit Score: 44.72 E-value: 7.74e-06
|
||||||||
FYVE_protrudin | cd15723 | FYVE-related domain found in protrudin and similar proteins; Protrudin, also termed zinc ... |
1081-1132 | 1.16e-05 | ||||
FYVE-related domain found in protrudin and similar proteins; Protrudin, also termed zinc finger FYVE domain-containing protein 27 (ZFY27 or ZFYVE27), is a FYVE domain-containing protein involved in transport of neuronal cargoes and implicated in the onset of hereditary spastic paraplegia (HSP). It is involved in neurite outgrowth through binding to spastin. Moreover, it functions as a key regulator of the Rab11-dependent membrane trafficking during neurite extension. It serves as an adaptor molecule that links its associated proteins, such as Rab11-GDP, VAP-A and -B, Surf4, and RTN3, to KIF5, a motor protein that mediates anterograde vesicular transport in neurons, and thus plays a key role in the maintenance of neuronal function. The FYVE domain of protrudin resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. In addition, unlike canonical FYVE domains that is located to early endosomes and specifically binds to phosphatidylinositol 3-phosphate (PtdIns3P or PI3P), the FYVE domain of protrudin is located to plasma membrane and preferentially binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). In addition to FYVE-related domain, protrudin also contains a Rab11-binding domain (RBD11), two hydrophobic domains, HP-1 and HP-2, an FFAT motif, and a coiled-coil domain. Pssm-ID: 277262 [Multi-domain] Cd Length: 62 Bit Score: 44.41 E-value: 1.16e-05
|
||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
1485-1587 | 1.40e-05 | ||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 45.62 E-value: 1.40e-05
|
||||||||
FYVE_endofin | cd15729 | FYVE domain found in endofin and similar proteins; Endofin, also termed zinc finger FYVE ... |
1081-1134 | 1.62e-05 | ||||
FYVE domain found in endofin and similar proteins; Endofin, also termed zinc finger FYVE domain-containing protein 16 (ZFY16), or endosome-associated FYVE domain protein, is a FYVE domain-containing protein that is localized to EEA1-containing endosomes. It is regulated by phosphoinositol lipid and engaged in endosome-mediated receptor modulation. Endofin is involved in Bone morphogenetic protein (BMP) signaling through interacting with Smad1 preferentially and enhancing Smad1 phosphorylation and nuclear localization upon BMP stimulation. It also functions as a scaffold protein that brings Smad4 to the proximity of the receptor complex in Transforming growth factor (TGF)-beta signaling. Moreover, endofin is a novel tyrosine phosphorylation target downstream of epidermal growth factor receptor (EGFR) in EGF-signaling. In addition, endofin plays a role in endosomal trafficking by recruiting cytosolic TOM1, an important molecule for membrane recruitment of clathrin, onto endosomal membranes. Pssm-ID: 277268 [Multi-domain] Cd Length: 68 Bit Score: 44.27 E-value: 1.62e-05
|
||||||||
Nucleotidyl_cyc_III | cd07556 | Class III nucleotidyl cyclases; Class III nucleotidyl cyclases are the largest, most diverse ... |
358-492 | 1.75e-05 | ||||
Class III nucleotidyl cyclases; Class III nucleotidyl cyclases are the largest, most diverse group of nucleotidyl cyclases (NC's) containing prokaryotic and eukaryotic proteins. They can be divided into two major groups; the mononucleotidyl cyclases (MNC's) and the diguanylate cyclases (DGC's). The MNC's, which include the adenylate cyclases (AC's) and the guanylate cyclases (GC's), have a conserved cyclase homology domain (CHD), while the DGC's have a conserved GGDEF domain, named after a conserved motif within this subgroup. Their products, cyclic guanylyl and adenylyl nucleotides, are second messengers that play important roles in eukaryotic signal transduction and prokaryotic sensory pathways. Pssm-ID: 143637 [Multi-domain] Cd Length: 133 Bit Score: 45.81 E-value: 1.75e-05
|
||||||||
FYVE_LST2 | cd15731 | FYVE domain found in lateral signaling target protein 2 homolog (Lst2) and similar proteins; ... |
1072-1132 | 1.76e-05 | ||||
FYVE domain found in lateral signaling target protein 2 homolog (Lst2) and similar proteins; Lst2, also termed zinc finger FYVE domain-containing protein 28, is a monoubiquitinylated phosphoprotein that functions as a negative regulator of epidermal growth factor receptor (EGFR) signaling. Unlike other FYVE domain-containing proteins, Lst2 displays primarily non-endosomal localization. Its endosomal localization is regulated by monoubiquitinylation. Lst2 physically binds Trim3, also known as BERP or RNF22, which is a coordinator of endosomal trafficking and interacts with Hrs and a complex that biases cargo recycling. Pssm-ID: 277270 [Multi-domain] Cd Length: 65 Bit Score: 43.87 E-value: 1.76e-05
|
||||||||
FYVE_spVPS27p_like | cd15735 | FYVE domain found in Schizosaccharomyces pombe vacuolar protein sorting-associated protein 27 ... |
1078-1132 | 2.46e-05 | ||||
FYVE domain found in Schizosaccharomyces pombe vacuolar protein sorting-associated protein 27 (spVps27p) and similar proteins; spVps27p, also termed suppressor of ste12 deletion protein 4 (Sst4p), is a conserved homolog of budding Saccharomyces cerevisiae Vps27 and of mammalian Hrs. It functions as a downstream factor for phosphatidylinositol 3-kinase (PtdIns 3-kinase) in forespore membrane formation with normal morphology. It colocalizes and interacts with Hse1p, a homolog of Saccharomyces cerevisiae Hse1p and of mammalian STAM, to form a complex whose ubiquitin-interacting motifs (UIMs) are important for sporulation. spVps27p contains a VHS (Vps27p/Hrs/Stam) domain, a FYVE domain, and two UIMs. Pssm-ID: 277274 [Multi-domain] Cd Length: 59 Bit Score: 43.29 E-value: 2.46e-05
|
||||||||
FYVE_PKHF1 | cd15754 | FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1) and similar ... |
1071-1132 | 3.94e-05 | ||||
FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1) and similar proteins; Phafin-1, also termed lysosome-associated apoptosis-inducing protein containing PH (pleckstrin homology) and FYVE domains (LAPF), or pleckstrin homology domain-containing family F member 1 (PKHF1), or PH domain-containing family F member 1, or apoptosis-inducing protein, or PH and FYVE domain-containing protein 1, or zinc finger FYVE domain-containing protein 15, is a representative of a novel family of PH and FYVE domain-containing proteins called phafins. It is a ubiquitously expressed pro-apoptotic protein via translocating to lysosomes, facilitating apoptosis induction through a lysosomal-mitochondrial apoptotic pathway. Pssm-ID: 277293 [Multi-domain] Cd Length: 64 Bit Score: 43.02 E-value: 3.94e-05
|
||||||||
COG3899 | COG3899 | Predicted ATPase [General function prediction only]; |
920-1070 | 5.10e-05 | ||||
Predicted ATPase [General function prediction only]; Pssm-ID: 443106 [Multi-domain] Cd Length: 1244 Bit Score: 48.32 E-value: 5.10e-05
|
||||||||
FYVE_MTMR3 | cd15732 | FYVE domain found in myotubularin-related protein 3 (MTMR3) and similar proteins; MTMR3, also ... |
1081-1132 | 5.67e-05 | ||||
FYVE domain found in myotubularin-related protein 3 (MTMR3) and similar proteins; MTMR3, also termed Myotubularin-related phosphatase 3, or FYVE domain-containing dual specificity protein phosphatase 1 (FYVE-DSP1), or zinc finger FYVE domain-containing protein 10, is a ubiquitously expressed phosphoinositide 3-phosphatase specific for phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) and PIKfyve, which produces PtdIns(3,5)P2 from PtdIns3P. It regulates cell migration through modulating phosphatidylinositol 5-phosphate (PtdIns5P) levels. MTMR3 contains an N-terminal PH-GRAM (PH-G) domain, a MTM phosphatase domain, a coiled-coil region, and a C-terminal FYVE domain. Unlike conventional FYVE domains, the FYVE domain of MTMR3 neither confers endosomal localization nor binds to PtdIns3P. It is also not required for the enzyme activity of MTMR3. In contrast, the PH-G domain binds phosphoinositides. Pssm-ID: 277271 [Multi-domain] Cd Length: 61 Bit Score: 42.58 E-value: 5.67e-05
|
||||||||
CYCc | smart00044 | Adenylyl- / guanylyl cyclase, catalytic domain; Present in two copies in mammalian adenylyl ... |
92-294 | 7.51e-05 | ||||
Adenylyl- / guanylyl cyclase, catalytic domain; Present in two copies in mammalian adenylyl cyclases. Eubacterial homologues are known. Two residues (Asn, Arg) are thought to be involved in catalysis. These cyclases have important roles in a diverse range of cellular processes. Pssm-ID: 214485 Cd Length: 194 Bit Score: 45.33 E-value: 7.51e-05
|
||||||||
FYVE_FGD1_2_4 | cd15741 | FYVE domain found in FYVE, RhoGEF and PH domain-containing protein facio-genital dysplasia ... |
1078-1134 | 1.64e-04 | ||||
FYVE domain found in FYVE, RhoGEF and PH domain-containing protein facio-genital dysplasia FGD1, FGD2, FGD4; This family represents a group of Rho GTPase cell division cycle 42 (Cdc42)-specific guanine nucleotide exchange factors (GEFs), including FYVE, RhoGEF and PH domain-containing protein FGD1, FGD2 and FGD4. FGD1, also termed faciogenital dysplasia 1 protein, or Rho/Rac guanine nucleotide exchange factor FGD1 (Rho/Rac GEF), or zinc finger FYVE domain-containing protein 3, is a central regulator of extracellular matrix remodeling and belongs to the DBL family of GEFs that regulate the activation of the Rho GTPases. FGD1 is encoded by gene FGD1. Disabling mutations in the FGD1 gene cause the human X-linked developmental disorder faciogenital dysplasia (FGDY, also known as Aarskog-Scott syndrome). FGD2, also termed zinc finger FYVE domain-containing protein 4, is expressed in antigen-presenting cells, including B lymphocytes, macrophages, and dendritic cells. It localizes to early endosomes and active membrane ruffles. It plays a role in leukocyte signaling and vesicle trafficking in cells specialized to present antigen in the immune system. FGD4, also termed actin filament-binding protein frabin, or FGD1-related F-actin-binding protein, or zinc finger FYVE domain-containing protein 6, functions as an F-actin-binding (FAB) protein showing significant homology to FGD1. It induces the formation of filopodia through the activation of Cdc42 in fibroblasts. Those FGD proteins possess a similar domain organization that contains a DBL homology (DH) domain, a pleckstrin homology (PH) domain, a FYVE domain, and another PH domain in the C-terminus. However, each FGD has a unique N-terminal region that may directly or indirectly interact with F-actin. FGD1 and FGD4 have an N-terminal proline-rich domain (PRD) and an N-terminal F-actin binding (FAB) domain, respectively. This model corresponds to the FYVE domain, which has been found in many proteins involved in membrane trafficking and phosphoinositide metabolism, and has been defined by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCR patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding site. FGD1 possesses a FYVE-like domain that lack the N-terminal WxxD motif. Moreover, FGD2 is the only known RhoGEF family member shown to have a functional FYVE domain and endosomal binding activity. Pssm-ID: 277280 [Multi-domain] Cd Length: 65 Bit Score: 41.32 E-value: 1.64e-04
|
||||||||
FYVE_RUFY2 | cd15759 | FYVE domain found in RUN and FYVE domain-containing protein 2 (RUFY2) and similar proteins; ... |
1072-1142 | 1.66e-04 | ||||
FYVE domain found in RUN and FYVE domain-containing protein 2 (RUFY2) and similar proteins; RUFY2, also termed Rab4-interacting protein related, is a novel embryonic factor that contains an N-terminal RUN domain and a C-terminal FYVE domain with two coiled-coil domains in-between. It is present in the nucleus at early stages of embryonic development. It may have both endosomal functions in the cytoplasm and nuclear functions. Pssm-ID: 277298 [Multi-domain] Cd Length: 71 Bit Score: 41.55 E-value: 1.66e-04
|
||||||||
FYVE_ZFY19 | cd15749 | FYVE-related domain found in FYVE domain-containing protein 19 (ZFY19) and similar proteins; ... |
1081-1132 | 2.98e-04 | ||||
FYVE-related domain found in FYVE domain-containing protein 19 (ZFY19) and similar proteins; ZFY19, also termed mixed lineage leukemia (MLL) partner containing FYVE domain, is encoded by a novel gene, MLL partner containing FYVE domain (MPFYVE). The FYVE domain of ZFY19 resembles FYVE-related domains that are structurally similar to the canonical FYVE domains but lack the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. The biological function of ZFY19 remains unclear. Pssm-ID: 277288 [Multi-domain] Cd Length: 51 Bit Score: 40.18 E-value: 2.98e-04
|
||||||||
FYVE_FYCO1 | cd15726 | FYVE domain found in FYVE and coiled-coil domain-containing protein 1 (FYCO1) and similar ... |
1072-1109 | 4.06e-04 | ||||
FYVE domain found in FYVE and coiled-coil domain-containing protein 1 (FYCO1) and similar proteins; FYCO1, also termed zinc finger FYVE domain-containing protein 7, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding protein that is associated with the exterior of autophagosomes and mediates microtubule plus-end-directed vesicle transport. It acts as an effector of GTP-bound Rab7, a GTPase that recruits FYCO1 to autophagosomes and has been implicated in autophagosome-lysosomal fusion. FYCO1 also interacts with two microtubule motor proteins, kinesin (KIF) 5B and KIF23, and thus functions as a platform for assembly of vesicle fusion and trafficking factors. FYCO1 contains an N-terminal alpha-helical RUN domain followed by a long central coiled-coil region, a FYVE domain and a GOLD (Golgi dynamics) domain in C-terminus. Pssm-ID: 277265 [Multi-domain] Cd Length: 58 Bit Score: 39.85 E-value: 4.06e-04
|
||||||||
FYVE_WDFY3 | cd15719 | FYVE domain found in WD40 repeat and FYVE domain-containing protein 3 (WDFY3) and similar ... |
1081-1109 | 6.24e-04 | ||||
FYVE domain found in WD40 repeat and FYVE domain-containing protein 3 (WDFY3) and similar proteins; WDFY3, also termed autophagy-linked FYVE protein (Alfy), is a ubiquitously expressed phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding protein required for selective macroautophagic degradation of aggregated proteins. It regulates the protein degradation through the direct interaction with the autophagy protein Atg5. Moreover, WDFY3 acts as a scaffold that bridges its cargo to the macroautophagic machinery via the creation of a greater complex with Atg12, Atg16L, and LC3. It also functionally associates with sequestosome-1/p62 (SQSTM1) in osteoclasts. WDFY3 shuttles between the nucleus and cytoplasm. It predominantly localizes to the nucleus and nuclear membrane under basal conditions, but is recruited to cytoplasmic ubiquitin-positive protein aggregates under stress conditions. WDFY3 contains a PH-BEACH domain assemblage, five WD40 repeats and a PtdIns3P-binding FYVE domain. Pssm-ID: 277259 [Multi-domain] Cd Length: 65 Bit Score: 39.68 E-value: 6.24e-04
|
||||||||
FYVE_RUFY3 | cd15744 | FYVE-related domain found in RUN and FYVE domain-containing protein 3 (RUFY3) and similar ... |
1088-1132 | 8.70e-04 | ||||
FYVE-related domain found in RUN and FYVE domain-containing protein 3 (RUFY3) and similar proteins; RUFY3, also termed Rap2-interacting protein x (RIPx or RPIPx), or single axon-regulated protein (singar), is an N-terminal RUN domain and a C-terminal FYVE domain containing protein predominantly expressed in the brain. It suppresses formation of surplus axons for neuronal polarity. Unlike other RUFY proteins, RUFY3 can associate with the GTP-bound active form of Rab5. Moreover, the FYVE domain of RUFY3 resembles the FYVE-related domain as it lacks the WxxD motif (x for any residue). Pssm-ID: 277283 [Multi-domain] Cd Length: 52 Bit Score: 38.94 E-value: 8.70e-04
|
||||||||
PH | cd00821 | Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ... |
1470-1580 | 2.50e-03 | ||||
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 38.68 E-value: 2.50e-03
|
||||||||
COG3899 | COG3899 | Predicted ATPase [General function prediction only]; |
1188-1324 | 5.03e-03 | ||||
Predicted ATPase [General function prediction only]; Pssm-ID: 443106 [Multi-domain] Cd Length: 1244 Bit Score: 41.77 E-value: 5.03e-03
|
||||||||
FYVE2_Vac1p_like | cd15737 | FYVE domain 2 found in yeast protein VAC1 (Vac1p) and similar proteins; Vac1p, also termed ... |
1071-1118 | 5.50e-03 | ||||
FYVE domain 2 found in yeast protein VAC1 (Vac1p) and similar proteins; Vac1p, also termed vacuolar segregation protein Pep7p, or carboxypeptidase Y-deficient protein 7, or vacuolar protein sorting-associated protein 19 (Vps19p), or vacuolar protein-targeting protein 19, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding protein that interacts with a Rab GTPase, GTP-bound form of Vps21p, and a Sec1p homologue, Vps45p, to facilitate Vps45p-dependent vesicle-mediated vacuolar protein sorting. It also acts as a novel regulator of vesicle docking and/or fusion at the endosome and functions in vesicle-mediated transport of Golgi precursor carboxypeptidase Y (CPY), protease A (PrA), protease B (PrB), but not alkaline phosphatase (ALP) from the trans-Golgi network-like compartment (TGN) to the endosome. Vac1p contains an N-terminal classical TFIIIA-like zinc finger, two putative zinc-binding FYVE fingers, and a C-terminal coiled coil region. The family corresponds to the second FYVE domain that is responsible for the ability of Pep7p to efficiently interact with Vac1p and Vps45p. Pssm-ID: 277276 [Multi-domain] Cd Length: 83 Bit Score: 37.49 E-value: 5.50e-03
|
||||||||
Guanylate_cyc | pfam00211 | Adenylate and Guanylate cyclase catalytic domain; |
131-260 | 6.37e-03 | ||||
Adenylate and Guanylate cyclase catalytic domain; Pssm-ID: 425528 Cd Length: 183 Bit Score: 39.53 E-value: 6.37e-03
|
||||||||
FYVE_RUFY4 | cd15745 | FYVE-related domain found in RUN and FYVE domain-containing protein 4 (RUFY4) and similar ... |
1081-1132 | 7.92e-03 | ||||
FYVE-related domain found in RUN and FYVE domain-containing protein 4 (RUFY4) and similar proteins; RUFY4 belongs to the FUFY protein family which is characterized by the presence of an N-terminal RUN domain and a C-terminal FYVE domain. The FYVE domain of RUFY4 resembles the FYVE-related domain as it lacks the WxxD motif (x for any residue). The biological function of RUFY4 still remains unclear. Pssm-ID: 277284 [Multi-domain] Cd Length: 52 Bit Score: 35.94 E-value: 7.92e-03
|
||||||||
FYVE_FGD6 | cd15743 | FYVE domain found in FYVE, RhoGEF and PH domain-containing protein 6 (FGD6) and similar ... |
1072-1132 | 8.64e-03 | ||||
FYVE domain found in FYVE, RhoGEF and PH domain-containing protein 6 (FGD6) and similar proteins; FGD6, also termed zinc finger FYVE domain-containing protein 24 is a putative Cdc42-specific guanine nucleotide exchange factor (GEF) whose biological function remains unclear. It is a homologue of FGD1 and contains a DBL homology (DH) domain and pleckstrin homology (PH) domain in the middle region, a FYVE domain, and another PH domain in the C-terminus, but lacks the N-terminal proline-rich domain (PRD) found in FGD1. Moreover, the FYVE domain of FGD6 is a canonical FYVE domain, which has been found in many proteins involved in membrane trafficking and phosphoinositide metabolism, and has been defined by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCR patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding site. Pssm-ID: 277282 [Multi-domain] Cd Length: 61 Bit Score: 36.26 E-value: 8.64e-03
|
||||||||
Blast search parameters | ||||
|