NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|465984348|gb|EMP36534|]
View 

Phosphatidylinositol 3-kinase regulatory subunit alpha [Chelonia mydas]

Protein Classification

RhoGAP_p85 and iSH2_PIK3R1 domain-containing protein( domain architecture ID 10138195)

protein containing domains RhoGAP_p85, SH2_nSH2_p85_like, iSH2_PIK3R1, and SH2_cSH2_p85_like

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
iSH2_PIK3R1 cd12924
Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory ...
393-553 5.27e-108

Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunit 1, PIK3R1, also called p85alpha; PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. In addition, p85alpha, also called PIK3R1, contains N-terminal SH3 and GAP domains. p85alpha carry functions independent of its PI3K regulatory role. It can independently stimulate signaling pathways involved in cytoskeletal rearrangements. Insulin-sensitive tissues express splice variants of the PIK3R1 gene, p50alpha and p55alpha, which may play important roles in insulin signaling during lipid and glucose metabolism. Mice deficient with PIK3R1 die perinatally, indicating its importance in development.


:

Pssm-ID: 214017 [Multi-domain]  Cd Length: 161  Bit Score: 323.57  E-value: 5.27e-108
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 393 DSIEAVGKKLHEYNTQFQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKREGNEK 472
Cdd:cd12924    1 DNIEAVGKKLHEYNTQFQEKSREYDRLYEEYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKREGNEK 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 473 EIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQYLMWLTQKGVRQKKLNEWLG 552
Cdd:cd12924   81 EIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQYLMWLTQKGVRQKKLNEWLG 160

                 .
gi 465984348 553 N 553
Cdd:cd12924  161 N 161
RhoGAP_p85 cd04388
RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
92-255 1.60e-96

RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in the p85 isoforms of the regulatory subunit of the class IA PI3K (phosphatidylinositol 3'-kinase). This domain is also called Bcr (breakpoint cluster region protein) homology (BH) domain. Class IA PI3Ks are heterodimers, containing a regulatory subunit (p85) and a catalytic subunit (p110) and are activated by growth factor receptor tyrosine kinases (RTKs); this activation is mediated by the p85 subunit. p85 isoforms, alpha and beta, contain a C-terminal p110-binding domain flanked by two SH2 domains, an N-terminal SH3 domain, and a RhoGAP domain flanked by two proline-rich regions. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


:

Pssm-ID: 239853  Cd Length: 200  Bit Score: 295.63  E-value: 1.60e-96
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  92 TLPDLTEQFLPPDVAPPILIKIVEAIEKK-------------------------DASSMDFEPIDVQILADALKRYLLDL 146
Cdd:cd04388    1 TLPDLTEQFSPPDVAPPLLIKLVEAIEKKglesstlyrtqssssltelrqildcDAASVDLEQFDVAALADALKRYLLDL 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 147 PNSVIPASVYSEMISGAQEVQSSDEYAQLLKKLIRSPNIPHQYWLTLQYLLKHFFRLCQTSSKNLLNARSLAEIFSPLLF 226
Cdd:cd04388   81 PNPVIPAPVYSEMISRAQEVQSSDEYAQLLRKLIRSPNLPHQYWLTLQYLLKHFFRLCQSSSKNLLSARALAEIFSPLLF 160
                        170       180
                 ....*....|....*....|....*....
gi 465984348 227 KFQLGSSDNAEHLIKILEVLITSEWNERQ 255
Cdd:cd04388  161 RFQPASSDSPEFHIRIIEVLITSEWNERQ 189
SH2_cSH2_p85_like cd09930
C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
570-672 2.00e-74

C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, a inter SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and 2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, 2) p85 iSH2 domain with C2 domain of p110alpha, and 3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


:

Pssm-ID: 198184  Cd Length: 104  Bit Score: 234.23  E-value: 2.00e-74
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 570 PHHDERTWNVGNINRSQAENLLRGKRDGTFLVRESSKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELVL 649
Cdd:cd09930    1 PHHDERTWLVGDINRTQAEELLRGKPDGTFLIRESSTQGCYACSVVCNGEVKHCVIYKTETGYGFAEPYNLYESLKELVL 80
                         90       100
                 ....*....|....*....|...
gi 465984348 650 HYQHTSLVQHNDSLNVTLAYPVY 672
Cdd:cd09930   81 HYAHNSLEQHNDSLTVTLAYPVL 103
SH2_nSH2_p85_like cd09942
N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
278-388 7.50e-74

N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, an internal SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and (2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, (2) p85 iSH2 domain with C2 domain of p110alpha, and (3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


:

Pssm-ID: 198195  Cd Length: 110  Bit Score: 232.98  E-value: 7.50e-74
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 278 NMSLQDAEWYWGDISREEVNEKLRDTADGTFLVRDASTkMHGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVEL 357
Cdd:cd09942    1 PHSLQEAEWYWGDISREEVNEKMRDTPDGTFLVRDAST-MKGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVEL 79
                         90       100       110
                 ....*....|....*....|....*....|.
gi 465984348 358 INHYRNESLAQYNPKLDVKLLYPVSKYQQDQ 388
Cdd:cd09942   80 INYYRNNSLAEYNRKLDVKLLYPVSRFQQDQ 110
 
Name Accession Description Interval E-value
iSH2_PIK3R1 cd12924
Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory ...
393-553 5.27e-108

Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunit 1, PIK3R1, also called p85alpha; PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. In addition, p85alpha, also called PIK3R1, contains N-terminal SH3 and GAP domains. p85alpha carry functions independent of its PI3K regulatory role. It can independently stimulate signaling pathways involved in cytoskeletal rearrangements. Insulin-sensitive tissues express splice variants of the PIK3R1 gene, p50alpha and p55alpha, which may play important roles in insulin signaling during lipid and glucose metabolism. Mice deficient with PIK3R1 die perinatally, indicating its importance in development.


Pssm-ID: 214017 [Multi-domain]  Cd Length: 161  Bit Score: 323.57  E-value: 5.27e-108
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 393 DSIEAVGKKLHEYNTQFQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKREGNEK 472
Cdd:cd12924    1 DNIEAVGKKLHEYNTQFQEKSREYDRLYEEYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKREGNEK 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 473 EIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQYLMWLTQKGVRQKKLNEWLG 552
Cdd:cd12924   81 EIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQYLMWLTQKGVRQKKLNEWLG 160

                 .
gi 465984348 553 N 553
Cdd:cd12924  161 N 161
RhoGAP_p85 cd04388
RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
92-255 1.60e-96

RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in the p85 isoforms of the regulatory subunit of the class IA PI3K (phosphatidylinositol 3'-kinase). This domain is also called Bcr (breakpoint cluster region protein) homology (BH) domain. Class IA PI3Ks are heterodimers, containing a regulatory subunit (p85) and a catalytic subunit (p110) and are activated by growth factor receptor tyrosine kinases (RTKs); this activation is mediated by the p85 subunit. p85 isoforms, alpha and beta, contain a C-terminal p110-binding domain flanked by two SH2 domains, an N-terminal SH3 domain, and a RhoGAP domain flanked by two proline-rich regions. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239853  Cd Length: 200  Bit Score: 295.63  E-value: 1.60e-96
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  92 TLPDLTEQFLPPDVAPPILIKIVEAIEKK-------------------------DASSMDFEPIDVQILADALKRYLLDL 146
Cdd:cd04388    1 TLPDLTEQFSPPDVAPPLLIKLVEAIEKKglesstlyrtqssssltelrqildcDAASVDLEQFDVAALADALKRYLLDL 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 147 PNSVIPASVYSEMISGAQEVQSSDEYAQLLKKLIRSPNIPHQYWLTLQYLLKHFFRLCQTSSKNLLNARSLAEIFSPLLF 226
Cdd:cd04388   81 PNPVIPAPVYSEMISRAQEVQSSDEYAQLLRKLIRSPNLPHQYWLTLQYLLKHFFRLCQSSSKNLLSARALAEIFSPLLF 160
                        170       180
                 ....*....|....*....|....*....
gi 465984348 227 KFQLGSSDNAEHLIKILEVLITSEWNERQ 255
Cdd:cd04388  161 RFQPASSDSPEFHIRIIEVLITSEWNERQ 189
PI3K_P85_iSH2 pfam16454
Phosphatidylinositol 3-kinase regulatory subunit P85 inter-SH2 domain; This domain is found ...
384-552 3.00e-80

Phosphatidylinositol 3-kinase regulatory subunit P85 inter-SH2 domain; This domain is found between the two SH2 domains in phosphatidylinositol 3-kinase regulatory subunit P85. It forms a complex with the adaptor-binding domain of phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha.


Pssm-ID: 465121 [Multi-domain]  Cd Length: 161  Bit Score: 251.80  E-value: 3.00e-80
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  384 YQQDQVVKEDSIEAVGKKLHEYNTQFQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYie 463
Cdd:pfam16454   1 QQEDEVVKEDDIEAVGKKLIEIHKQYLEKSREYDRLYEEYNKTSQEIQMKRQALEAFNEAIKMFEEQIKLQERFSKEA-- 78
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  464 kfkregNEKEIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQYLMWLTQKGVR 543
Cdd:pfam16454  79 ------QPHEIERLLENYELLKSRLKELHDSKEQLEEDLKTQKEYNRELEREMNSLKPELIQLRKQKDQYLEWLKRKGVT 152

                  ....*....
gi 465984348  544 QKKLNEWLG 552
Cdd:pfam16454 153 QEQINAWLG 161
SH2_cSH2_p85_like cd09930
C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
570-672 2.00e-74

C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, a inter SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and 2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, 2) p85 iSH2 domain with C2 domain of p110alpha, and 3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198184  Cd Length: 104  Bit Score: 234.23  E-value: 2.00e-74
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 570 PHHDERTWNVGNINRSQAENLLRGKRDGTFLVRESSKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELVL 649
Cdd:cd09930    1 PHHDERTWLVGDINRTQAEELLRGKPDGTFLIRESSTQGCYACSVVCNGEVKHCVIYKTETGYGFAEPYNLYESLKELVL 80
                         90       100
                 ....*....|....*....|...
gi 465984348 650 HYQHTSLVQHNDSLNVTLAYPVY 672
Cdd:cd09930   81 HYAHNSLEQHNDSLTVTLAYPVL 103
SH2_nSH2_p85_like cd09942
N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
278-388 7.50e-74

N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, an internal SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and (2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, (2) p85 iSH2 domain with C2 domain of p110alpha, and (3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198195  Cd Length: 110  Bit Score: 232.98  E-value: 7.50e-74
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 278 NMSLQDAEWYWGDISREEVNEKLRDTADGTFLVRDASTkMHGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVEL 357
Cdd:cd09942    1 PHSLQEAEWYWGDISREEVNEKMRDTPDGTFLVRDAST-MKGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVEL 79
                         90       100       110
                 ....*....|....*....|....*....|.
gi 465984348 358 INHYRNESLAQYNPKLDVKLLYPVSKYQQDQ 388
Cdd:cd09942   80 INYYRNNSLAEYNRKLDVKLLYPVSRFQQDQ 110
RhoGAP pfam00620
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.
112-226 1.28e-25

RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.


Pssm-ID: 459875  Cd Length: 148  Bit Score: 103.01  E-value: 1.28e-25
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  112 KIVEAIEKKDASSMDFEPIDVQILADALKRYLLDLPNSVIPASVYSEMISgAQEVQSSDEYAQLLKKLIRSpnIPHQYWL 191
Cdd:pfam00620  33 ELREAFDRGPDVDLDLEEEDVHVVASLLKLFLRELPEPLLTFELYEEFIE-AAKLPDEEERLEALRELLRK--LPPANRD 109
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 465984348  192 TLQYLLKHFFRLCQTSSKNLLNARSLAEIFSPLLF 226
Cdd:pfam00620 110 TLRYLLAHLNRVAQNSDVNKMNAHNLAIVFGPTLL 144
SH2 pfam00017
SH2 domain;
577-651 3.75e-25

SH2 domain;


Pssm-ID: 425423 [Multi-domain]  Cd Length: 77  Bit Score: 99.21  E-value: 3.75e-25
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 465984348  577 WNVGNINRSQAENLLR-GKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTG--YGFAEPYnlYSSLKELVLHY 651
Cdd:pfam00017   1 WYHGKISRQEAERLLLnGKPDGTFLVRESeSTPGGYTLSVRDDGKVKHYKIQSTDNGgyYISGGVK--FSSLAELVEHY 77
RhoGAP smart00324
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ...
112-247 4.02e-25

GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers.


Pssm-ID: 214618  Cd Length: 174  Bit Score: 102.34  E-value: 4.02e-25
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348   112 KIVEAIEKKDASSMDFEPIDVQILADALKRYLLDLPNSVIPASVYSEMISgAQEVQSSDEYAQLLKKLIRSpnIPHQYWL 191
Cdd:smart00324  36 ELRDAFDSGPDPDLDLSEYDVHDVAGLLKLFLRELPEPLITYELYEEFIE-AAKLEDETERLRALRELLSL--LPPANRA 112
                           90       100       110       120       130
                   ....*....|....*....|....*....|....*....|....*....|....*....
gi 465984348   192 TLQYLLKHFFRLCQTSSKNLLNARSLAEIFSPLLFKFQLG---SSDNAEHLIKILEVLI 247
Cdd:smart00324 113 TLRYLLAHLNRVAEHSEENKMTARNLAIVFGPTLLRPPDGevaSLKDIRHQNTVIEFLI 171
SH2 smart00252
Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides ...
285-366 1.88e-24

Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides via 2 surface pockets. Specificity is provided via interaction with residues that are distinct from the phosphotyrosine. Only a single occurrence of a SH2 domain has been found in S. cerevisiae.


Pssm-ID: 214585 [Multi-domain]  Cd Length: 84  Bit Score: 97.30  E-value: 1.88e-24
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348   285 EWYWGDISREEVNEKLRDTADGTFLVRDaSTKMHGDYTLTLRKGGNNKLIKIFH-RDGKYGFSDPLTFNSVVELINHYRN 363
Cdd:smart00252   2 PWYHGFISREEAEKLLKNEGDGDFLVRD-SESSPGDYVLSVRVKGKVKHYRIRRnEDGKFYLEGGRKFPSLVELVEHYQK 80

                   ...
gi 465984348   364 ESL 366
Cdd:smart00252  81 NSL 83
SH2 smart00252
Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides ...
577-657 1.27e-23

Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides via 2 surface pockets. Specificity is provided via interaction with residues that are distinct from the phosphotyrosine. Only a single occurrence of a SH2 domain has been found in S. cerevisiae.


Pssm-ID: 214585 [Multi-domain]  Cd Length: 84  Bit Score: 94.99  E-value: 1.27e-23
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348   577 WNVGNINRSQAENLLRGKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELVLHYQHTS 655
Cdd:smart00252   3 WYHGFISREEAEKLLKNEGDGDFLVRDSeSSPGDYVLSVRVKGKVKHYRIRRNEDGKFYLEGGRKFPSLVELVEHYQKNS 82

                   ..
gi 465984348   656 LV 657
Cdd:smart00252  83 LG 84
SH2 pfam00017
SH2 domain;
286-361 4.66e-20

SH2 domain;


Pssm-ID: 425423 [Multi-domain]  Cd Length: 77  Bit Score: 84.57  E-value: 4.66e-20
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 465984348  286 WYWGDISREEVNEKLRDT-ADGTFLVRDASTKMhGDYTLTLRKGGNNKLIKI-FHRDGKYGFSDPLTFNSVVELINHY 361
Cdd:pfam00017   1 WYHGKISRQEAERLLLNGkPDGTFLVRESESTP-GGYTLSVRDDGKVKHYKIqSTDNGGYYISGGVKFSSLAELVEHY 77
SMC_prok_B TIGR02168
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
349-549 6.69e-06

chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]


Pssm-ID: 274008 [Multi-domain]  Cd Length: 1179  Bit Score: 49.67  E-value: 6.69e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348   349 LTFNSVVELINHYR--NESLAQYNPKLDvkllypvsKYQQDQVVKEDSIEAVGKKLHEYNTQFQEKSREYDRLYEDYTRT 426
Cdd:TIGR02168  229 LLVLRLEELREELEelQEELKEAEEELE--------ELTAELQELEEKLEELRLEVSELEEEIEELQKELYALANEISRL 300
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348   427 SQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKRegNEKEIQRIMHNYEKLKSRISE----IVDSRRR---LE 499
Cdd:TIGR02168  301 EQQKQILRERLANLERQLEELEAQLEELESKLDELAEELAE--LEEKLEELKEELESLEAELEEleaeLEELESRleeLE 378
                          170       180       190       200       210
                   ....*....|....*....|....*....|....*....|....*....|
gi 465984348   500 EDLKKQAAEYREIDKRMNSIKPDLIQLRKTrdqylmwLTQKGVRQKKLNE 549
Cdd:TIGR02168  379 EQLETLRSKVAQLELQIASLNNEIERLEAR-------LERLEDRRERLQQ 421
DR0291 COG1579
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ...
414-532 3.43e-05

Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only];


Pssm-ID: 441187 [Multi-domain]  Cd Length: 236  Bit Score: 45.69  E-value: 3.43e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 414 REYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKREGNEKEIQRIMHNYEKLKSRISEIVD 493
Cdd:COG1579   31 AELAELEDELAALEARLEAAKTELEDLEKEIKRLELEIEEVEARIKKYEEQLGNVRNNKEYEALQKEIESLKRRISDLED 110
                         90       100       110
                 ....*....|....*....|....*....|....*....
gi 465984348 494 SRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQ 532
Cdd:COG1579  111 EILELMERIEELEEELAELEAELAELEAELEEKKAELDE 149
PRK03918 PRK03918
DNA double-strand break repair ATPase Rad50;
391-530 3.45e-04

DNA double-strand break repair ATPase Rad50;


Pssm-ID: 235175 [Multi-domain]  Cd Length: 880  Bit Score: 43.90  E-value: 3.45e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 391 KEDSIEAVGKKLHEYNTQFQEKSREYDRL---YEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFK- 466
Cdd:PRK03918 198 KEKELEEVLREINEISSELPELREELEKLekeVKELEELKEEIEELEKELESLEGSKRKLEEKIRELEERIEELKKEIEe 277
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 465984348 467 ---REGNEKEIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTR 530
Cdd:PRK03918 278 leeKVKELKELKEKAEEYIKLSEFYEEYLDELREIEKRLSRLEEEINGIEERIKELEEKEERLEELK 344
 
Name Accession Description Interval E-value
iSH2_PIK3R1 cd12924
Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory ...
393-553 5.27e-108

Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunit 1, PIK3R1, also called p85alpha; PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. In addition, p85alpha, also called PIK3R1, contains N-terminal SH3 and GAP domains. p85alpha carry functions independent of its PI3K regulatory role. It can independently stimulate signaling pathways involved in cytoskeletal rearrangements. Insulin-sensitive tissues express splice variants of the PIK3R1 gene, p50alpha and p55alpha, which may play important roles in insulin signaling during lipid and glucose metabolism. Mice deficient with PIK3R1 die perinatally, indicating its importance in development.


Pssm-ID: 214017 [Multi-domain]  Cd Length: 161  Bit Score: 323.57  E-value: 5.27e-108
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 393 DSIEAVGKKLHEYNTQFQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKREGNEK 472
Cdd:cd12924    1 DNIEAVGKKLHEYNTQFQEKSREYDRLYEEYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKREGNEK 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 473 EIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQYLMWLTQKGVRQKKLNEWLG 552
Cdd:cd12924   81 EIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQYLMWLTQKGVRQKKLNEWLG 160

                 .
gi 465984348 553 N 553
Cdd:cd12924  161 N 161
RhoGAP_p85 cd04388
RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
92-255 1.60e-96

RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in the p85 isoforms of the regulatory subunit of the class IA PI3K (phosphatidylinositol 3'-kinase). This domain is also called Bcr (breakpoint cluster region protein) homology (BH) domain. Class IA PI3Ks are heterodimers, containing a regulatory subunit (p85) and a catalytic subunit (p110) and are activated by growth factor receptor tyrosine kinases (RTKs); this activation is mediated by the p85 subunit. p85 isoforms, alpha and beta, contain a C-terminal p110-binding domain flanked by two SH2 domains, an N-terminal SH3 domain, and a RhoGAP domain flanked by two proline-rich regions. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239853  Cd Length: 200  Bit Score: 295.63  E-value: 1.60e-96
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  92 TLPDLTEQFLPPDVAPPILIKIVEAIEKK-------------------------DASSMDFEPIDVQILADALKRYLLDL 146
Cdd:cd04388    1 TLPDLTEQFSPPDVAPPLLIKLVEAIEKKglesstlyrtqssssltelrqildcDAASVDLEQFDVAALADALKRYLLDL 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 147 PNSVIPASVYSEMISGAQEVQSSDEYAQLLKKLIRSPNIPHQYWLTLQYLLKHFFRLCQTSSKNLLNARSLAEIFSPLLF 226
Cdd:cd04388   81 PNPVIPAPVYSEMISRAQEVQSSDEYAQLLRKLIRSPNLPHQYWLTLQYLLKHFFRLCQSSSKNLLSARALAEIFSPLLF 160
                        170       180
                 ....*....|....*....|....*....
gi 465984348 227 KFQLGSSDNAEHLIKILEVLITSEWNERQ 255
Cdd:cd04388  161 RFQPASSDSPEFHIRIIEVLITSEWNERQ 189
iSH2_PIK3R2 cd12926
Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory ...
393-552 1.52e-93

Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunit 2, PIK3R2, also called p85beta; PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation, and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. p85beta, also called PIK3R2, contains N-terminal SH3 and GAP domains. It is expressed ubiquitously but at lower levels than p85alpha. Its expression is increased in breast and colon cancer, correlates with tumor progression, and enhanced invasion. During viral infection, the viral nonstructural (NS1) protein binds p85beta specifically, which leads to PI3K activation and the promotion of viral replication. Mice deficient with PIK3R2 develop normally and exhibit moderate metabolic and immunological defects.


Pssm-ID: 214019 [Multi-domain]  Cd Length: 161  Bit Score: 286.59  E-value: 1.52e-93
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 393 DSIEAVGKKLHEYNTQFQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKREGNEK 472
Cdd:cd12926    1 DSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYLERFRREGNEK 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 473 EIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQYLMWLTQKGVRQKKLNEWLG 552
Cdd:cd12926   81 EMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGARQKKINEWLG 160
iSH2_PIK3R3 cd12925
Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory ...
393-552 5.76e-93

Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunit 3, PIK3R3, also called p55gamma; PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation, and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. p55gamma, also called PIK3R3 or p55PIK, also contains a unique N-terminal 24-amino acid residue (N24) that interacts with cell cycle modulators to promote cell cycle progression.


Pssm-ID: 214018 [Multi-domain]  Cd Length: 161  Bit Score: 285.03  E-value: 5.76e-93
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 393 DSIEAVGKKLHEYNTQFQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKREGNEK 472
Cdd:cd12925    1 DNIDAVGRKLQEYHSQYQEKSKEYDRLYEEYTKTSQEIQMKRTAIEAFNETIKIFEEQCHTQERYSKEYIERFRREGNEK 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 473 EIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQYLMWLTQKGVRQKKLNEWLG 552
Cdd:cd12925   81 EIERIMMNYEKLKSRLGEIHDSKMRLEQDLKTQALDNREIDKKMNSIKPDLIQLRKIRDQYLVWLNHKGVRQKRINDWLG 160
PI3K_P85_iSH2 pfam16454
Phosphatidylinositol 3-kinase regulatory subunit P85 inter-SH2 domain; This domain is found ...
384-552 3.00e-80

Phosphatidylinositol 3-kinase regulatory subunit P85 inter-SH2 domain; This domain is found between the two SH2 domains in phosphatidylinositol 3-kinase regulatory subunit P85. It forms a complex with the adaptor-binding domain of phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha.


Pssm-ID: 465121 [Multi-domain]  Cd Length: 161  Bit Score: 251.80  E-value: 3.00e-80
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  384 YQQDQVVKEDSIEAVGKKLHEYNTQFQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYie 463
Cdd:pfam16454   1 QQEDEVVKEDDIEAVGKKLIEIHKQYLEKSREYDRLYEEYNKTSQEIQMKRQALEAFNEAIKMFEEQIKLQERFSKEA-- 78
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  464 kfkregNEKEIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQYLMWLTQKGVR 543
Cdd:pfam16454  79 ------QPHEIERLLENYELLKSRLKELHDSKEQLEEDLKTQKEYNRELEREMNSLKPELIQLRKQKDQYLEWLKRKGVT 152

                  ....*....
gi 465984348  544 QKKLNEWLG 552
Cdd:pfam16454 153 QEQINAWLG 161
SH2_cSH2_p85_like cd09930
C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
570-672 2.00e-74

C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, a inter SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and 2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, 2) p85 iSH2 domain with C2 domain of p110alpha, and 3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198184  Cd Length: 104  Bit Score: 234.23  E-value: 2.00e-74
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 570 PHHDERTWNVGNINRSQAENLLRGKRDGTFLVRESSKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELVL 649
Cdd:cd09930    1 PHHDERTWLVGDINRTQAEELLRGKPDGTFLIRESSTQGCYACSVVCNGEVKHCVIYKTETGYGFAEPYNLYESLKELVL 80
                         90       100
                 ....*....|....*....|...
gi 465984348 650 HYQHTSLVQHNDSLNVTLAYPVY 672
Cdd:cd09930   81 HYAHNSLEQHNDSLTVTLAYPVL 103
SH2_nSH2_p85_like cd09942
N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
278-388 7.50e-74

N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, an internal SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and (2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, (2) p85 iSH2 domain with C2 domain of p110alpha, and (3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198195  Cd Length: 110  Bit Score: 232.98  E-value: 7.50e-74
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 278 NMSLQDAEWYWGDISREEVNEKLRDTADGTFLVRDASTkMHGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVEL 357
Cdd:cd09942    1 PHSLQEAEWYWGDISREEVNEKMRDTPDGTFLVRDAST-MKGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVEL 79
                         90       100       110
                 ....*....|....*....|....*....|.
gi 465984348 358 INHYRNESLAQYNPKLDVKLLYPVSKYQQDQ 388
Cdd:cd09942   80 INYYRNNSLAEYNRKLDVKLLYPVSRFQQDQ 110
iSH2_PI3K_IA_R cd12923
Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory ...
393-552 2.94e-69

Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunits; PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation, and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. In vertebrates, there are three genes (PIK3R1, PIK3R2, and PIK3R3) that encode for different Class IA PI3K R subunits.


Pssm-ID: 214016 [Multi-domain]  Cd Length: 152  Bit Score: 222.48  E-value: 2.94e-69
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 393 DSIEAVGKKLHEYNTQFQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYiekfkregNEK 472
Cdd:cd12923    1 DDVEKLAKKLKEINKEYLDKSREYDELYEKYNKLSQEIQLKRQALEAFEEAVKMFEEQLRTQEKFQKEA--------QPH 72
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 473 EIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQYLMWLTQKGVRQKKLNEWLG 552
Cdd:cd12923   73 EKQRLMENNELLKSRLKELEESKEQLEEDLRKQVAYNRELEREMNSLKPELMQLRKQKDQYLRWLKRKGVSQEEINQLLK 152
RhoGAP pfam00620
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.
112-226 1.28e-25

RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.


Pssm-ID: 459875  Cd Length: 148  Bit Score: 103.01  E-value: 1.28e-25
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  112 KIVEAIEKKDASSMDFEPIDVQILADALKRYLLDLPNSVIPASVYSEMISgAQEVQSSDEYAQLLKKLIRSpnIPHQYWL 191
Cdd:pfam00620  33 ELREAFDRGPDVDLDLEEEDVHVVASLLKLFLRELPEPLLTFELYEEFIE-AAKLPDEEERLEALRELLRK--LPPANRD 109
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 465984348  192 TLQYLLKHFFRLCQTSSKNLLNARSLAEIFSPLLF 226
Cdd:pfam00620 110 TLRYLLAHLNRVAQNSDVNKMNAHNLAIVFGPTLL 144
SH2 pfam00017
SH2 domain;
577-651 3.75e-25

SH2 domain;


Pssm-ID: 425423 [Multi-domain]  Cd Length: 77  Bit Score: 99.21  E-value: 3.75e-25
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 465984348  577 WNVGNINRSQAENLLR-GKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTG--YGFAEPYnlYSSLKELVLHY 651
Cdd:pfam00017   1 WYHGKISRQEAERLLLnGKPDGTFLVRESeSTPGGYTLSVRDDGKVKHYKIQSTDNGgyYISGGVK--FSSLAELVEHY 77
RhoGAP smart00324
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ...
112-247 4.02e-25

GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers.


Pssm-ID: 214618  Cd Length: 174  Bit Score: 102.34  E-value: 4.02e-25
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348   112 KIVEAIEKKDASSMDFEPIDVQILADALKRYLLDLPNSVIPASVYSEMISgAQEVQSSDEYAQLLKKLIRSpnIPHQYWL 191
Cdd:smart00324  36 ELRDAFDSGPDPDLDLSEYDVHDVAGLLKLFLRELPEPLITYELYEEFIE-AAKLEDETERLRALRELLSL--LPPANRA 112
                           90       100       110       120       130
                   ....*....|....*....|....*....|....*....|....*....|....*....
gi 465984348   192 TLQYLLKHFFRLCQTSSKNLLNARSLAEIFSPLLFKFQLG---SSDNAEHLIKILEVLI 247
Cdd:smart00324 113 TLRYLLAHLNRVAEHSEENKMTARNLAIVFGPTLLRPPDGevaSLKDIRHQNTVIEFLI 171
SH2 smart00252
Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides ...
285-366 1.88e-24

Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides via 2 surface pockets. Specificity is provided via interaction with residues that are distinct from the phosphotyrosine. Only a single occurrence of a SH2 domain has been found in S. cerevisiae.


Pssm-ID: 214585 [Multi-domain]  Cd Length: 84  Bit Score: 97.30  E-value: 1.88e-24
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348   285 EWYWGDISREEVNEKLRDTADGTFLVRDaSTKMHGDYTLTLRKGGNNKLIKIFH-RDGKYGFSDPLTFNSVVELINHYRN 363
Cdd:smart00252   2 PWYHGFISREEAEKLLKNEGDGDFLVRD-SESSPGDYVLSVRVKGKVKHYRIRRnEDGKFYLEGGRKFPSLVELVEHYQK 80

                   ...
gi 465984348   364 ESL 366
Cdd:smart00252  81 NSL 83
SH2 smart00252
Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides ...
577-657 1.27e-23

Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides via 2 surface pockets. Specificity is provided via interaction with residues that are distinct from the phosphotyrosine. Only a single occurrence of a SH2 domain has been found in S. cerevisiae.


Pssm-ID: 214585 [Multi-domain]  Cd Length: 84  Bit Score: 94.99  E-value: 1.27e-23
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348   577 WNVGNINRSQAENLLRGKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELVLHYQHTS 655
Cdd:smart00252   3 WYHGFISREEAEKLLKNEGDGDFLVRDSeSSPGDYVLSVRVKGKVKHYRIRRNEDGKFYLEGGRKFPSLVELVEHYQKNS 82

                   ..
gi 465984348   656 LV 657
Cdd:smart00252  83 LG 84
RhoGAP cd00159
RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like ...
112-248 1.75e-23

RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like small GTPases. Small GTPases (G proteins) cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when bound to GDP. The Rho family of small G proteins, which includes Cdc42Hs, activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. The RhoGAPs are one of the major classes of regulators of Rho G proteins.


Pssm-ID: 238090 [Multi-domain]  Cd Length: 169  Bit Score: 97.76  E-value: 1.75e-23
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 112 KIVEAIEKKDaSSMDFEPIDVQILADALKRYLLDLPNSVIPASVYSEMISgAQEVQSSDEYAQLLKKLIRSpnIPHQYWL 191
Cdd:cd00159   33 ELKKKFDRGE-DIDDLEDYDVHDVASLLKLYLRELPEPLIPFELYDEFIE-LAKIEDEEERIEALKELLKS--LPPENRD 108
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 192 TLQYLLKHFFRLCQTSSKNLLNARSLAEIFSPLLFKFQLGS---SDNAEHLIKILEVLIT 248
Cdd:cd00159  109 LLKYLLKLLHKISQNSEVNKMTASNLAIVFAPTLLRPPDSDdelLEDIKKLNEIVEFLIE 168
SH2 cd00173
Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they ...
577-651 7.46e-21

Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they bind pTyr-containing polypeptide ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. They are present in a wide array of proteins including: adaptor proteins (Nck1, Crk, Grb2), scaffolds (Slp76, Shc, Dapp1), kinases (Src, Syk, Fps, Tec), phosphatases (Shp-1, Shp-2), transcription factors (STAT1), Ras signaling molecules (Ras-Gap), ubiquitination factors (c-Cbl), cytoskeleton regulators (Tensin), signal regulators (SAP), and phospholipid second messengers (PLCgamma), amongst others.


Pssm-ID: 198173 [Multi-domain]  Cd Length: 79  Bit Score: 87.13  E-value: 7.46e-21
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVRESSKQ-GCYACSVVVD-GEVKHCVINKTPTGYGFAEPYNL-YSSLKELVLHY 651
Cdd:cd00173    2 WFHGSISREEAERLLRGKPDGTFLVRESSSEpGDYVLSVRSGdGKVKHYLIERNEGGYYLLGGSGRtFPSLPELVEHY 79
SH2 pfam00017
SH2 domain;
286-361 4.66e-20

SH2 domain;


Pssm-ID: 425423 [Multi-domain]  Cd Length: 77  Bit Score: 84.57  E-value: 4.66e-20
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 465984348  286 WYWGDISREEVNEKLRDT-ADGTFLVRDASTKMhGDYTLTLRKGGNNKLIKI-FHRDGKYGFSDPLTFNSVVELINHY 361
Cdd:pfam00017   1 WYHGKISRQEAERLLLNGkPDGTFLVRESESTP-GGYTLSVRDDGKVKHYKIqSTDNGGYYISGGVKFSSLAELVEHY 77
SH2_Vav_family cd09940
Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several ...
577-671 8.96e-20

Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, Vav2 and Vav3 are more ubiquitously expressed. The members here include insect and amphibian Vavs. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198193  Cd Length: 102  Bit Score: 84.65  E-value: 8.96e-20
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVRESSKQ-GCYACSVVVDGEVKHCVINKTPTG-YGFAEPYnLYSSLKELVLHYQHT 654
Cdd:cd09940    7 WFVGEMERDTAENRLENRPDGTYLVRVRPQGeTQYALSIKYNGDVKHMKIEQRSDGlYYLSESR-HFKSLVELVNYYERN 85
                         90
                 ....*....|....*..
gi 465984348 655 SLVQHNDSLNVTLAYPV 671
Cdd:cd09940   86 SLGENFAGLDTTLKWPY 102
SH2 cd00173
Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they ...
285-361 1.53e-18

Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they bind pTyr-containing polypeptide ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. They are present in a wide array of proteins including: adaptor proteins (Nck1, Crk, Grb2), scaffolds (Slp76, Shc, Dapp1), kinases (Src, Syk, Fps, Tec), phosphatases (Shp-1, Shp-2), transcription factors (STAT1), Ras signaling molecules (Ras-Gap), ubiquitination factors (c-Cbl), cytoskeleton regulators (Tensin), signal regulators (SAP), and phospholipid second messengers (PLCgamma), amongst others.


Pssm-ID: 198173 [Multi-domain]  Cd Length: 79  Bit Score: 80.58  E-value: 1.53e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 285 EWYWGDISREEVNEKLRDTADGTFLVRDaSTKMHGDYTLTLRKGGNN-KLIKIFHRDGKYGF--SDPLTFNSVVELINHY 361
Cdd:cd00173    1 PWFHGSISREEAERLLRGKPDGTFLVRE-SSSEPGDYVLSVRSGDGKvKHYLIERNEGGYYLlgGSGRTFPSLPELVEHY 79
SH2_nSH2_p85_like cd09942
N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
574-671 2.42e-18

N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, an internal SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and (2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, (2) p85 iSH2 domain with C2 domain of p110alpha, and (3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198195  Cd Length: 110  Bit Score: 80.83  E-value: 2.42e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 574 ERTWNVGNINRSQAENLLRGKRDGTFLVRE-SSKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNlYSSLKELVLHYQ 652
Cdd:cd09942    6 EAEWYWGDISREEVNEKMRDTPDGTFLVRDaSTMKGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLT-FNSVVELINYYR 84
                         90
                 ....*....|....*....
gi 465984348 653 HTSLVQHNDSLNVTLAYPV 671
Cdd:cd09942   85 NNSLAEYNRKLDVKLLYPV 103
SH2_cSH2_p85_like cd09930
C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
286-381 7.57e-17

C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, a inter SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and 2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, 2) p85 iSH2 domain with C2 domain of p110alpha, and 3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198184  Cd Length: 104  Bit Score: 76.30  E-value: 7.57e-17
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDASTKmhGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLT-FNSVVELINHYRNE 364
Cdd:cd09930    8 WLVGDINRTQAEELLRGKPDGTFLIRESSTQ--GCYACSVVCNGEVKHCVIYKTETGYGFAEPYNlYESLKELVLHYAHN 85
                         90
                 ....*....|....*..
gi 465984348 365 SLAQYNPKLDVKLLYPV 381
Cdd:cd09930   86 SLEQHNDSLTVTLAYPV 102
SH2_SOCS_family cd09923
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 ...
285-361 1.26e-16

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198178  Cd Length: 81  Bit Score: 74.93  E-value: 1.26e-16
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 285 EWYWGDISREEVNEKLRDTADGTFLVRDASTKMHgDYTLTLRKGGNNKLIKIFHRDGKYGF--SDPL--TFNSVVELINH 360
Cdd:cd09923    1 GWYWGGITRYEAEELLAGKPEGTFLVRDSSDSRY-LFSVSFRTYGRTLHARIEYSNGRFSFdsSDPSvpRFPCVVELIEH 79

                 .
gi 465984348 361 Y 361
Cdd:cd09923   80 Y 80
SH2_Vav_family cd09940
Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several ...
285-381 2.12e-16

Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, Vav2 and Vav3 are more ubiquitously expressed. The members here include insect and amphibian Vavs. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198193  Cd Length: 102  Bit Score: 75.02  E-value: 2.12e-16
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 285 EWYWGDISREEVNEKLRDTADGTFLVRdASTKMHGDYTLTLRKGGNNKLIKIFHR-DGKYGFSDPLTFNSVVELINHYRN 363
Cdd:cd09940    6 LWFVGEMERDTAENRLENRPDGTYLVR-VRPQGETQYALSIKYNGDVKHMKIEQRsDGLYYLSESRHFKSLVELVNYYER 84
                         90
                 ....*....|....*...
gi 465984348 364 ESLAQYNPKLDVKLLYPV 381
Cdd:cd09940   85 NSLGENFAGLDTTLKWPY 102
RhoGAP_ARAP cd04385
RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
112-248 2.31e-16

RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in ARAPs. ARAPs (also known as centaurin deltas) contain, besides the RhoGAP domain, an Arf GAP, ankyrin repeat ras-associating, and PH domains. Since their ArfGAP activity is PIP3-dependent, ARAPs are considered integration points for phosphoinositide, Arf and Rho signaling. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239850  Cd Length: 184  Bit Score: 77.73  E-value: 2.31e-16
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 112 KIVEAIeKKDASSMDFEPIDVQI--LADALKRYLLDLPNSVIPASVYSEMISGAqEVQSSDEYAQLLKKLIRS-PNIPHQ 188
Cdd:cd04385   48 KLLEAF-RKDARSVQLREGEYTVhdVADVLKRFLRDLPDPLLTSELHAEWIEAA-ELENKDERIARYKELIRRlPPINRA 125
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 189 ywlTLQYLLKHFFRLCQTSSKNLLNARSLAEIFSPLLFKFQLGSSDNAEHLIKILEVLIT 248
Cdd:cd04385  126 ---TLKVLIGHLYRVQKHSDENQMSVHNLALVFGPTLFQTDEHSVGQTSHEVKVIEDLID 182
RhoGAP_chimaerin cd04372
RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
118-250 4.40e-15

RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of chimaerins. Chimaerins are a family of phorbolester- and diacylglycerol-responsive GAPs specific for the Rho-like GTPase Rac. Chimaerins exist in two alternative splice forms that each contain a C-terminal GAP domain, and a central C1 domain which binds phorbol esters, inducing a conformational change that activates the protein; one splice form is lacking the N-terminal Src homology-2 (SH2) domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239837 [Multi-domain]  Cd Length: 194  Bit Score: 74.09  E-value: 4.40e-15
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 118 EKKDASSMDFEpiDVQILADALKRYLLDLPNSVIPASVYSEMISGAQeVQSSDEYAQLLKKLIRSpnIPHQYWLTLQYLL 197
Cdd:cd04372   59 EKADISATVYP--DINVITGALKLYFRDLPIPVITYDTYPKFIDAAK-ISNPDERLEAVHEALML--LPPAHYETLRYLM 133
                         90       100       110       120       130
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 465984348 198 KHFFRLCQTSSKNLLNARSLAEIFSPLLFK----FQLGSSDNAEHLIKILEVLITSE 250
Cdd:cd04372  134 EHLKRVTLHEKDNKMNAENLGIVFGPTLMRppedSALTTLNDMRYQILIVQLLITNE 190
SH2_Tec_family cd09934
Src homology 2 (SH2) domain found in Tec-like proteins; The Tec protein tyrosine kinase is the ...
577-655 6.08e-15

Src homology 2 (SH2) domain found in Tec-like proteins; The Tec protein tyrosine kinase is the founding member of a family that includes Btk, Itk, Bmx, and Txk. The members have a PH domain, a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. Btk is involved in B-cell receptor signaling with mutations in Btk responsible for X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. Itk is involved in T-cell receptor signaling. Tec is expressed in both T and B cells, and is thought to function in activated and effector T lymphocytes to induce the expression of genes regulated by NFAT transcription factors. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198188  Cd Length: 104  Bit Score: 70.89  E-value: 6.08e-15
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGK-RDGTFLVRESSKQGCYACSV----VVDGEVKHCVINKTPTG-YGFAEPYnLYSSLKELVLH 650
Cdd:cd09934    8 WYVGDMSRQRAESLLKQEdKEGCFVVRNSSTKGLYTVSLftkvPGSPHVKHYHIKQNARSeFYLAEKH-CFETIPELINY 86

                 ....*
gi 465984348 651 YQHTS 655
Cdd:cd09934   87 HQHNS 91
SH2_SOCS6 cd10387
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
286-365 1.56e-14

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198250  Cd Length: 100  Bit Score: 69.87  E-value: 1.56e-14
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDASTKMHgDYTLTLRKGGNNKLIKIFHRDGKYGF---SDPLTFNSVVELINHYR 362
Cdd:cd10387   12 WYWGPITRWEAEGKLANVPDGSFLVRDSSDDRY-LLSLSFRSHGKTLHTRIEHSNGRFSFyeqPDVEGHTSIVDLIEHSI 90

                 ...
gi 465984348 363 NES 365
Cdd:cd10387   91 RDS 93
SH2_SOCS2 cd10383
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
280-361 1.07e-13

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198246  Cd Length: 103  Bit Score: 67.60  E-value: 1.07e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 280 SLQDAEWYWGDISREEVNEKLRDTADGTFLVRDAStkmHGDYTLTL----RKGGNNklIKIFHRDGKYGFsDPLT----- 350
Cdd:cd10383    3 ELSQTGWYWGSMTVNEAKEKLQDAPEGTFLVRDSS---HSDYLLTIsvktSAGPTN--LRIEYQDGKFRL-DSIIcvksk 76
                         90
                 ....*....|....
gi 465984348 351 ---FNSVVELINHY 361
Cdd:cd10383   77 lkqFDSVVHLIEYY 90
SH2_csk_like cd09937
Src homology 2 (SH2) domain found in Carboxyl-Terminal Src Kinase (Csk); Both the C-terminal ...
286-365 1.47e-13

Src homology 2 (SH2) domain found in Carboxyl-Terminal Src Kinase (Csk); Both the C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) are members of the CSK-family of protein tyrosine kinases. These proteins suppress activity of Src-family kinases (SFK) by selectively phosphorylating the conserved C-terminal tail regulatory tyrosine by a similar mechanism. CHK is also capable of inhibiting SFKs by a non-catalytic mechanism that involves binding of CHK to SFKs to form stable protein complexes. The unphosphorylated form of SFKs is inhibited by CSK and CHK by a two-step mechanism. The first step involves the formation of a complex of SFKs with CSK/CHK with the SFKs in the complex are inactive. The second step, involves the phosphorylation of the C-terminal tail tyrosine of SFKs, which then dissociates and adopt an inactive conformation. The structural basis of how the phosphorylated SFKs dissociate from CSK/CHK to adopt the inactive conformation is not known. The inactive conformation of SFKs is stabilized by two intramolecular inhibitory interactions: (a) the pYT:SH2 interaction in which the phosphorylated C-terminal tail tyrosine (YT) binds to the SH2 domain, and (b) the linker:SH3 interaction of which the SH2-kinase domain linker binds to the SH3 domain. SFKs are activated by multiple mechanisms including binding of the ligands to the SH2 and SH3 domains to displace the two inhibitory intramolecular interactions, autophosphorylation, and dephosphorylation of YT. By selective phosphorylation and the non-catalytic inhibitory mechanism CSK and CHK are able to inhibit the active forms of SFKs. CSK and CHK are regulated by phosphorylation and inter-domain interactions. They both contain SH3, SH2, and kinase domains separated by the SH3-SH2 connector and SH2 kinase linker, intervening segments separating the three domains. They lack a conserved tyrosine phosphorylation site in the kinase domain and the C-terminal tail regulatory tyrosine phosphorylation site. The CSK SH2 domain is crucial for stabilizing the kinase domain in the active conformation. A disulfide bond here regulates CSK kinase activity. The subcellular localization and activity of CSK are regulated by its SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198190  Cd Length: 98  Bit Score: 66.93  E-value: 1.47e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDaSTKMHGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVELINHYRNES 365
Cdd:cd09937    5 WFHGKISREEAERLLQPPEDGLFLVRE-STNYPGDYTLCVSFEGKVEHYRVIYRNGKLTIDEEEYFENLIQLVEHYTKDA 83
SH2_ABL cd09935
Src homology 2 (SH2) domain found in Abelson murine lymphosarcoma virus (ABL) proteins; ...
573-670 5.41e-13

Src homology 2 (SH2) domain found in Abelson murine lymphosarcoma virus (ABL) proteins; ABL-family proteins are highly conserved tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3-Src homology 2-tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. By combining this cassette with actin-binding and -bundling domain, ABL proteins are capable of connecting phosphoregulation with actin-filament reorganization. Vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain which is used to mediate DNA damage-repair functions, while ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. SH2 is involved in several autoinhibitory mechanism that constrain the enzymatic activity of the ABL-family kinases. In one mechanism SH2 and SH3 cradle the kinase domain while a cap sequence stabilizes the inactive conformation resulting in a locked inactive state. Another involves phosphatidylinositol 4,5-bisphosphate (PIP2) which binds the SH2 domain through residues normally required for phosphotyrosine binding in the linker segment between the SH2 and kinase domains. The SH2 domain contributes to ABL catalytic activity and target site specificity. It is thought that the ABL catalytic site and SH2 pocket have coevolved to recognize the same sequences. Recent work now supports a hierarchical processivity model in which the substrate target site most compatible with ABL kinase domain preferences is phosphorylated with greatest efficiency. If this site is compatible with the ABL SH2 domain specificity, it will then reposition and dock in the SH2 pocket. This mechanism also explains how ABL kinases phosphorylates poor targets on the same substrate if they are properly positioned and how relatively poor substrate proteins might be recruited to ABL through a complex with strong substrates that can also dock with the SH2 pocket. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198189  Cd Length: 94  Bit Score: 65.10  E-value: 5.41e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 573 DERTWNVGNINRSQAENLLRGKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELVLHY 651
Cdd:cd09935    1 EKHSWYHGPISRNAAEYLLSSGINGSFLVRESeSSPGQYSISLRYDGRVYHYRISEDSDGKVYVTQEHRFNTLAELVHHH 80
                         90
                 ....*....|....*....
gi 465984348 652 QhtslvQHNDSLNVTLAYP 670
Cdd:cd09935   81 S-----KNADGLITTLRYP 94
RhoGAP_fRGD1 cd04398
RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
112-247 7.62e-13

RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal RGD1-like proteins. Yeast Rgd1 is a GAP protein for Rho3 and Rho4 and plays a role in low-pH response. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239863  Cd Length: 192  Bit Score: 67.43  E-value: 7.62e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 112 KIVEAIEKK-DASSMDFEPI---DVQILADALKRYLLDLPNSVIPASVYSEMISGAQ---EVQSSDEYAQLLKKLirsPN 184
Cdd:cd04398   49 KLKELFDKDpLNVLLISPEDyesDIHSVASLLKLFFRELPEPLLTKALSREFIEAAKiedESRRRDALHGLINDL---PD 125
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 465984348 185 ipHQYWlTLQYLLKHFFRLCQTSSKNLLNARSLAEIFSPLLFKfqlGSSDNAEHL---IKILEVLI 247
Cdd:cd04398  126 --ANYA-TLRALMFHLARIKEHESVNRMSVNNLAIIWGPTLMN---AAPDNAADMsfqSRVIETLL 185
SH2_Tec_Btk cd10397
Src homology 2 (SH2) domain found in Tec protein, Bruton's tyrosine kinase (Btk); A member of ...
577-671 9.06e-13

Src homology 2 (SH2) domain found in Tec protein, Bruton's tyrosine kinase (Btk); A member of the Tec protein tyrosine kinase Btk is expressed in bone marrow, spleen, all hematopoietic cells except T lymphocytes and plasma cells where it plays a crucial role in B cell maturation and mast cell activation. Btk has been shown to interact with GNAQ, PLCG2, protein kinase D1, B-cell linker, SH3BP5, caveolin 1, ARID3A, and GTF2I. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. Btk is implicated in the primary immunodeficiency disease X-linked agammaglobulinemia (Bruton's agammaglobulinemia). The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains and it's lack of presence in Txk is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. Two tyrosine phosphorylation (pY) sites have been identified in Btk: one located in the activation loop of the catalytic domain which regulates the transition between open (active) and closed (inactive) states and the other in its SH3 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198260 [Multi-domain]  Cd Length: 106  Bit Score: 64.86  E-value: 9.06e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGK-RDGTFLVRESSKQGCYACSVVV------DGEVKHCVINKTPTGYGFAEPYNLYSSLKELVL 649
Cdd:cd10397    8 WYSKNMTRSQAEQLLKQEgKEGGFIVRDSSKAGKYTVSVFAksagdpQGVIRHYVVCSTPQSQYYLAEKHLFSTIPELIN 87
                         90       100
                 ....*....|....*....|..
gi 465984348 650 HYQHTSLvqhndSLNVTLAYPV 671
Cdd:cd10397   88 YHQHNAA-----GLISRLKYPV 104
SH2_Tec_Bmx cd10399
Src homology 2 (SH2) domain found in Tec protein, Bmx; A member of the Tec protein tyrosine ...
573-655 1.73e-12

Src homology 2 (SH2) domain found in Tec protein, Bmx; A member of the Tec protein tyrosine kinase Bmx is expressed in the endothelium of large arteries, fetal endocardium, adult endocardium of the left ventricle, bone marrow, lung, testis, granulocytes, myeloid cell lines, and prostate cell lines. Bmx is involved in the regulation of Rho and serum response factor (SRF). Bmx has been shown to interact with PAK1, PTK2, PTPN21, and RUFY1. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains. It is not present in Txk and the type 1 splice form of the Drosophila homolog. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198262  Cd Length: 106  Bit Score: 64.21  E-value: 1.73e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 573 DERTWNVGNINRSQAENLLRGK-RDGTFLVRESSKQGCYACSVVV------DGEVKHCVINKTPTG-YGFAEPYnLYSSL 644
Cdd:cd10399    4 DAYDWFAGNISRSQSEQLLRQKgKEGAFMVRNSSQVGMYTVSLFSkavndkKGTVKHYHVHTNAENkLYLAENY-CFDSI 82
                         90
                 ....*....|.
gi 465984348 645 KELVLHYQHTS 655
Cdd:cd10399   83 PKLIHYHQHNS 93
RhoGAP_ARHGAP21 cd04395
RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
131-249 1.84e-12

RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP21-like proteins. ArhGAP21 is a multi-domain protein, containing RhoGAP, PH and PDZ domains, and is believed to play a role in the organization of the cell-cell junction complex. It has been shown to function as a GAP of Cdc42 and RhoA, and to interact with alpha-catenin and Arf6. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239860  Cd Length: 196  Bit Score: 66.65  E-value: 1.84e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 131 DVQILADALKRYLLDLPNSVIPASVYSEMISgAQEVQSSDEYAQLLKKLIRSpnIPHQYWLTLQYLLKHFFRLCQTSSKN 210
Cdd:cd04395   72 DVNVVSSLLKSFFRKLPEPLFTNELYPDFIE-ANRIEDPVERLKELRRLIHS--LPDHHYETLKHLIRHLKTVADNSEVN 148
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|....*.
gi 465984348 211 LLNARSLAEIFSPLLFKfqlGSSDNAEHLI-------KILEVLITS 249
Cdd:cd04395  149 KMEPRNLAIVFGPTLVR---TSDDNMETMVthmpdqcKIVETLIQH 191
RhoGAP_ARHGAP27_15_12_9 cd04403
RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ...
118-249 3.02e-12

RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP27 (also called CAMGAP1), ARHGAP15, 12 and 9-like proteins; This subgroup of ARHGAPs are multidomain proteins that contain RhoGAP, PH, SH3 and WW domains. Most members that are studied show GAP activity towards Rac1, some additionally show activity towards Cdc42. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239868 [Multi-domain]  Cd Length: 187  Bit Score: 65.88  E-value: 3.02e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 118 EKKDASSMDFEpiDVQILADALKRYLLDLPNSVIPASVYSEMISgAQEVQSSDEYAQLLKKLIRS-PNIPHQywlTLQYL 196
Cdd:cd04403   58 EKLDLDDSKWE--DIHVITGALKLFFRELPEPLFPYSLFNDFVA-AIKLSDYEQRVSAVKDLIKSlPKPNHD---TLKML 131
                         90       100       110       120       130
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 465984348 197 LKHFFRLCQTSSKNLLNARSLAEIFSPLLFKFQLGSSDNAEHLI---KILEVLITS 249
Cdd:cd04403  132 FRHLCRVIEHGEKNRMTTQNLAIVFGPTLLRPEQETGNIAVHMVyqnQIVELILLE 187
SH2_SOCS7 cd10388
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
280-358 5.11e-12

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198251  Cd Length: 101  Bit Score: 62.76  E-value: 5.11e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 280 SLQDAEWYWGDISREEVNEKLRDTADGTFLVRDASTKMHgDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTF----NSVV 355
Cdd:cd10388    6 ELKDCGWYWGPMSWEDAEKVLSNKPDGSFLVRDSSDDRY-IFSLSFRSQGSVHHTRIEQYQGTFSLGSRNKFvdrsQSLV 84

                 ...
gi 465984348 356 ELI 358
Cdd:cd10388   85 EFI 87
SH2_CIS cd10718
Src homology 2 (SH2) domain found in cytokine-inducible SH2-containing protein (CIS); CIS ...
281-361 6.12e-12

Src homology 2 (SH2) domain found in cytokine-inducible SH2-containing protein (CIS); CIS family members are known to be cytokine-inducible negative regulators of cytokine signaling. The expression of the CIS gene can be induced by IL2, IL3, GM-CSF and EPO in hematopoietic cells. Proteasome-mediated degradation of this protein has been shown to be involved in the inactivation of the erythropoietin receptor. Suppressor of cytokine signalling (SOCS) was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198285  Cd Length: 88  Bit Score: 62.08  E-value: 6.12e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 281 LQDAEWYWGDISREEVNEKLRDTADGTFLVRDAStkmHGDYTLTL----RKGGNNklIKIFHRDGKY-------GFSDPL 349
Cdd:cd10718    1 LRESGWYWGSITASEAHQALQKAPEGTFLVRDSS---HPSYMLTLsvktTRGPTN--VRIEYSDGSFrldssslARPRLL 75
                         90
                 ....*....|..
gi 465984348 350 TFNSVVELINHY 361
Cdd:cd10718   76 SFPDVVSLVQHY 87
SH2_C-SH2_PLC_gamma_like cd09932
C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a ...
572-671 7.21e-12

C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198186  Cd Length: 104  Bit Score: 62.28  E-value: 7.21e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 572 HDERTWNVGNINRSQAENLL-RGKRDGTFLVRESSK-QGCYACSVVVDGEVKHCVINKTPTGY--GFAEpynlYSSLKEL 647
Cdd:cd09932    1 HESKEWFHANLTREQAEEMLmRVPRDGAFLVRPSETdPNSFAISFRAEGKIKHCRIKQEGRLFviGTSQ----FESLVEL 76
                         90       100
                 ....*....|....*....|....
gi 465984348 648 VLHYQHTSLVQhndslNVTLAYPV 671
Cdd:cd09932   77 VSYYEKHPLYR-----KIKLRYPV 95
SH2_Vav2 cd10406
Src homology 2 (SH2) domain found in the Vav2 proteins; Proto-oncogene vav is a member of the ...
577-670 1.16e-11

Src homology 2 (SH2) domain found in the Vav2 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav2 is a GEF for RhoA, RhoB and RhoG and may activate Rac1 and Cdc42. Vav2 has been shown to interact with CD19 and Grb2. Alternatively spliced transcript variants encoding different isoforms have been found for Vav2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198269  Cd Length: 103  Bit Score: 61.62  E-value: 1.16e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVRESSKQG-CYACSVVVDGEVKHCVINKTPTGYGFAEPYNlYSSLKELVLHYQHTS 655
Cdd:cd10406    7 WFAGNMERQQTDNLLKSHASGTYLIRERPAEAeRFAISIKFNDEVKHIKVVEKDNWIHITEAKK-FESLLELVEYYQCHS 85
                         90
                 ....*....|....*
gi 465984348 656 LVQHNDSLNVTLAYP 670
Cdd:cd10406   86 LKESFKQLDTTLKYP 100
RhoGAP_GMIP_PARG1 cd04378
RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
126-248 1.17e-11

RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein) and PARG1 (PTPL1-associated RhoGAP1). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239843  Cd Length: 203  Bit Score: 64.37  E-value: 1.17e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 126 DFEPIDVqilADALKRYLLDLPNSVIPASVYSEMISGAQEVQSSDEYAQLLKKLIRSPNI-----------PHQYWLTLQ 194
Cdd:cd04378   65 ELSPHDI---SSVLKLFLRQLPEPLILFRLYNDFIALAKEIQRDTEEDKAPNTPIEVNRIirklkdllrqlPASNYNTLQ 141
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 465984348 195 YLLKHFFRLCQTSSKNLLNARSLAEIFSPLLFKFQLGSSD-------NAEHLIKILEVLIT 248
Cdd:cd04378  142 HLIAHLYRVAEQFEENKMSPNNLGIVFGPTLIRPRPGDADvslsslvDYGYQARLVEFLIT 202
SH2_Tec_Txk cd10398
Src homology 2 (SH2) domain found in Tec protein, Txk; A member of the Tec protein tyrosine ...
577-671 1.54e-11

Src homology 2 (SH2) domain found in Tec protein, Txk; A member of the Tec protein tyrosine kinase Txk is expressed in thymus, spleen, lymph node, T lymphocytes, NK cells, mast cell lines, and myeloid cell line. Txk plays a role in TCR signal transduction, T cell development, and selection which is analogous to the function of Itk. Txk has been shown to interact with IFN-gamma. Unlike most of the Tec family members Txk lacks a PH domain. Instead Txk has a unique region containing a palmitoylated cysteine string which has a similar membrane tethering function as the PH domain. Txk also has a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP and crucial to the function of the PH domain. It is not present in Txk which is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198261  Cd Length: 106  Bit Score: 61.50  E-value: 1.54e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGK-RDGTFLVRESSKQGCYACSVVV------DGEVKHCVINKTPTGYGFAEPYNLYSSLKELVL 649
Cdd:cd10398    8 WYHKNITRNQAERLLRQEsKEGAFIVRDSRHLGSYTISVFTrarrstEASIKHYQIKKNDSGQWYVAERHLFQSIPELIQ 87
                         90       100
                 ....*....|....*....|..
gi 465984348 650 HYQHTSLvqhndSLNVTLAYPV 671
Cdd:cd10398   88 YHQHNAA-----GLMSRLRYPV 104
SH2_Vav3 cd10407
Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the ...
286-380 1.81e-11

Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav3 preferentially activates RhoA, RhoG and, to a lesser extent, Rac1. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. VAV3 has been shown to interact with Grb2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198270  Cd Length: 103  Bit Score: 61.17  E-value: 1.81e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDaSTKMHGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVELINHYRNES 365
Cdd:cd10407    7 WYAGAMERLQAETELINRVNSTYLVRH-RTKESGEYAISIKYNNEVKHIKILTRDGFFHIAENRKFKSLMELVEYYKHHS 85
                         90
                 ....*....|....*
gi 465984348 366 LAQYNPKLDVKLLYP 380
Cdd:cd10407   86 LKEGFRSLDTTLQFP 100
SH2_C-SH2_SHP_like cd09931
C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The ...
577-673 1.86e-11

C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The SH2 domain phosphatases (SHP-1, SHP-2/Syp, Drosophila corkscrew (csw), and Caenorhabditis elegans Protein Tyrosine Phosphatase (Ptp-2)) are cytoplasmic signaling enzymes. They are both targeted and regulated by interactions of their SH2 domains with phosphotyrosine docking sites. These proteins contain two SH2 domains (N-SH2, C-SH2) followed by a tyrosine phosphatase (PTP) domain, and a C-terminal extension. Shp1 and Shp2 have two tyrosyl phosphorylation sites in their C-tails, which are phosphorylated differentially by receptor and nonreceptor PTKs. Csw retains the proximal tyrosine and Ptp-2 lacks both sites. Shp-binding proteins include receptors, scaffolding adapters, and inhibitory receptors. Some of these bind both Shp1 and Shp2 while others bind only one. Most proteins that bind a Shp SH2 domain contain one or more immuno-receptor tyrosine-based inhibitory motifs (ITIMs): [SIVL]xpYxx[IVL]. Shp1 N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, and is thus believed to regulate the phosphatase activity of SHP-1. Its C-SH2 domain is thought to be involved in searching for phosphotyrosine activators. The SHP2 N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. The C-SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation. Csw SH2 domain function is essential, but either SH2 domain can fulfill this requirement. The role of the csw SH2 domains during Sevenless receptor tyrosine kinase (SEV) signaling is to bind Daughter of Sevenless rather than activated SEV. Ptp-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote major sperm protein (MSP)-induced MAP Kinase (MPK-1) phosphorylation. Ptp-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. It is thought that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation and that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198185  Cd Length: 99  Bit Score: 60.76  E-value: 1.86e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGK-RDGTFLVRES-SKQGCYACSVVV-DGEVKHCVINKTptgygfAEPYNL-----YSSLKELV 648
Cdd:cd09931    2 WFHGHLSGKEAEKLLLEKgKPGSFLVRESqSKPGDFVLSVRTdDDKVTHIMIRCQ------GGKYDVgggeeFDSLTDLV 75
                         90       100
                 ....*....|....*....|....*
gi 465984348 649 LHYQHTSLVQHNDSLnVTLAYPVYT 673
Cdd:cd09931   76 EHYKKNPMVETSGTV-VHLKQPLNA 99
SH2_Src_family cd09933
Src homology 2 (SH2) domain found in the Src family of non-receptor tyrosine kinases; The Src ...
285-365 2.18e-11

Src homology 2 (SH2) domain found in the Src family of non-receptor tyrosine kinases; The Src family kinases are nonreceptor tyrosine kinases that have been implicated in pathways regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. It is thought that transforming ability of Src is linked to its ability to activate key signaling molecules in these pathways, rather than through direct activity. As such blocking Src activation has been a target for drug companies. Src family members can be divided into 3 groups based on their expression pattern: 1) Src, Fyn, and Yes; 2) Blk, Fgr, Hck, Lck, and Lyn; and 3) Frk-related kinases Frk/Rak and Iyk/Bsk Of these, cellular c-Src is the best studied and most frequently implicated in oncogenesis. The c-Src contains five distinct regions: a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Src exists in both active and inactive conformations. Negative regulation occurs through phosphorylation of Tyr, resulting in an intramolecular association between phosphorylated Tyr and the SH2 domain of SRC, which locks the protein in a closed conformation. Further stabilization of the inactive state occurs through interactions between the SH3 domain and a proline-rich stretch of residues within the kinase domain. Conversely, dephosphorylation of Tyr allows SRC to assume an open conformation. Full activity requires additional autophosphorylation of a Tyr residue within the catalytic domain. Loss of the negative-regulatory C-terminal segment has been shown to result in increased activity and transforming potential. Phosphorylation of the C-terminal Tyr residue by C-terminal Src kinase (Csk) and Csk homology kinase results in increased intramolecular interactions and consequent Src inactivation. Specific phosphatases, protein tyrosine phosphatase a (PTPa) and the SH-containing phosphatases SHP1/SHP2, have also been shown to take a part in Src activation. Src is also activated by direct binding of focal adhesion kinase (Fak) and Crk-associated substrate (Cas) to the SH2 domain. SRC activity can also be regulated by numerous receptor tyrosine kinases (RTKs), such as Her2, epidermal growth factor receptor (EGFR), fibroblast growth factor receptor, platelet-derived growth factor receptor (PDGFR), and vascular endothelial growth factor receptor (VEGFR). In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199827  Cd Length: 101  Bit Score: 60.67  E-value: 2.18e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 285 EWYWGDISREEVNEKL--RDTADGTFLVRDASTKmHGDYTLTLR-----KGGNNKLIKIFHRD-GKYGFSDPLTFNSVVE 356
Cdd:cd09933    4 EWFFGKIKRKDAEKLLlaPGNPRGTFLIRESETT-PGAYSLSVRdgddaRGDTVKHYRIRKLDnGGYYITTRATFPTLQE 82

                 ....*....
gi 465984348 357 LINHYRNES 365
Cdd:cd09933   83 LVQHYSKDA 91
SH2_Src_family cd09933
Src homology 2 (SH2) domain found in the Src family of non-receptor tyrosine kinases; The Src ...
577-670 4.90e-11

Src homology 2 (SH2) domain found in the Src family of non-receptor tyrosine kinases; The Src family kinases are nonreceptor tyrosine kinases that have been implicated in pathways regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. It is thought that transforming ability of Src is linked to its ability to activate key signaling molecules in these pathways, rather than through direct activity. As such blocking Src activation has been a target for drug companies. Src family members can be divided into 3 groups based on their expression pattern: 1) Src, Fyn, and Yes; 2) Blk, Fgr, Hck, Lck, and Lyn; and 3) Frk-related kinases Frk/Rak and Iyk/Bsk Of these, cellular c-Src is the best studied and most frequently implicated in oncogenesis. The c-Src contains five distinct regions: a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Src exists in both active and inactive conformations. Negative regulation occurs through phosphorylation of Tyr, resulting in an intramolecular association between phosphorylated Tyr and the SH2 domain of SRC, which locks the protein in a closed conformation. Further stabilization of the inactive state occurs through interactions between the SH3 domain and a proline-rich stretch of residues within the kinase domain. Conversely, dephosphorylation of Tyr allows SRC to assume an open conformation. Full activity requires additional autophosphorylation of a Tyr residue within the catalytic domain. Loss of the negative-regulatory C-terminal segment has been shown to result in increased activity and transforming potential. Phosphorylation of the C-terminal Tyr residue by C-terminal Src kinase (Csk) and Csk homology kinase results in increased intramolecular interactions and consequent Src inactivation. Specific phosphatases, protein tyrosine phosphatase a (PTPa) and the SH-containing phosphatases SHP1/SHP2, have also been shown to take a part in Src activation. Src is also activated by direct binding of focal adhesion kinase (Fak) and Crk-associated substrate (Cas) to the SH2 domain. SRC activity can also be regulated by numerous receptor tyrosine kinases (RTKs), such as Her2, epidermal growth factor receptor (EGFR), fibroblast growth factor receptor, platelet-derived growth factor receptor (PDGFR), and vascular endothelial growth factor receptor (VEGFR). In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199827  Cd Length: 101  Bit Score: 59.90  E-value: 4.90e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLL---RGKRdGTFLVRES-SKQGCYACSVVvDGE------VKHCVINKTPTGYGFAEPYNLYSSLKE 646
Cdd:cd09933    5 WFFGKIKRKDAEKLLlapGNPR-GTFLIRESeTTPGAYSLSVR-DGDdargdtVKHYRIRKLDNGGYYITTRATFPTLQE 82
                         90       100
                 ....*....|....*....|....
gi 465984348 647 LVLHYQhtslvQHNDSLNVTLAYP 670
Cdd:cd09933   83 LVQHYS-----KDADGLCCRLTVP 101
SH2_Tec_family cd09934
Src homology 2 (SH2) domain found in Tec-like proteins; The Tec protein tyrosine kinase is the ...
280-382 6.72e-11

Src homology 2 (SH2) domain found in Tec-like proteins; The Tec protein tyrosine kinase is the founding member of a family that includes Btk, Itk, Bmx, and Txk. The members have a PH domain, a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. Btk is involved in B-cell receptor signaling with mutations in Btk responsible for X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. Itk is involved in T-cell receptor signaling. Tec is expressed in both T and B cells, and is thought to function in activated and effector T lymphocytes to induce the expression of genes regulated by NFAT transcription factors. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198188  Cd Length: 104  Bit Score: 59.34  E-value: 6.72e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 280 SLQDAEWYWGDISREEVNEKLRDTA-DGTFLVRDASTKmhGDYTLTL-RKGGNNKLIKIFH----RDGKYGFSDPLTFNS 353
Cdd:cd09934    2 NLEKYEWYVGDMSRQRAESLLKQEDkEGCFVVRNSSTK--GLYTVSLfTKVPGSPHVKHYHikqnARSEFYLAEKHCFET 79
                         90       100       110
                 ....*....|....*....|....*....|
gi 465984348 354 VVELINHYrneslaQYNPK-LDVKLLYPVS 382
Cdd:cd09934   80 IPELINYH------QHNSGgLATRLKYPVC 103
SH2_BLNK_SLP-76 cd09929
Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing ...
280-381 9.03e-11

Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing leukocyte protein of 76 kDa (SLP-76); BLNK (also known as SLP-65 or BASH) is an important adaptor protein expressed in B-lineage cells. BLNK consists of a N-terminal sterile alpha motif (SAM) domain and a C-terminal SH2 domain. BLNK is a cytoplasmic protein, but a part of it is bound to the plasma membrane through an N-terminal leucine zipper motif and transiently bound to a cytoplasmic domain of Iga through its C-terminal SH2 domain upon B cell antigen receptor (BCR)-stimulation. A non-ITAM phosphotyrosine in Iga is necessary for the binding with the BLNK SH2 domain and/or for normal BLNK function in signaling and B cell activation. Upon phosphorylation BLNK binds Btk and PLCgamma2 through their SH2 domains and mediates PLCgamma2 activation by Btk. BLNK also binds other signaling molecules such as Vav, Grb2, Syk, and HPK1. BLNK has been shown to be necessary for BCR-mediated Ca2+ mobilization, for the activation of mitogen-activated protein kinases such as ERK, JNK, and p38 in a chicken B cell line DT40, and for activation of transcription factors such as NF-AT and NF-kappaB in human or mouse B cells. BLNK is involved in B cell development, B cell survival, activation, proliferation, and T-independent immune responses. BLNK is structurally homologous to SLP-76. SLP-76 and (linker for activation of T cells) LAT are adaptor/linker proteins in T cell antigen receptor activation and T cell development. BLNK interacts with many downstream signaling proteins that interact directly with both SLP-76 and LAT. New data suggest functional complementation of SLP-76 and LAT in T cell antigen receptor function with BLNK in BCR function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198183  Cd Length: 121  Bit Score: 59.63  E-value: 9.03e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 280 SLQDAEWYWGDISREEVNEKLRDTA-DGTFLVRDASTKmHGDYTLTLRKGGNNKL--IKIFHRDGKYGFSdpL------- 349
Cdd:cd09929    7 DLLPKEWYAGNIDRKEAEEALRRSNkDGTFLVRDSSGK-DSSQPYTLMVLYNDKVynIQIRFLENTRQYA--Lgtglrge 83
                         90       100       110
                 ....*....|....*....|....*....|....*..
gi 465984348 350 -TFNSVVELINHYRNESL----AQYNPKLDVKLLYPV 381
Cdd:cd09929   84 eTFSSVAEIIEHHQKTPLllidGKDNTKDSTCLLYAA 120
SH2_Nck_family cd09943
Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate ...
285-362 1.11e-10

Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198196  Cd Length: 93  Bit Score: 58.68  E-value: 1.11e-10
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 465984348 285 EWYWGDISREEVNEKLRDTA-DGTFLVRDASTKMhGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPlTFNSVVELINHYR 362
Cdd:cd09943    2 PWYYGRITRHQAETLLNEHGhEGDFLIRDSESNP-GDYSVSLKAPGRNKHFKVQVVDNVYCIGQR-KFHTMDELVEHYK 78
SH2_N-SH2_PLC_gamma_like cd10341
N-terminal Src homology 2 (N-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a ...
285-366 4.96e-10

N-terminal Src homology 2 (N-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199829  Cd Length: 99  Bit Score: 56.98  E-value: 4.96e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 285 EWYWGDIS--REEVNEKLRDTA---DGTFLVRDaSTKMHGDYTLTLRKGGNNKLIKIFHRDG----KYGFSDPLTFNSVV 355
Cdd:cd10341    5 PWFHGKLGdgRDEAEKLLLEYCeggDGTFLVRE-SETFVGDYTLSFWRNGKVQHCRIRSRQEngekKYYLTDNLVFDSLY 83
                         90
                 ....*....|.
gi 465984348 356 ELINHYRNESL 366
Cdd:cd10341   84 ELIDYYRQNPL 94
SH2_Vav1 cd10405
Src homology 2 (SH2) domain found in the Vav1 proteins; Proto-oncogene vav is a member of the ...
568-670 5.17e-10

Src homology 2 (SH2) domain found in the Vav1 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav1 plays a role in T-cell and B-cell development and activation. It has been identified as the specific binding partner of Nef proteins from HIV-1, resulting in morphological changes, cytoskeletal rearrangements, and the JNK/SAPK signaling cascade, leading to increased levels of viral transcription and replication. Vav1 has been shown to interact with Ku70, PLCG1, Lymphocyte cytosolic protein 2, Janus kinase 2, SIAH2, S100B, Abl gene, ARHGDIB, SHB, PIK3R1, PRKCQ, Grb2, MAPK1, Syk, Linker of activated T cells, Cbl gene and EZH2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198268  Cd Length: 103  Bit Score: 56.95  E-value: 5.17e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 568 DLPHHderTWNVGNINRSQAENLLRGKRDGTFLVRESSKQ-GCYACSVVVDGEVKHCVINKTPTGYGFAEPyNLYSSLKE 646
Cdd:cd10405    1 DLSVH---LWYAGPMERAGAESILANRSDGTYLVRQRVKDaAEFAISIKYNVEVKHIKIMTAEGLYRITEK-KAFRGLTE 76
                         90       100
                 ....*....|....*....|....
gi 465984348 647 LVLHYQHTSLVQHNDSLNVTLAYP 670
Cdd:cd10405   77 LVEFYQQNSLKDCFKSLDTTLQFP 100
SH2_Vav3 cd10407
Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the ...
577-670 6.56e-10

Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav3 preferentially activates RhoA, RhoG and, to a lesser extent, Rac1. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. VAV3 has been shown to interact with Grb2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198270  Cd Length: 103  Bit Score: 56.55  E-value: 6.56e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVRESSKQ-GCYACSVVVDGEVKHCVInKTPTGYGFAEPYNLYSSLKELVLHYQHTS 655
Cdd:cd10407    7 WYAGAMERLQAETELINRVNSTYLVRHRTKEsGEYAISIKYNNEVKHIKI-LTRDGFFHIAENRKFKSLMELVEYYKHHS 85
                         90
                 ....*....|....*
gi 465984348 656 LVQHNDSLNVTLAYP 670
Cdd:cd10407   86 LKEGFRSLDTTLQFP 100
SH2_CRK_like cd09926
Src homology 2 domain found in cancer-related signaling adaptor protein CRK; SH2 domain in the ...
286-326 1.07e-09

Src homology 2 domain found in cancer-related signaling adaptor protein CRK; SH2 domain in the CRK proteins. CRKI (SH2-SH3) and CRKII (SH2-SH3-SH3) are splicing isoforms of the oncoprotein CRK. CRKs regulate transcription and cytoskeletal reorganization for cell growth and motility by linking tyrosine kinases to small G proteins. The SH2 domain of CRK associates with tyrosine-phosphorylated receptors or components of focal adhesions, such as p130Cas and paxillin. CRK transmits signals to small G proteins through effectors that bind its SH3 domain, such as C3G, the guanine-nucleotide exchange factor (GEF) for Rap1 and R-Ras, and DOCK180, the GEF for Rac6. The binding of p130Cas to the CRK-C3G complex activates Rap1, leading to regulation of cell adhesion, and activates R-Ras, leading to JNK-mediated activation of cell proliferation, whereas the binding of CRK DOCK180 induces Rac1-mediated activation of cellular migration. The activity of the different splicing isoforms varies greatly with CRKI displaying substantial transforming activity, CRKII less so, and phosphorylated CRKII with no biological activity whatsoever. CRKII has a linker region with a phosphorylated Tyr and an additional C-terminal SH3 domain. The phosphorylated Tyr creates a binding site for its SH2 domain which disrupts the association between CRK and its SH2 target proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198180 [Multi-domain]  Cd Length: 106  Bit Score: 56.33  E-value: 1.07e-09
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|.
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDASTkMHGDYTLTLR 326
Cdd:cd09926    9 WYFGPMSRQEAQELLQGQRHGVFLVRDSST-IPGDYVLSVS 48
SH2_C-SH2_SHP_like cd09931
C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The ...
286-362 1.30e-09

C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The SH2 domain phosphatases (SHP-1, SHP-2/Syp, Drosophila corkscrew (csw), and Caenorhabditis elegans Protein Tyrosine Phosphatase (Ptp-2)) are cytoplasmic signaling enzymes. They are both targeted and regulated by interactions of their SH2 domains with phosphotyrosine docking sites. These proteins contain two SH2 domains (N-SH2, C-SH2) followed by a tyrosine phosphatase (PTP) domain, and a C-terminal extension. Shp1 and Shp2 have two tyrosyl phosphorylation sites in their C-tails, which are phosphorylated differentially by receptor and nonreceptor PTKs. Csw retains the proximal tyrosine and Ptp-2 lacks both sites. Shp-binding proteins include receptors, scaffolding adapters, and inhibitory receptors. Some of these bind both Shp1 and Shp2 while others bind only one. Most proteins that bind a Shp SH2 domain contain one or more immuno-receptor tyrosine-based inhibitory motifs (ITIMs): [SIVL]xpYxx[IVL]. Shp1 N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, and is thus believed to regulate the phosphatase activity of SHP-1. Its C-SH2 domain is thought to be involved in searching for phosphotyrosine activators. The SHP2 N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. The C-SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation. Csw SH2 domain function is essential, but either SH2 domain can fulfill this requirement. The role of the csw SH2 domains during Sevenless receptor tyrosine kinase (SEV) signaling is to bind Daughter of Sevenless rather than activated SEV. Ptp-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote major sperm protein (MSP)-induced MAP Kinase (MPK-1) phosphorylation. Ptp-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. It is thought that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation and that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198185  Cd Length: 99  Bit Score: 55.75  E-value: 1.30e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTA-DGTFLVRDASTKMhGDYTLTLRKGgNNKL--IKIFHRDGKYGFSDPLTFNSVVELINHYR 362
Cdd:cd09931    2 WFHGHLSGKEAEKLLLEKGkPGSFLVRESQSKP-GDFVLSVRTD-DDKVthIMIRCQGGKYDVGGGEEFDSLTDLVEHYK 79
RhoGAP_nadrin cd04386
RhoGAP_nadrin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
131-251 1.34e-09

RhoGAP_nadrin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Nadrin-like proteins. Nadrin, also named Rich-1, has been shown to be involved in the regulation of Ca2+-dependent exocytosis in neurons and recently has been implicated in tight junction maintenance in mammalian epithelium. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239851  Cd Length: 203  Bit Score: 58.24  E-value: 1.34e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 131 DVQILADALKRYLLDLPNSVIPASVYSEMISGAQeVQSSDEYAQLLKKLIRSpnIPHQYWLTLQYLLKHFFRLCQTSSKN 210
Cdd:cd04386   73 DPHAVASALKSYLRELPDPLLTYNLYEDWVQAAN-KPDEDERLQAIWRILNK--LPRENRDNLRYLIKFLSKLAQKSDEN 149
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|....*..
gi 465984348 211 LLNARSLAEIFSP-LLFKFQLGSS-----DNAEHLIKILEVLItSEW 251
Cdd:cd04386  150 KMSPSNIAIVLAPnLLWAKNEGSLaemaaGTSVHVVAIVELII-SHA 195
SH2_Src_Src42 cd10370
Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the ...
286-365 2.04e-09

Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the Src non-receptor type tyrosine kinase family of proteins. The integration of receptor tyrosine kinase-induced RAS and Src42 signals by Connector eNhancer of KSR (CNK) as a two-component input is essential for RAF activation in Drosophila. Src42 is present in a wide variety of organisms including: California sea hare, pea aphid, yellow fever mosquito, honey bee, Panamanian leafcutter ant, and sea urchin. Src42 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198233  Cd Length: 96  Bit Score: 55.20  E-value: 2.04e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTAD--GTFLVRDASTKmHGDYTLTLRKGGNNKLIKIFHRD-GKYGFSDPLTFNSVVELINHYR 362
Cdd:cd10370    5 WYFGKIKRIEAEKKLLLPENehGAFLIRDSESR-HNDYSLSVRDGDTVKHYRIRQLDeGGFFIARRTTFRTLQELVEHYS 83

                 ...
gi 465984348 363 NES 365
Cdd:cd10370   84 KDS 86
SH2_BLNK_SLP-76 cd09929
Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing ...
564-671 2.49e-09

Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing leukocyte protein of 76 kDa (SLP-76); BLNK (also known as SLP-65 or BASH) is an important adaptor protein expressed in B-lineage cells. BLNK consists of a N-terminal sterile alpha motif (SAM) domain and a C-terminal SH2 domain. BLNK is a cytoplasmic protein, but a part of it is bound to the plasma membrane through an N-terminal leucine zipper motif and transiently bound to a cytoplasmic domain of Iga through its C-terminal SH2 domain upon B cell antigen receptor (BCR)-stimulation. A non-ITAM phosphotyrosine in Iga is necessary for the binding with the BLNK SH2 domain and/or for normal BLNK function in signaling and B cell activation. Upon phosphorylation BLNK binds Btk and PLCgamma2 through their SH2 domains and mediates PLCgamma2 activation by Btk. BLNK also binds other signaling molecules such as Vav, Grb2, Syk, and HPK1. BLNK has been shown to be necessary for BCR-mediated Ca2+ mobilization, for the activation of mitogen-activated protein kinases such as ERK, JNK, and p38 in a chicken B cell line DT40, and for activation of transcription factors such as NF-AT and NF-kappaB in human or mouse B cells. BLNK is involved in B cell development, B cell survival, activation, proliferation, and T-independent immune responses. BLNK is structurally homologous to SLP-76. SLP-76 and (linker for activation of T cells) LAT are adaptor/linker proteins in T cell antigen receptor activation and T cell development. BLNK interacts with many downstream signaling proteins that interact directly with both SLP-76 and LAT. New data suggest functional complementation of SLP-76 and LAT in T cell antigen receptor function with BLNK in BCR function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198183  Cd Length: 121  Bit Score: 55.40  E-value: 2.49e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 564 EDDEDLphhDERTWNVGNINRSQAEN-LLRGKRDGTFLVRESSKQGC---YACSVVVDGEVKHCVINKTPTGYGFAEPYN 639
Cdd:cd09929    3 EEEADL---LPKEWYAGNIDRKEAEEaLRRSNKDGTFLVRDSSGKDSsqpYTLMVLYNDKVYNIQIRFLENTRQYALGTG 79
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|.
gi 465984348 640 L-----YSSLKELVLHYQHTSLV----QHNDSLNVTLAYPV 671
Cdd:cd09929   80 LrgeetFSSVAEIIEHHQKTPLLlidgKDNTKDSTCLLYAA 120
SH2_Fps_family cd10361
Src homology 2 (SH2) domain found in feline sarcoma, Fujinami poultry sarcoma, and fes-related ...
279-361 2.60e-09

Src homology 2 (SH2) domain found in feline sarcoma, Fujinami poultry sarcoma, and fes-related (Fes/Fps/Fer) proteins; The Fps family consists of members Fps/Fes and Fer/Flk/Tyk3. They are cytoplasmic protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. Fes/Fps/Fer contains three coiled-coil regions, an SH2 (Src-homology-2) and a TK (tyrosine kinase catalytic) domain signature. Members here include: Fps/Fes, Fer, Kin-31, and In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198224  Cd Length: 90  Bit Score: 54.46  E-value: 2.60e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 279 MSLQDAEWYWGDISREEVNEKLRDtaDGTFLVRDASTKMHG--DYTLTLRKGGNNKLIkIFHRD--GKYGFsDPLTFNSV 354
Cdd:cd10361    1 KDLENEPYYHGLLPREDAEELLKN--DGDFLVRKTEPKGGGkrKLVLSVRWDGKIRHF-VINRDdgGKYYI-EGKSFKSI 76

                 ....*..
gi 465984348 355 VELINHY 361
Cdd:cd10361   77 SELINYY 83
SH2_ABL cd09935
Src homology 2 (SH2) domain found in Abelson murine lymphosarcoma virus (ABL) proteins; ...
286-362 4.19e-09

Src homology 2 (SH2) domain found in Abelson murine lymphosarcoma virus (ABL) proteins; ABL-family proteins are highly conserved tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3-Src homology 2-tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. By combining this cassette with actin-binding and -bundling domain, ABL proteins are capable of connecting phosphoregulation with actin-filament reorganization. Vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain which is used to mediate DNA damage-repair functions, while ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. SH2 is involved in several autoinhibitory mechanism that constrain the enzymatic activity of the ABL-family kinases. In one mechanism SH2 and SH3 cradle the kinase domain while a cap sequence stabilizes the inactive conformation resulting in a locked inactive state. Another involves phosphatidylinositol 4,5-bisphosphate (PIP2) which binds the SH2 domain through residues normally required for phosphotyrosine binding in the linker segment between the SH2 and kinase domains. The SH2 domain contributes to ABL catalytic activity and target site specificity. It is thought that the ABL catalytic site and SH2 pocket have coevolved to recognize the same sequences. Recent work now supports a hierarchical processivity model in which the substrate target site most compatible with ABL kinase domain preferences is phosphorylated with greatest efficiency. If this site is compatible with the ABL SH2 domain specificity, it will then reposition and dock in the SH2 pocket. This mechanism also explains how ABL kinases phosphorylates poor targets on the same substrate if they are properly positioned and how relatively poor substrate proteins might be recruited to ABL through a complex with strong substrates that can also dock with the SH2 pocket. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198189  Cd Length: 94  Bit Score: 53.93  E-value: 4.19e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDASTKMhGDYTLTLRKGGnnkliKIFH------RDGKYGFSDPLTFNSVVELIN 359
Cdd:cd09935    5 WYHGPISRNAAEYLLSSGINGSFLVRESESSP-GQYSISLRYDG-----RVYHyrisedSDGKVYVTQEHRFNTLAELVH 78

                 ...
gi 465984348 360 HYR 362
Cdd:cd09935   79 HHS 81
SH2_Grb2_like cd09941
Src homology 2 domain found in Growth factor receptor-bound protein 2 (Grb2) and similar ...
573-655 4.20e-09

Src homology 2 domain found in Growth factor receptor-bound protein 2 (Grb2) and similar proteins; The adaptor proteins here include homologs Grb2 in humans, Sex muscle abnormal protein 5 (Sem-5) in Caenorhabditis elegans, and Downstream of receptor kinase (drk) in Drosophila melanogaster. They are composed of one SH2 and two SH3 domains. Grb2/Sem-5/drk regulates the Ras pathway by linking the tyrosine kinases to the Ras guanine nucleotide releasing protein Sos, which converts Ras to the active GTP-bound state. The SH2 domain of Grb2/Sem-5/drk binds class II phosphotyrosyl peptides while its SH3 domain binds to Sos and Sos-derived, proline-rich peptides. Besides it function in Ras signaling, Grb2 is also thought to play a role in apoptosis. Unlike most SH2 structures in which the peptide binds in an extended conformation (such that the +3 peptide residue occupies a hydrophobic pocket in the protein, conferring a modest degree of selectivity), Grb2 forms several hydrogen bonds via main chain atoms with the side chain of +2 Asn. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199828  Cd Length: 95  Bit Score: 54.20  E-value: 4.20e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 573 DERTWNVGNINRSQAENLLRG-KRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTGYgfaepYNLY----SSLKE 646
Cdd:cd09941    1 KPHPWFHGKISRAEAEEILMNqRPDGAFLIRESeSSPGDFSLSVKFGNDVQHFKVLRDGAGK-----YFLWvvkfNSLNE 75

                 ....*....
gi 465984348 647 LVLHYQHTS 655
Cdd:cd09941   76 LVDYHRTTS 84
SH2_Nterm_shark_like cd10347
N-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) ...
577-651 4.41e-09

N-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins; These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in the carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198210  Cd Length: 81  Bit Score: 53.54  E-value: 4.41e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLL--RGKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTGYGFA--EPYNLYsSLKELVLHY 651
Cdd:cd10347    3 WYHGKISREVAEALLlrEGGRDGLFLVREStSAPGDYVLSLLAQGEVLHYQIRRHGEDAFFSddGPLIFH-GLDTLIEHY 81
SH2_Nck2 cd10409
Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin ...
285-362 5.80e-09

Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198272  Cd Length: 98  Bit Score: 53.89  E-value: 5.80e-09
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 465984348 285 EWYWGDISREEVNEKLRDTA-DGTFLVRDASTKmHGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPlTFNSVVELINHYR 362
Cdd:cd10409    2 EWYYGNVTRHQAECALNERGvEGDFLIRDSESS-PSDFSVSLKAVGKNKHFKVQLVDNVYCIGQR-RFNSMDELVEHYK 78
SH2_Vav2 cd10406
Src homology 2 (SH2) domain found in the Vav2 proteins; Proto-oncogene vav is a member of the ...
286-382 5.90e-09

Src homology 2 (SH2) domain found in the Vav2 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav2 is a GEF for RhoA, RhoB and RhoG and may activate Rac1 and Cdc42. Vav2 has been shown to interact with CD19 and Grb2. Alternatively spliced transcript variants encoding different isoforms have been found for Vav2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198269  Cd Length: 103  Bit Score: 53.92  E-value: 5.90e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDASTKMHgDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVELINHYRNES 365
Cdd:cd10406    7 WFAGNMERQQTDNLLKSHASGTYLIRERPAEAE-RFAISIKFNDEVKHIKVVEKDNWIHITEAKKFESLLELVEYYQCHS 85
                         90
                 ....*....|....*..
gi 465984348 366 LAQYNPKLDVKLLYPVS 382
Cdd:cd10406   86 LKESFKQLDTTLKYPYK 102
SH2_Nterm_shark_like cd10347
N-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) ...
286-361 6.64e-09

N-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins; These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in the carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198210  Cd Length: 81  Bit Score: 53.15  E-value: 6.64e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKL--RDTADGTFLVRDaSTKMHGDYTLTLRKGGNNKLIKIF-HRDGKYGFS-DPLTFNSVVELINHY 361
Cdd:cd10347    3 WYHGKISREVAEALLlrEGGRDGLFLVRE-STSAPGDYVLSLLAQGEVLHYQIRrHGEDAFFSDdGPLIFHGLDTLIEHY 81
SH2_DAPP1_BAM32_like cd10355
Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( ...
577-651 8.66e-09

Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( DAPP1)/B lymphocyte adaptor molecule of 32 kDa (Bam32)-like proteins; DAPP1/Bam32 contains a putative myristoylation site at its N-terminus, followed by a SH2 domain, and a pleckstrin homology (PH) domain at its C-terminus. DAPP1 could potentially be recruited to the cell membrane by any of these domains. Its putative myristoylation site could facilitate the interaction of DAPP1 with the lipid bilayer. Its SH2 domain may also interact with phosphotyrosine residues on membrane-associated proteins such as activated tyrosine kinase receptors. And finally its PH domain exhibits a high-affinity interaction with the PtdIns(3,4,5)P(3) PtdIns(3,4)P(2) second messengers produced at the cell membrane following the activation of PI 3-kinases. DAPP1 is thought to interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and therefore may play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2). This protein is likely to play an important role in triggering signal transduction pathways that lie downstream from receptor tyrosine kinases and PI 3-kinase. It is likely that DAPP1 functions as an adaptor to recruit other proteins to the plasma membrane in response to extracellular signals. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198218  Cd Length: 92  Bit Score: 53.25  E-value: 8.66e-09
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 465984348 577 WNVGNINRSQAEN-LLRGKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTptGYGFAEPYNLYSSLKELVLHY 651
Cdd:cd10355    8 WYHGNLTRHAAEAlLLSNGVDGSYLLRNSnEGTGLFSLSVRAKDSVKHFHVEYT--GYSFKFGFNEFSSLQDFVKHF 82
SH2_Src_Frk cd10369
Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src ...
577-670 9.54e-09

Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src non-receptor type tyrosine kinase family of proteins. The Frk subfamily is composed of Frk/Rak and Iyk/Bsk/Gst. It is expressed primarily epithelial cells. Frk is a nuclear protein and may function during G1 and S phase of the cell cycle and suppress growth. Unlike the other Src members it lacks a glycine at position 2 of SH4 which is important for addition of a myristic acid moiety that is involved in targeting Src PTKs to cellular membranes. FRK and SHB exert similar effects when overexpressed in rat phaeochromocytoma (PC12) and beta-cells, where both induce PC12 cell differentiation and beta-cell proliferation. Under conditions that cause beta-cell degeneration these proteins augment beta-cell apoptosis. The FRK-SHB responses involve FAK and insulin receptor substrates (IRS) -1 and -2. Frk has been demonstrated to interact with retinoblastoma protein. Frk regulates PTEN protein stability by phosphorylating PTEN, which in turn prevents PTEN degradation. Frk also plays a role in regulation of embryonal pancreatic beta cell formation. Frk has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its activation loop. The tryosine involved is at the same site as the tyrosine involved in the autophosphorylation of Src. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199831  Cd Length: 96  Bit Score: 52.96  E-value: 9.54e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAEN--LLRGKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELVLHYQH 653
Cdd:cd10369    5 WFFGAIKRADAEKqlLYSENQTGAFLIRESeSQKGEFSLSVLDGGVVKHYRIRRLDEGGFFLTRRKTFSTLNEFVNYYTT 84
                         90
                 ....*....|....*..
gi 465984348 654 TSlvqhnDSLNVTLAYP 670
Cdd:cd10369   85 TS-----DGLCVKLGKP 96
SH2_SHIP cd10343
Src homology 2 (SH2) domain found in SH2-containing inositol-5'-phosphatase (SHIP) and ...
577-671 1.16e-08

Src homology 2 (SH2) domain found in SH2-containing inositol-5'-phosphatase (SHIP) and SLAM-associated protein (SAP); The SH2-containing inositol-5'-phosphatase, SHIP (also called SHIP1/SHIP1a), is a hematopoietic-restricted phosphatidylinositide phosphatase that translocates to the plasma membrane after extracellular stimulation and hydrolyzes the phosphatidylinositol-3-kinase (PI3K)-generated second messenger PI-3,4,5-P3 (PIP3) to PI-3,4-P2. As a result, SHIP dampens down PIP3 mediated signaling and represses the proliferation, differentiation, survival, activation, and migration of hematopoietic cells. PIP3 recruits lipid-binding pleckstrin homology(PH) domain-containing proteins to the inner wall of the plasma membrane and activates them. PH domain-containing downstream effectors include the survival/proliferation enhancing serine/threonine kinase, Akt (protein kinase B), the tyrosine kinase, Btk, the regulator of protein translation, S6K, and the Rac and cdc42 guanine nucleotide exchange factor, Vav. SHIP is believed to act as a tumor suppressor during leukemogenesis and lymphomagenesis, and may play a role in activating the immune system to combat cancer. SHIP contains an N-terminal SH2 domain, a centrally located phosphatase domain that specifically hydrolyzes the 5'-phosphate from PIP3, PI-4,5-P2 and inositol-1,3,4,5- tetrakisphosphate (IP4), a C2 domain, that is an allosteric activating site when bound by SHIP's enzymatic product, PI-3,4-P2; 2 NPXY motifs that bind proteins with a phosphotyrosine binding (Shc, Dok 1, Dok 2) or an SH2 (p85a, SHIP2) domain; and a proline-rich domain consisting of four PxxP motifs that bind a subset of SH3-containing proteins including Grb2, Src, Lyn, Hck, Abl, PLCg1, and PIAS1. The SH2 domain of SHIP binds to the tyrosine phosphorylated forms of Shc, SHP-2, Doks, Gabs, CD150, platelet-endothelial cell adhesion molecule, Cas, c-Cbl, immunoreceptor tyrosine-based inhibitory motifs (ITIMs), and immunoreceptor tyrosine-based activation motifs (ITAMs). The X-linked lymphoproliferative syndrome (XLP) gene encodes SAP (also called SH2D1A/DSHP) a protein that consists of a 5 residue N-terminus, a single SH2 domain, and a short 25 residue C-terminal tail. XLP is characterized by an extreme sensitivity to Epstein-Barr virus. Both T and natural killer (NK) cell dysfunctions have been seen in XLP patients. SAP binds the cytoplasmic tail of Signaling lymphocytic activation molecule (SLAM), 2B4, Ly-9, and CD84. SAP is believed to function as a signaling inhibitor, by blocking or regulating binding of other signaling proteins. SAP and the SAP-like protein EAT-2 recognize the sequence motif TIpYXX(V/I), which is found in the cytoplasmic domains of a restricted number of T, B, and NK cell surface receptors and are proposed to be natural inhibitors or regulators of the physiological role of a small family of receptors on the surface of these cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198206  Cd Length: 103  Bit Score: 53.21  E-value: 1.16e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLL-RGKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVInkTPTGYGFAE-------PYNLYSSLKEL 647
Cdd:cd10343    5 WYHGNITRSKAEELLsKAGKDGSFLVRDSeSVSGAYALCVLYQNCVHTYRI--LPNAEDKLSvqasegvPVRFFTTLPEL 82
                         90       100
                 ....*....|....*....|....
gi 465984348 648 VLHYQhtslvQHNDSLNVTLAYPV 671
Cdd:cd10343   83 IEFYQ-----KENMGLVTHLLYPV 101
SH2_CRK_like cd09926
Src homology 2 domain found in cancer-related signaling adaptor protein CRK; SH2 domain in the ...
573-655 1.30e-08

Src homology 2 domain found in cancer-related signaling adaptor protein CRK; SH2 domain in the CRK proteins. CRKI (SH2-SH3) and CRKII (SH2-SH3-SH3) are splicing isoforms of the oncoprotein CRK. CRKs regulate transcription and cytoskeletal reorganization for cell growth and motility by linking tyrosine kinases to small G proteins. The SH2 domain of CRK associates with tyrosine-phosphorylated receptors or components of focal adhesions, such as p130Cas and paxillin. CRK transmits signals to small G proteins through effectors that bind its SH3 domain, such as C3G, the guanine-nucleotide exchange factor (GEF) for Rap1 and R-Ras, and DOCK180, the GEF for Rac6. The binding of p130Cas to the CRK-C3G complex activates Rap1, leading to regulation of cell adhesion, and activates R-Ras, leading to JNK-mediated activation of cell proliferation, whereas the binding of CRK DOCK180 induces Rac1-mediated activation of cellular migration. The activity of the different splicing isoforms varies greatly with CRKI displaying substantial transforming activity, CRKII less so, and phosphorylated CRKII with no biological activity whatsoever. CRKII has a linker region with a phosphorylated Tyr and an additional C-terminal SH3 domain. The phosphorylated Tyr creates a binding site for its SH2 domain which disrupts the association between CRK and its SH2 target proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198180 [Multi-domain]  Cd Length: 106  Bit Score: 53.25  E-value: 1.30e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 573 DERTWNVGNINRSQAENLLRGKRDGTFLVRESSK-QGCYACSVVVDGEVKHCVINKTPTGY--------GFAEPYNLYSS 643
Cdd:cd09926    5 DRSSWYFGPMSRQEAQELLQGQRHGVFLVRDSSTiPGDYVLSVSENSRVSHYIINSLGQPApnqsryriGDQEFDDLPAL 84
                         90
                 ....*....|..
gi 465984348 644 LKELVLHYQHTS 655
Cdd:cd09926   85 LEFYKLHYLDTT 96
SH2_Cterm_shark_like cd10348
C-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) ...
285-361 2.07e-08

C-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins; These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in its carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198211  Cd Length: 86  Bit Score: 52.04  E-value: 2.07e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 285 EWYWGDISREEVNEKLRD--TADGTFLVRdASTKMHGDYTLTLRKGGNNKLIKIFHRDGKYGFSD--PLtFNSVVELINH 360
Cdd:cd10348    1 QWLHGALDRNEAVEILKQkaDADGSFLVR-YSRRRPGGYVLTLVYENHVYHFEIQNRDDKWFYIDdgPY-FESLEHLIEH 78

                 .
gi 465984348 361 Y 361
Cdd:cd10348   79 Y 79
SH2_SHF cd10392
Src homology 2 domain found in SH2 domain-containing adapter protein F (SHF); SHF is thought ...
286-381 2.16e-08

Src homology 2 domain found in SH2 domain-containing adapter protein F (SHF); SHF is thought to play a role in PDGF-receptor signaling and regulation of apoptosis. SHF is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. SHF contains four putative tyrosine phosphorylation sites and an SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198255  Cd Length: 98  Bit Score: 52.38  E-value: 2.16e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDASTKMHgDYTLTLRKGGNNKLIKIFH-RDGKY--GFSDPLtFNSVVELINHYR 362
Cdd:cd10392    3 WYHGAISRTDAENLLRLCKEASYLVRNSETSKN-DFSLSLKSSQGFMHMKLSRtKEHKYvlGQNSPP-FSSVPEIIHHYA 80
                         90
                 ....*....|....*....
gi 465984348 363 NESLAQYNPKlDVKLLYPV 381
Cdd:cd10392   81 SRKLPIKGAE-HMSLLYPV 98
SH2_Src_Src cd10365
Src homology 2 (SH2) domain found in tyrosine kinase sarcoma (Src); Src is a member of the Src ...
577-663 2.20e-08

Src homology 2 (SH2) domain found in tyrosine kinase sarcoma (Src); Src is a member of the Src non-receptor type tyrosine kinase family of proteins. Src is thought to play a role in the regulation of embryonic development and cell growth. Members here include v-Src and c-Src. v-Src lacks the C-terminal inhibitory phosphorylation site and is therefore constitutively active as opposed to normal cellular src (c-Src) which is only activated under certain circumstances where it is required (e.g. growth factor signaling). v-Src is an oncogene whereas c-Src is a proto-oncogene. c-Src consists of three domains, an N-terminal SH3 domain, a central SH2 domain and a tyrosine kinase domain. The SH2 and SH3 domains work together in the auto-inhibition of the kinase domain. The phosphorylation of an inhibitory tyrosine near the c-terminus of the protein produces a binding site for the SH2 domain which then facilitates binding of the SH3 domain to a polyproline site within the linker between the SH2 domain and the kinase domain. Binding of the SH3 domain inactivates the enzyme. This allows for multiple mechanisms for c-Src activation: dephosphorylation of the C-terminal tyrosine by a protein tyrosine phosphatase, binding of the SH2 domain by a competitive phospho-tyrosine residue, or competitive binding of a polyproline binding site to the SH3 domain. Unlike most other Src members Src lacks cysteine residues in the SH4 domain that undergo palmitylation. Serine and threonine phosphorylation sites have also been identified in the unique domains of Src and are believed to modulate protein-protein interactions or regulate catalytic activity. Alternatively spliced forms of Src, which contain 6- or 11-amino acid insertions in the SH3 domain, are expressed in CNS neurons. c-Src has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198228  Cd Length: 101  Bit Score: 52.36  E-value: 2.20e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRG--KRDGTFLVRES-SKQGCYACSVV----VDG-EVKHCVINKTPTGYGFAEPYNLYSSLKELV 648
Cdd:cd10365    5 WYFGKITRRESERLLLNaeNPRGTFLVRESeTTKGAYCLSVSdfdnAKGlNVKHYKIRKLDSGGFYITSRTQFNSLQQLV 84
                         90
                 ....*....|....*
gi 465984348 649 LHYQhtslvQHNDSL 663
Cdd:cd10365   85 AYYS-----KHADGL 94
SH2_SOCS1 cd10382
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
281-361 2.41e-08

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198245  Cd Length: 98  Bit Score: 51.98  E-value: 2.41e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 281 LQDAEWYWGDISREEVNEKLRDTADGTFLVRDASTKMHGdYTLTLRKGGNNKLIKIFHRDGKYGFSD-PLTFNSVVELIN 359
Cdd:cd10382    7 LDASGFYWGPLSVEEAHAKLKREPVGTFLIRDSRQKNCF-FALSVKMASGPVSIRILFKAGKFSLDGsKESFDCLFKLLE 85

                 ..
gi 465984348 360 HY 361
Cdd:cd10382   86 HY 87
SH2_SOCS3 cd10384
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
281-361 2.52e-08

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198247  Cd Length: 101  Bit Score: 52.05  E-value: 2.52e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 281 LQDAEWYWGDISREEVNEKLRDTADGTFLVRDASTKMHGdYTLTLRKGGNNKLIKIfHRDGKYGF--SDPL------TFN 352
Cdd:cd10384    7 LQESGFYWSTVSGKEANLLLSAEPAGTFLIRDSSDQRHF-FTLSVKTESGTKNLRI-QCEGGSFSlqTDPRstqpvpRFD 84

                 ....*....
gi 465984348 353 SVVELINHY 361
Cdd:cd10384   85 CVLKLVHHY 93
SH2_N-SH2_Zap70_Syk_like cd09938
N-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 ...
577-670 2.82e-08

N-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70) and Spleen tyrosine kinase (Syk) proteins; ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the N-terminus SH2 domains of both Syk and Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198191  Cd Length: 104  Bit Score: 52.01  E-value: 2.82e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLR--GKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTG-YGFAEPYNlYSSLKELVLHYQ 652
Cdd:cd09938    3 FFYGSITREEAEEYLKlaGMSDGLFLLRQSlRSLGGYVLSVCHGRKFHHYTIERQLNGtYAIAGGKA-HCGPAELCEYHS 81
                         90
                 ....*....|....*...
gi 465984348 653 HTSlvqhnDSLNVTLAYP 670
Cdd:cd09938   82 TDL-----DGLVCLLRKP 94
RhoGAP_PARG1 cd04409
RhoGAP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
126-248 3.03e-08

RhoGAP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of PARG1 (PTPL1-associated RhoGAP1). PARG1 was originally cloned as an interaction partner of PTPL1, an intracellular protein-tyrosine phosphatase. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239874  Cd Length: 211  Bit Score: 54.43  E-value: 3.03e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 126 DFEPIDvqiLADALKRYLLDLPNSVIPASVYSEMISGAQEVQSSDEY---------------AQLLKKLIRSPNI----P 186
Cdd:cd04409   65 ELSPHD---ISNVLKLYLRQLPEPLILFRLYNEFIGLAKESQHVNETqeakknsdkkwpnmcTELNRILLKSKDLlrqlP 141
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 465984348 187 HQYWLTLQYLLKHFFRLCQTSSKNLLNARSLAEIFSPLLFK-------FQLGSSDNAEHLIKILEVLIT 248
Cdd:cd04409  142 APNYNTLQFLIVHLHRVSEQAEENKMSASNLGIIFGPTLIRprptdatVSLSSLVDYPHQARLVELLIT 210
SH2_ShkA_ShkC cd10356
Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases A and C (ShkA and ShkC) ...
574-648 3.08e-08

Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases A and C (ShkA and ShkC); SH2-bearing genes cloned from Dictyostelium include two transcription factors, STATa and STATc, and a signaling factor, SHK1 (shkA). A database search of the Dictyostelium discoideum genome revealed two additional putative STAT sequences, dd-STATb and dd-STATd, and four additional putative SHK genes, dd-SHK2 (shkB), dd-SHK3 (shkC), dd-SHK4 (shkD), and dd-SHK5 (shkE). This model contains members of shkA and shkC. All of the SHK members are most closely related to the protein kinases found in plants. However these kinases in plants are not conjugated to any SH2 or SH2-like sequences. Alignment data indicates that the SHK SH2 domains carry some features of the STAT SH2 domains in Dictyostelium. When STATc's linker domain was used for a BLAST search, the sequence between the protein kinase domain and the SH2 domain (the linker) of SHK was recovered, suggesting a close relationship among these molecules within this region. SHK's linker domain is predicted to contain an alpha-helix which is indeed homologous to that of STAT. Based on the phylogenetic alignment, SH2 domains can be grouped into two categories, STAT-type and Src-type. SHK family members are in between, but are closer to the STAT-type which indicates a close relationship between SHK and STAT families in their SH2 domains and further supports the notion that SHKs linker-SH2 domain evolved from STAT or STATL (STAT-like Linker-SH2) domain found in plants. In SHK, STAT, and SPT6, the linker-SH2 domains all reside exclusively in the C-terminal regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198219  Cd Length: 113  Bit Score: 52.22  E-value: 3.08e-08
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 465984348 574 ERTWNVGNINRSQAENLLRGKRDGTFLVR-ESSKQGCYACSVVVD-GEVKHCVINKtpTGYGFAEPYNLYSSLKELV 648
Cdd:cd10356    9 ECAWFHGDISTSESENRLNGKPEGTFLVRfSTSEPGAYTISKVSKnGGISHQRIHR--PGGKFQVNNSKYLSVKELI 83
SH2_SLAP cd10344
Src homology 2 domain found in Src-like adaptor proteins; SLAP belongs to the subfamily of ...
577-651 5.57e-08

Src homology 2 domain found in Src-like adaptor proteins; SLAP belongs to the subfamily of adapter proteins that negatively regulate cellular signaling initiated by tyrosine kinases. It has a myristylated N-terminus, SH3 and SH2 domains with high homology to Src family tyrosine kinases, and a unique C-terminal tail, which is important for c-Cbl binding. SLAP negatively regulates platelet-derived growth factor (PDGF)-induced mitogenesis in fibroblasts and regulates F-actin assembly for dorsal ruffles formation. c-Cbl mediated SLAP inhibition towards actin remodeling. Moreover, SLAP enhanced PDGF-induced c-Cbl phosphorylation by SFK. In contrast, SLAP mitogenic inhibition was not mediated by c-Cbl, but it rather involved a competitive mechanism with SFK for PDGF-receptor (PDGFR) association and mitogenic signaling. Accordingly, phosphorylation of the Src mitogenic substrates Stat3 and Shc were reduced by SLAP. Thus, we concluded that SLAP regulates PDGFR signaling by two independent mechanisms: a competitive mechanism for PDGF-induced Src mitogenic signaling and a non-competitive mechanism for dorsal ruffles formation mediated by c-Cbl. SLAP is a hematopoietic adaptor containing Src homology (SH)3 and SH2 motifs and a unique carboxy terminus. Unlike c-Src, SLAP lacks a tyrosine kinase domain. Unlike c-Src, SLAP does not impact resorptive function of mature osteoclasts but induces their early apoptosis. SLAP negatively regulates differentiation of osteoclasts and proliferation of their precursors. Conversely, SLAP decreases osteoclast death by inhibiting activation of caspase 3. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198207  Cd Length: 104  Bit Score: 51.34  E-value: 5.57e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLR--GKRDGTFLVRES-SKQGCYACSV-----VVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELV 648
Cdd:cd10344   12 WLFEGLSREKAEELLMlpGNQVGSFLIRESeTRRGCYSLSVrhrgsQSRDSVKHYRIFRLDNGWFYISPRLTFQCLEDMV 91

                 ...
gi 465984348 649 LHY 651
Cdd:cd10344   92 NHY 94
SH2_SHB_SHD_SHE_SHF_like cd09945
Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, ...
286-381 7.93e-08

Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, SHE, SHF); SHB, SHD, SHE, and SHF are SH2 domain-containing proteins that play various roles throughout the cell. SHB functions in generating signaling compounds in response to tyrosine kinase activation. SHB contains proline-rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites, and a SH2 domain. SHB mediates certain aspects of platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK) and SHB regulate apoptosis, proliferation and differentiation. SHB promotes apoptosis and is also required for proper mitogenicity, spreading and tubular morphogenesis in endothelial cells. SHB also plays a role in preventing early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon. SHB is a multifunctional protein that has difference responses in different cells under various conditions. SHE is expressed in heart, lung, brain, and skeletal muscle, while expression of SHD is restricted to the brain. SHF is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. SHD may be a physiological substrate of c-Abl and may function as an adapter protein in the central nervous system. It is also thought to be involved in apoptotic regulation. SHD contains five YXXP motifs, a substrate sequence preferred by Abl tyrosine kinases, in addition to a poly-proline rich region and a C-terminal SH2 domain. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. SHF contains four putative tyrosine phosphorylation sites and an SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198198  Cd Length: 98  Bit Score: 50.50  E-value: 7.93e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDASTKmHGDYTLTLRKGGNNKLIKIFH-RDGKY---GFSDPltFNSVVELINHY 361
Cdd:cd09945    3 WYHGAITRIEAESLLRPCKEGSYLVRNSEST-KQDYSLSLKSAKGFMHMRIQRnETGQYilgQFSRP--FETIPEMIRHY 79
                         90       100
                 ....*....|....*....|....*.
gi 465984348 362 RNEslaqynpKLDVK------LLYPV 381
Cdd:cd09945   80 CLN-------KLPVRgaehmcLLEPV 98
SH2_Tec_Itk cd10396
Src homology 2 (SH2) domain found in Tec protein, IL2-inducible T-cell kinase (Itk); A member ...
577-671 8.18e-08

Src homology 2 (SH2) domain found in Tec protein, IL2-inducible T-cell kinase (Itk); A member of the Tec protein tyrosine kinase Itk is expressed thymus, spleen, lymph node, T lymphocytes, NK and mast cells. It plays a role in T-cell proliferation and differentiation, analogous to Tec family kinases Txk. Itk has been shown to interact with Fyn, Wiskott-Aldrich syndrome protein, KHDRBS1, PLCG1, Lymphocyte cytosolic protein 2, Linker of activated T cells, Karyopherin alpha 2, Grb2, and Peptidylprolyl isomerase A. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains and it's lack of presence in Txk is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198259  Cd Length: 108  Bit Score: 50.95  E-value: 8.18e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGK-RDGTFLVRESSKQGCYACSVVVD--GEVKHCV-------INKTPTGYGFAEPYnLYSSLKE 646
Cdd:cd10396    8 WYNKNINRSKAEKLLRDEgKEGGFMVRDSSQPGLYTVSLYTKagGEGNPCIrhyhikeTNDSPKKYYLAEKH-VFNSIPE 86
                         90       100
                 ....*....|....*....|....*
gi 465984348 647 LVLHYQHTSLVqhndsLNVTLAYPV 671
Cdd:cd10396   87 LIEYHKHNAAG-----LVTRLRYPV 106
SH2_Vav1 cd10405
Src homology 2 (SH2) domain found in the Vav1 proteins; Proto-oncogene vav is a member of the ...
286-380 8.73e-08

Src homology 2 (SH2) domain found in the Vav1 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav1 plays a role in T-cell and B-cell development and activation. It has been identified as the specific binding partner of Nef proteins from HIV-1, resulting in morphological changes, cytoskeletal rearrangements, and the JNK/SAPK signaling cascade, leading to increased levels of viral transcription and replication. Vav1 has been shown to interact with Ku70, PLCG1, Lymphocyte cytosolic protein 2, Janus kinase 2, SIAH2, S100B, Abl gene, ARHGDIB, SHB, PIK3R1, PRKCQ, Grb2, MAPK1, Syk, Linker of activated T cells, Cbl gene and EZH2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198268  Cd Length: 103  Bit Score: 50.78  E-value: 8.73e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDaSTKMHGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVELINHYRNES 365
Cdd:cd10405    7 WYAGPMERAGAESILANRSDGTYLVRQ-RVKDAAEFAISIKYNVEVKHIKIMTAEGLYRITEKKAFRGLTELVEFYQQNS 85
                         90
                 ....*....|....*
gi 465984348 366 LAQYNPKLDVKLLYP 380
Cdd:cd10405   86 LKDCFKSLDTTLQFP 100
SH2_Src_Lyn cd10364
Src homology 2 (SH2) domain found in Lyn; Lyn is a member of the Src non-receptor type ...
285-365 9.63e-08

Src homology 2 (SH2) domain found in Lyn; Lyn is a member of the Src non-receptor type tyrosine kinase family of proteins and is expressed in the hematopoietic cells, in neural tissues, liver, and adipose tissue. There are two alternatively spliced forms of Lyn. Lyn plays an inhibitory role in myeloid lineage proliferation. Following engagement of the B cell receptors, Lyn undergoes rapid phosphorylation and activation, triggering a cascade of signaling events mediated by Lyn phosphorylation of tyrosine residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the receptor proteins, and subsequent recruitment and activation of other kinases including Syk, phospholipase C2 (PLC2) and phosphatidyl inositol-3 kinase. These kinases play critical roles in proliferation, Ca2+ mobilization and cell differentiation. Lyn plays an essential role in the transmission of inhibitory signals through phosphorylation of tyrosine residues within the immunoreceptor tyrosine-based inhibitory motifs (ITIM) in regulatory proteins such as CD22, PIR-B and FC RIIb1. Their ITIM phosphorylation subsequently leads to recruitment and activation of phosphatases such as SHIP-1 and SHP-1 which further down modulate signaling pathways, attenuate cell activation and can mediate tolerance. Lyn also plays a role in the insulin signaling pathway. Activated Lyn phosphorylates insulin receptor substrate 1 (IRS1) leading to an increase in translocation of Glut-4 to the cell membrane and increased glucose utilization. It is the primary Src family member involved in signaling downstream of the B cell receptor. Lyn plays an unusual, 2-fold role in B cell receptor signaling; it is essential for initiation of signaling but is also later involved in negative regulation of the signal. Lyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198227  Cd Length: 101  Bit Score: 50.37  E-value: 9.63e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 285 EWYWGDISREEVNEKLRDTAD--GTFLVRDASTkMHGDYTLTLR----KGGNN-KLIKIFHRD-GKYGFSDPLTFNSVVE 356
Cdd:cd10364    4 EWFFKDITRKDAERQLLAPGNsaGAFLIRESET-LKGSYSLSVRdydpQHGDViKHYKIRSLDnGGYYISPRITFPCISD 82

                 ....*....
gi 465984348 357 LINHYRNES 365
Cdd:cd10364   83 MIKHYQKQS 91
RhoGAP_p190 cd04373
RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
121-227 1.09e-07

RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p190-like proteins. p190, also named RhoGAP5, plays a role in neuritogenesis and axon branch stability. p190 shows a preference for Rho, over Rac and Cdc42, and consists of an N-terminal GTPase domain and a C-terminal GAP domain. The central portion of p190 contains important regulatory phosphorylation sites. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239838  Cd Length: 185  Bit Score: 52.46  E-value: 1.09e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 121 DASSMDFEpidVQILADALKRYLLDLPNSVIPASVYSEMISGAQ---EVQSSDEYAQLLKKLirsPNIPHQywlTLQYLL 197
Cdd:cd04373   60 DLVSKDFT---VNAVAGALKSFFSELPDPLIPYSMHLELVEAAKindREQRLHALKELLKKF---PPENFD---VFKYVI 130
                         90       100       110
                 ....*....|....*....|....*....|
gi 465984348 198 KHFFRLCQTSSKNLLNARSLAEIFSPLLFK 227
Cdd:cd04373  131 THLNKVSQNSKVNLMTSENLSICFWPTLMR 160
SH2_Src_Src42 cd10370
Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the ...
573-670 1.18e-07

Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the Src non-receptor type tyrosine kinase family of proteins. The integration of receptor tyrosine kinase-induced RAS and Src42 signals by Connector eNhancer of KSR (CNK) as a two-component input is essential for RAF activation in Drosophila. Src42 is present in a wide variety of organisms including: California sea hare, pea aphid, yellow fever mosquito, honey bee, Panamanian leafcutter ant, and sea urchin. Src42 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198233  Cd Length: 96  Bit Score: 50.20  E-value: 1.18e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 573 DERTWNVGNINRSQAEN--LLRGKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELVL 649
Cdd:cd10370    1 EAEPWYFGKIKRIEAEKklLLPENEHGAFLIRDSeSRHNDYSLSVRDGDTVKHYRIRQLDEGGFFIARRTTFRTLQELVE 80
                         90       100
                 ....*....|....*....|.
gi 465984348 650 HYQHTSlvqhnDSLNVTLAYP 670
Cdd:cd10370   81 HYSKDS-----DGLCVNLRKP 96
SH2_Grb2_like cd09941
Src homology 2 domain found in Growth factor receptor-bound protein 2 (Grb2) and similar ...
286-365 1.24e-07

Src homology 2 domain found in Growth factor receptor-bound protein 2 (Grb2) and similar proteins; The adaptor proteins here include homologs Grb2 in humans, Sex muscle abnormal protein 5 (Sem-5) in Caenorhabditis elegans, and Downstream of receptor kinase (drk) in Drosophila melanogaster. They are composed of one SH2 and two SH3 domains. Grb2/Sem-5/drk regulates the Ras pathway by linking the tyrosine kinases to the Ras guanine nucleotide releasing protein Sos, which converts Ras to the active GTP-bound state. The SH2 domain of Grb2/Sem-5/drk binds class II phosphotyrosyl peptides while its SH3 domain binds to Sos and Sos-derived, proline-rich peptides. Besides it function in Ras signaling, Grb2 is also thought to play a role in apoptosis. Unlike most SH2 structures in which the peptide binds in an extended conformation (such that the +3 peptide residue occupies a hydrophobic pocket in the protein, conferring a modest degree of selectivity), Grb2 forms several hydrogen bonds via main chain atoms with the side chain of +2 Asn. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199828  Cd Length: 95  Bit Score: 49.96  E-value: 1.24e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTA-DGTFLVRDASTKmHGDYTLTLRKGGNNKLIKIFhRD--GKYGFSDpLTFNSVVELINHYR 362
Cdd:cd09941    5 WFHGKISRAEAEEILMNQRpDGAFLIRESESS-PGDFSLSVKFGNDVQHFKVL-RDgaGKYFLWV-VKFNSLNELVDYHR 81

                 ...
gi 465984348 363 NES 365
Cdd:cd09941   82 TTS 84
SH2_Src_Fgr cd10367
Src homology 2 (SH2) domain found in Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene ...
282-361 1.42e-07

Src homology 2 (SH2) domain found in Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog, Fgr; Fgr is a member of the Src non-receptor type tyrosine kinase family of proteins. The protein contains N-terminal sites for myristoylation and palmitoylation, a PTK domain, and SH2 and SH3 domains which are involved in mediating protein-protein interactions with phosphotyrosine-containing and proline-rich motifs, respectively. Fgr is expressed in B-cells and myeloid cells, localizes to plasma membrane ruffles, and functions as a negative regulator of cell migration and adhesion triggered by the beta-2 integrin signal transduction pathway. Multiple alternatively spliced variants, encoding the same protein, have been identified Fgr has been shown to interact with Wiskott-Aldrich syndrome protein. Fgr has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198230  Cd Length: 101  Bit Score: 49.90  E-value: 1.42e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 282 QDAEWYWGDISREEVNEKLRDTAD--GTFLVRDASTkMHGDYTLTLR-----KGGNNKLIKIFHRD-GKYGFSDPLTFNS 353
Cdd:cd10367    1 QAEEWYFGKIGRKDAERQLLSPGNprGAFLIRESET-TKGAYSLSIRdwdqnRGDHVKHYKIRKLDtGGYYITTRAQFDT 79

                 ....*...
gi 465984348 354 VVELINHY 361
Cdd:cd10367   80 VQELVQHY 87
SH2_C-SH2_PLC_gamma_like cd09932
C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a ...
285-383 1.42e-07

C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198186  Cd Length: 104  Bit Score: 49.96  E-value: 1.42e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 285 EWYWGDISREEVNEKL-RDTADGTFLVRDASTKMHGdYTLTLRKGGNNKLIKIfHRDGKYGFSDPLTFNSVVELINHYRN 363
Cdd:cd09932    5 EWFHANLTREQAEEMLmRVPRDGAFLVRPSETDPNS-FAISFRAEGKIKHCRI-KQEGRLFVIGTSQFESLVELVSYYEK 82
                         90       100
                 ....*....|....*....|
gi 465984348 364 ESLAQynpklDVKLLYPVSK 383
Cdd:cd09932   83 HPLYR-----KIKLRYPVNE 97
SH2_N-SH2_Zap70_Syk_like cd09938
N-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 ...
286-365 1.47e-07

N-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70) and Spleen tyrosine kinase (Syk) proteins; ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the N-terminus SH2 domains of both Syk and Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198191  Cd Length: 104  Bit Score: 50.09  E-value: 1.47e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDT--ADGTFLVRDaSTKMHGDYTLTLRKGGnnkliKIFHR------DGKYGFSDPLTFNSVVEL 357
Cdd:cd09938    3 FFYGSITREEAEEYLKLAgmSDGLFLLRQ-SLRSLGGYVLSVCHGR-----KFHHYtierqlNGTYAIAGGKAHCGPAEL 76

                 ....*...
gi 465984348 358 INHYRNES 365
Cdd:cd09938   77 CEYHSTDL 84
SH2_a2chimerin_b2chimerin cd10352
Src homology 2 (SH2) domain found in alpha2-chimerin and beta2-chimerin proteins; Chimerins ...
580-622 1.52e-07

Src homology 2 (SH2) domain found in alpha2-chimerin and beta2-chimerin proteins; Chimerins are a family of phorbol ester- and diacylglycerol-responsive GTPase-activating proteins. Alpha1-chimerin (formerly known as n-chimerin) and alpha2-chimerin are alternatively spliced products of a single gene, as are beta1- and beta2-chimerin. alpha1- and beta1-chimerin have a relatively short N-terminal region that does not encode any recognizable domains, whereas alpha2- and beta2-chimerin both include a functional SH2 domain that can bind to phosphotyrosine motifs within receptors. All of the isoforms contain a GAP domain with specificity in vitro for Rac1 and a diacylglycerol (DAG)-binding C1 domain which allows them to translocate to membranes in response to DAG signaling and anchors them in close proximity to activated Rac. Other C1 domain-containing diacylglycerol receptors including: PKC, Munc-13 proteins, phorbol ester binding scaffolding proteins involved in Ca2+-stimulated exocytosis, and RasGRPs, diacylglycerol-activated guanine-nucleotide exchange factors (GEFs) for Ras and Rap1. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198215  Cd Length: 91  Bit Score: 49.67  E-value: 1.52e-07
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....
gi 465984348 580 GNINRSQAENLLRGKRDGTFLVRESSKQ-GCYACSVVVDGEVKH 622
Cdd:cd10352   11 GLISREEAEQLLSGASDGSYLIRESSRDdGYYTLSLRFNGKVKN 54
SH2_Cterm_RasGAP cd10354
C-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP ...
285-361 1.69e-07

C-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP is part of the GAP1 family of GTPase-activating proteins. The protein is located in the cytoplasm and stimulates the GTPase activity of normal RAS p21, but not its oncogenic counterpart. Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in RAS inactivation, thereby allowing control of cellular proliferation and differentiation. Mutations leading to changes in the binding sites of either protein are associated with basal cell carcinomas. Alternative splicing results in two isoforms. The shorter isoform which lacks the N-terminal hydrophobic region, has the same activity, and is expressed in placental tissues. In general longer isoform contains 2 SH2 domains, a SH3 domain, a pleckstrin homology (PH) domain, and a calcium-dependent phospholipid-binding C2 domain. The C-terminus contains the catalytic domain of RasGap which catalyzes the activation of Ras by hydrolyzing GTP-bound active Ras into an inactive GDP-bound form of Ras. This model contains the C-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198217  Cd Length: 77  Bit Score: 48.96  E-value: 1.69e-07
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 465984348 285 EWYWGDISREEVNEKLRDTA-DGTFLVRDaSTKMHGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVELINHY 361
Cdd:cd10354    1 IWFHGKISREEAYNMLVKVGgPGSFLVRE-SDNTPGDYSLSFRVNEGIKHFKIIPTGNNQFMMGGRYFSSLDDVIDRY 77
SH2_N-SH2_PLC_gamma_like cd10341
N-terminal Src homology 2 (N-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a ...
584-656 1.98e-07

N-terminal Src homology 2 (N-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199829  Cd Length: 99  Bit Score: 49.27  E-value: 1.98e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 584 RSQAENLLR---GKRDGTFLVRESSK-QGCYACSVVVDGEVKHCVINKTP----TGYGFAEpYNLYSSLKELVLHYQHTS 655
Cdd:cd10341   15 RDEAEKLLLeycEGGDGTFLVRESETfVGDYTLSFWRNGKVQHCRIRSRQengeKKYYLTD-NLVFDSLYELIDYYRQNP 93

                 .
gi 465984348 656 L 656
Cdd:cd10341   94 L 94
SH2_Src_HCK cd10363
Src homology 2 (SH2) domain found in HCK; HCK is a member of the Src non-receptor type ...
577-670 2.06e-07

Src homology 2 (SH2) domain found in HCK; HCK is a member of the Src non-receptor type tyrosine kinase family of proteins and is expressed in hemopoietic cells. HCK is proposed to couple the Fc receptor to the activation of the respiratory burst. It may also play a role in neutrophil migration and in the degranulation of neutrophils. It has two different translational starts that have different subcellular localization. HCK has been shown to interact with BCR gene, ELMO1 Cbl gene, RAS p21 protein activator 1, RASA3, Granulocyte colony-stimulating factor receptor, ADAM15 and RAPGEF1. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. HCK has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198226  Cd Length: 104  Bit Score: 49.58  E-value: 2.06e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAEN--LLRGKRDGTFLVRES-SKQGCYACSV-----VVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELV 648
Cdd:cd10363    5 WFFKGISRKDAERqlLAPGNMLGSFMIRDSeTTKGSYSLSVrdydpQHGDTVKHYKIRTLDNGGFYISPRSTFSTLQELV 84
                         90       100
                 ....*....|....*....|..
gi 465984348 649 LHYQhtslvQHNDSLNVTLAYP 670
Cdd:cd10363   85 DHYK-----KGNDGLCQKLSVP 101
SH2_csk_like cd09937
Src homology 2 (SH2) domain found in Carboxyl-Terminal Src Kinase (Csk); Both the C-terminal ...
577-622 2.06e-07

Src homology 2 (SH2) domain found in Carboxyl-Terminal Src Kinase (Csk); Both the C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) are members of the CSK-family of protein tyrosine kinases. These proteins suppress activity of Src-family kinases (SFK) by selectively phosphorylating the conserved C-terminal tail regulatory tyrosine by a similar mechanism. CHK is also capable of inhibiting SFKs by a non-catalytic mechanism that involves binding of CHK to SFKs to form stable protein complexes. The unphosphorylated form of SFKs is inhibited by CSK and CHK by a two-step mechanism. The first step involves the formation of a complex of SFKs with CSK/CHK with the SFKs in the complex are inactive. The second step, involves the phosphorylation of the C-terminal tail tyrosine of SFKs, which then dissociates and adopt an inactive conformation. The structural basis of how the phosphorylated SFKs dissociate from CSK/CHK to adopt the inactive conformation is not known. The inactive conformation of SFKs is stabilized by two intramolecular inhibitory interactions: (a) the pYT:SH2 interaction in which the phosphorylated C-terminal tail tyrosine (YT) binds to the SH2 domain, and (b) the linker:SH3 interaction of which the SH2-kinase domain linker binds to the SH3 domain. SFKs are activated by multiple mechanisms including binding of the ligands to the SH2 and SH3 domains to displace the two inhibitory intramolecular interactions, autophosphorylation, and dephosphorylation of YT. By selective phosphorylation and the non-catalytic inhibitory mechanism CSK and CHK are able to inhibit the active forms of SFKs. CSK and CHK are regulated by phosphorylation and inter-domain interactions. They both contain SH3, SH2, and kinase domains separated by the SH3-SH2 connector and SH2 kinase linker, intervening segments separating the three domains. They lack a conserved tyrosine phosphorylation site in the kinase domain and the C-terminal tail regulatory tyrosine phosphorylation site. The CSK SH2 domain is crucial for stabilizing the kinase domain in the active conformation. A disulfide bond here regulates CSK kinase activity. The subcellular localization and activity of CSK are regulated by its SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198190  Cd Length: 98  Bit Score: 49.21  E-value: 2.06e-07
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*..
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVRESSKQ-GCYACSVVVDGEVKH 622
Cdd:cd09937    5 WFHGKISREEAERLLQPPEDGLFLVRESTNYpGDYTLCVSFEGKVEH 51
RhoGAP_GMIP cd04408
RhoGAP_GMIP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP ...
139-227 2.27e-07

RhoGAP_GMIP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239873  Cd Length: 200  Bit Score: 51.74  E-value: 2.27e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 139 LKRYLLDLPNSVIPASVYSEMISGAQEVQSSDEYA-----------QLLKKLIrsPNIPHQYWLTLQYLLKHFFRLCQTS 207
Cdd:cd04408   75 LKHFLKELPEPVLPFQLYDDFIALAKELQRDSEKAaespsiveniiRSLKELL--GRLPVSNYNTLRHLMAHLYRVAERF 152
                         90       100
                 ....*....|....*....|
gi 465984348 208 SKNLLNARSLAEIFSPLLFK 227
Cdd:cd04408  153 EDNKMSPNNLGIVFGPTLLR 172
SH2_Srm cd10360
Src homology 2 (SH2) domain found in Src-related kinase lacking C-terminal regulatory tyrosine ...
577-651 2.32e-07

Src homology 2 (SH2) domain found in Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (srm); Srm is a nonreceptor protein kinase that has two SH2 domains, a SH3 domain, and a kinase domain with a tyrosine residue for autophosphorylation. However it lacks an N-terminal glycine for myristoylation and a C-terminal tyrosine which suppresses kinase activity when phosphorylated. Srm is most similar to members of the Tec family who other members include: Tec, Btk/Emb, and Itk/Tsk/Emt. However Srm differs in its N-terminal unique domain it being much smaller than in the Tec family and is closer to Src. Srm is thought to be a new family of nonreceptor tyrosine kinases that may be redundant in function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198223  Cd Length: 79  Bit Score: 48.80  E-value: 2.32e-07
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 465984348 577 WNVGNINRSQAENLLRG--KRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELVLHY 651
Cdd:cd10360    2 WYFSGISRTQAQQLLLSppNEPGAFLIRPSeSSLGGYSLSVRAQAKVCHYRICMAPSGSLYLQKGRLFPGLEELLAYY 79
RhoGAP_FAM13A1a cd04393
RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
131-249 2.37e-07

RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of FAM13A1, isoform a-like proteins. The function of FAM13A1a is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by up several orders of magnitude.


Pssm-ID: 239858 [Multi-domain]  Cd Length: 189  Bit Score: 51.69  E-value: 2.37e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 131 DVQILADALKRYLLDLPNSVIPASVYSEMISGAQEVQSSDEYAQLLKKLIRSpnIPHQYWLTLQYLLKHFFRLCQTSSKN 210
Cdd:cd04393   71 DVCSAASLLRLFLQELPEGLIPASLQIRLMQLYQDYNGEDEFGRKLRDLLQQ--LPPVNYSLLKFLCHFLSNVASQHHEN 148
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|.
gi 465984348 211 LLNARSLAEIFSPLLFKFQLGSSDNAEHLI--KILEVLITS 249
Cdd:cd04393  149 RMTAENLAAVFGPDVFHVYTDVEDMKEQEIcsRIMAKLLEN 189
RhoGAP_OCRL1 cd04380
RhoGAP_OCRL1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
86-226 2.44e-07

RhoGAP_OCRL1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in OCRL1-like proteins. OCRL1 (oculocerebrorenal syndrome of Lowe 1)-like proteins contain two conserved domains: a central inositol polyphosphate 5-phosphatase domain and a C-terminal Rho GAP domain, this GAP domain lacks the catalytic residue and therefore maybe inactive. OCRL-like proteins are type II inositol polyphosphate 5-phosphatases that can hydrolyze lipid PI(4,5)P2 and PI(3,4,5)P3 and soluble Ins(1,4,5)P3 and Ins(1,3,4,5)P4, but their individual specificities vary. The functionality of the RhoGAP domain is still unclear. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239845  Cd Length: 220  Bit Score: 51.96  E-value: 2.44e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  86 ILKSAFTLPDLTEQFLPPDVAPPILIKIVEAIekkDASSMDFEPIDVQILADALKRYLLDLPNSVIPASVYSEMIsgaqe 165
Cdd:cd04380   61 LYTRGLAQEGLFEEPGLPSEPGELLAEIRDAL---DTGSPFNSPGSAESVAEALLLFLESLPDPIIPYSLYERLL----- 132
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 465984348 166 vQSSDEYAQLLKKLIRSpNIPHQYWLTLQYLLKHFFRLCQTSSKNLLNARSLAEIFSPLLF 226
Cdd:cd04380  133 -EAVANNEEDKRQVIRI-SLPPVHRNVFVYLCSFLRELLSESADRGLDENTLATIFGRVLL 191
SH2_a2chimerin_b2chimerin cd10352
Src homology 2 (SH2) domain found in alpha2-chimerin and beta2-chimerin proteins; Chimerins ...
287-358 2.57e-07

Src homology 2 (SH2) domain found in alpha2-chimerin and beta2-chimerin proteins; Chimerins are a family of phorbol ester- and diacylglycerol-responsive GTPase-activating proteins. Alpha1-chimerin (formerly known as n-chimerin) and alpha2-chimerin are alternatively spliced products of a single gene, as are beta1- and beta2-chimerin. alpha1- and beta1-chimerin have a relatively short N-terminal region that does not encode any recognizable domains, whereas alpha2- and beta2-chimerin both include a functional SH2 domain that can bind to phosphotyrosine motifs within receptors. All of the isoforms contain a GAP domain with specificity in vitro for Rac1 and a diacylglycerol (DAG)-binding C1 domain which allows them to translocate to membranes in response to DAG signaling and anchors them in close proximity to activated Rac. Other C1 domain-containing diacylglycerol receptors including: PKC, Munc-13 proteins, phorbol ester binding scaffolding proteins involved in Ca2+-stimulated exocytosis, and RasGRPs, diacylglycerol-activated guanine-nucleotide exchange factors (GEFs) for Ras and Rap1. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198215  Cd Length: 91  Bit Score: 48.90  E-value: 2.57e-07
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 465984348 287 YWGDISREEVNEKLRDTADGTFLVRDASTKmHGDYTLTLRKGGNNKLIKIFHrDGK--YGFSDPLTFNSVVELI 358
Cdd:cd10352    9 YHGLISREEAEQLLSGASDGSYLIRESSRD-DGYYTLSLRFNGKVKNYKLYY-DGKnhYHYVGEKRFDTIHDLV 80
SH2_Tensin_like cd09927
Src homology 2 domain found in Tensin-like proteins; SH2 domain found in Tensin-like proteins. ...
574-654 3.20e-07

Src homology 2 domain found in Tensin-like proteins; SH2 domain found in Tensin-like proteins. The Tensins are a family of intracellular proteins that interact with receptor tyrosine kinases (RTKs), integrins, and actin. They are thought act as signaling bridges between the extracellular space and the cytoskeleton. There are four homologues: Tensin1, Tensin2 (TENC1, C1-TEN), Tensin3 and Tensin4 (cten), all of which contain a C-terminal tandem SH2-PTB domain pairing, as well as actin-binding regions that may localize them to focal adhesions. The isoforms of Tensin2 and Tensin3 contain N-terminal C1 domains, which are atypical and not expected to bind to phorbol esters. Tensins 1-3 contain a phosphatase (PTPase) and C2 domain pairing which resembles PTEN (phosphatase and tensin homologue deleted on chromosome 10) protein. PTEN is a lipid phosphatase that dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) to yield phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). As PtdIns(3,4,5)P3 is the product of phosphatidylinositol 3-kinase (PI3K) activity, PTEN is therefore a key negative regulator of the PI3K pathway. Because of their PTEN-like domains, the Tensins may also possess phosphoinositide-binding or phosphatase capabilities. However, only Tensin2 and Tensin3 have the potential to be phosphatases since only their PTPase domains contain a cysteine residue that is essential for catalytic activity. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198181 [Multi-domain]  Cd Length: 116  Bit Score: 49.35  E-value: 3.20e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 574 ERTWNVGNINRSQAENLLRGKRDGTFLVRES-SKQGCYACSVVVDGE-----------------VKHCVINKTPTGY--- 632
Cdd:cd09927    2 SKYWYKPNISRDQAIALLKDKPPGTFLVRDStTYKGAYGLAVKVATPppgvnpfeakgdpeselVRHFLIEPSPKGVklk 81
                         90       100
                 ....*....|....*....|...
gi 465984348 633 GFA-EPYnlYSSLKELVlhYQHT 654
Cdd:cd09927   82 GCPnEPV--FGSLSALV--YQHS 100
RhoGAP-ARHGAP11A cd04394
RhoGAP-ARHGAP11A: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
117-226 3.27e-07

RhoGAP-ARHGAP11A: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP11A-like proteins. The mouse homolog of human ArhGAP11A has been detected as a gene exclusively expressed in immature ganglion cells, potentially playing a role in retinal development. The exact function of ArhGAP11A is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239859 [Multi-domain]  Cd Length: 202  Bit Score: 51.32  E-value: 3.27e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 117 IEKKDASSMDFEPIDVqilADALKRYLLDLPNSVIPASvYSEMISGAQEVQSSDEY--AQLLKKLIrspnIPHQYWLTLQ 194
Cdd:cd04394   57 LEGGEACLSSALPCDV---AGLLKQFFRELPEPLLPYD-LHEALLKAQELPTDEERksATLLLTCL----LPDEHVNTLR 128
                         90       100       110
                 ....*....|....*....|....*....|..
gi 465984348 195 YLLKHFFRLCQTSSKNLLNARSLAEIFSPLLF 226
Cdd:cd04394  129 YFFSFLYDVAQRCSENKMDSSNLAVIFAPNLF 160
SH2_SHC cd09925
Src homology 2 (SH2) domain found in SH2 adaptor protein C (SHC); SHC is involved in a wide ...
286-367 3.38e-07

Src homology 2 (SH2) domain found in SH2 adaptor protein C (SHC); SHC is involved in a wide variety of pathways including regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. An adapter protein, SHC has been implicated in Ras activation following the stimulation of a number of different receptors, including growth factors [insulin, epidermal growth factor (EGF), nerve growth factor, and platelet derived growth factor (PDGF)], cytokines [interleukins 2, 3, and 5], erythropoietin, and granulocyte/macrophage colony-stimulating factor, and antigens [T-cell and B-cell receptors]. SHC has been shown to bind to tyrosine-phosphorylated receptors, and receptor stimulation leads to tyrosine phosphorylation of SHC. Upon phosphorylation, SHC interacts with another adapter protein, Grb2, which binds to the Ras GTP/GDP exchange factor mSOS which leads to Ras activation. SHC is composed of an N-terminal domain that interacts with proteins containing phosphorylated tyrosines, a (glycine/proline)-rich collagen-homology domain that contains the phosphorylated binding site, and a C-terminal SH2 domain. SH2 has been shown to interact with the tyrosine-phosphorylated receptors of EGF and PDGF and with the tyrosine-phosphorylated C chain of the T-cell receptor, providing one of the mechanisms of T-cell-mediated Ras activation. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198179  Cd Length: 104  Bit Score: 48.88  E-value: 3.38e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRdtADGTFLVRDaSTKMHGDYTLTLRKGGNNKLIKIFHRDGKYGFSDpLTFNSVVELINHYRNES 365
Cdd:cd09925    9 WYHGKMSRRDAESLLQ--TDGDFLVRE-STTTPGQYVLTGMQNGQPKHLLLVDPEGVVRTKD-RVFESISHLINYHVTNG 84

                 ..
gi 465984348 366 LA 367
Cdd:cd09925   85 LP 86
SH2_Nck1 cd10408
Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin ...
285-362 4.30e-07

Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198271  Cd Length: 97  Bit Score: 48.49  E-value: 4.30e-07
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 465984348 285 EWYWGDISREEVNEKLRDTA-DGTFLVRDASTKMHgDYTLTLRKGGNNKLIKIFHRDGKYGFSDPlTFNSVVELINHYR 362
Cdd:cd10408    2 PWYYGKVTRHQAEMALNERGnEGDFLIRDSESSPN-DFSVSLKAQGKNKHFKVQLKECVYCIGQR-KFSSMEELVEHYK 78
SH2_SH2D7 cd10417
Src homology 2 domain found in the SH2 domain containing protein 7 (SH2D7); SH2D7 contains a ...
577-663 4.85e-07

Src homology 2 domain found in the SH2 domain containing protein 7 (SH2D7); SH2D7 contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199832  Cd Length: 102  Bit Score: 48.35  E-value: 4.85e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVRESSKQGCYACSVVVDGEVKHCVINKTPTG-YGFAEPYNLYSSLKELVLHYQHTS 655
Cdd:cd10417    9 WFHGFITRKQTEQLLRDKALGSFLIRLSDRATGYILSYRGSDRCRHFVINQLRNRrYLISGDTSSHSTLAELVRHYQEVQ 88

                 ....*...
gi 465984348 656 LVQHNDSL 663
Cdd:cd10417   89 LEPFGETL 96
SH2_Src_HCK cd10363
Src homology 2 (SH2) domain found in HCK; HCK is a member of the Src non-receptor type ...
285-382 7.21e-07

Src homology 2 (SH2) domain found in HCK; HCK is a member of the Src non-receptor type tyrosine kinase family of proteins and is expressed in hemopoietic cells. HCK is proposed to couple the Fc receptor to the activation of the respiratory burst. It may also play a role in neutrophil migration and in the degranulation of neutrophils. It has two different translational starts that have different subcellular localization. HCK has been shown to interact with BCR gene, ELMO1 Cbl gene, RAS p21 protein activator 1, RASA3, Granulocyte colony-stimulating factor receptor, ADAM15 and RAPGEF1. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. HCK has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198226  Cd Length: 104  Bit Score: 48.04  E-value: 7.21e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 285 EWYWGDISREEVNEKLRDTAD--GTFLVRDASTKmHGDYTLTLR-----KGGNNKLIKIFHRD-GKYGFSDPLTFNSVVE 356
Cdd:cd10363    4 EWFFKGISRKDAERQLLAPGNmlGSFMIRDSETT-KGSYSLSVRdydpqHGDTVKHYKIRTLDnGGFYISPRSTFSTLQE 82
                         90       100
                 ....*....|....*....|....*...
gi 465984348 357 LINHYR--NESLAQynpkldvKLLYPVS 382
Cdd:cd10363   83 LVDHYKkgNDGLCQ-------KLSVPCM 103
SH2_Src_Fyn_isoform_a_like cd10418
Src homology 2 (SH2) domain found in Fyn isoform a like proteins; Fyn is a member of the Src ...
282-361 7.72e-07

Src homology 2 (SH2) domain found in Fyn isoform a like proteins; Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. This cd contains the SH2 domain found in Fyn isoform a type proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198281  Cd Length: 101  Bit Score: 48.07  E-value: 7.72e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 282 QDAEWYWGDISREEVNEKLRDTAD--GTFLVRDASTkMHGDYTLTLR-----KGGNNKLIKIFHRD-GKYGFSDPLTFNS 353
Cdd:cd10418    1 QAEEWYFGKLGRKDAERQLLSFGNprGTFLIRESET-TKGAYSLSIRdwddmKGDHVKHYKIRKLDnGGYYITTRAQFET 79

                 ....*...
gi 465984348 354 VVELINHY 361
Cdd:cd10418   80 LQQLVQHY 87
SH2_Src_Src cd10365
Src homology 2 (SH2) domain found in tyrosine kinase sarcoma (Src); Src is a member of the Src ...
282-365 7.92e-07

Src homology 2 (SH2) domain found in tyrosine kinase sarcoma (Src); Src is a member of the Src non-receptor type tyrosine kinase family of proteins. Src is thought to play a role in the regulation of embryonic development and cell growth. Members here include v-Src and c-Src. v-Src lacks the C-terminal inhibitory phosphorylation site and is therefore constitutively active as opposed to normal cellular src (c-Src) which is only activated under certain circumstances where it is required (e.g. growth factor signaling). v-Src is an oncogene whereas c-Src is a proto-oncogene. c-Src consists of three domains, an N-terminal SH3 domain, a central SH2 domain and a tyrosine kinase domain. The SH2 and SH3 domains work together in the auto-inhibition of the kinase domain. The phosphorylation of an inhibitory tyrosine near the c-terminus of the protein produces a binding site for the SH2 domain which then facilitates binding of the SH3 domain to a polyproline site within the linker between the SH2 domain and the kinase domain. Binding of the SH3 domain inactivates the enzyme. This allows for multiple mechanisms for c-Src activation: dephosphorylation of the C-terminal tyrosine by a protein tyrosine phosphatase, binding of the SH2 domain by a competitive phospho-tyrosine residue, or competitive binding of a polyproline binding site to the SH3 domain. Unlike most other Src members Src lacks cysteine residues in the SH4 domain that undergo palmitylation. Serine and threonine phosphorylation sites have also been identified in the unique domains of Src and are believed to modulate protein-protein interactions or regulate catalytic activity. Alternatively spliced forms of Src, which contain 6- or 11-amino acid insertions in the SH3 domain, are expressed in CNS neurons. c-Src has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198228  Cd Length: 101  Bit Score: 47.74  E-value: 7.92e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 282 QDAEWYWGDISREEVNEKLRDTAD--GTFLVRDASTkMHGDYTLTL-----RKGGNNKLIKIFHRD-GKYGFSDPLTFNS 353
Cdd:cd10365    1 QAEEWYFGKITRRESERLLLNAENprGTFLVRESET-TKGAYCLSVsdfdnAKGLNVKHYKIRKLDsGGFYITSRTQFNS 79
                         90
                 ....*....|..
gi 465984348 354 VVELINHYRNES 365
Cdd:cd10365   80 LQQLVAYYSKHA 91
SH2_SOCS_family cd09923
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 ...
577-610 1.17e-06

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198178  Cd Length: 81  Bit Score: 46.81  E-value: 1.17e-06
                         10        20        30
                 ....*....|....*....|....*....|....
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVRESSKQGCY 610
Cdd:cd09923    2 WYWGGITRYEAEELLAGKPEGTFLVRDSSDSRYL 35
SH2_SLAP cd10344
Src homology 2 domain found in Src-like adaptor proteins; SLAP belongs to the subfamily of ...
286-361 1.36e-06

Src homology 2 domain found in Src-like adaptor proteins; SLAP belongs to the subfamily of adapter proteins that negatively regulate cellular signaling initiated by tyrosine kinases. It has a myristylated N-terminus, SH3 and SH2 domains with high homology to Src family tyrosine kinases, and a unique C-terminal tail, which is important for c-Cbl binding. SLAP negatively regulates platelet-derived growth factor (PDGF)-induced mitogenesis in fibroblasts and regulates F-actin assembly for dorsal ruffles formation. c-Cbl mediated SLAP inhibition towards actin remodeling. Moreover, SLAP enhanced PDGF-induced c-Cbl phosphorylation by SFK. In contrast, SLAP mitogenic inhibition was not mediated by c-Cbl, but it rather involved a competitive mechanism with SFK for PDGF-receptor (PDGFR) association and mitogenic signaling. Accordingly, phosphorylation of the Src mitogenic substrates Stat3 and Shc were reduced by SLAP. Thus, we concluded that SLAP regulates PDGFR signaling by two independent mechanisms: a competitive mechanism for PDGF-induced Src mitogenic signaling and a non-competitive mechanism for dorsal ruffles formation mediated by c-Cbl. SLAP is a hematopoietic adaptor containing Src homology (SH)3 and SH2 motifs and a unique carboxy terminus. Unlike c-Src, SLAP lacks a tyrosine kinase domain. Unlike c-Src, SLAP does not impact resorptive function of mature osteoclasts but induces their early apoptosis. SLAP negatively regulates differentiation of osteoclasts and proliferation of their precursors. Conversely, SLAP decreases osteoclast death by inhibiting activation of caspase 3. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198207  Cd Length: 104  Bit Score: 47.10  E-value: 1.36e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLR--DTADGTFLVRDASTKmHGDYTLTLRKGGNNKLIKIFH------RDGKYGFSDPLTFNSVVEL 357
Cdd:cd10344   12 WLFEGLSREKAEELLMlpGNQVGSFLIRESETR-RGCYSLSVRHRGSQSRDSVKHyrifrlDNGWFYISPRLTFQCLEDM 90

                 ....
gi 465984348 358 INHY 361
Cdd:cd10344   91 VNHY 94
SH2_ShkD_ShkE cd10357
Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases D and E (ShkD and ShkE) ...
275-349 2.01e-06

Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases D and E (ShkD and ShkE); SH2-bearing genes cloned from Dictyostelium include two transcription factors, STATa and STATc, and a signaling factor, SHK1 (shkA). A database search of the Dictyostelium discoideum genome revealed two additional putative STAT sequences, dd-STATb and dd-STATd, and four additional putative SHK genes, dd-SHK2 (shkB), dd-SHK3 (shkC), dd-SHK4 (shkD), and dd-SHK5 (shkE). This model contains members of shkD and shkE. All of the SHK members are most closely related to the protein kinases found in plants. However these kinases in plants are not conjugated to any SH2 or SH2-like sequences. Alignment data indicates that the SHK SH2 domains carry some features of the STAT SH2 domains in Dictyostelium. When STATc's linker domain was used for a BLAST search, the sequence between the protein kinase domain and the SH2 domain (the linker) of SHK was recovered, suggesting a close relationship among these molecules within this region. SHK's linker domain is predicted to contain an alpha-helix which is indeed homologous to that of STAT. Based on the phylogenetic alignment, SH2 domains can be grouped into two categories, STAT-type and Src-type. SHK family members are in between, but are closer to the STAT-type which indicates a close relationship between SHK and STAT families in their SH2 domains and further supports the notion that SHKs linker-SH2 domain evolved from STAT or STATL (STAT-like Linker-SH2) domain found in plants. In SHK, STAT, and SPT6, the linker-SH2 domains all reside exclusively in the C-terminal regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198220  Cd Length: 87  Bit Score: 46.35  E-value: 2.01e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 275 MNNNMSLQDAEWYWGDISREEVNEKLRDTADGTFLVRDASTK-MHGDYTLTLRKGGNNKLIKIFHRD----------GKY 343
Cdd:cd10357    1 IMNINILLAKSWFHGDISRDEAEKRLRGRPEGTFLIRLSSTDpKKTPFTISKKKKSKPVHKRISRIDvnnytsfkipGGY 80

                 ....*.
gi 465984348 344 GFSDPL 349
Cdd:cd10357   81 AVSVPL 86
SH2_PTK6_Brk cd10358
Src homology 2 domain found in protein-tyrosine kinase-6 (PTK6) which is also known as breast ...
286-368 2.37e-06

Src homology 2 domain found in protein-tyrosine kinase-6 (PTK6) which is also known as breast tumor kinase (Brk); Human protein-tyrosine kinase-6 (PTK6, also known as breast tumor kinase (Brk)) is a member of the non-receptor protein-tyrosine kinase family and is expressed in two-thirds of all breast tumors. PTK6 (9). PTK6 contains a SH3 domain, a SH2 domain, and catalytic domains. For the case of the non-receptor protein-tyrosine kinases, the SH2 domain is typically involved in negative regulation of kinase activity by binding to a phosphorylated tyrosine residue near to the C terminus. The C-terminal sequence of PTK6 (PTSpYENPT where pY is phosphotyrosine) is thought to be a self-ligand for the SH2 domain. The structure of the SH2 domain resembles other SH2 domains except for a centrally located four-stranded antiparallel beta-sheet (strands betaA, betaB, betaC, and betaD). There are also differences in the loop length which might be responsible for PTK6 ligand specificity. There are two possible means of regulation of PTK6: autoinhibitory with the phosphorylation of Tyr playing a role in its negative regulation and autophosphorylation at this site, though it has been shown that PTK6 might phosphorylate signal transduction-associated proteins Sam68 and signal transducing adaptor family member 2 (STAP/BKS) in vivo. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198221  Cd Length: 100  Bit Score: 46.66  E-value: 2.37e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLR--DTADGTFLVRdASTKMHGDYTLTLRKGGNNKLIKIF-HRDGKYGFSDPLTFNSVVELINHYR 362
Cdd:cd10358    4 WFFGCISRSEAVRRLQaeGNATGAFLIR-VSEKPSADYVLSVRDTQAVRHYKIWrRAGGRLHLNEAVSFLSLPELVNYHR 82

                 ....*.
gi 465984348 363 NESLAQ 368
Cdd:cd10358   83 AQSLSH 88
SH2_Cterm_RasGAP cd10354
C-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP ...
577-651 2.40e-06

C-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP is part of the GAP1 family of GTPase-activating proteins. The protein is located in the cytoplasm and stimulates the GTPase activity of normal RAS p21, but not its oncogenic counterpart. Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in RAS inactivation, thereby allowing control of cellular proliferation and differentiation. Mutations leading to changes in the binding sites of either protein are associated with basal cell carcinomas. Alternative splicing results in two isoforms. The shorter isoform which lacks the N-terminal hydrophobic region, has the same activity, and is expressed in placental tissues. In general longer isoform contains 2 SH2 domains, a SH3 domain, a pleckstrin homology (PH) domain, and a calcium-dependent phospholipid-binding C2 domain. The C-terminus contains the catalytic domain of RasGap which catalyzes the activation of Ras by hydrolyzing GTP-bound active Ras into an inactive GDP-bound form of Ras. This model contains the C-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198217  Cd Length: 77  Bit Score: 45.88  E-value: 2.40e-06
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 465984348 577 WNVGNINRSQAENLL-RGKRDGTFLVRESSKQ-GCYACSVVVDGEVKHCVINKTPTG-YGFAEPYnlYSSLKELVLHY 651
Cdd:cd10354    2 WFHGKISREEAYNMLvKVGGPGSFLVRESDNTpGDYSLSFRVNEGIKHFKIIPTGNNqFMMGGRY--FSSLDDVIDRY 77
SH2_BCAR3 cd10337
Src homology 2 (SH2) domain in the Breast Cancer Anti-estrogen Resistance protein 3; BCAR3 is ...
567-652 3.22e-06

Src homology 2 (SH2) domain in the Breast Cancer Anti-estrogen Resistance protein 3; BCAR3 is part of a growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases, including Sos1 and 2, GRF1 and 2, CalDAG-GEF/GRP1-4, C3G, cAMP-GEF/Epac 1 and 2, PDZ-GEFs, MR-GEF, RalGDS family members, RalGPS, RasGEF, Smg GDS, and phospholipase C(epsilon). 12102558 21262352 BCAR3 binds to the carboxy-terminus of BCAR1/p130Cas, a focal adhesion adapter protein. Over expression of BCAR1 (p130Cas) and BCAR3 induces estrogen independent growth in normally estrogen-dependent cell lines. They have been linked to resistance to anti-estrogens in breast cancer, Rac activation, and cell motility, though the BCAR3/p130Cas complex is not required for this activity in BCAR3. Many BCAR3-mediated signaling events in epithelial and mesenchymal cells are independent of p130Cas association. Structurally these proteins contain a single SH2 domain upstream of their RasGEF domain, which is responsible for the ability of BCAR3 to enhance p130Cas over-expression-induced migration. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198200 [Multi-domain]  Cd Length: 136  Bit Score: 46.94  E-value: 3.22e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 567 EDLPHHderTWNVGNINRSQAENLLRgkRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNLY---- 641
Cdd:cd10337    1 EDLRSH---AWYHGRIPRQVAESLVQ--REGDFLVRDSlSSPGDYVLTCRWKGQPLHFKINRVVLRPSEAYTRVQYqfed 75
                         90
                 ....*....|....
gi 465984348 642 ---SSLKELVLHYQ 652
Cdd:cd10337   76 eqfDSIPALVHFYV 89
SH2_Src_Fyn cd10368
Src homology 2 (SH2) domain found in Fyn; Fyn is a member of the Src non-receptor type ...
282-361 3.27e-06

Src homology 2 (SH2) domain found in Fyn; Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198231 [Multi-domain]  Cd Length: 101  Bit Score: 46.18  E-value: 3.27e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 282 QDAEWYWGDISREEVNEKLRDTAD--GTFLVRDASTkMHGDYTLTLR-----KGGNNKLIKIFHRD-GKYGFSDPLTFNS 353
Cdd:cd10368    1 QAEEWYFGKLGRKDAERQLLSFGNprGTFLIRESET-TKGAYSLSIRdwddmKGDHVKHYKIRKLDnGGYYITTRAQFET 79

                 ....*...
gi 465984348 354 VVELINHY 361
Cdd:cd10368   80 LQQLVQHY 87
SH2_Nck_family cd09943
Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate ...
577-652 4.01e-06

Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198196  Cd Length: 93  Bit Score: 45.58  E-value: 4.01e-06
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 465984348 577 WNVGNINRSQAENLLRGK-RDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTGYGFAEpyNLYSSLKELVLHYQ 652
Cdd:cd09943    3 WYYGRITRHQAETLLNEHgHEGDFLIRDSeSNPGDYSVSLKAPGRNKHFKVQVVDNVYCIGQ--RKFHTMDELVEHYK 78
SH2_SHB_SHD_SHE_SHF_like cd09945
Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, ...
577-671 4.71e-06

Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, SHE, SHF); SHB, SHD, SHE, and SHF are SH2 domain-containing proteins that play various roles throughout the cell. SHB functions in generating signaling compounds in response to tyrosine kinase activation. SHB contains proline-rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites, and a SH2 domain. SHB mediates certain aspects of platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK) and SHB regulate apoptosis, proliferation and differentiation. SHB promotes apoptosis and is also required for proper mitogenicity, spreading and tubular morphogenesis in endothelial cells. SHB also plays a role in preventing early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon. SHB is a multifunctional protein that has difference responses in different cells under various conditions. SHE is expressed in heart, lung, brain, and skeletal muscle, while expression of SHD is restricted to the brain. SHF is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. SHD may be a physiological substrate of c-Abl and may function as an adapter protein in the central nervous system. It is also thought to be involved in apoptotic regulation. SHD contains five YXXP motifs, a substrate sequence preferred by Abl tyrosine kinases, in addition to a poly-proline rich region and a C-terminal SH2 domain. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. SHF contains four putative tyrosine phosphorylation sites and an SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198198  Cd Length: 98  Bit Score: 45.50  E-value: 4.71e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVR--ESSKQGcYACSVVVDGEVKHCVINKTPTG-YGFAEPYNLYSSLKELVLHYQH 653
Cdd:cd09945    3 WYHGAITRIEAESLLRPCKEGSYLVRnsESTKQD-YSLSLKSAKGFMHMRIQRNETGqYILGQFSRPFETIPEMIRHYCL 81
                         90       100
                 ....*....|....*....|..
gi 465984348 654 TSL----VQHndslnVTLAYPV 671
Cdd:cd09945   82 NKLpvrgAEH-----MCLLEPV 98
SH2_Tec_Itk cd10396
Src homology 2 (SH2) domain found in Tec protein, IL2-inducible T-cell kinase (Itk); A member ...
281-382 4.76e-06

Src homology 2 (SH2) domain found in Tec protein, IL2-inducible T-cell kinase (Itk); A member of the Tec protein tyrosine kinase Itk is expressed thymus, spleen, lymph node, T lymphocytes, NK and mast cells. It plays a role in T-cell proliferation and differentiation, analogous to Tec family kinases Txk. Itk has been shown to interact with Fyn, Wiskott-Aldrich syndrome protein, KHDRBS1, PLCG1, Lymphocyte cytosolic protein 2, Linker of activated T cells, Karyopherin alpha 2, Grb2, and Peptidylprolyl isomerase A. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains and it's lack of presence in Txk is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198259  Cd Length: 108  Bit Score: 45.94  E-value: 4.76e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 281 LQDAEWYWGDISREEVNEKLRDTA-DGTFLVRDASTKmhGDYTLTLRK---GGNNKLIKIFH------RDGKYGFSDPLT 350
Cdd:cd10396    3 LDQYEWYNKNINRSKAEKLLRDEGkEGGFMVRDSSQP--GLYTVSLYTkagGEGNPCIRHYHiketndSPKKYYLAEKHV 80
                         90       100       110
                 ....*....|....*....|....*....|...
gi 465984348 351 FNSVVELINHYrneslaQYNPK-LDVKLLYPVS 382
Cdd:cd10396   81 FNSIPELIEYH------KHNAAgLVTRLRYPVS 107
SH2_Src_Lck cd10362
Src homology 2 (SH2) domain in lymphocyte cell kinase (Lck); Lck is a member of the Src ...
576-670 5.13e-06

Src homology 2 (SH2) domain in lymphocyte cell kinase (Lck); Lck is a member of the Src non-receptor type tyrosine kinase family of proteins. It is expressed in the brain, T-cells, and NK cells. The unique domain of Lck mediates its interaction with two T-cell surface molecules, CD4 and CD8. It associates with their cytoplasmic tails on CD4 T helper cells and CD8 cytotoxic T cells to assist signaling from the T cell receptor (TCR) complex. When the T cell receptor is engaged by the specific antigen presented by MHC, Lck phosphorylase the intracellular chains of the CD3 and zeta-chains of the TCR complex, allowing ZAP-70 to bind them. Lck then phosphorylates and activates ZAP-70, which in turn phosphorylates Linker of Activated T cells (LAT), a transmembrane protein that serves as a docking site for proteins including: Shc-Grb2-SOS, PI3K, and phospholipase C (PLC). The tyrosine phosphorylation cascade culminates in the intracellular mobilization of a calcium ions and activation of important signaling cascades within the lymphocyte, including the Ras-MEK-ERK pathway, which goes on to activate certain transcription factors such as NFAT, NF-kappaB, and AP-1. These transcription factors regulate the production cytokines such as Interleukin-2 that promote long-term proliferation and differentiation of the activated lymphocytes. The N-terminal tail of Lck is myristoylated and palmitoylated and it tethers the protein to the plasma membrane of the cell. Lck also contains a SH3 domain, a SH2 domain, and a C-terminal tyrosine kinase domain. Lck has 2 phosphorylation sites, the first an autophosphorylation site that is linked to activation of the protein and the second which is phosphorylated by Csk, which inhibits it. Lck is also inhibited by SHP-1 dephosphorylation and by Cbl ubiquitin ligase, which is part of the ubiquitin-mediated pathway. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198225  Cd Length: 101  Bit Score: 45.63  E-value: 5.13e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 576 TWNVGNINRSQAE--NLLRGKRDGTFLVRES-SKQGCYACSV----VVDGE-VKHCVINKTPTGYGFAEPYNLYSSLKEL 647
Cdd:cd10362    4 PWFFKNLSRNDAErqLLAPGNTHGSFLIRESeTTAGSFSLSVrdfdQNQGEvVKHYKIRNLDNGGFYISPRITFPGLHEL 83
                         90       100
                 ....*....|....*....|...
gi 465984348 648 VLHYQHTSlvqhnDSLNVTLAYP 670
Cdd:cd10362   84 VRHYTNAS-----DGLCTRLSRP 101
SH2_ShkA_ShkC cd10356
Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases A and C (ShkA and ShkC) ...
275-386 5.60e-06

Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases A and C (ShkA and ShkC); SH2-bearing genes cloned from Dictyostelium include two transcription factors, STATa and STATc, and a signaling factor, SHK1 (shkA). A database search of the Dictyostelium discoideum genome revealed two additional putative STAT sequences, dd-STATb and dd-STATd, and four additional putative SHK genes, dd-SHK2 (shkB), dd-SHK3 (shkC), dd-SHK4 (shkD), and dd-SHK5 (shkE). This model contains members of shkA and shkC. All of the SHK members are most closely related to the protein kinases found in plants. However these kinases in plants are not conjugated to any SH2 or SH2-like sequences. Alignment data indicates that the SHK SH2 domains carry some features of the STAT SH2 domains in Dictyostelium. When STATc's linker domain was used for a BLAST search, the sequence between the protein kinase domain and the SH2 domain (the linker) of SHK was recovered, suggesting a close relationship among these molecules within this region. SHK's linker domain is predicted to contain an alpha-helix which is indeed homologous to that of STAT. Based on the phylogenetic alignment, SH2 domains can be grouped into two categories, STAT-type and Src-type. SHK family members are in between, but are closer to the STAT-type which indicates a close relationship between SHK and STAT families in their SH2 domains and further supports the notion that SHKs linker-SH2 domain evolved from STAT or STATL (STAT-like Linker-SH2) domain found in plants. In SHK, STAT, and SPT6, the linker-SH2 domains all reside exclusively in the C-terminal regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198219  Cd Length: 113  Bit Score: 45.68  E-value: 5.60e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 275 MNNNMSLQDAEWYWGDISREEVNEKLRDTADGTFLVRDASTKmHGDYTLT-LRKGGNNKLIKIFHRDGKYGFSDPLtFNS 353
Cdd:cd10356    1 LDKIRELMECAWFHGDISTSESENRLNGKPEGTFLVRFSTSE-PGAYTISkVSKNGGISHQRIHRPGGKFQVNNSK-YLS 78
                         90       100       110
                 ....*....|....*....|....*....|...
gi 465984348 354 VVELINhyRNESLAQYNPKLDVKLLYPVSKYQQ 386
Cdd:cd10356   79 VKELIA--GEAQALGIDTPCLGSRFLPLIYKMQ 109
SMC_prok_B TIGR02168
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
349-549 6.69e-06

chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]


Pssm-ID: 274008 [Multi-domain]  Cd Length: 1179  Bit Score: 49.67  E-value: 6.69e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348   349 LTFNSVVELINHYR--NESLAQYNPKLDvkllypvsKYQQDQVVKEDSIEAVGKKLHEYNTQFQEKSREYDRLYEDYTRT 426
Cdd:TIGR02168  229 LLVLRLEELREELEelQEELKEAEEELE--------ELTAELQELEEKLEELRLEVSELEEEIEELQKELYALANEISRL 300
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348   427 SQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKRegNEKEIQRIMHNYEKLKSRISE----IVDSRRR---LE 499
Cdd:TIGR02168  301 EQQKQILRERLANLERQLEELEAQLEELESKLDELAEELAE--LEEKLEELKEELESLEAELEEleaeLEELESRleeLE 378
                          170       180       190       200       210
                   ....*....|....*....|....*....|....*....|....*....|
gi 465984348   500 EDLKKQAAEYREIDKRMNSIKPDLIQLRKTrdqylmwLTQKGVRQKKLNE 549
Cdd:TIGR02168  379 EQLETLRSKVAQLELQIASLNNEIERLEAR-------LERLEDRRERLQQ 421
SH2_SHE cd10391
Src homology 2 domain found in SH2 domain-containing adapter protein E (SHE); SHE is expressed ...
286-381 7.26e-06

Src homology 2 domain found in SH2 domain-containing adapter protein E (SHE); SHE is expressed in heart, lung, brain, and skeletal muscle. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198254  Cd Length: 98  Bit Score: 44.95  E-value: 7.26e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDaSTKMHGDYTLTLRKG-GNNKLIKIFHRDGKYGFSD-PLTFNSVVELINHYRN 363
Cdd:cd10391    3 WYHGSISRAEAESRLQPCKEASYLVRN-SESGNSKYSIALKTSqGCVHIIVAQTKDNKYTLNQtSAVFDSIPEVVHYYSN 81
                         90
                 ....*....|....*...
gi 465984348 364 ESLAqYNPKLDVKLLYPV 381
Cdd:cd10391   82 EKLP-FKGAEHMTLLHPV 98
SH2_SH2D2A_SH2D7 cd10349
Src homology 2 domain found in the SH2 domain containing protein 2A and 7 (SH2D2A and SH2D7); ...
577-651 1.00e-05

Src homology 2 domain found in the SH2 domain containing protein 2A and 7 (SH2D2A and SH2D7); SH2D2A and SH7 both contain a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199830  Cd Length: 77  Bit Score: 44.05  E-value: 1.00e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVRESSKQGCYACSVVVDGEVKHCVINKTPTG-YGFAEPYNLYSSLKELVLHY 651
Cdd:cd10349    2 WFHGFITRREAERLLEPKPQGCYLVRFSESAVTFVLSYRSRTCCRHFLLAQLRDGrHVVLGEDSAHARLQDLLLHY 77
RhoGAP_myosin_IX cd04377
RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
121-227 1.15e-05

RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in class IX myosins. Class IX myosins contain a characteristic head domain, a neck domain, a tail domain which contains a C6H2-zinc binding motif and a RhoGAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239842  Cd Length: 186  Bit Score: 46.66  E-value: 1.15e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 121 DASSMDFEPIDVQILADALKRYLLDLPNSVIPASVYSEMISgAQEVQSSDEYAQLLKKLIRspNIPHQYWLTLQYLLKHF 200
Cdd:cd04377   56 DPDSVNLEDYPIHVITSVLKQWLRELPEPLMTFELYENFLR-AMELEEKQERVRALYSVLE--QLPRANLNTLERLIFHL 132
                         90       100
                 ....*....|....*....|....*..
gi 465984348 201 FRLCQTSSKNLLNARSLAEIFSPLLFK 227
Cdd:cd04377  133 VRVALQEEVNRMSANALAIVFAPCILR 159
SH2_Cterm_shark_like cd10348
C-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) ...
577-651 1.16e-05

C-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins; These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in its carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198211  Cd Length: 86  Bit Score: 43.95  E-value: 1.16e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 465984348 577 WNVGNINRSQAENLLRGKR--DGTFLVRESSKQ-GCYACSVVVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELVLHY 651
Cdd:cd10348    2 WLHGALDRNEAVEILKQKAdaDGSFLVRYSRRRpGGYVLTLVYENHVYHFEIQNRDDKWFYIDDGPYFESLEHLIEHY 79
AAA_13 pfam13166
AAA domain; This family of domains contain a P-loop motif that is characteriztic of the AAA ...
364-521 1.25e-05

AAA domain; This family of domains contain a P-loop motif that is characteriztic of the AAA superfamily. Many of the proteins in this family are conjugative transfer proteins. This family includes the PrrC protein that is thought to be the active component of the anticodon nuclease.


Pssm-ID: 463796 [Multi-domain]  Cd Length: 712  Bit Score: 48.52  E-value: 1.25e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  364 ESLAQYNPKLDVKLLYPVSKYQQDQV-----VKEDSIEAVGKKLHEYNTQ-FqeKSREYDRLYEDYTRTSQEIQMKRTAI 437
Cdd:pfam13166 301 SLLAQLPAVSDLASLLSAFELDVEDIeseaeVLNSQLDGLRRALEAKRKDpF--KSIELDSVDAKIESINDLVASINELI 378
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  438 EAFNETIKIFEEQCQTqerySKEYIEKFKREGNEKEIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMN 517
Cdd:pfam13166 379 AKHNEITDNFEEEKNK----AKKKLRLHLVEEFKSEIDEYKDKYAGLEKAINSLEKEIKNLEAEIKKLREEIKELEAQLR 454

                  ....
gi 465984348  518 SIKP 521
Cdd:pfam13166 455 DHKP 458
SH2_C-SH2_Zap70 cd10402
C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 ...
572-631 1.33e-05

C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70); ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the C-terminus SH2 domains of Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198265  Cd Length: 105  Bit Score: 44.53  E-value: 1.33e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 465984348 572 HDERTWNVGNINRSQAENLLR--GKRDGTFLVRESSKQGCYACSVVVDGEVKHCVINKTPTG 631
Cdd:cd10402    7 HERMPWYHGSIARDEAERRLYsgAQPDGKFLLRERKESGTYALSLVYGKTVYHYRIDQDKSG 68
SH2_Src_Lck cd10362
Src homology 2 (SH2) domain in lymphocyte cell kinase (Lck); Lck is a member of the Src ...
282-365 1.40e-05

Src homology 2 (SH2) domain in lymphocyte cell kinase (Lck); Lck is a member of the Src non-receptor type tyrosine kinase family of proteins. It is expressed in the brain, T-cells, and NK cells. The unique domain of Lck mediates its interaction with two T-cell surface molecules, CD4 and CD8. It associates with their cytoplasmic tails on CD4 T helper cells and CD8 cytotoxic T cells to assist signaling from the T cell receptor (TCR) complex. When the T cell receptor is engaged by the specific antigen presented by MHC, Lck phosphorylase the intracellular chains of the CD3 and zeta-chains of the TCR complex, allowing ZAP-70 to bind them. Lck then phosphorylates and activates ZAP-70, which in turn phosphorylates Linker of Activated T cells (LAT), a transmembrane protein that serves as a docking site for proteins including: Shc-Grb2-SOS, PI3K, and phospholipase C (PLC). The tyrosine phosphorylation cascade culminates in the intracellular mobilization of a calcium ions and activation of important signaling cascades within the lymphocyte, including the Ras-MEK-ERK pathway, which goes on to activate certain transcription factors such as NFAT, NF-kappaB, and AP-1. These transcription factors regulate the production cytokines such as Interleukin-2 that promote long-term proliferation and differentiation of the activated lymphocytes. The N-terminal tail of Lck is myristoylated and palmitoylated and it tethers the protein to the plasma membrane of the cell. Lck also contains a SH3 domain, a SH2 domain, and a C-terminal tyrosine kinase domain. Lck has 2 phosphorylation sites, the first an autophosphorylation site that is linked to activation of the protein and the second which is phosphorylated by Csk, which inhibits it. Lck is also inhibited by SHP-1 dephosphorylation and by Cbl ubiquitin ligase, which is part of the ubiquitin-mediated pathway. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198225  Cd Length: 101  Bit Score: 44.48  E-value: 1.40e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 282 QDAEWYWGDISREEVNEKLRDTAD--GTFLVRDASTKmHGDYTLTLRKGGNN-----KLIKIFHRD-GKYGFSDPLTFNS 353
Cdd:cd10362    1 EPEPWFFKNLSRNDAERQLLAPGNthGSFLIRESETT-AGSFSLSVRDFDQNqgevvKHYKIRNLDnGGFYISPRITFPG 79
                         90
                 ....*....|..
gi 465984348 354 VVELINHYRNES 365
Cdd:cd10362   80 LHELVRHYTNAS 91
SH2_Fps_family cd10361
Src homology 2 (SH2) domain found in feline sarcoma, Fujinami poultry sarcoma, and fes-related ...
584-656 1.43e-05

Src homology 2 (SH2) domain found in feline sarcoma, Fujinami poultry sarcoma, and fes-related (Fes/Fps/Fer) proteins; The Fps family consists of members Fps/Fes and Fer/Flk/Tyk3. They are cytoplasmic protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. Fes/Fps/Fer contains three coiled-coil regions, an SH2 (Src-homology-2) and a TK (tyrosine kinase catalytic) domain signature. Members here include: Fps/Fes, Fer, Kin-31, and In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198224  Cd Length: 90  Bit Score: 44.06  E-value: 1.43e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 465984348 584 RSQAENLLrgKRDGTFLVRESSKQGC----YACSVVVDGEVKHCVINKTPTG-YGFAEpyNLYSSLKELVLHYQHTSL 656
Cdd:cd10361   15 REDAEELL--KNDGDFLVRKTEPKGGgkrkLVLSVRWDGKIRHFVINRDDGGkYYIEG--KSFKSISELINYYQKTKE 88
RhoGAP_SYD1 cd04379
RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
131-251 1.49e-05

RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in SYD-1_like proteins. Syd-1, first identified and best studied in C.elegans, has been shown to play an important role in neuronal development by specifying axonal properties. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239844  Cd Length: 207  Bit Score: 46.31  E-value: 1.49e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 131 DVQILADALKRYLLDLPNSVIPASVYsEMISGAQEVQSSDEY---AQLLKKLIRSpnIPHQYWLTLQYLLKHFFRLCQTS 207
Cdd:cd04379   72 DINVITGVLKDYLRELPEPLITPQLY-EMVLEALAVALPNDVqtnTHLTLSIIDC--LPLSAKATLLLLLDHLSLVLSNS 148
                         90       100       110       120       130
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 465984348 208 SKNLLNARSLAEIFSPLLF---------------KFQLGSSDNAEHLIKILEVLITSeW 251
Cdd:cd04379  149 ERNKMTPQNLAVCFGPVLMfcsqefsrygisptsKMAAVSTVDFKQHIEVLHYLLQI-W 206
SH2_Grb7_family cd09944
Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 7 (Grb7) ...
572-625 1.66e-05

Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 7 (Grb7) proteins; The Grb family binds to the epidermal growth factor receptor (EGFR, erbB1) via their SH2 domains. There are 3 members of the Grb7 family of proteins: Grb7, Grb10, and Grb14. They are composed of an N-terminal Proline-rich domain, a Ras Associating-like (RA) domain, a Pleckstrin Homology (PH) domain, a phosphotyrosine interaction region (PIR, BPS) and a C-terminal SH2 domain. The SH2 domains of Grb7, Grb10 and Grb14 preferentially bind to a different RTK. Grb7 binds strongly to the erbB2 receptor, unlike Grb10 and Grb14 which bind weakly to it. Grb14 binds to Fibroblast Growth Factor Receptor (FGFR). Grb10 has been shown to interact with many different proteins, including the insulin and IGF1 receptors, platelet-derived growth factor (PDGF) receptor-beta, Ret, Kit, Raf1 and MEK1, and Nedd4. Grb7 family proteins are phosphorylated on serine/threonine as well as tyrosine residues. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198197 [Multi-domain]  Cd Length: 108  Bit Score: 44.33  E-value: 1.66e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 465984348 572 HDERTWNVGNINRSQAENLLR--GKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVI 625
Cdd:cd09944    2 HRSQPWFHGGISRDEAARLIRqqGLVDGVFLVRESqSNPGAFVLSLKHGQKIKHYQI 58
RhoGAP_fSAC7_BAG7 cd04396
RhoGAP_fSAC7_BAG7: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
124-226 1.66e-05

RhoGAP_fSAC7_BAG7: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal SAC7 and BAG7-like proteins. Both proteins are GTPase activating proteins of Rho1, but differ functionally in vivo: SAC7, but not BAG7, is involved in the control of Rho1-mediated activation of the PKC-MPK1 pathway. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239861  Cd Length: 225  Bit Score: 46.63  E-value: 1.66e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 124 SMDFEPIDVQILADALKRYLLDLPNSVIPASVYSE--------------MISGAQEVQSSD------EYAQLLKKLirsP 183
Cdd:cd04396   79 SFDWDGYTVHDAASVLRRYLNNLPEPLVPLDLYEEfrnplrkrprilqyMKGRINEPLNTDidqaikEYRDLITRL---P 155
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|...
gi 465984348 184 NIPHQYWLTLQYLLKHFFRlcqTSSKNLLNARSLAEIFSPLLF 226
Cdd:cd04396  156 NLNRQLLLYLLDLLAVFAR---NSDKNLMTASNLAAIFQPGIL 195
SH2_HSH2_like cd09946
Src homology 2 domain found in hematopoietic SH2 (HSH2) protein; HSH2 is thought to function ...
577-665 1.80e-05

Src homology 2 domain found in hematopoietic SH2 (HSH2) protein; HSH2 is thought to function as an adapter protein involved in tyrosine kinase signaling. It may also be involved in regulating cytokine signaling and cytoskeletal reorganization in hematopoietic cells. HSH2 contains several putative protein-binding motifs, SH3-binding proline-rich regions, and phosphotyrosine sites, but lacks enzymatic motifs. HSH2 was found to interact with cytokine-regulated tyrosine kinase c-FES and an activated Cdc42-associated tyrosine kinase ACK1. HSH2 binds c-FES through both its C-terminal region and its N-terminal region including the SH2 domain and binds ACK1 via its N-terminal proline-rich region. Both kinases bound and tyrosine-phosphorylated HSH2 in mammalian cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198199  Cd Length: 102  Bit Score: 44.11  E-value: 1.80e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVRESSKQGCYACSVVVDGEVKHCVINKTPTG-YGFAEPYNLYSSLKELVLHYQHTS 655
Cdd:cd09946    9 WFHGAISREAAENMLESQPLGSFLIRVSHSHVGYTLSYKAQSSCRHFMVKLLDDGtFMIPGEKVAHTSLHALVTFHQQKP 88
                         90
                 ....*....|
gi 465984348 656 LVQHNDSLNV 665
Cdd:cd09946   89 IEPRRELLTQ 98
RhoGAP_ARHGAP22_24_25 cd04390
RhoGAP_ARHGAP22_24_25: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ...
131-229 1.83e-05

RhoGAP_ARHGAP22_24_25: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP22, 24 and 25-like proteins; longer isoforms of these proteins contain an additional N-terminal pleckstrin homology (PH) domain. ARHGAP25 (KIA0053) has been identified as a GAP for Rac1 and Cdc42. Short isoforms (without the PH domain) of ARHGAP24, called RC-GAP72 and p73RhoGAP, and of ARHGAP22, called p68RacGAP, has been shown to be involved in angiogenesis and endothelial cell capillary formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239855 [Multi-domain]  Cd Length: 199  Bit Score: 46.28  E-value: 1.83e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 131 DVQILADALKRYLLDLPNSVIPASVYSEMISGAQEVQSSDEYAQL-LKKLIRspNIPHQYWLTLQYLLKHFFRLCQTSSK 209
Cdd:cd04390   73 DVHTVASLLKLYLRELPEPVIPWAQYEDFLSCAQLLSKDEEKGLGeLMKQVS--ILPKVNYNLLSYICRFLDEVQSNSSV 150
                         90       100
                 ....*....|....*....|
gi 465984348 210 NLLNARSLAEIFSPLLFKFQ 229
Cdd:cd04390  151 NKMSVQNLATVFGPNILRPK 170
SH2_Src_Fgr cd10367
Src homology 2 (SH2) domain found in Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene ...
577-670 1.86e-05

Src homology 2 (SH2) domain found in Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog, Fgr; Fgr is a member of the Src non-receptor type tyrosine kinase family of proteins. The protein contains N-terminal sites for myristoylation and palmitoylation, a PTK domain, and SH2 and SH3 domains which are involved in mediating protein-protein interactions with phosphotyrosine-containing and proline-rich motifs, respectively. Fgr is expressed in B-cells and myeloid cells, localizes to plasma membrane ruffles, and functions as a negative regulator of cell migration and adhesion triggered by the beta-2 integrin signal transduction pathway. Multiple alternatively spliced variants, encoding the same protein, have been identified Fgr has been shown to interact with Wiskott-Aldrich syndrome protein. Fgr has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198230  Cd Length: 101  Bit Score: 44.13  E-value: 1.86e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLL--RGKRDGTFLVRES-SKQGCYACSV-----VVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELV 648
Cdd:cd10367    5 WYFGKIGRKDAERQLlsPGNPRGAFLIRESeTTKGAYSLSIrdwdqNRGDHVKHYKIRKLDTGGYYITTRAQFDTVQELV 84
                         90       100
                 ....*....|....*....|..
gi 465984348 649 LHYqhtslVQHNDSLNVTLAYP 670
Cdd:cd10367   85 QHY-----MEVNDGLCYLLTAP 101
SH2_Tec_Btk cd10397
Src homology 2 (SH2) domain found in Tec protein, Bruton's tyrosine kinase (Btk); A member of ...
280-382 1.91e-05

Src homology 2 (SH2) domain found in Tec protein, Bruton's tyrosine kinase (Btk); A member of the Tec protein tyrosine kinase Btk is expressed in bone marrow, spleen, all hematopoietic cells except T lymphocytes and plasma cells where it plays a crucial role in B cell maturation and mast cell activation. Btk has been shown to interact with GNAQ, PLCG2, protein kinase D1, B-cell linker, SH3BP5, caveolin 1, ARID3A, and GTF2I. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. Btk is implicated in the primary immunodeficiency disease X-linked agammaglobulinemia (Bruton's agammaglobulinemia). The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains and it's lack of presence in Txk is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. Two tyrosine phosphorylation (pY) sites have been identified in Btk: one located in the activation loop of the catalytic domain which regulates the transition between open (active) and closed (inactive) states and the other in its SH3 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198260 [Multi-domain]  Cd Length: 106  Bit Score: 44.05  E-value: 1.91e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 280 SLQDAEWYWGDISREEVNEKLR-DTADGTFLVRDASTKmhGDYTLT-LRKGGNNKLIKIFH------RDGKYGFSDPLTF 351
Cdd:cd10397    2 SLEMYEWYSKNMTRSQAEQLLKqEGKEGGFIVRDSSKA--GKYTVSvFAKSAGDPQGVIRHyvvcstPQSQYYLAEKHLF 79
                         90       100       110
                 ....*....|....*....|....*....|.
gi 465984348 352 NSVVELINHYRNESLAqynpkLDVKLLYPVS 382
Cdd:cd10397   80 STIPELINYHQHNAAG-----LISRLKYPVS 105
SH2_SHB cd10389
Src homology 2 domain found in SH2 domain-containing adapter protein B (SHB); SHB functions in ...
286-381 1.98e-05

Src homology 2 domain found in SH2 domain-containing adapter protein B (SHB); SHB functions in generating signaling compounds in response to tyrosine kinase activation. SHB contains proline-rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites, and a SH2 domain. SHB mediates certain aspects of platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK) and SHB regulate apoptosis, proliferation and differentiation. SHB promotes apoptosis and is also required for proper mitogenicity, spreading and tubular morphogenesis in endothelial cells. SHB also plays a role in preventing early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon. SHB is a multifunctional protein that has difference responses in different cells under various conditions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198252  Cd Length: 97  Bit Score: 43.93  E-value: 1.98e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDASTKMHgDYTLTLRKGGNNKLIKIFHRDGKY--GFSDPlTFNSVVELINHYRN 363
Cdd:cd10389    3 WYHGAISRGDAENLLRLCKECSYLVRNSQTSKH-DYSLSLKSNQGFMHMKLAKTKEKYvlGQNSP-PFDSVPEVIHYYTT 80
                         90
                 ....*....|....*...
gi 465984348 364 ESLAQYNPKlDVKLLYPV 381
Cdd:cd10389   81 RKLPIKGAE-HLSLLYPV 97
RhoGAP_myosin_IXA cd04406
RhoGAP_myosin_IXA: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
121-227 2.44e-05

RhoGAP_myosin_IXA: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXA. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239871  Cd Length: 186  Bit Score: 45.38  E-value: 2.44e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 121 DASSMDFEPIDVQILADALKRYLLDLPNSVIPASVYSEMISgAQEVQSSDEYAQLLKKLIRSPNIPHQYwlTLQYLLKHF 200
Cdd:cd04406   56 DANSVNLDDYNIHVIASVFKQWLRDLPNPLMTFELYEEFLR-AMGLQERRETVRGVYSVIDQLSRTHLN--TLERLIFHL 132
                         90       100
                 ....*....|....*....|....*..
gi 465984348 201 FRLCQTSSKNLLNARSLAEIFSPLLFK 227
Cdd:cd04406  133 VRIALQEETNRMSANALAIVFAPCILR 159
SH2_BCAR3 cd10337
Src homology 2 (SH2) domain in the Breast Cancer Anti-estrogen Resistance protein 3; BCAR3 is ...
281-361 2.47e-05

Src homology 2 (SH2) domain in the Breast Cancer Anti-estrogen Resistance protein 3; BCAR3 is part of a growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases, including Sos1 and 2, GRF1 and 2, CalDAG-GEF/GRP1-4, C3G, cAMP-GEF/Epac 1 and 2, PDZ-GEFs, MR-GEF, RalGDS family members, RalGPS, RasGEF, Smg GDS, and phospholipase C(epsilon). 12102558 21262352 BCAR3 binds to the carboxy-terminus of BCAR1/p130Cas, a focal adhesion adapter protein. Over expression of BCAR1 (p130Cas) and BCAR3 induces estrogen independent growth in normally estrogen-dependent cell lines. They have been linked to resistance to anti-estrogens in breast cancer, Rac activation, and cell motility, though the BCAR3/p130Cas complex is not required for this activity in BCAR3. Many BCAR3-mediated signaling events in epithelial and mesenchymal cells are independent of p130Cas association. Structurally these proteins contain a single SH2 domain upstream of their RasGEF domain, which is responsible for the ability of BCAR3 to enhance p130Cas over-expression-induced migration. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198200 [Multi-domain]  Cd Length: 136  Bit Score: 44.63  E-value: 2.47e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 281 LQDAEWYWGDISREEVNEKLRdtADGTFLVRDASTKMhGDYTLTLRKGGNN---KLIKIFHRDGK------YGFSDPlTF 351
Cdd:cd10337    3 LRSHAWYHGRIPRQVAESLVQ--REGDFLVRDSLSSP-GDYVLTCRWKGQPlhfKINRVVLRPSEaytrvqYQFEDE-QF 78
                         90
                 ....*....|
gi 465984348 352 NSVVELINHY 361
Cdd:cd10337   79 DSIPALVHFY 88
DR0291 COG1579
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ...
414-532 3.43e-05

Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only];


Pssm-ID: 441187 [Multi-domain]  Cd Length: 236  Bit Score: 45.69  E-value: 3.43e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 414 REYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKREGNEKEIQRIMHNYEKLKSRISEIVD 493
Cdd:COG1579   31 AELAELEDELAALEARLEAAKTELEDLEKEIKRLELEIEEVEARIKKYEEQLGNVRNNKEYEALQKEIESLKRRISDLED 110
                         90       100       110
                 ....*....|....*....|....*....|....*....
gi 465984348 494 SRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQ 532
Cdd:COG1579  111 EILELMERIEELEEELAELEAELAELEAELEEKKAELDE 149
SH2_Src_Frk cd10369
Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src ...
286-365 3.61e-05

Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src non-receptor type tyrosine kinase family of proteins. The Frk subfamily is composed of Frk/Rak and Iyk/Bsk/Gst. It is expressed primarily epithelial cells. Frk is a nuclear protein and may function during G1 and S phase of the cell cycle and suppress growth. Unlike the other Src members it lacks a glycine at position 2 of SH4 which is important for addition of a myristic acid moiety that is involved in targeting Src PTKs to cellular membranes. FRK and SHB exert similar effects when overexpressed in rat phaeochromocytoma (PC12) and beta-cells, where both induce PC12 cell differentiation and beta-cell proliferation. Under conditions that cause beta-cell degeneration these proteins augment beta-cell apoptosis. The FRK-SHB responses involve FAK and insulin receptor substrates (IRS) -1 and -2. Frk has been demonstrated to interact with retinoblastoma protein. Frk regulates PTEN protein stability by phosphorylating PTEN, which in turn prevents PTEN degradation. Frk also plays a role in regulation of embryonal pancreatic beta cell formation. Frk has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its activation loop. The tryosine involved is at the same site as the tyrosine involved in the autophosphorylation of Src. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199831  Cd Length: 96  Bit Score: 42.94  E-value: 3.61e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKL--RDTADGTFLVRDaSTKMHGDYTLTLRKGGNNKLIKIFHRD-GKYGFSDPLTFNSVVELINHYR 362
Cdd:cd10369    5 WFFGAIKRADAEKQLlySENQTGAFLIRE-SESQKGEFSLSVLDGGVVKHYRIRRLDeGGFFLTRRKTFSTLNEFVNYYT 83

                 ...
gi 465984348 363 NES 365
Cdd:cd10369   84 TTS 86
SH2_C-SH2_Syk_like cd10401
C-terminal Src homology 2 (SH2) domain found in Spleen tyrosine kinase (Syk) proteins; ZAP-70 ...
577-653 4.28e-05

C-terminal Src homology 2 (SH2) domain found in Spleen tyrosine kinase (Syk) proteins; ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the C-terminus SH2 domains of Syk. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198264  Cd Length: 99  Bit Score: 42.96  E-value: 4.28e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 465984348 577 WNVGNINRSQAEN-LLRGKR-DGTFLVRESSKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELVLHYQH 653
Cdd:cd10401    5 WFHGKISREESEQiLLIGSKtNGKFLIRERDNNGSYALCLLHDGKVLHYRIDKDKTGKLSIPDGKKFDTLWQLVEHYSY 83
SH2_Tec_Bmx cd10399
Src homology 2 (SH2) domain found in Tec protein, Bmx; A member of the Tec protein tyrosine ...
280-365 6.11e-05

Src homology 2 (SH2) domain found in Tec protein, Bmx; A member of the Tec protein tyrosine kinase Bmx is expressed in the endothelium of large arteries, fetal endocardium, adult endocardium of the left ventricle, bone marrow, lung, testis, granulocytes, myeloid cell lines, and prostate cell lines. Bmx is involved in the regulation of Rho and serum response factor (SRF). Bmx has been shown to interact with PAK1, PTK2, PTPN21, and RUFY1. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains. It is not present in Txk and the type 1 splice form of the Drosophila homolog. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198262  Cd Length: 106  Bit Score: 42.63  E-value: 6.11e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 280 SLQDAEWYWGDISREEVNEKLRDTA-DGTFLVRDASTKmhGDYTLT-LRKGGNNK--LIKIFH----RDGKYGFSDPLTF 351
Cdd:cd10399    2 NLDAYDWFAGNISRSQSEQLLRQKGkEGAFMVRNSSQV--GMYTVSlFSKAVNDKkgTVKHYHvhtnAENKLYLAENYCF 79
                         90
                 ....*....|....
gi 465984348 352 NSVVELINHYRNES 365
Cdd:cd10399   80 DSIPKLIHYHQHNS 93
DR0291 COG1579
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ...
400-533 6.26e-05

Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only];


Pssm-ID: 441187 [Multi-domain]  Cd Length: 236  Bit Score: 44.92  E-value: 6.26e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 400 KKLHEYNTQFQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQcQTQERYSKEY------IEKFKRE--GNE 471
Cdd:COG1579   31 AELAELEDELAALEARLEAAKTELEDLEKEIKRLELEIEEVEARIKKYEEQ-LGNVRNNKEYealqkeIESLKRRisDLE 109
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 465984348 472 KEIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAeyrEIDKRMNSIKPDLIQLRKTRDQY 533
Cdd:COG1579  110 DEILELMERIEELEEELAELEAELAELEAELEEKKA---ELDEELAELEAELEELEAEREEL 168
SH2_Src_Fyn cd10368
Src homology 2 (SH2) domain found in Fyn; Fyn is a member of the Src non-receptor type ...
577-655 7.96e-05

Src homology 2 (SH2) domain found in Fyn; Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198231 [Multi-domain]  Cd Length: 101  Bit Score: 42.32  E-value: 7.96e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLR--GKRDGTFLVRES-SKQGCYACSV-----VVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELV 648
Cdd:cd10368    5 WYFGKLGRKDAERQLLsfGNPRGTFLIRESeTTKGAYSLSIrdwddMKGDHVKHYKIRKLDNGGYYITTRAQFETLQQLV 84

                 ....*..
gi 465984348 649 LHYQHTS 655
Cdd:cd10368   85 QHYSETA 91
SH2_SH2D4B cd10351
Src homology 2 domain found in the SH2 domain containing protein 4B (SH2D4B); SH2D4B contains ...
284-364 8.25e-05

Src homology 2 domain found in the SH2 domain containing protein 4B (SH2D4B); SH2D4B contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198214  Cd Length: 103  Bit Score: 42.18  E-value: 8.25e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 284 AEWYWGDISREEVNEKLRDTADGTFLVRdASTKMHGdYTLTLRKGGNNKLIKIFHRDGKYGF--SDPLTFNSVVELINHY 361
Cdd:cd10351    7 APWFHGIISREEAEALLMNATEGSFLVR-VSEKIWG-YTLSYRLQSGFKHFLVDASGDFYSFlgVDPNRHATLTDLIDFH 84

                 ...
gi 465984348 362 RNE 364
Cdd:cd10351   85 KEE 87
SH2_Src_Fyn_isoform_a_like cd10418
Src homology 2 (SH2) domain found in Fyn isoform a like proteins; Fyn is a member of the Src ...
577-651 9.12e-05

Src homology 2 (SH2) domain found in Fyn isoform a like proteins; Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. This cd contains the SH2 domain found in Fyn isoform a type proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198281  Cd Length: 101  Bit Score: 41.91  E-value: 9.12e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAEN--LLRGKRDGTFLVRES-SKQGCYACSV-----VVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELV 648
Cdd:cd10418    5 WYFGKLGRKDAERqlLSFGNPRGTFLIRESeTTKGAYSLSIrdwddMKGDHVKHYKIRKLDNGGYYITTRAQFETLQQLV 84

                 ...
gi 465984348 649 LHY 651
Cdd:cd10418   85 QHY 87
RhoGAP_ARHGAP6 cd04376
RhoGAP_ARHGAP6: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
115-247 1.08e-04

RhoGAP_ARHGAP6: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP6-like proteins. ArhGAP6 shows GAP activity towards RhoA, but not towards Cdc42 and Rac1. ArhGAP6 is often deleted in microphthalmia with linear skin defects syndrome (MLS); MLS is a severe X-linked developmental disorder. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239841  Cd Length: 206  Bit Score: 43.97  E-value: 1.08e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 115 EAIEKKDASSMDfEPIDVQILADALKRYLLDLPNSVIPASVYSEMISGAQ-EVQSSDEYAQLLKKLIRSPNIPhqywlTL 193
Cdd:cd04376   45 EEFDRGIDVVLD-ENHSVHDVAALLKEFFRDMPDPLLPRELYTAFIGTALlEPDEQLEALQLLIYLLPPCNCD-----TL 118
                         90       100       110       120       130       140       150
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 465984348 194 QYLLKHFFRLCQTS-----------SKNLLNARSLAEIFSPLLFKFQLGSS----------DNAEHLIKILEVLI 247
Cdd:cd04376  119 HRLLKFLHTVAEHAadsidedgqevSGNKMTSLNLATIFGPNLLHKQKSGErefvqaslriEESTAIINVVQTMI 193
SH2_SHD cd10390
Src homology 2 domain found in SH2 domain-containing adapter proteins D (SHD); The expression ...
577-671 1.24e-04

Src homology 2 domain found in SH2 domain-containing adapter proteins D (SHD); The expression of SHD is restricted to the brain. SHD may be a physiological substrate of c-Abl and may function as an adapter protein in the central nervous system. It is also thought to be involved in apoptotic regulation. SHD contains five YXXP motifs, a substrate sequence preferred by Abl tyrosine kinases, in addition to a poly-proline rich region and a C-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198253  Cd Length: 98  Bit Score: 41.61  E-value: 1.24e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVR--ESSKQGCyACSVVVDGEVKHCVINKT-PTGYGFAEPYNLYSSLKELVLHYQH 653
Cdd:cd10390    3 WFHGPLSRADAENLLSLCKEGSYLVRlsETRPQDC-SLSLRSSQGFLHLKFARTrENQVVLGQHSGPFPSVPELVLHYSS 81
                         90
                 ....*....|....*....
gi 465984348 654 TSL-VQHNDSLnvTLAYPV 671
Cdd:cd10390   82 RPLpVQGAEHL--ALLYPV 98
SH2_Tensin_like cd09927
Src homology 2 domain found in Tensin-like proteins; SH2 domain found in Tensin-like proteins. ...
286-326 1.38e-04

Src homology 2 domain found in Tensin-like proteins; SH2 domain found in Tensin-like proteins. The Tensins are a family of intracellular proteins that interact with receptor tyrosine kinases (RTKs), integrins, and actin. They are thought act as signaling bridges between the extracellular space and the cytoskeleton. There are four homologues: Tensin1, Tensin2 (TENC1, C1-TEN), Tensin3 and Tensin4 (cten), all of which contain a C-terminal tandem SH2-PTB domain pairing, as well as actin-binding regions that may localize them to focal adhesions. The isoforms of Tensin2 and Tensin3 contain N-terminal C1 domains, which are atypical and not expected to bind to phorbol esters. Tensins 1-3 contain a phosphatase (PTPase) and C2 domain pairing which resembles PTEN (phosphatase and tensin homologue deleted on chromosome 10) protein. PTEN is a lipid phosphatase that dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) to yield phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). As PtdIns(3,4,5)P3 is the product of phosphatidylinositol 3-kinase (PI3K) activity, PTEN is therefore a key negative regulator of the PI3K pathway. Because of their PTEN-like domains, the Tensins may also possess phosphoinositide-binding or phosphatase capabilities. However, only Tensin2 and Tensin3 have the potential to be phosphatases since only their PTPase domains contain a cysteine residue that is essential for catalytic activity. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198181 [Multi-domain]  Cd Length: 116  Bit Score: 42.03  E-value: 1.38e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|.
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDaSTKMHGDYTLTLR 326
Cdd:cd09927    5 WYKPNISRDQAIALLKDKPPGTFLVRD-STTYKGAYGLAVK 44
SH2_SHIP cd10343
Src homology 2 (SH2) domain found in SH2-containing inositol-5'-phosphatase (SHIP) and ...
282-383 1.44e-04

Src homology 2 (SH2) domain found in SH2-containing inositol-5'-phosphatase (SHIP) and SLAM-associated protein (SAP); The SH2-containing inositol-5'-phosphatase, SHIP (also called SHIP1/SHIP1a), is a hematopoietic-restricted phosphatidylinositide phosphatase that translocates to the plasma membrane after extracellular stimulation and hydrolyzes the phosphatidylinositol-3-kinase (PI3K)-generated second messenger PI-3,4,5-P3 (PIP3) to PI-3,4-P2. As a result, SHIP dampens down PIP3 mediated signaling and represses the proliferation, differentiation, survival, activation, and migration of hematopoietic cells. PIP3 recruits lipid-binding pleckstrin homology(PH) domain-containing proteins to the inner wall of the plasma membrane and activates them. PH domain-containing downstream effectors include the survival/proliferation enhancing serine/threonine kinase, Akt (protein kinase B), the tyrosine kinase, Btk, the regulator of protein translation, S6K, and the Rac and cdc42 guanine nucleotide exchange factor, Vav. SHIP is believed to act as a tumor suppressor during leukemogenesis and lymphomagenesis, and may play a role in activating the immune system to combat cancer. SHIP contains an N-terminal SH2 domain, a centrally located phosphatase domain that specifically hydrolyzes the 5'-phosphate from PIP3, PI-4,5-P2 and inositol-1,3,4,5- tetrakisphosphate (IP4), a C2 domain, that is an allosteric activating site when bound by SHIP's enzymatic product, PI-3,4-P2; 2 NPXY motifs that bind proteins with a phosphotyrosine binding (Shc, Dok 1, Dok 2) or an SH2 (p85a, SHIP2) domain; and a proline-rich domain consisting of four PxxP motifs that bind a subset of SH3-containing proteins including Grb2, Src, Lyn, Hck, Abl, PLCg1, and PIAS1. The SH2 domain of SHIP binds to the tyrosine phosphorylated forms of Shc, SHP-2, Doks, Gabs, CD150, platelet-endothelial cell adhesion molecule, Cas, c-Cbl, immunoreceptor tyrosine-based inhibitory motifs (ITIMs), and immunoreceptor tyrosine-based activation motifs (ITAMs). The X-linked lymphoproliferative syndrome (XLP) gene encodes SAP (also called SH2D1A/DSHP) a protein that consists of a 5 residue N-terminus, a single SH2 domain, and a short 25 residue C-terminal tail. XLP is characterized by an extreme sensitivity to Epstein-Barr virus. Both T and natural killer (NK) cell dysfunctions have been seen in XLP patients. SAP binds the cytoplasmic tail of Signaling lymphocytic activation molecule (SLAM), 2B4, Ly-9, and CD84. SAP is believed to function as a signaling inhibitor, by blocking or regulating binding of other signaling proteins. SAP and the SAP-like protein EAT-2 recognize the sequence motif TIpYXX(V/I), which is found in the cytoplasmic domains of a restricted number of T, B, and NK cell surface receptors and are proposed to be natural inhibitors or regulators of the physiological role of a small family of receptors on the surface of these cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198206  Cd Length: 103  Bit Score: 41.27  E-value: 1.44e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 282 QDAEWYWGDISREEVNEKL-RDTADGTFLVRDaSTKMHGDYTLTLRKGGNNKLIKIF-HRDGKYGFS-----DPLTFNSV 354
Cdd:cd10343    1 MAPPWYHGNITRSKAEELLsKAGKDGSFLVRD-SESVSGAYALCVLYQNCVHTYRILpNAEDKLSVQasegvPVRFFTTL 79
                         90       100
                 ....*....|....*....|....*....
gi 465984348 355 VELINHYRNEslaqyNPKLDVKLLYPVSK 383
Cdd:cd10343   80 PELIEFYQKE-----NMGLVTHLLYPVER 103
SH2_C-SH2_Zap70 cd10402
C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 ...
286-362 1.67e-04

C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70); ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the C-terminus SH2 domains of Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198265  Cd Length: 105  Bit Score: 41.45  E-value: 1.67e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTA--DGTFLVRDasTKMHGDYTLTLRKGGNNKLIKIFH-RDGKYGFSDPLTFNSVVELINHYR 362
Cdd:cd10402   12 WYHGSIARDEAERRLYSGAqpDGKFLLRE--RKESGTYALSLVYGKTVYHYRIDQdKSGKYSIPEGTKFDTLWQLVEYLK 89
SH2_SHC cd09925
Src homology 2 (SH2) domain found in SH2 adaptor protein C (SHC); SHC is involved in a wide ...
577-622 1.73e-04

Src homology 2 (SH2) domain found in SH2 adaptor protein C (SHC); SHC is involved in a wide variety of pathways including regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. An adapter protein, SHC has been implicated in Ras activation following the stimulation of a number of different receptors, including growth factors [insulin, epidermal growth factor (EGF), nerve growth factor, and platelet derived growth factor (PDGF)], cytokines [interleukins 2, 3, and 5], erythropoietin, and granulocyte/macrophage colony-stimulating factor, and antigens [T-cell and B-cell receptors]. SHC has been shown to bind to tyrosine-phosphorylated receptors, and receptor stimulation leads to tyrosine phosphorylation of SHC. Upon phosphorylation, SHC interacts with another adapter protein, Grb2, which binds to the Ras GTP/GDP exchange factor mSOS which leads to Ras activation. SHC is composed of an N-terminal domain that interacts with proteins containing phosphorylated tyrosines, a (glycine/proline)-rich collagen-homology domain that contains the phosphorylated binding site, and a C-terminal SH2 domain. SH2 has been shown to interact with the tyrosine-phosphorylated receptors of EGF and PDGF and with the tyrosine-phosphorylated C chain of the T-cell receptor, providing one of the mechanisms of T-cell-mediated Ras activation. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198179  Cd Length: 104  Bit Score: 41.18  E-value: 1.73e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*..
gi 465984348 577 WNVGNINRSQAENLLRgkRDGTFLVRES-SKQGCYACSVVVDGEVKH 622
Cdd:cd09925    9 WYHGKMSRRDAESLLQ--TDGDFLVREStTTPGQYVLTGMQNGQPKH 53
SH2_SHE cd10391
Src homology 2 domain found in SH2 domain-containing adapter protein E (SHE); SHE is expressed ...
575-671 1.77e-04

Src homology 2 domain found in SH2 domain-containing adapter protein E (SHE); SHE is expressed in heart, lung, brain, and skeletal muscle. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198254  Cd Length: 98  Bit Score: 41.09  E-value: 1.77e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 575 RTWNVGNINRSQAENLLRGKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTP-TGYGFAEPYNLYSSLKElVLHYQ 652
Cdd:cd10391    1 QPWYHGSISRAEAESRLQPCKEASYLVRNSeSGNSKYSIALKTSQGCVHIIVAQTKdNKYTLNQTSAVFDSIPE-VVHYY 79
                         90
                 ....*....|....*....
gi 465984348 653 HTSLVQHNDSLNVTLAYPV 671
Cdd:cd10391   80 SNEKLPFKGAEHMTLLHPV 98
SMC_prok_A TIGR02169
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ...
404-549 2.00e-04

chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]


Pssm-ID: 274009 [Multi-domain]  Cd Length: 1164  Bit Score: 44.67  E-value: 2.00e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348   404 EYNTQFQEKSR------EYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKRE--GNEKEI- 474
Cdd:TIGR02169  689 ELSSLQSELRRienrldELSQELSDASRKIGEIEKEIEQLEQEEEKLKERLEELEEDLSSLEQEIENVKSElkELEARIe 768
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348   475 --QRIMHNYEK---------LKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTR----DQYLMWLTQ 539
Cdd:TIGR02169  769 elEEDLHKLEEalndlearlSHSRIPEIQAELSKLEEEVSRIEARLREIEQKLNRLTLEKEYLEKEIqelqEQRIDLKEQ 848
                          170
                   ....*....|
gi 465984348   540 KGVRQKKLNE 549
Cdd:TIGR02169  849 IKSIEKEIEN 858
SH2_N-SH2_SHP_like cd10340
N-terminal Src homology 2 (N-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The ...
286-381 2.02e-04

N-terminal Src homology 2 (N-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The SH2 domain phosphatases (SHP-1, SHP-2/Syp, Drosophila corkscrew (csw), and Caenorhabditis elegans Protein Tyrosine Phosphatase (Ptp-2)) are cytoplasmic signaling enzymes. They are both targeted and regulated by interactions of their SH2 domains with phosphotyrosine docking sites. These proteins contain two SH2 domains (N-SH2, C-SH2) followed by a tyrosine phosphatase (PTP) domain, and a C-terminal extension. Shp1 and Shp2 have two tyrosyl phosphorylation sites in their C-tails, which are phosphorylated differentially by receptor and nonreceptor PTKs. Csw retains the proximal tyrosine and Ptp-2 lacks both sites. Shp-binding proteins include receptors, scaffolding adapters, and inhibitory receptors. Some of these bind both Shp1 and Shp2 while others bind only one. Most proteins that bind a Shp SH2 domain contain one or more immuno-receptor tyrosine-based inhibitory motifs (ITIMs): [IVL]xpYxx[IVL]. Shp1 N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, and is thus believed to regulate the phosphatase activity of SHP-1. Its C-SH2 domain is thought to be involved in searching for phosphotyrosine activators. The SHP2 N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. The C-SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation. Csw SH2 domain function is essential, but either SH2 domain can fulfill this requirement. The role of the csw SH2 domains during Sevenless receptor tyrosine kinase (SEV) signaling is to bind Daughter of Sevenless rather than activated SEV. Ptp-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote major sperm protein (MSP)-induced MAP Kinase (MPK-1) phosphorylation. Ptp-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. It is thought that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation and that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198203  Cd Length: 99  Bit Score: 40.85  E-value: 2.02e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTA-DGTFLVRdASTKMHGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVELINHY-RN 363
Cdd:cd10340    2 WFHPVISGIEAENLLKTRGvDGSFLAR-PSKSNPGDFTLSVRRGDEVTHIKIQNTGDYYDLYGGEKFATLSELVQYYmEQ 80
                         90
                 ....*....|....*...
gi 465984348 364 ESLAQYNPKLDVKLLYPV 381
Cdd:cd10340   81 HGQLREKNGDVIELKYPL 98
RhoGAP_fBEM3 cd04400
RhoGAP_fBEM3: RhoGAP (GTPase-activator [GAP] protein for Rho-like small GTPases) domain of ...
130-225 2.06e-04

RhoGAP_fBEM3: RhoGAP (GTPase-activator [GAP] protein for Rho-like small GTPases) domain of fungal BEM3-like proteins. Bem3 is a GAP protein of Cdc42, and is specifically involved in the control of the initial assembly of the septin ring in yeast bud formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239865 [Multi-domain]  Cd Length: 190  Bit Score: 42.73  E-value: 2.06e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 130 IDVQILADALKRYLLDLPNSVIPASVYSEMISGAQEVQSSDEYAQLLKKLIRspNIPHQYWLTLQYLLKHFFRLCQTSSK 209
Cdd:cd04400   76 PDVHTVAGLLKLYLRELPTLILGGELHNDFKRLVEENHDRSQRALELKDLVS--QLPQANYDLLYVLFSFLRKIIEHSDV 153
                         90
                 ....*....|....*.
gi 465984348 210 NLLNARSLAEIFSPLL 225
Cdd:cd04400  154 NKMNLRNVCIVFSPTL 169
SH2_Src_Yes cd10366
Src homology 2 (SH2) domain found in Yes; Yes is a member of the Src non-receptor type ...
282-361 2.39e-04

Src homology 2 (SH2) domain found in Yes; Yes is a member of the Src non-receptor type tyrosine kinase family of proteins. Yes is the cellular homolog of the Yamaguchi sarcoma virus oncogene. In humans it is encoded by the YES1 gene which maps to chromosome 18 and is in close proximity to thymidylate synthase. A corresponding Yes pseudogene has been found on chromosome 22. YES1 has been shown to interact with Janus kinase 2, CTNND1,RPL10, and Occludin. Yes1 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198229  Cd Length: 101  Bit Score: 40.77  E-value: 2.39e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 282 QDAEWYWGDISREEVNEKLRDTAD--GTFLVRDASTkMHGDYTLTLR-----KGGNNKLIKIFHRD-GKYGFSDPLTFNS 353
Cdd:cd10366    1 QAEEWYFGKMGRKDAERLLLNPGNqrGIFLVRESET-TKGAYSLSIRdwdevRGDNVKHYKIRKLDnGGYYITTRAQFDT 79

                 ....*...
gi 465984348 354 VVELINHY 361
Cdd:cd10366   80 LQKLVKHY 87
SH2_Jak3 cd10380
Src homology 2 (SH2) domain in the Janus kinase 3 (Jak3) proteins; Jak3 is a member of the ...
593-652 2.39e-04

Src homology 2 (SH2) domain in the Janus kinase 3 (Jak3) proteins; Jak3 is a member of the Janus kinase (JAK) family of tyrosine kinases involved in cytokine receptor-mediated intracellular signal transduction. It is predominantly expressed in immune cells and transduces a signal in response to its activation via tyrosine phosphorylation by interleukin receptors. Mutations in this gene are associated with autosomal SCID (severe combined immunodeficiency disease). In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198243  Cd Length: 96  Bit Score: 40.54  E-value: 2.39e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 465984348 593 GKRDGTFLVRESSKQ-GCYACSVVVDG----EVKHCVINKTPTGYGFAEPYNLYSSLKELVLHYQ 652
Cdd:cd10380   32 GSEPGSFVLRRSPQDfDKFLLTVCVQTtlglDYKDCLIRKNEGHFSLAGVSRSFSSLKELLVTYQ 96
SH2_Src_Blk cd10371
Src homology 2 (SH2) domain found in B lymphoid kinase (Blk); Blk is a member of the Src ...
577-670 2.52e-04

Src homology 2 (SH2) domain found in B lymphoid kinase (Blk); Blk is a member of the Src non-receptor type tyrosine kinase family of proteins. Blk is expressed in the B-cells. Unlike most other Src members Blk lacks cysteine residues in the SH4 domain that undergo palmitylation. Blk is required for the development of IL-17-producing gamma-delta T cells. Furthermore, Blk is expressed in lymphoid precursors and, in this capacity, plays a role in regulating thymus cellularity during ontogeny. Blk has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198234 [Multi-domain]  Cd Length: 100  Bit Score: 40.77  E-value: 2.52e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRG--KRDGTFLVRES-SKQGCYACSV---VVDGEV-KHCVINKTPTGYGFAEPYNLYSSLKELVL 649
Cdd:cd10371    5 WFFRTISRKDAERQLLApmNKAGSFLIRESeSNKGAFSLSVkdvTTQGEVvKHYKIRSLDNGGYYISPRITFPTLQALVQ 84
                         90       100
                 ....*....|....*....|.
gi 465984348 650 HYQhtslvQHNDSLNVTLAYP 670
Cdd:cd10371   85 HYS-----KKGDGLCQKLTLP 100
SH2_Src_Lyn cd10364
Src homology 2 (SH2) domain found in Lyn; Lyn is a member of the Src non-receptor type ...
577-655 2.80e-04

Src homology 2 (SH2) domain found in Lyn; Lyn is a member of the Src non-receptor type tyrosine kinase family of proteins and is expressed in the hematopoietic cells, in neural tissues, liver, and adipose tissue. There are two alternatively spliced forms of Lyn. Lyn plays an inhibitory role in myeloid lineage proliferation. Following engagement of the B cell receptors, Lyn undergoes rapid phosphorylation and activation, triggering a cascade of signaling events mediated by Lyn phosphorylation of tyrosine residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the receptor proteins, and subsequent recruitment and activation of other kinases including Syk, phospholipase C2 (PLC2) and phosphatidyl inositol-3 kinase. These kinases play critical roles in proliferation, Ca2+ mobilization and cell differentiation. Lyn plays an essential role in the transmission of inhibitory signals through phosphorylation of tyrosine residues within the immunoreceptor tyrosine-based inhibitory motifs (ITIM) in regulatory proteins such as CD22, PIR-B and FC RIIb1. Their ITIM phosphorylation subsequently leads to recruitment and activation of phosphatases such as SHIP-1 and SHP-1 which further down modulate signaling pathways, attenuate cell activation and can mediate tolerance. Lyn also plays a role in the insulin signaling pathway. Activated Lyn phosphorylates insulin receptor substrate 1 (IRS1) leading to an increase in translocation of Glut-4 to the cell membrane and increased glucose utilization. It is the primary Src family member involved in signaling downstream of the B cell receptor. Lyn plays an unusual, 2-fold role in B cell receptor signaling; it is essential for initiation of signaling but is also later involved in negative regulation of the signal. Lyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198227  Cd Length: 101  Bit Score: 40.74  E-value: 2.80e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAEN--LLRGKRDGTFLVRES-SKQGCYACSVV-VDGE----VKHCVINKTPTGYGFAEPYNLYSSLKELV 648
Cdd:cd10364    5 WFFKDITRKDAERqlLAPGNSAGAFLIRESeTLKGSYSLSVRdYDPQhgdvIKHYKIRSLDNGGYYISPRITFPCISDMI 84

                 ....*..
gi 465984348 649 LHYQHTS 655
Cdd:cd10364   85 KHYQKQS 91
SH2_SOCS7 cd10388
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
577-605 3.34e-04

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198251  Cd Length: 101  Bit Score: 40.42  E-value: 3.34e-04
                         10        20
                 ....*....|....*....|....*....
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVRESS 605
Cdd:cd10388   12 WYWGPMSWEDAEKVLSNKPDGSFLVRDSS 40
PRK03918 PRK03918
DNA double-strand break repair ATPase Rad50;
391-530 3.45e-04

DNA double-strand break repair ATPase Rad50;


Pssm-ID: 235175 [Multi-domain]  Cd Length: 880  Bit Score: 43.90  E-value: 3.45e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 391 KEDSIEAVGKKLHEYNTQFQEKSREYDRL---YEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFK- 466
Cdd:PRK03918 198 KEKELEEVLREINEISSELPELREELEKLekeVKELEELKEEIEELEKELESLEGSKRKLEEKIRELEERIEELKKEIEe 277
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 465984348 467 ---REGNEKEIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTR 530
Cdd:PRK03918 278 leeKVKELKELKEKAEEYIKLSEFYEEYLDELREIEKRLSRLEEEINGIEERIKELEEKEERLEELK 344
SH2_SHF cd10392
Src homology 2 domain found in SH2 domain-containing adapter protein F (SHF); SHF is thought ...
577-671 3.61e-04

Src homology 2 domain found in SH2 domain-containing adapter protein F (SHF); SHF is thought to play a role in PDGF-receptor signaling and regulation of apoptosis. SHF is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. SHF contains four putative tyrosine phosphorylation sites and an SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198255  Cd Length: 98  Bit Score: 40.05  E-value: 3.61e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVR--ESSKQGcYACSVVVDGEVKHCVINKTP-TGYGFAEPYNLYSSLKELVLHYQH 653
Cdd:cd10392    3 WYHGAISRTDAENLLRLCKEASYLVRnsETSKND-FSLSLKSSQGFMHMKLSRTKeHKYVLGQNSPPFSSVPEIIHHYAS 81
                         90       100
                 ....*....|....*....|..
gi 465984348 654 TSL----VQHndslnVTLAYPV 671
Cdd:cd10392   82 RKLpikgAEH-----MSLLYPV 98
SH2_SH2D4A cd10350
Src homology 2 domain found in the SH2 domain containing protein 4A (SH2D4A); SH2D4A contains ...
577-652 4.11e-04

Src homology 2 domain found in the SH2 domain containing protein 4A (SH2D4A); SH2D4A contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198213  Cd Length: 103  Bit Score: 40.30  E-value: 4.11e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVRESSKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNL-YSSLKELVLHYQ 652
Cdd:cd10350    9 WFHGILTLKKANELLLSTMPGSFLIRVSEKIKGYALSYLSEEGCKHFLIDASADSYSFLGVDQLqHATLADLVEYHK 85
SH2_Src_Yes cd10366
Src homology 2 (SH2) domain found in Yes; Yes is a member of the Src non-receptor type ...
577-663 4.32e-04

Src homology 2 (SH2) domain found in Yes; Yes is a member of the Src non-receptor type tyrosine kinase family of proteins. Yes is the cellular homolog of the Yamaguchi sarcoma virus oncogene. In humans it is encoded by the YES1 gene which maps to chromosome 18 and is in close proximity to thymidylate synthase. A corresponding Yes pseudogene has been found on chromosome 22. YES1 has been shown to interact with Janus kinase 2, CTNND1,RPL10, and Occludin. Yes1 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198229  Cd Length: 101  Bit Score: 40.00  E-value: 4.32e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLL--RGKRDGTFLVRES-SKQGCYACSV-----VVDGEVKHCVINKTPTGYGFAEPYNLYSSLKELV 648
Cdd:cd10366    5 WYFGKMGRKDAERLLlnPGNQRGIFLVRESeTTKGAYSLSIrdwdeVRGDNVKHYKIRKLDNGGYYITTRAQFDTLQKLV 84
                         90
                 ....*....|....*
gi 465984348 649 LHYQhtslvQHNDSL 663
Cdd:cd10366   85 KHYT-----EHADGL 94
RhoGAP_myosin_IXB cd04407
RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
121-249 4.32e-04

RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXB. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239872 [Multi-domain]  Cd Length: 186  Bit Score: 41.90  E-value: 4.32e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 121 DASSMDFEPIDVQILADALKRYLLDLPNSVIPASVYSEMISGAQEVQSSDEYAQLLKKLIRSPNIPHQywlTLQYLLKHF 200
Cdd:cd04407   56 DPENVKLENYPIHAITGLLKQWLRELPEPLMTFAQYNDFLRAVELPEKQEQLQAIYRVLEQLPTANHN---TLERLIFHL 132
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|....*....
gi 465984348 201 FRLCQTSSKNLLNARSLAEIFSPLLFKfqlgSSDNAEHLIKILEVLITS 249
Cdd:cd04407  133 VKVALEEDVNRMSPNALAIVFAPCLLR----CPDSSDPLTSMKDVAKTT 177
SH2_SHB cd10389
Src homology 2 domain found in SH2 domain-containing adapter protein B (SHB); SHB functions in ...
575-671 4.65e-04

Src homology 2 domain found in SH2 domain-containing adapter protein B (SHB); SHB functions in generating signaling compounds in response to tyrosine kinase activation. SHB contains proline-rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites, and a SH2 domain. SHB mediates certain aspects of platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK) and SHB regulate apoptosis, proliferation and differentiation. SHB promotes apoptosis and is also required for proper mitogenicity, spreading and tubular morphogenesis in endothelial cells. SHB also plays a role in preventing early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon. SHB is a multifunctional protein that has difference responses in different cells under various conditions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198252  Cd Length: 97  Bit Score: 39.69  E-value: 4.65e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 575 RTWNVGNINRSQAENLLRGKRDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTGYGFAEPYNLYSSLKElVLHYQH 653
Cdd:cd10389    1 QIWYHGAISRGDAENLLRLCKECSYLVRNSqTSKHDYSLSLKSNQGFMHMKLAKTKEKYVLGQNSPPFDSVPE-VIHYYT 79
                         90
                 ....*....|....*...
gi 465984348 654 TSLVQHNDSLNVTLAYPV 671
Cdd:cd10389   80 TRKLPIKGAEHLSLLYPV 97
SH2_SH2D4B cd10351
Src homology 2 domain found in the SH2 domain containing protein 4B (SH2D4B); SH2D4B contains ...
577-648 5.18e-04

Src homology 2 domain found in the SH2 domain containing protein 4B (SH2D4B); SH2D4B contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198214  Cd Length: 103  Bit Score: 39.87  E-value: 5.18e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVRESSKQGCYACSVVVDGEVKHCVINKTPTGYGF--AEPyNLYSSLKELV 648
Cdd:cd10351    9 WFHGIISREEAEALLMNATEGSFLVRVSEKIWGYTLSYRLQSGFKHFLVDASGDFYSFlgVDP-NRHATLTDLI 81
SH2_Nck2 cd10409
Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin ...
577-663 7.31e-04

Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198272  Cd Length: 98  Bit Score: 39.25  E-value: 7.31e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLL--RGKrDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTGYGFAEpyNLYSSLKELVLHYQH 653
Cdd:cd10409    3 WYYGNVTRHQAECALneRGV-EGDFLIRDSeSSPSDFSVSLKAVGKNKHFKVQLVDNVYCIGQ--RRFNSMDELVEHYKK 79
                         90
                 ....*....|..
gi 465984348 654 TSLV--QHNDSL 663
Cdd:cd10409   80 APIFtsEHGEKL 91
PRK03918 PRK03918
DNA double-strand break repair ATPase Rad50;
396-533 9.29e-04

DNA double-strand break repair ATPase Rad50;


Pssm-ID: 235175 [Multi-domain]  Cd Length: 880  Bit Score: 42.36  E-value: 9.29e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 396 EAVGKKLHEYNTQFQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQcqtqeRYSKEYIEKFKREGNEKeIQ 475
Cdd:PRK03918 189 ENIEELIKEKEKELEEVLREINEISSELPELREELEKLEKEVKELEELKEEIEEL-----EKELESLEGSKRKLEEK-IR 262
                         90       100       110       120       130
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 465984348 476 RIMHNYEKLKSRISEIVDSRRRLEEdLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQY 533
Cdd:PRK03918 263 ELEERIEELKKEIEELEEKVKELKE-LKEKAEEYIKLSEFYEEYLDELREIEKRLSRL 319
SH2_SH2B3 cd10412
Src homology 2 (SH2) domain found in SH2B adapter proteins (SH2B1, SH2B2, SH2B3); SH2B3 (Lnk), ...
286-363 9.78e-04

Src homology 2 (SH2) domain found in SH2B adapter proteins (SH2B1, SH2B2, SH2B3); SH2B3 (Lnk), like other members of the SH2B adapter protein family, contains a pleckstrin homology domain, at least one dimerization domain, and a C-terminal SH2 domain which binds to phosphorylated tyrosines in a variety of tyrosine kinases. SH2B3 negatively regulates lymphopoiesis and early hematopoiesis. The lnk-deficiency results in enhanced production of B cells, and expansion as well as enhanced function of hematopoietic stem cells (HSCs), demonstrating negative regulatory functions of Sh2b3/Lnk in cytokine signaling. Sh2b3/Lnk also functions in responses controlled by cell adhesion and in crosstalk between integrin- and cytokine-mediated signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198275  Cd Length: 97  Bit Score: 39.11  E-value: 9.78e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRD---TADGTFLVRDASTKmHGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVELINHYR 362
Cdd:cd10412   10 WFHGPISRVKAAQLVQLqgpDAHGVFLVRQSETR-RGEYVLTFNFQGRAKHLRLSLTERGQCRVQHLHFPSVVDMLHHFQ 88

                 .
gi 465984348 363 N 363
Cdd:cd10412   89 R 89
RhoGAP_fRGD2 cd04399
RhoGAP_fRGD2: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
118-248 1.06e-03

RhoGAP_fRGD2: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal RGD2-like proteins. Yeast Rgd2 is a GAP protein for Cdc42 and Rho5. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239864  Cd Length: 212  Bit Score: 40.78  E-value: 1.06e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 118 EKKDASSMDFEPidvQILADALKRYLLDLPNSVIPASVYSEMISGAQEVQSSDE---------YAQLLKKLiRSPNIphq 188
Cdd:cd04399   67 DKEVIILKKFEP---STVASVLKLYLLELPDSLIPHDIYDLIRSLYSAYPPSQEdsdtariqgLQSTLSQL-PKSHI--- 139
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 465984348 189 ywLTLQYLLKHFFRLCQ-TSSKNLLN------ARSLA-EIFSPllfKFQLGSSDNAEHLIKILEVLIT 248
Cdd:cd04399  140 --ATLDAIITHFYRLIEiTKMGESEEeyadklATSLSrEILRP---IIESLLTIGDKHGYKFFRDLLT 202
RhoGAP-p50rhoGAP cd04404
RhoGAP-p50rhoGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
131-225 1.22e-03

RhoGAP-p50rhoGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p50RhoGAP-like proteins; p50RhoGAP, also known as RhoGAP-1, contains a C-terminal RhoGAP domain and an N-terminal Sec14 domain which binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). It is ubiquitously expressed and preferentially active on Cdc42. This subgroup also contains closely related ARHGAP8. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239869 [Multi-domain]  Cd Length: 195  Bit Score: 40.40  E-value: 1.22e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 131 DVQILADALKRYLLDLPNSVIPASVYSEmISGAQEVqSSDEYAQLLKKLIRspNIPHQYWLTLQYLLKHFFRLCQTSSKN 210
Cdd:cd04404   74 DVHLPAVILKTFLRELPEPLLTFDLYDD-IVGFLNV-DKEERVERVKQLLQ--TLPEENYQVLKYLIKFLVQVSAHSDQN 149
                         90
                 ....*....|....*
gi 465984348 211 LLNARSLAEIFSPLL 225
Cdd:cd04404  150 KMTNSNLAVVFGPNL 164
RhoGAP_srGAP cd04383
RhoGAP_srGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
131-225 1.32e-03

RhoGAP_srGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in srGAPs. srGAPs are components of the intracellular part of Slit-Robo signalling pathway that is important for axon guidance and cell migration. srGAPs contain an N-terminal FCH domain, a central RhoGAP domain and a C-terminal SH3 domain; this SH3 domain interacts with the intracellular proline-rich-tail of the Roundabout receptor (Robo). This interaction with Robo then activates the rhoGAP domain which in turn inhibits Cdc42 activity. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239848  Cd Length: 188  Bit Score: 40.48  E-value: 1.32e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 131 DVQILADALKRYLLDLPNSVIPASVYSEMISGAQeVQSSDEYAQLLKKLIRSpnIPHQYWLTLQYLLKHFFRLCQTSSKN 210
Cdd:cd04383   71 DINSVAGVLKLYFRGLENPLFPKERFEDLMSCVK-LENPTERVHQIREILST--LPRSVIIVMRYLFAFLNHLSQFSDEN 147
                         90
                 ....*....|....*
gi 465984348 211 LLNARSLAEIFSPLL 225
Cdd:cd04383  148 MMDPYNLAICFGPTL 162
RhoGAP_Graf cd04374
RhoGAP_Graf: GTPase-activator protein (GAP) domain for Rho-like GTPases found in GRAF (GTPase ...
119-229 1.56e-03

RhoGAP_Graf: GTPase-activator protein (GAP) domain for Rho-like GTPases found in GRAF (GTPase regulator associated with focal adhesion kinase); Graf is a multi-domain protein, containing SH3 and PH domains, that binds focal adhesion kinase and influences cytoskeletal changes mediated by Rho proteins. Graf exhibits GAP activity toward RhoA and Cdc42, but only weakly activates Rac1. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239839  Cd Length: 203  Bit Score: 40.45  E-value: 1.56e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 119 KKDASSMDFEP--IDVQILADALKRYLLDLPNSVIPASVYSEMISGA-QEVQSS--DEYAQLLKKLirspniPHQYWLTL 193
Cdd:cd04374   71 TSTPGDVDLDNseWEIKTITSALKTYLRNLPEPLMTYELHNDFINAAkSENLESrvNAIHSLVHKL------PEKNREML 144
                         90       100       110
                 ....*....|....*....|....*....|....*.
gi 465984348 194 QYLLKHFFRLCQTSSKNLLNARSLAEIFSPLLFKFQ 229
Cdd:cd04374  145 ELLIKHLTNVSDHSKKNLMTVSNLGVVFGPTLLRPQ 180
SH2_DAPP1_BAM32_like cd10355
Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( ...
281-366 1.58e-03

Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( DAPP1)/B lymphocyte adaptor molecule of 32 kDa (Bam32)-like proteins; DAPP1/Bam32 contains a putative myristoylation site at its N-terminus, followed by a SH2 domain, and a pleckstrin homology (PH) domain at its C-terminus. DAPP1 could potentially be recruited to the cell membrane by any of these domains. Its putative myristoylation site could facilitate the interaction of DAPP1 with the lipid bilayer. Its SH2 domain may also interact with phosphotyrosine residues on membrane-associated proteins such as activated tyrosine kinase receptors. And finally its PH domain exhibits a high-affinity interaction with the PtdIns(3,4,5)P(3) PtdIns(3,4)P(2) second messengers produced at the cell membrane following the activation of PI 3-kinases. DAPP1 is thought to interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and therefore may play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2). This protein is likely to play an important role in triggering signal transduction pathways that lie downstream from receptor tyrosine kinases and PI 3-kinase. It is likely that DAPP1 functions as an adaptor to recruit other proteins to the plasma membrane in response to extracellular signals. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198218  Cd Length: 92  Bit Score: 38.23  E-value: 1.58e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 281 LQDAEWYWGDISREEVNE-KLRDTADGTFLVRDaSTKMHGDYTLTLRkggNNKLIKIFH--RDG---KYGFSDpltFNSV 354
Cdd:cd10355    3 LQSLGWYHGNLTRHAAEAlLLSNGVDGSYLLRN-SNEGTGLFSLSVR---AKDSVKHFHveYTGysfKFGFNE---FSSL 75
                         90
                 ....*....|..
gi 465984348 355 VELINHYRNESL 366
Cdd:cd10355   76 QDFVKHFANQPL 87
SH2_Src_Fyn_isoform_b_like cd10419
Src homology 2 (SH2) domain found in Fyn isoform b like proteins; Fyn is a member of the Src ...
575-655 1.64e-03

Src homology 2 (SH2) domain found in Fyn isoform b like proteins; Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. This cd contains the SH2 domain found in Fyn isoform b type proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198282  Cd Length: 101  Bit Score: 38.50  E-value: 1.64e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 575 RTWNVGNINRSQAENLLR--GKRDGTFLVRES-SKQGCYACSV-----VVDGEVKHCVINKTPTGYGFAEPYNLYSSLKE 646
Cdd:cd10419    3 EEWYFGKLGRKDAERQLLsfGNPRGTFLIRESeTTKGAYSLSIrdwddMKGDHVKHYKIRKLDNGGYYITTRAQFETLQQ 82

                 ....*....
gi 465984348 647 LVLHYQHTS 655
Cdd:cd10419   83 LVQHYSEKA 91
PRK03918 PRK03918
DNA double-strand break repair ATPase Rad50;
393-528 1.67e-03

DNA double-strand break repair ATPase Rad50;


Pssm-ID: 235175 [Multi-domain]  Cd Length: 880  Bit Score: 41.59  E-value: 1.67e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 393 DSIEAVGKKLHEYNTQ-FQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETIK---IFEEQCQTQERYSKEYIEKFKRE 468
Cdd:PRK03918 503 EQLKELEEKLKKYNLEeLEKKAEEYEKLKEKLIKLKGEIKSLKKELEKLEELKKklaELEKKLDELEEELAELLKELEEL 582
                         90       100       110       120       130       140       150
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 465984348 469 GNE---------KEIQRIMHNYEKLK---SRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRK 528
Cdd:PRK03918 583 GFEsveeleerlKELEPFYNEYLELKdaeKELEREEKELKKLEEELDKAFEELAETEKRLEELRKELEELEK 654
SH2_Nck1 cd10408
Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin ...
577-652 1.89e-03

Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198271  Cd Length: 97  Bit Score: 38.09  E-value: 1.89e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 465984348 577 WNVGNINRSQAENLL--RGKrDGTFLVRES-SKQGCYACSVVVDGEVKHCVINKTPTGYGFAEpyNLYSSLKELVLHYQ 652
Cdd:cd10408    3 WYYGKVTRHQAEMALneRGN-EGDFLIRDSeSSPNDFSVSLKAQGKNKHFKVQLKECVYCIGQ--RKFSSMEELVEHYK 78
SH2_Tec_Txk cd10398
Src homology 2 (SH2) domain found in Tec protein, Txk; A member of the Tec protein tyrosine ...
280-381 2.20e-03

Src homology 2 (SH2) domain found in Tec protein, Txk; A member of the Tec protein tyrosine kinase Txk is expressed in thymus, spleen, lymph node, T lymphocytes, NK cells, mast cell lines, and myeloid cell line. Txk plays a role in TCR signal transduction, T cell development, and selection which is analogous to the function of Itk. Txk has been shown to interact with IFN-gamma. Unlike most of the Tec family members Txk lacks a PH domain. Instead Txk has a unique region containing a palmitoylated cysteine string which has a similar membrane tethering function as the PH domain. Txk also has a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP and crucial to the function of the PH domain. It is not present in Txk which is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198261  Cd Length: 106  Bit Score: 38.00  E-value: 2.20e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 280 SLQDAEWYWGDISREEVNEKLRDTA-DGTFLVRDASTKmhGDYTLTL------RKGGNNKLIKIFHRD-GKYGFSDPLTF 351
Cdd:cd10398    2 NLEIYEWYHKNITRNQAERLLRQESkEGAFIVRDSRHL--GSYTISVftrarrSTEASIKHYQIKKNDsGQWYVAERHLF 79
                         90       100       110
                 ....*....|....*....|....*....|.
gi 465984348 352 NSVVELINHYrneslaQYNPK-LDVKLLYPV 381
Cdd:cd10398   80 QSIPELIQYH------QHNAAgLMSRLRYPV 104
SH2_SOCS6 cd10387
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
577-655 2.34e-03

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198250  Cd Length: 100  Bit Score: 37.89  E-value: 2.34e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 577 WNVGNINRSQAENLLRGKRDGTFLVRESSKQgCYACSVVV--DGEVKHCVINKTPTGYGFAEPYNL--YSSLKELVLHYQ 652
Cdd:cd10387   12 WYWGPITRWEAEGKLANVPDGSFLVRDSSDD-RYLLSLSFrsHGKTLHTRIEHSNGRFSFYEQPDVegHTSIVDLIEHSI 90

                 ...
gi 465984348 653 HTS 655
Cdd:cd10387   91 RDS 93
PRK03918 PRK03918
DNA double-strand break repair ATPase Rad50;
401-530 2.89e-03

DNA double-strand break repair ATPase Rad50;


Pssm-ID: 235175 [Multi-domain]  Cd Length: 880  Bit Score: 40.82  E-value: 2.89e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 401 KLHEYNTQFQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETI-KIFEEQCQTQERYS--KEYIEKFKR----EGNEKE 473
Cdd:PRK03918 297 KLSEFYEEYLDELREIEKRLSRLEEEINGIEERIKELEEKEERLeELKKKLKELEKRLEelEERHELYEEakakKEELER 376
                         90       100       110       120       130
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 465984348 474 IQRIMHNY--EKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTR 530
Cdd:PRK03918 377 LKKRLTGLtpEKLEKELEELEKAKEEIEEEISKITARIGELKKEIKELKKAIEELKKAK 435
SH2_RIN1 cd10393
Src homology 2 (SH2) domain found in Ras and Rab interactor 1 (RIN1)-like proteins; RIN1, a ...
582-654 3.14e-03

Src homology 2 (SH2) domain found in Ras and Rab interactor 1 (RIN1)-like proteins; RIN1, a member of the RIN (AKA Ras interaction/interference) family, have multifunctional domains including SH2 and proline-rich (PR) domains in the N-terminal region, and RIN-family homology (RH), VPS9 and Ras-association (RA) domains in the C-terminal region. RIN proteins function as Rab5-GEFs. Previous studies showed that RIN1 interacts with EGF receptors via its SH2 domain and regulates trafficking and degradation of EGF receptors via its interaction with STAM, indicating a vital role for RIN1 in regulating endosomal trafficking of receptor tyrosine kinases (RTKs). RIN1 was first identified as a Ras-binding protein that suppresses the activated RAS2 allele in S. cerevisiae. RIN1 binds to the activated Ras through its carboxyl-terminal domain and this Ras-binding domain also binds to 14-3-3 proteins as Raf-1 does. The SH2 domain of RIN1 are thought to interact with the phosphotyrosine-containing proteins, but the physiological partners for this domain are unknown. The proline-rich domain in RIN1 is similar to the consensus SH3 binding regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198256  Cd Length: 101  Bit Score: 37.53  E-value: 3.14e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 465984348 582 INRSQAENLLRGKRDGTFLVRESSKQGCYA-CSVVVDGE----VKHCVINKTPTGYGFAEPYNLYSSLKELVLHYQHT 654
Cdd:cd10393   17 ANAAAALHVLRTEPPGTFLVRKSNTRQCQAlCVRLPEASgpsfVSSHYIQESPGGVSLEGSELTFPDLVQLICAYCHT 94
YhaN COG4717
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown];
395-550 3.57e-03

Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown];


Pssm-ID: 443752 [Multi-domain]  Cd Length: 641  Bit Score: 40.52  E-value: 3.57e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 395 IEAVGKKLHEYntqfQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKeyiekfkREGNEKEI 474
Cdd:COG4717   73 LKELEEELKEA----EEKEEEYAELQEELEELEEELEELEAELEELREELEKLEKLLQLLPLYQE-------LEALEAEL 141
                         90       100       110       120       130       140       150
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 465984348 475 QRIMHNYEKLKSRISEIVDSRRRLEEdLKKQAAEYR-EIDKRMNSIKPDLI-QLRKTRDQYLMWLTQKGVRQKKLNEW 550
Cdd:COG4717  142 AELPERLEELEERLEELRELEEELEE-LEAELAELQeELEELLEQLSLATEeELQDLAEELEELQQRLAELEEELEEA 218
Transcrip_act pfam04949
Transcriptional activator; This family of proteins may act as a transcriptional activator. It ...
391-504 4.24e-03

Transcriptional activator; This family of proteins may act as a transcriptional activator. It plays a role in stress response in plants.


Pssm-ID: 398553 [Multi-domain]  Cd Length: 154  Bit Score: 38.20  E-value: 4.24e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  391 KEDSIE----AVGKKLHEYNTQFQEKSREYDRLYE------DYTRtsQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKE 460
Cdd:pfam04949  34 KEEEIErkkmEVREKVQAQLGRVEEETKRLAEIREelealaDPMR--KEVAMVRKKIDAVNRELKPLGQSCQKKEKEYKE 111
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|
gi 465984348  461 YIEKFkregNEKeiqrimhNYEK--LKSRISEIVDSRRRLE----EDLKK 504
Cdd:pfam04949 112 ALEAF----NEK-------NKEKaqLVSKLMELVSESEKLRmkklEELSK 150
S6OS1 pfam15676
Six6 opposite strand transcript 1 family; This family of proteins is found in eukaryotes. ...
350-463 6.18e-03

Six6 opposite strand transcript 1 family; This family of proteins is found in eukaryotes. Proteins in this family are typically between 114 and 587 amino acids in length. The function is not known.


Pssm-ID: 464795  Cd Length: 557  Bit Score: 39.82  E-value: 6.18e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  350 TFNSVVELINHYRN------ESLAQYNPKLDVklLYPVSKYQQDQV-VKEDSIEAVGKKLHEYNTQFQEKSREYDRLYED 422
Cdd:pfam15676  24 NINKSDEEIAHYRKhnenikDSCINWKPTYDV--LHKHEDYLQNQFqVYQETTEKDKKMYHDYISQYKDVLKQYQLKYSE 101
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 465984348  423 yTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIE 463
Cdd:pfam15676 102 -TPLAQEYYKKKKEVEEIQNRILACSEQLKLKETILMELLV 141
SH2_SH2D7 cd10417
Src homology 2 domain found in the SH2 domain containing protein 7 (SH2D7); SH2D7 contains a ...
286-373 7.78e-03

Src homology 2 domain found in the SH2 domain containing protein 7 (SH2D7); SH2D7 contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199832  Cd Length: 102  Bit Score: 36.41  E-value: 7.78e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348 286 WYWGDISREEVNEKLRDTADGTFLVRDASTKMhgDYTLTLRKGGNNKLIKIFH-RDGKYGFS-DPLTFNSVVELINHYRN 363
Cdd:cd10417    9 WFHGFITRKQTEQLLRDKALGSFLIRLSDRAT--GYILSYRGSDRCRHFVINQlRNRRYLISgDTSSHSTLAELVRHYQE 86
                         90
                 ....*....|
gi 465984348 364 ESLAQYNPKL 373
Cdd:cd10417   87 VQLEPFGETL 96
Mplasa_alph_rch TIGR04523
helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of ...
372-514 8.00e-03

helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of Mycoplasma species. Members average 750 amino acids in length, including signal peptide. Sequences are predicted (Jpred 3) to be almost entirely alpha-helical. These sequences show strong periodicity (consistent with long alpha helical structures) and low complexity rich in D,E,N,Q, and K. Genes encoding these proteins are often found in tandem. The function is unknown.


Pssm-ID: 275316 [Multi-domain]  Cd Length: 745  Bit Score: 39.62  E-value: 8.00e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  372 KLDVKLLYPVSKYQQDQV-VKEDSIEAVGKKLHEYNTQFQEKSREYDRLYEDYTRTSQEIQMKRTAIEAFNETIKIFEEQ 450
Cdd:TIGR04523 453 ELIIKNLDNTRESLETQLkVLSRSINKIKQNLEQKQKELKSKEKELKKLNEEKKELEEKVKDLTKKISSLKEKIEKLESE 532
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 465984348  451 CQTQERYSKEYIEKF-------KREGNEKEIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDK 514
Cdd:TIGR04523 533 KKEKESKISDLEDELnkddfelKKENLEKEIDEKNKEIEELKQTQKSLKKKQEEKQELIDQKEKEKKDLIK 603
PRK03918 PRK03918
DNA double-strand break repair ATPase Rad50;
456-528 8.05e-03

DNA double-strand break repair ATPase Rad50;


Pssm-ID: 235175 [Multi-domain]  Cd Length: 880  Bit Score: 39.66  E-value: 8.05e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 465984348 456 RYSKEYIEKF-KREGN-EKEIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRK 528
Cdd:PRK03918 175 KRRIERLEKFiKRTENiEELIKEKEKELEEVLREINEISSELPELREELEKLEKEVKELEELKEEIEELEKELES 249
SH2_ShkD_ShkE cd10357
Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases D and E (ShkD and ShkE) ...
575-605 8.36e-03

Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases D and E (ShkD and ShkE); SH2-bearing genes cloned from Dictyostelium include two transcription factors, STATa and STATc, and a signaling factor, SHK1 (shkA). A database search of the Dictyostelium discoideum genome revealed two additional putative STAT sequences, dd-STATb and dd-STATd, and four additional putative SHK genes, dd-SHK2 (shkB), dd-SHK3 (shkC), dd-SHK4 (shkD), and dd-SHK5 (shkE). This model contains members of shkD and shkE. All of the SHK members are most closely related to the protein kinases found in plants. However these kinases in plants are not conjugated to any SH2 or SH2-like sequences. Alignment data indicates that the SHK SH2 domains carry some features of the STAT SH2 domains in Dictyostelium. When STATc's linker domain was used for a BLAST search, the sequence between the protein kinase domain and the SH2 domain (the linker) of SHK was recovered, suggesting a close relationship among these molecules within this region. SHK's linker domain is predicted to contain an alpha-helix which is indeed homologous to that of STAT. Based on the phylogenetic alignment, SH2 domains can be grouped into two categories, STAT-type and Src-type. SHK family members are in between, but are closer to the STAT-type which indicates a close relationship between SHK and STAT families in their SH2 domains and further supports the notion that SHKs linker-SH2 domain evolved from STAT or STATL (STAT-like Linker-SH2) domain found in plants. In SHK, STAT, and SPT6, the linker-SH2 domains all reside exclusively in the C-terminal regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198220  Cd Length: 87  Bit Score: 35.95  E-value: 8.36e-03
                         10        20        30
                 ....*....|....*....|....*....|.
gi 465984348 575 RTWNVGNINRSQAENLLRGKRDGTFLVRESS 605
Cdd:cd10357   10 KSWFHGDISRDEAEKRLRGRPEGTFLIRLSS 40
Mitofilin pfam09731
Mitochondrial inner membrane protein; Mitofilin controls mitochondrial cristae morphology. ...
417-553 8.74e-03

Mitochondrial inner membrane protein; Mitofilin controls mitochondrial cristae morphology. Mitofilin is enriched in the narrow space between the inner boundary and the outer membranes, where it forms a homotypic interaction and assembles into a large multimeric protein complex. The first 78 amino acids contain a typical amino-terminal-cleavable mitochondrial presequence rich in positive-charged and hydroxylated residues and a membrane anchor domain. In addition, it has three centrally located coiled coil domains.


Pssm-ID: 430783 [Multi-domain]  Cd Length: 618  Bit Score: 39.35  E-value: 8.74e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 465984348  417 DRLYEDYTRTSQEIQMKRT--------AIEAFNETIKIFEEQCQTQERYSKEYIEKFKREGNEKEIQRIMHNYE-KLKS- 486
Cdd:pfam09731 290 AHAHREIDQLSKKLAELKKreekhierALEKQKEELDKLAEELSARLEEVRAADEAQLRLEFEREREEIRESYEeKLRTe 369
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 465984348  487 --RISEIVDsrRRLEEDLKKQAAEY-----REIDKRMnsikpdliqlrktrdqylmwLTQKGVRQKKLNEWLGN 553
Cdd:pfam09731 370 leRQAEAHE--EHLKDVLVEQEIELqreflQDIKEKV--------------------EEERAGRLLKLNELLAN 421
SH2_STAT5 cd10376
Src homology 2 (SH2) domain found in signal transducer and activator of transcription (STAT) 5 ...
567-607 9.48e-03

Src homology 2 (SH2) domain found in signal transducer and activator of transcription (STAT) 5 proteins; STAT5 is a member of the STAT family of transcription factors. Two highly related proteins, STAT5a and STAT5b are encoded by separate genes, but are 90% identical at the amino acid level. Both STAT5a and STAT5b are ubiquitously expressed and functionally interchangeable. Mice lacking either STAT5a or STAT5b have mild defects in prolactin dependent mammary differentiation or sexually dimorphic growth hormone-dependent effects, respectively. Mice lacking both STAT5a and STAT5b exhibit a perinatal lethal phenotype and have multiple defects, including anemia and a virtual absence of B and T lymphocytes. STAT proteins mediate the signaling of cytokines and a number of growth factors from the receptors of these extracellular signaling molecules to the cell nucleus. STATs are specifically phosphorylated by receptor-associated Janus kinases, receptor tyrosine kinases, or cytoplasmic tyrosine kinases. The phosphorylated STAT molecules dimerize by reciprocal binding of their SH2 domains to the phosphotyrosine residues. These dimeric STATs translocate into the nucleus, bind to specific DNA sequences, and regulate the transcription of their target genes. However there are a number of unphosphorylated STATs that travel between the cytoplasm and nucleus and some STATs that exist as dimers in unstimulated cells that can exert biological functions independent of being activated. There are seven mammalian STAT family members which have been identified: STAT1, STAT2, STAT3, STAT4, STAT5 (STAT5A and STAT5B), and STAT6. There are 6 conserved domains in STAT: N-terminal domain (NTD), coiled-coil domain (CCD), DNA-binding domain (DBD), alpha-helical linker domain (LD), SH2 domain, and transactivation domain (TAD). NTD is involved in dimerization of unphosphorylated STATs monomers and for the tetramerization between STAT1, STAT3, STAT4 and STAT5 on promoters with two or more tandem STAT binding sites. It also plays a role in promoting interactions with transcriptional co-activators such as CREB binding protein (CBP)/p300, as well as being important for nuclear import and deactivation of STATs involving tyrosine de-phosphorylation. CCD interacts with other proteins, such as IFN regulatory protein 9 (IRF-9/p48) with STAT1 and c-JUN with STAT3 and is also thought to participate in the negative regulation of these proteins. Distinct genes are bound to STATs via their DBD domain. This domain is also involved in nuclear translocation of activated STAT1 and STAT3 phosphorylated dimers upon cytokine stimulation. LD links the DNA-binding and SH2 domains and is important for the transcriptional activation of STAT1 in response to IFN-gamma. It also plays a role in protein-protein interactions and has also been implicated in the constitutive nucleocytoplasmic shuttling of unphosphorylated STATs in resting cells. The SH2 domain is necessary for receptor association and tyrosine phosphodimer formation. Residues within this domain may be particularly important for some cellular functions mediated by the STATs as well as residues adjacent to this domain. The TAD interacts with several proteins, namely minichromosome maintenance complex component 5 (MCM5), breast cancer 1 (BRCA1) and CBP/p300. TAD also contains a modulatory phosphorylation site that regulates STAT activity and is necessary for maximal transcription of a number of target genes. The conserved tyrosine residue present in the C-terminus is crucial for dimerization via interaction with the SH2 domain upon the interaction of the ligand with the receptor. STAT activation by tyrosine phosphorylation also determines nuclear import and retention, DNA binding to specific DNA elements in the promoters of responsive genes, and transcriptional activation of STAT dimers. In addition to the SH2 domain there is a coiled-coil domain, a DNA binding domain, and a transactivation domain in the STAT proteins.


Pssm-ID: 198239  Cd Length: 137  Bit Score: 36.88  E-value: 9.48e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*
gi 465984348 567 EDLPHHDERTWN----VGNINRSQAENLLRGKRDGTFLVRESSKQ 607
Cdd:cd10376    7 EVLKKHLKPHWNdgaiLGFVNKQQAHDLLINKPDGTFLLRFSDSE 51
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH