death-inducer obliterator 1 isoform b [Homo sapiens]
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
SPOC_SF super family | cl45902 | SPOC (Spen paralog and ortholog C-terminal) domain superfamily; The SPOC domain is involved in ... |
1056-1181 | 2.96e-91 | |||||
SPOC (Spen paralog and ortholog C-terminal) domain superfamily; The SPOC domain is involved in developmental signalling and has also been proposed to be a phosphorylation binding module. It has been found mainly in two protein families: transcription factor S-II (TFIIS) and Spen (split end). The TFIIS family includes SPOC domain-containing protein 1 (SPOCD1), yeast bypass of ESS1 protein 1 (Bye1p), PHD finger protein 3 (PHF3), and death-inducer obliterator (Dido) splicing variants, among others. They are characterized by having both a central RNA polymerase II (Pol II)-binding TFIIS-like domain (TLD) domain, and a C-terminal SPOC domain. The Spen protein family includes SMART/HDAC1-associated repressor protein (SHARP) and RNA binding motif protein 15 (RBM15)-like proteins from metazoans, as well as plant flowering time control protein FPA and yeast chromo domain-containing protein 1 (Chp1p). They are characterized by containing RNA recognition motifs (RRMs) and a SPOC domain. The actual alignment was detected with superfamily member cd21547: Pssm-ID: 459247 Cd Length: 143 Bit Score: 289.14 E-value: 2.96e-91
|
|||||||||
PHD_DIDO1_like | cd15639 | PHD finger found in death-inducer obliterator variants Dido1, Dido2, and Dido3; This family ... |
266-319 | 3.09e-39 | |||||
PHD finger found in death-inducer obliterator variants Dido1, Dido2, and Dido3; This family includes three alternative splicing variants (Dido1, 2, and 3) encoded by the Dido gene, which have been implicated in a number of cellular processes such as apoptosis and chromosomal segregation, particularly in the hematopoietic system. Dido1, also termed DIO-1, or death-associated transcription factor 1 (DATF-1), is important for maintaining embryonic stem (ES) cells and directly regulates the expression of pluripotency factors. It is the shortest isoform that contains only a highly conserved plant homeodomain (PHD) finger responsible for the binding of histone H3 with a higher affinity for trimethylated lysine 4 (H3K4me3). Gene Dido is a Bonemorphogenetic protein (BMP) target gene, which promotes BMP-induced melanoma progression. It also triggers apoptosis after nuclear translocation and caspase upregulation. Dido3 is the largest isoform ubiquitously expressed in all human tissues. It is dispensable for ES cell self-renewal and pluripotency, but involved in the maintenance of stem cell genomic stability and tumorigenesis. Dido3 contains a PHD finger, a transcription elongation factor S-II subunit M (TFSIIM) domain, aspen paralog and ortholog (SPOC) module, and a long C-terminal region (CT) of unknown homology. Its PHD finger interacts with H3K4me3. : Pssm-ID: 277109 Cd Length: 54 Bit Score: 139.33 E-value: 3.09e-39
|
|||||||||
TFS2M | smart00510 | Domain in the central regions of transcription elongation factor S-II (and elsewhere); |
672-773 | 3.82e-39 | |||||
Domain in the central regions of transcription elongation factor S-II (and elsewhere); : Pssm-ID: 128786 [Multi-domain] Cd Length: 102 Bit Score: 140.91 E-value: 3.82e-39
|
|||||||||
TNG2 super family | cl34876 | Chromatin remodeling protein, contains PhD zinc finger [Chromatin structure and dynamics]; |
160-302 | 2.74e-07 | |||||
Chromatin remodeling protein, contains PhD zinc finger [Chromatin structure and dynamics]; The actual alignment was detected with superfamily member COG5034: Pssm-ID: 227367 [Multi-domain] Cd Length: 271 Bit Score: 53.40 E-value: 2.74e-07
|
|||||||||
PHA03247 super family | cl33720 | large tegument protein UL36; Provisional |
773-1044 | 1.01e-04 | |||||
large tegument protein UL36; Provisional The actual alignment was detected with superfamily member PHA03247: Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 46.86 E-value: 1.01e-04
|
|||||||||
PHA03247 super family | cl33720 | large tegument protein UL36; Provisional |
486-663 | 4.41e-03 | |||||
large tegument protein UL36; Provisional The actual alignment was detected with superfamily member PHA03247: Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 41.46 E-value: 4.41e-03
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
SPOC_DIDO1-like | cd21547 | SPOC (Spen paralog and ortholog C-terminal) domain found in some death-inducer obliterator ... |
1056-1181 | 2.96e-91 | |||||
SPOC (Spen paralog and ortholog C-terminal) domain found in some death-inducer obliterator variants; The Dido/DIDO1 gene has been implicated in several cellular processes such as apoptosis and chromosomal segregation, particularly in the hematopoietic system. It encodes alternative splicing variants, including Dido1, 2, and 3, with Dido3 being the longest isoform and Dido1 being the shortest. Dido3 is ubiquitously expressed in all human tissues, is dispensable for embryonic stem (ES) cell self-renewal and pluripotency, but is involved in the maintenance of stem cell genomic stability and tumorigenesis. Dido3 contains a PHD finger, a transcription elongation factor S-II subunit M (TFSIIM) domain, a SPOC module, and a long C-terminal region (CT) of unknown homology. Dido2 and Dido1 are truncated at the C-terminus relative to Dido3, with Dido2 containing a partial SPOC domain whereas Dido1 is missing it completely. Dido1, also called DIO-1, or death-associated transcription factor 1 (DATF-1), is important for maintaining ES cells and directly regulates the expression of pluripotency factors. The conserved plant homeodomain (PHD) finger is responsible for the binding of histone H3 with a higher affinity for trimethylated lysine 4 (H3K4me3). The Dido/DIDO1 gene is a bone morphogenetic protein (BMP) target gene, which promotes BMP-induced melanoma progression. It also triggers apoptosis after nuclear translocation and caspase upregulation. This model corresponds to the SPOC domain which is involved in developmental signaling and has also been proposed to be a phosphorylation binding module. Pssm-ID: 439210 Cd Length: 143 Bit Score: 289.14 E-value: 2.96e-91
|
|||||||||
PHD_DIDO1_like | cd15639 | PHD finger found in death-inducer obliterator variants Dido1, Dido2, and Dido3; This family ... |
266-319 | 3.09e-39 | |||||
PHD finger found in death-inducer obliterator variants Dido1, Dido2, and Dido3; This family includes three alternative splicing variants (Dido1, 2, and 3) encoded by the Dido gene, which have been implicated in a number of cellular processes such as apoptosis and chromosomal segregation, particularly in the hematopoietic system. Dido1, also termed DIO-1, or death-associated transcription factor 1 (DATF-1), is important for maintaining embryonic stem (ES) cells and directly regulates the expression of pluripotency factors. It is the shortest isoform that contains only a highly conserved plant homeodomain (PHD) finger responsible for the binding of histone H3 with a higher affinity for trimethylated lysine 4 (H3K4me3). Gene Dido is a Bonemorphogenetic protein (BMP) target gene, which promotes BMP-induced melanoma progression. It also triggers apoptosis after nuclear translocation and caspase upregulation. Dido3 is the largest isoform ubiquitously expressed in all human tissues. It is dispensable for ES cell self-renewal and pluripotency, but involved in the maintenance of stem cell genomic stability and tumorigenesis. Dido3 contains a PHD finger, a transcription elongation factor S-II subunit M (TFSIIM) domain, aspen paralog and ortholog (SPOC) module, and a long C-terminal region (CT) of unknown homology. Its PHD finger interacts with H3K4me3. Pssm-ID: 277109 Cd Length: 54 Bit Score: 139.33 E-value: 3.09e-39
|
|||||||||
TFS2M | smart00510 | Domain in the central regions of transcription elongation factor S-II (and elsewhere); |
672-773 | 3.82e-39 | |||||
Domain in the central regions of transcription elongation factor S-II (and elsewhere); Pssm-ID: 128786 [Multi-domain] Cd Length: 102 Bit Score: 140.91 E-value: 3.82e-39
|
|||||||||
SPOC | pfam07744 | SPOC domain; The SPOC (Spen paralogue and orthologue C-terminal) domain is involved in ... |
1049-1187 | 1.75e-36 | |||||
SPOC domain; The SPOC (Spen paralogue and orthologue C-terminal) domain is involved in developmental signalling. Pssm-ID: 400205 Cd Length: 142 Bit Score: 134.79 E-value: 1.75e-36
|
|||||||||
TFIIS_M | pfam07500 | Transcription factor S-II (TFIIS), central domain; Transcription elongation by RNA polymerase ... |
667-773 | 6.34e-30 | |||||
Transcription factor S-II (TFIIS), central domain; Transcription elongation by RNA polymerase II is regulated by the general elongation factor TFIIS. This factor stimulates RNA polymerase II to transcribe through regions of DNA that promote the formation of stalled ternary complexes. TFIIS is composed of three structural domains, termed I, II, and III. The two C-terminal domains (II and III), this domain and pfam01096 are required for transcription activity. Pssm-ID: 462184 Cd Length: 112 Bit Score: 114.61 E-value: 6.34e-30
|
|||||||||
PHD | pfam00628 | PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar ... |
270-320 | 8.34e-14 | |||||
PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar manner to that of the RING and FYVE domains. Several PHD fingers have been identified as binding modules of methylated histone H3. Pssm-ID: 425785 [Multi-domain] Cd Length: 51 Bit Score: 66.75 E-value: 8.34e-14
|
|||||||||
PHD | smart00249 | PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in ... |
270-319 | 8.32e-13 | |||||
PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in nuclear proteins thought to be involved in epigenetics and chromatin-mediated transcriptional regulation. The PHD finger binds two zinc ions using the so-called 'cross-brace' motif and is thus structurally related to the RING finger and the FYVE finger. It is not yet known if PHD fingers have a common molecular function. Several reports suggest that it can function as a protein-protein interacton domain and it was recently demonstrated that the PHD finger of p300 can cooperate with the adjacent BROMO domain in nucleosome binding in vitro. Other reports suggesting that the PHD finger is a ubiquitin ligase have been refuted as these domains were RING fingers misidentified as PHD fingers. Pssm-ID: 214584 [Multi-domain] Cd Length: 47 Bit Score: 63.77 E-value: 8.32e-13
|
|||||||||
TFSII | TIGR01385 | transcription elongation factor S-II; This model represents eukaryotic transcription ... |
651-767 | 6.91e-12 | |||||
transcription elongation factor S-II; This model represents eukaryotic transcription elongation factor S-II. This protein allows stalled RNA transcription complexes to perform a cleavage of the nascent RNA and restart at the newly generated 3-prime end. Pssm-ID: 273592 [Multi-domain] Cd Length: 299 Bit Score: 67.94 E-value: 6.91e-12
|
|||||||||
TNG2 | COG5034 | Chromatin remodeling protein, contains PhD zinc finger [Chromatin structure and dynamics]; |
160-302 | 2.74e-07 | |||||
Chromatin remodeling protein, contains PhD zinc finger [Chromatin structure and dynamics]; Pssm-ID: 227367 [Multi-domain] Cd Length: 271 Bit Score: 53.40 E-value: 2.74e-07
|
|||||||||
PHA03247 | PHA03247 | large tegument protein UL36; Provisional |
773-1044 | 1.01e-04 | |||||
large tegument protein UL36; Provisional Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 46.86 E-value: 1.01e-04
|
|||||||||
PHA03247 | PHA03247 | large tegument protein UL36; Provisional |
486-663 | 4.41e-03 | |||||
large tegument protein UL36; Provisional Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 41.46 E-value: 4.41e-03
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
SPOC_DIDO1-like | cd21547 | SPOC (Spen paralog and ortholog C-terminal) domain found in some death-inducer obliterator ... |
1056-1181 | 2.96e-91 | |||||
SPOC (Spen paralog and ortholog C-terminal) domain found in some death-inducer obliterator variants; The Dido/DIDO1 gene has been implicated in several cellular processes such as apoptosis and chromosomal segregation, particularly in the hematopoietic system. It encodes alternative splicing variants, including Dido1, 2, and 3, with Dido3 being the longest isoform and Dido1 being the shortest. Dido3 is ubiquitously expressed in all human tissues, is dispensable for embryonic stem (ES) cell self-renewal and pluripotency, but is involved in the maintenance of stem cell genomic stability and tumorigenesis. Dido3 contains a PHD finger, a transcription elongation factor S-II subunit M (TFSIIM) domain, a SPOC module, and a long C-terminal region (CT) of unknown homology. Dido2 and Dido1 are truncated at the C-terminus relative to Dido3, with Dido2 containing a partial SPOC domain whereas Dido1 is missing it completely. Dido1, also called DIO-1, or death-associated transcription factor 1 (DATF-1), is important for maintaining ES cells and directly regulates the expression of pluripotency factors. The conserved plant homeodomain (PHD) finger is responsible for the binding of histone H3 with a higher affinity for trimethylated lysine 4 (H3K4me3). The Dido/DIDO1 gene is a bone morphogenetic protein (BMP) target gene, which promotes BMP-induced melanoma progression. It also triggers apoptosis after nuclear translocation and caspase upregulation. This model corresponds to the SPOC domain which is involved in developmental signaling and has also been proposed to be a phosphorylation binding module. Pssm-ID: 439210 Cd Length: 143 Bit Score: 289.14 E-value: 2.96e-91
|
|||||||||
SPOC_PHF3-like | cd21541 | SPOC (Spen paralog and ortholog C-terminal) domain found in PHD finger protein 3 (PHF3), ... |
1056-1181 | 1.34e-77 | |||||
SPOC (Spen paralog and ortholog C-terminal) domain found in PHD finger protein 3 (PHF3), death-inducer obliterator (Dido) variants, and similar proteins; PHF3 is a human homolog of yeast protein bypass of Ess1 (Bye1), a nuclear protein with a domain resembling the central domain in the transcription elongation factor TFIIS. It is ubiquitously expressed in normal tissues including brain, but its expression is significantly reduced or lost in glioblastomas. This group also includes the protein products of the Dido gene that encodes three alternative splicing variants (Dido1, 2, and 3), which have been implicated in several cellular processes such as apoptosis and chromosomal segregation, particularly in the hematopoietic system. The Dido gene is a bone morphogenetic protein (BMP) target gene and promotes BMP-induced melanoma progression. Dido1 is important for maintaining embryonic stem (ES) cells and directly regulates the expression of pluripotency factors. It is the shortest isoform that contains only a highly conserved PHD finger responsible for the binding of histone H3 with a higher affinity for trimethylated lysine4 (H3K4me3). It also triggers apoptosis after nuclear translocation and caspase upregulation. Dido3 is the largest isoform and is ubiquitously expressed in all human tissues. It is dispensable for ES cell self-renewal and pluripotency, but is involved in the maintenance of stem cell genomic stability and tumorigenesis. This model corresponds to the SPOC domain of the PHF3-like group; the SPOC domain is involved in developmental signaling and has also been proposed to be a phosphorylation binding module. Pssm-ID: 439204 Cd Length: 141 Bit Score: 251.39 E-value: 1.34e-77
|
|||||||||
SPOC_PHF3 | cd21548 | SPOC (Spen paralog and ortholog C-terminal) domain found in PHD finger protein 3 (PHF3); PHF3 ... |
1056-1181 | 1.58e-64 | |||||
SPOC (Spen paralog and ortholog C-terminal) domain found in PHD finger protein 3 (PHF3); PHF3 is a human homolog of yeast protein bypass of Ess1 (Bye1), a nuclear protein with a domain resembling the central domain in the transcription elongation factor TFIIS. It is ubiquitously expressed in normal tissues including brain, but its expression is significantly reduced or lost in glioblastomas. PHF3 contains an N-terminal plant homeodomain (PHD) finger, a central RNA polymerase II (Pol II)-binding TFIIS-like domain (TLD) domain, and a C-terminal SPOC domain. This model corresponds to the SPOC domain which is involved in developmental signaling and has also been proposed to be a phosphorylation binding module. Pssm-ID: 439211 Cd Length: 141 Bit Score: 214.73 E-value: 1.58e-64
|
|||||||||
SPOC_PPS-like | cd22581 | SPOC (Spen paralog and ortholog C-terminal) domain found in Drosophila melanogaster protein ... |
1056-1181 | 8.87e-47 | |||||
SPOC (Spen paralog and ortholog C-terminal) domain found in Drosophila melanogaster protein partner of Sans-fille and similar proteins; Drosophila melanogaster protein partner of Sans-fille (PPS), also called protein partner of Snf, is a homolog of human DIDO. It mediates diverse chromatin activities, including the regulation of stemness genes in embryonic stem cells and splicing. PPS associates with spliceosomal RNAs including the U1 snRNP protein Sans-fille (Snf) to mediate sex determination gene Sex-lethal (Sxl) splicing autoregulation. Alternative splicing of the Sxl pre-mRNA determines gender during development in Drosophila, producing protein-encoding mRNAs in females but yielding inactive and truncated mRNAs in males. PPS contains a plant homeodomain (PHD) finger, Brahma and Kismet (BRK), a transcription elongation factor S-II subunit M (TFSIIM) domain, and a SPOC domain. This model corresponds to the SPOC domain that is involved in developmental signaling and has also been proposed to be a phosphorylation binding module. Pssm-ID: 439214 Cd Length: 142 Bit Score: 163.93 E-value: 8.87e-47
|
|||||||||
SPOC_TFIIS | cd21538 | SPOC (Spen paralog and ortholog C-terminal) domain found in the transcription factor S-II ... |
1056-1179 | 2.91e-39 | |||||
SPOC (Spen paralog and ortholog C-terminal) domain found in the transcription factor S-II (TFIIS) family; The transcription factor S-II (TFIIS) family includes SPOC domain-containing protein 1 (SPOCD1), yeast bypass of ESS1 protein 1 (Bye1p), PHD finger protein 3 (PHF3), and death-inducer obliterator (Dido) splicing variants, among others. They are characterized by having both a central RNA polymerase II (Pol II)-binding TFIIS-like domain (TLD) domain, and a C-terminal SPOC domain. This model corresponds to the SPOC domain that is involved in developmental signaling. SPOCD1 acts as a tumor-related factor that promotes cell proliferation and metastasis. Yeast Bye1p is a nuclear transcription factor with a domain resembling the central domain in transcription elongation factor TFIIS and plays an inhibitory role during transcription elongation. It functions as a multicopy suppressor of Ess1, a peptidyl-prolyl cis-trans isomerase involved in proline isomerization of the C-terminal domain (CTD) of RNA polymerase II (Pol II). PHF3 is a human homolog of the yeast protein Bye1p. It is ubiquitously expressed in normal tissues including brain, but its expression is significantly reduced or lost in glioblastomas. The Dido/DIDO1 gene is implicated in several cellular processes such as apoptosis and chromosomal segregation, particularly in the hematopoietic system. This model corresponds to the SPOC domain that is involved in developmental signaling and has also been proposed to be a phosphorylation binding module. Pssm-ID: 439201 Cd Length: 146 Bit Score: 142.79 E-value: 2.91e-39
|
|||||||||
PHD_DIDO1_like | cd15639 | PHD finger found in death-inducer obliterator variants Dido1, Dido2, and Dido3; This family ... |
266-319 | 3.09e-39 | |||||
PHD finger found in death-inducer obliterator variants Dido1, Dido2, and Dido3; This family includes three alternative splicing variants (Dido1, 2, and 3) encoded by the Dido gene, which have been implicated in a number of cellular processes such as apoptosis and chromosomal segregation, particularly in the hematopoietic system. Dido1, also termed DIO-1, or death-associated transcription factor 1 (DATF-1), is important for maintaining embryonic stem (ES) cells and directly regulates the expression of pluripotency factors. It is the shortest isoform that contains only a highly conserved plant homeodomain (PHD) finger responsible for the binding of histone H3 with a higher affinity for trimethylated lysine 4 (H3K4me3). Gene Dido is a Bonemorphogenetic protein (BMP) target gene, which promotes BMP-induced melanoma progression. It also triggers apoptosis after nuclear translocation and caspase upregulation. Dido3 is the largest isoform ubiquitously expressed in all human tissues. It is dispensable for ES cell self-renewal and pluripotency, but involved in the maintenance of stem cell genomic stability and tumorigenesis. Dido3 contains a PHD finger, a transcription elongation factor S-II subunit M (TFSIIM) domain, aspen paralog and ortholog (SPOC) module, and a long C-terminal region (CT) of unknown homology. Its PHD finger interacts with H3K4me3. Pssm-ID: 277109 Cd Length: 54 Bit Score: 139.33 E-value: 3.09e-39
|
|||||||||
TFS2M | smart00510 | Domain in the central regions of transcription elongation factor S-II (and elsewhere); |
672-773 | 3.82e-39 | |||||
Domain in the central regions of transcription elongation factor S-II (and elsewhere); Pssm-ID: 128786 [Multi-domain] Cd Length: 102 Bit Score: 140.91 E-value: 3.82e-39
|
|||||||||
SPOC | pfam07744 | SPOC domain; The SPOC (Spen paralogue and orthologue C-terminal) domain is involved in ... |
1049-1187 | 1.75e-36 | |||||
SPOC domain; The SPOC (Spen paralogue and orthologue C-terminal) domain is involved in developmental signalling. Pssm-ID: 400205 Cd Length: 142 Bit Score: 134.79 E-value: 1.75e-36
|
|||||||||
PHD_PHF3_like | cd15552 | PHD finger found in PHD finger protein 3 (PHF3), and death-inducer obliterator variants Dido1, ... |
270-319 | 1.48e-34 | |||||
PHD finger found in PHD finger protein 3 (PHF3), and death-inducer obliterator variants Dido1, Dido2, and Dido3; PHF3 is a human homolog of yeast protein bypass of Ess1 (Bye1), a nuclear protein with a domain resembling the central domain in the transcription elongation factor TFIIS. It is ubiquitously expressed in normal tissues including brain, but its expression is significantly reduced or lost in glioblastomas. PHF3 contains an N-terminal plant homeodomain (PHD) finger, a central RNA polymerase II (Pol II)-binding TFIIS-like domain (TLD) domain, and a C-terminal Spen paralogue and orthologue C-terminal (SPOC) domain. This family also includes Dido gene encoding three alternative splicing variants (Dido1, 2, and 3), which have been implicated in a number of cellular processes such as apoptosis and chromosomal segregation, particularly in the hematopoietic system. Dido1 is important for maintaining embryonic stem (ES) cells and directly regulates the expression of pluripotency factors. It is the shortest isoform that contains only a highly conserved PHD finger responsible for the binding of histone H3 with a higher affinity for trimethylated lysine4 (H3K4me3). Gene Dido1 is a Bone morphogenetic protein (BMP) target gene and promotes BMP-induced melanoma progression. It also triggers apoptosis after nuclear translocation and caspase upregulation. Dido3 is the largest isoform and is ubiquitously expressed in all human tissues. It is dispensable for ES cell self-renewal and pluripotency, but is involved in the maintenance of stem cell genomic stability and tumorigenesis. Dido3 contains a PHD finger, a transcription elongation factor S-II subunit M (TFSIIM) domain, a SPOC module, and a long C-terminal region (CT) of unknown homology. Pssm-ID: 277027 Cd Length: 50 Bit Score: 125.97 E-value: 1.48e-34
|
|||||||||
SPOC_SPOCD1 | cd21540 | SPOC (Spen paralog and ortholog C-terminal) domain found in SPOC domain-containing protein 1 ... |
1056-1181 | 2.32e-34 | |||||
SPOC (Spen paralog and ortholog C-terminal) domain found in SPOC domain-containing protein 1 (SPOCD1) and similar proteins; SPOCD1 is a protein belonging to the transcription factor S-II (TFIIS) family of transcription factors. It acts as a tumor-related factor that promotes cell proliferation and metastasis. SPOCD1 was initially found to interact with testis protein phosphatase 1, which is a major eukaryotic serine/threonine-specific phosphatase that regulates cellular signaling. The model corresponds to the SPOC domain of SPOCD1; the SPOC domain is involved in developmental signaling and has also been proposed to be a phosphorylation binding module. Pssm-ID: 439203 Cd Length: 138 Bit Score: 128.32 E-value: 2.32e-34
|
|||||||||
TFIIS_M | pfam07500 | Transcription factor S-II (TFIIS), central domain; Transcription elongation by RNA polymerase ... |
667-773 | 6.34e-30 | |||||
Transcription factor S-II (TFIIS), central domain; Transcription elongation by RNA polymerase II is regulated by the general elongation factor TFIIS. This factor stimulates RNA polymerase II to transcribe through regions of DNA that promote the formation of stalled ternary complexes. TFIIS is composed of three structural domains, termed I, II, and III. The two C-terminal domains (II and III), this domain and pfam01096 are required for transcription activity. Pssm-ID: 462184 Cd Length: 112 Bit Score: 114.61 E-value: 6.34e-30
|
|||||||||
PHD2_3_BPTF | cd15560 | PHD finger 2 and 3 found in bromodomain and PHD finger-containing transcription factor (BPTF); ... |
270-319 | 2.24e-20 | |||||
PHD finger 2 and 3 found in bromodomain and PHD finger-containing transcription factor (BPTF); BPTF, also termed nucleosome-remodeling factor subunit BPTF, or fetal Alz-50 clone 1 protein (FAC1), or fetal Alzheimer antigen, functions as a transcriptional regulator that exhibits altered expression and subcellular localization during neuronal development and neurodegenerative diseases such as Alzheimer's disease. It interacts with the human orthologue of the Kelch-like Ech-associated protein (Keap1). Its function and subcellular localization can be regulated by Keap1. Moreover, BPTF is a novel DNA-binding protein that recognizes the DNA sequence CACAACAC and represses transcription through this site in a phosphorylation-dependent manner. Furthermore, BPTF interacts with the Myc-associated zinc finger protein (ZF87/MAZ) and alters its transcriptional activity, which has been implicated in gene regulation in neurodegeneration. Some family members contain two or three plant homeodomain (PHD) fingers, which may be involved in complex formation with histone H3 trimethylated at K4 (H3K4me3). This family corresponds to the second and third PHD fingers. Pssm-ID: 277035 Cd Length: 47 Bit Score: 85.09 E-value: 2.24e-20
|
|||||||||
PHD_PHF2_like | cd15554 | PHD finger found in PHF2, PHF8 and KDM7; This family includes PHF2, PHF8, KDM7, and similar ... |
270-319 | 2.56e-20 | |||||
PHD finger found in PHF2, PHF8 and KDM7; This family includes PHF2, PHF8, KDM7, and similar proteins. PHF2, also termed GRC5, or PHD finger protein 2, is a histone lysine demethylase ubiquitously expressed in various tissues. PHF8, also termed PHD finger protein 8, or KDM7B, is a monomethylated histone H4 lysine 20(H4K20me1) demethylase that transcriptionally regulates many cell cycle genes. It also preferentially acts on H3K9me2 and H3K9me1. PHF8 is modulated by CDC20-containing anaphase-promoting complex (APC (cdc20)) and plays an important role in the G2/M transition. It acts as a critical molecular sensor for mediating retinoic acid (RA) treatment response in RAR alpha-fusion-induced leukemia. Moreover, PHF8 is essential for cytoskeleton dynamics and is associated with X-linked mental retardation. KDM7, also termed JmjC domain-containing histone demethylation protein 1D (JHDM1D), or KIAA1718, is a dual histone demethylase that catalyzes demethylation of monomethylated and dimethylated H3K9 (H3K9me2/me1) and H3K27 (H3K27me2/me1), which functions as an eraser of silencing marks on chromatin during brain development. It also plays a tumor-suppressive role by regulating angiogenesis. All family members contain a plant homeodomain (PHD) finger and a JmjC domain. Pssm-ID: 277029 Cd Length: 47 Bit Score: 85.13 E-value: 2.56e-20
|
|||||||||
PHD_Cfp1 | cd15553 | PHD finger found in CXXC-type zinc finger protein 1 (Cfp1); Cfp1, also termed CpG-binding ... |
270-319 | 3.18e-18 | |||||
PHD finger found in CXXC-type zinc finger protein 1 (Cfp1); Cfp1, also termed CpG-binding protein, or PHD finger and CXXC domain-containing protein 1 (PCCX1), is a specificity factor that binds to unmethylated CpGs and links H3K4me3 with CpG islands (CGIs). It integrates both promoter CpG content and gene activity for accurate trimethylation of histone H3 Lys 4 (H3K4me3) deposition in embryonic stem cells. Moreover, Cfp1 is an essential component of the SETD1 histone H3K4 methyltransferase complex and functions as a critical regulator of histone methylation, cytosine methylation, cellular differentiation, and vertebrate development. Cfp1 contains a plant homeodomain (PHD) finger, a CXXC domain, and a CpG binding protein zinc finger C-terminal domain. Its CXXC domain selectively binds to non-methylated CpG islands, following by a preference for a guanosine nucleotide. Pssm-ID: 277028 Cd Length: 46 Bit Score: 78.96 E-value: 3.18e-18
|
|||||||||
PHD_PHF3 | cd15638 | PHD finger found in PHD finger protein 3 (PHF3); PHF3 is a human homolog of yeast protein ... |
272-319 | 7.81e-18 | |||||
PHD finger found in PHD finger protein 3 (PHF3); PHF3 is a human homolog of yeast protein bypass of Ess1 (Bye1), a nuclear protein with a domain resembling the central domain in the transcription elongation factor TFIIS. It is ubiquitously expressed in normal tissues including brain, but its expression is significantly reduced or lost in glioblastomas. PHF3 contains an N-terminal plant homeodomain (PHD) finger, a central RNA polymerase II (Pol II)-binding TFIIS-like domain (TLD) domain, and a C-terminal Spen paralogue and orthologue C-terminal (SPOC) domain. Pssm-ID: 277108 Cd Length: 51 Bit Score: 78.04 E-value: 7.81e-18
|
|||||||||
PHD_SPP1 | cd16039 | PHD finger found in Set1 complex component SPP1; Set1C component SPP1, also called COMPASS ... |
270-319 | 3.77e-16 | |||||
PHD finger found in Set1 complex component SPP1; Set1C component SPP1, also called COMPASS component Spp1, or Complex proteins associated with set1 protein Spp1, or Suppressor of PRP protein 1, is a component of the COMPASS complex that links histone methylation to initiation of meiotic recombination. It induces double-strand break (DSB) formation by tethering to recombinationally cold regions. SPP1 interacts with H3K4me3 and Mer2, a protein required for DSB formation, to promote recruitment of potential meiotic DSB sites to the chromosomal axis. SPP1 contains a PHD finger, a zinc binding motif. Pssm-ID: 277186 Cd Length: 46 Bit Score: 73.28 E-value: 3.77e-16
|
|||||||||
PHD_KDM7 | cd15640 | PHD finger found in lysine-specific demethylase 7 (KDM7); KDM7, also termed JmjC ... |
270-322 | 2.56e-15 | |||||
PHD finger found in lysine-specific demethylase 7 (KDM7); KDM7, also termed JmjC domain-containing histone demethylation protein 1D (JHDM1D), or KIAA1718, is a dual histone demethylase that catalyzes demethylation of monomethylated and dimethylated H3K9 (H3K9me2/me1) and H3K27 (H3K27me2/me1), which functions as an eraser of silencing marks on chromatin during brain development. It also plays a tumor-suppressive role by regulating angiogenesis. KDM7 contains a plant homeodomain (PHD) that binds Lys4-trimethylated histone 3 (H3K4me3) and a jumonji domain that demethylates either H3K9me2 or H3K27me2. Pssm-ID: 277110 Cd Length: 50 Bit Score: 71.17 E-value: 2.56e-15
|
|||||||||
PHD | pfam00628 | PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar ... |
270-320 | 8.34e-14 | |||||
PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar manner to that of the RING and FYVE domains. Several PHD fingers have been identified as binding modules of methylated histone H3. Pssm-ID: 425785 [Multi-domain] Cd Length: 51 Bit Score: 66.75 E-value: 8.34e-14
|
|||||||||
SPOC_SF | cd21520 | SPOC (Spen paralog and ortholog C-terminal) domain superfamily; The SPOC domain is involved in ... |
1056-1176 | 7.80e-13 | |||||
SPOC (Spen paralog and ortholog C-terminal) domain superfamily; The SPOC domain is involved in developmental signalling and has also been proposed to be a phosphorylation binding module. It has been found mainly in two protein families: transcription factor S-II (TFIIS) and Spen (split end). The TFIIS family includes SPOC domain-containing protein 1 (SPOCD1), yeast bypass of ESS1 protein 1 (Bye1p), PHD finger protein 3 (PHF3), and death-inducer obliterator (Dido) splicing variants, among others. They are characterized by having both a central RNA polymerase II (Pol II)-binding TFIIS-like domain (TLD) domain, and a C-terminal SPOC domain. The Spen protein family includes SMART/HDAC1-associated repressor protein (SHARP) and RNA binding motif protein 15 (RBM15)-like proteins from metazoans, as well as plant flowering time control protein FPA and yeast chromo domain-containing protein 1 (Chp1p). They are characterized by containing RNA recognition motifs (RRMs) and a SPOC domain. Pssm-ID: 439200 Cd Length: 138 Bit Score: 66.93 E-value: 7.80e-13
|
|||||||||
PHD | smart00249 | PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in ... |
270-319 | 8.32e-13 | |||||
PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in nuclear proteins thought to be involved in epigenetics and chromatin-mediated transcriptional regulation. The PHD finger binds two zinc ions using the so-called 'cross-brace' motif and is thus structurally related to the RING finger and the FYVE finger. It is not yet known if PHD fingers have a common molecular function. Several reports suggest that it can function as a protein-protein interacton domain and it was recently demonstrated that the PHD finger of p300 can cooperate with the adjacent BROMO domain in nucleosome binding in vitro. Other reports suggesting that the PHD finger is a ubiquitin ligase have been refuted as these domains were RING fingers misidentified as PHD fingers. Pssm-ID: 214584 [Multi-domain] Cd Length: 47 Bit Score: 63.77 E-value: 8.32e-13
|
|||||||||
PHD_PHF8 | cd15642 | PHD finger found in histone lysine demethylase PHF8; PHF8, also termed PHD finger protein 8, ... |
269-323 | 2.66e-12 | |||||
PHD finger found in histone lysine demethylase PHF8; PHF8, also termed PHD finger protein 8, or KDM7B, is a monomethylated histone H4 lysine 20 (H4K20me1) demethylase that transcriptionally regulates many cell cycle genes. It also preferentially acts on H3K9me2 and H3K9me1. PHF8 is modulated by CDC20-containing anaphase-promoting complex (APC (cdc20)) and plays an important role in the G2/M transition. It acts as a critical molecular sensor for mediating retinoic acid (RA) treatment response in RAR alpha-fusion-induced leukemia. Moreover, PHF8 is essential for cytoskeleton dynamics and is associated with X-linked mental retardation. PHF8 contains an N-terminal plant homeodomain (PHD) finger followed by a JmjC domain. The PHD finger mediates binding to nucleosomes at active gene promoters and the JmjC domain catalyzes the demethylation of mono- or dimethyl-lysines. Pssm-ID: 277112 Cd Length: 52 Bit Score: 62.35 E-value: 2.66e-12
|
|||||||||
TFSII | TIGR01385 | transcription elongation factor S-II; This model represents eukaryotic transcription ... |
651-767 | 6.91e-12 | |||||
transcription elongation factor S-II; This model represents eukaryotic transcription elongation factor S-II. This protein allows stalled RNA transcription complexes to perform a cleavage of the nascent RNA and restart at the newly generated 3-prime end. Pssm-ID: 273592 [Multi-domain] Cd Length: 299 Bit Score: 67.94 E-value: 6.91e-12
|
|||||||||
PHD_MLL5 | cd15550 | PHD finger found in mixed lineage leukemia 5 (MLL5); MLL5 is a histone methyltransferase that ... |
271-319 | 1.96e-11 | |||||
PHD finger found in mixed lineage leukemia 5 (MLL5); MLL5 is a histone methyltransferase that plays a key role in hematopoiesis, spermatogenesis and cell cycle progression. It contains a single plant homeodomain (PHD) finger followed by a catalytic SET domain. MLL5 can be recruited to E2F1-responsive promoters to stimulate H3K4 trimethylation and transcriptional activation by binding to the cell cycle regulator host cell factor (HCF-1), thereby facilitating the cell cycle G1 to S phase transition. It is also involved in mitotic fidelity and genomic integrity by modulating the stability of the chromosomal passenger complex (CPC) via the interaction with Borealin. Moreover, MLL5 is a component of a complex associated with retinoic acid receptor that requires GlcN Acylation of its SET domain in order to activate its histone lysine methyltransferase activity. It also participates in the camptothecin (CPT)-induced p53 activation. Furthermore, MLL5 indirectly regulates H3K4 methylation, represses cyclin A2 (CycA) expression, and promotes myogenic differentiation. Pssm-ID: 277025 [Multi-domain] Cd Length: 44 Bit Score: 59.64 E-value: 1.96e-11
|
|||||||||
SPOC_Bye1p-like | cd21542 | SPOC (Spen paralog and ortholog C-terminal) domain found in Saccharomyces cerevisiae bypass of ... |
1056-1178 | 2.63e-11 | |||||
SPOC (Spen paralog and ortholog C-terminal) domain found in Saccharomyces cerevisiae bypass of ESS1 protein 1 (Bye1p) and similar proteins; Yeast Bye1p is a nuclear transcription factor with a domain resembling the central domain in the transcription elongation factor TFIIS. It plays an inhibitory role during transcription elongation. It functions as a multicopy suppressor of Ess1, a peptidyl-prolyl cis-trans isomerase involved in proline isomerization of the C-terminal domain (CTD) of RNA polymerase II (Pol II). Bye1p contains an N-terminal plant homeodomain (PHD) finger, a central Pol II-binding TFIIS-like domain (TLD) domain, and a C-terminal SPOC domain. This model corresponds to the SPOC domain which is involved in developmental signaling and has also been proposed to be a phosphorylation binding module. Pssm-ID: 439205 Cd Length: 153 Bit Score: 63.08 E-value: 2.63e-11
|
|||||||||
PHD_SF | cd15489 | PHD finger superfamily; The PHD finger superfamily includes a canonical plant homeodomain (PHD) ... |
270-319 | 1.51e-10 | |||||
PHD finger superfamily; The PHD finger superfamily includes a canonical plant homeodomain (PHD) finger typically characterized as Cys4HisCys3, and a non-canonical extended PHD finger, characterized as Cys2HisCys5HisCys2His. Variations include the RAG2 PHD finger characterized by Cys3His2Cys2His and the PHD finger 5 found in nuclear receptor-binding SET domain-containing proteins characterized by Cys4HisCys2His. The PHD finger is also termed LAP (leukemia-associated protein) motif or TTC (trithorax consensus) domain. Single or multiple copies of PHD fingers have been found in a variety of eukaryotic proteins involved in the control of gene transcription and chromatin dynamics. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. They also function as epigenome readers controlling gene expression through molecular recruitment of multi-protein complexes of chromatin regulators and transcription factors. The PHD finger domain SF is structurally similar to the RING and FYVE_like superfamilies. Pssm-ID: 276966 [Multi-domain] Cd Length: 48 Bit Score: 57.33 E-value: 1.51e-10
|
|||||||||
PHD_PHF2 | cd15641 | PHD finger found in lysine-specific demethylase PHF2; PHF2, also termed GRC5, or PHD finger ... |
270-319 | 1.80e-10 | |||||
PHD finger found in lysine-specific demethylase PHF2; PHF2, also termed GRC5, or PHD finger protein 2, is a histone lysine demethylase ubiquitously expressed in various tissues. It contains a plant homeodomain (PHD) finger and a JmjC domain and plays an important role in adipogenesis. The PHD finger domain can recognize trimethylated histone H3 lysine 4 (H3K4me3). PHF2 also has dimethylated histone H3 lysine 9(H3K9me2) demethylase activity and acts as a coactivator of several metabolism-related transcription factors. Moreover, it can demethylate ARID5B and further forms a complex with demethylated ARD5B to bind the promoter regions of target genes. The overexpression of PHF2 is involved in the progression of esophageal squamous cell carcinoma (ESCC). Pssm-ID: 277111 Cd Length: 50 Bit Score: 57.34 E-value: 1.80e-10
|
|||||||||
PHD_Ecm5p_Lid2p_like | cd15518 | PHD finger found in Saccharomyces cerevisiae extracellular matrix protein 5 (Ecm5p), ... |
270-319 | 1.59e-09 | |||||
PHD finger found in Saccharomyces cerevisiae extracellular matrix protein 5 (Ecm5p), Schizosaccharomyces pombe Lid2 complex component Lid2p, and similar proteins; The family includes Saccharomyces cerevisiae Ecm5p, Schizosaccharomyces pombe Lid2 complex component Lid2p, and similar proteins. Ecm5p is a JmjC domain-containing protein that directly removes histone lysine methylation via a hydroxylation reaction. It associates with the yeast Snt2p and Rpd3 deacetylase, which may play a role in regulating transcription in response to oxidative stress. Ecm5p promotes oxidative stress tolerance, while Snt2p ultimately decreases tolerance. Ecm5p contains an N-terminal ARID domain, a JmjC domain, and a C-terminal plant homeodomain (PHD) finger. Lid2p is a trimethyl H3K4 (H3K4me3) demethylase responsible for H3K4 hypomethylation in heterochromatin. It interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, and mediates H3K9 methylation and small RNA production. It also acts cooperatively with the histone modification enzymes Set1 and Lsd1 and plays an essential role in cross-talk between H3K4 and H3K9 methylation in euchromatin. Lid2p contains a JmjC domain, three PHD fingers and a JmjN domain. This model includes the second PHD finger of Lid2p. Pssm-ID: 276993 Cd Length: 45 Bit Score: 54.28 E-value: 1.59e-09
|
|||||||||
PHD_TCF19_like | cd15517 | PHD finger found in Transcription factor 19 (TCF-19), Lysine-specific demethylase KDM5A and ... |
283-319 | 2.34e-09 | |||||
PHD finger found in Transcription factor 19 (TCF-19), Lysine-specific demethylase KDM5A and KDM5B, and other similar proteins; TCF-19 was identified as a putative trans-activating factor with expression beginning at the late G1-S boundary in dividing cells. It functions as a novel islet factor necessary for proliferation and survival in the INS-1 beta cell line. It plays an important role in susceptibility to both Type 1 Diabetes Mellitus (T1DM) and Type 2 Diabetes Mellitus (T2DM); it has been suggested that it may positively impact beta cell mass under conditions of beta cell stress and increased insulin demand. KDM5A was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interaction with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK, and BMAL1. KDM5B has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. Both KDM5A and KDM5B function as trimethylated histone H3 lysine 4 (H3K4me3) demethylases. This family also includes Caenorhabditis elegans Lysine-specific demethylase 7 homolog (ceKDM7A). ceKDM7A (also termed JmjC domain-containing protein 1.2, PHD finger protein 8 homolog, or PHF8 homolog) is a plant homeodomain (PHD)- and JmjC domain-containing protein that functions as a histone demethylase specific for H3K9me2 and H3K27me2. The binding of the PHD finger to H3K4me3 guides H3K9me2- and H3K27me2-specific demethylation by its catalytic JmjC domain in a trans-histone regulation mechanism. In addition, this family includes plant protein OBERON 1 and OBERON 2, Alfin1-like (AL) proteins, histone acetyltransferases (HATs) HAC, and AT-rich interactive domain-containing protein 4 (ARID4). Pssm-ID: 276992 [Multi-domain] Cd Length: 49 Bit Score: 54.09 E-value: 2.34e-09
|
|||||||||
PHD3_KDM5A_like | cd15610 | PHD finger 3 found in Lysine-specific demethylase 5A (KDM5A), 5B (KDM5B), and similar proteins; ... |
285-319 | 3.21e-09 | |||||
PHD finger 3 found in Lysine-specific demethylase 5A (KDM5A), 5B (KDM5B), and similar proteins; The family includes KDM5A and KDM5B, both of which belong to the JARID subfamily within the JmjC proteins. KDM5A, also termed Histone demethylase JARID1A, or Jumonji/ARID domain-containing protein 1A, or Retinoblastoma-binding protein 2 (RBBP-2 or RBP2), was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5A functions as the trimethylated histone H3 lysine 4 (H3K4me3) demethylase. It also displays DNA-binding activities that can recognize the specific DNA sequence CCGCCC. KDM5B, also termed Cancer/testis antigen 31 (CT31), or Histone demethylase JARID1B, or Jumonji/ARID domain-containing protein 1B (JARID1B), or PLU-1, or retinoblastoma-binding protein 2 homolog 1 (RBP2-H1 or RBBP2H1A), has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. KDM5B acts as a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by polychlorinated biphenyls (PCBs). It also mediates demethylation of H3K4me2 and H3K4me1. Moreover, KDM5B functions as a negative regulator of hematopoietic stem cell (HSC) self-renewal and progenitor cell activity. KDM5B has also been shown to interact with the DNA binding transcription factors BF-1 and PAX9, as well asTIEG1/KLF10 (transforming growth factor-beta inducible early gene-1/Kruppel-like transcription factor 10), and possibly function as a transcriptional corepressor. The family also includes the Drosophila melanogaster protein little imaginal discs (Lid) that functions as a JmjC-dependent trimethyl histone H3K4 (H3K4me3) demethylase, which is required for dMyc-induced cell growth. It positively regulates Hox gene expression in S2 cells. Members in this family contain the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the third PHD finger. Pssm-ID: 277083 [Multi-domain] Cd Length: 50 Bit Score: 53.87 E-value: 3.21e-09
|
|||||||||
PHD_ING | cd15505 | PHD finger found in the inhibitor of growth (ING) protein family; The ING family includes a ... |
270-319 | 4.05e-09 | |||||
PHD finger found in the inhibitor of growth (ING) protein family; The ING family includes a group of tumor suppressors, ING1-5, which act as readers and writers of the histone epigenetic code, affecting DNA damage response, chromatin remodeling, cellular senescence, differentiation, cell cycle regulation and apoptosis. They may have a general role in mediating the cellular response to genotoxic stress through binding to and regulating the activities of histone acetyltransferase (HAT) and histone deacetylase (HDAC) chromatin remodeling complexes. All ING proteins contain an N-terminal ING domain and a C-terminal plant homeodomain (PHD) finger. Pssm-ID: 276980 [Multi-domain] Cd Length: 45 Bit Score: 53.07 E-value: 4.05e-09
|
|||||||||
PHD2_KDM5A | cd15606 | PHD finger 2 found in Lysine-specific demethylase 5A (KDM5A); KDM5A (also termed Histone ... |
270-319 | 6.54e-09 | |||||
PHD finger 2 found in Lysine-specific demethylase 5A (KDM5A); KDM5A (also termed Histone demethylase JARID1A, Jumonji/ARID domain-containing protein 1A, or Retinoblastoma-binding protein 2 (RBBP-2 or RBP2)) was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK, and BMAL1. KDM5A functions as a trimethylated histone H3 lysine 4 (H3K4me3) demethylase that belongs to the JARID subfamily within the JmjC proteins. It also displays DNA-binding activities that can recognize the specific DNA sequence CCGCCC. KDM5A contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the second PHD finger. Pssm-ID: 277079 Cd Length: 56 Bit Score: 52.83 E-value: 6.54e-09
|
|||||||||
PHD_TAF3 | cd15522 | PHD finger found in transcription initiation factor TFIID subunit 3 (TAF3); TAF3 (also termed ... |
270-319 | 3.39e-08 | |||||
PHD finger found in transcription initiation factor TFIID subunit 3 (TAF3); TAF3 (also termed 140 kDa TATA box-binding protein-associated factor, TBP-associated factor 3, transcription initiation factor TFIID 140 kDa subunit (TAF140), or TAFII-140, is an integral component of TFIID) is a general initiation factor (GTF) that plays a key role in preinitiation complex (PIC) assembly through core promoter recognition. The interaction of H3K4me3 with TAF3 directs global TFIID recruitment to active genes, which regulates gene-selective functions of p53 in response to genotoxic stress. TAF3 is highly enriched in embryonic stem cells and is required for endoderm lineage differentiation and prevents premature specification of neuroectoderm and mesoderm. Moreover, TAF3, along with TRF3, forms a complex that is essential for myogenic differentiation. TAF3 contains a plant homeodomain (PHD) finger. This family also includes Drosophila melanogaster BIP2 (Bric-a-brac interacting protein 2) protein, which functions as an interacting partner of D. melanogaster p53 (Dmp53). Pssm-ID: 276997 [Multi-domain] Cd Length: 46 Bit Score: 50.75 E-value: 3.39e-08
|
|||||||||
PHD_UBR7 | cd15542 | PHD finger found in putative E3 ubiquitin-protein ligase UBR7; UBR7, also termed N-recognin-7, ... |
270-319 | 7.62e-08 | |||||
PHD finger found in putative E3 ubiquitin-protein ligase UBR7; UBR7, also termed N-recognin-7, is a UBR box-containing protein that belongs to the E3 ubiquitin ligase family that recognizes N-degrons or structurally related molecules for ubiquitin-dependent proteolysis or related processes through the UBR box motif. In addition to the UBR box, UBR7 also harbors a plant homeodomain (PHD) finger. The biochemical properties of UBR7 remain unclear. Pssm-ID: 277017 Cd Length: 54 Bit Score: 50.06 E-value: 7.62e-08
|
|||||||||
PHD_AL_plant | cd15613 | PHD finger found in plant Alfin1-like (AL) proteins; AL proteins are ubiquitously expressed ... |
278-320 | 1.42e-07 | |||||
PHD finger found in plant Alfin1-like (AL) proteins; AL proteins are ubiquitously expressed nuclear proteins existing only in plants. They are involved in chromatin regulation by binding to tri- and dimethylated histone H3 at lysine 4 (H3K4me3/2), the active histone markers, through their plant homeodomain (PHD) fingers. Pssm-ID: 277085 Cd Length: 51 Bit Score: 49.03 E-value: 1.42e-07
|
|||||||||
PHD_MMD1_like | cd15556 | PHD finger found in Arabidopsis thaliana PHD finger protein MALE MEIOCYTE DEATH 1 (MMD1), PHD ... |
271-319 | 1.91e-07 | |||||
PHD finger found in Arabidopsis thaliana PHD finger protein MALE MEIOCYTE DEATH 1 (MMD1), PHD finger protein MALE STERILITY 1 (MS1), and similar proteins; MMD1 is a plant homeodomain (PHD) finger protein expressed in male meiocytes. It is encoded by the gene DUET, which is required for male meiotic chromosome organization and progression. MMD1 has been implicated in the regulation of gene expression during meiosis. The mmd1 mutation triggers cell death in male meiocytes. MS1 is a nuclear transcriptional activator that is important for tapetal development and pollen wall biosynthesis. It contains a Leu zipper-like domain and a PHD finger motif, both of which are essential for its function. Pssm-ID: 277031 [Multi-domain] Cd Length: 46 Bit Score: 48.53 E-value: 1.91e-07
|
|||||||||
TNG2 | COG5034 | Chromatin remodeling protein, contains PhD zinc finger [Chromatin structure and dynamics]; |
160-302 | 2.74e-07 | |||||
Chromatin remodeling protein, contains PhD zinc finger [Chromatin structure and dynamics]; Pssm-ID: 227367 [Multi-domain] Cd Length: 271 Bit Score: 53.40 E-value: 2.74e-07
|
|||||||||
PHD_ING3 | cd15585 | PHD finger found in inhibitor of growth protein 3 (ING3) and similar proteins; ING3, also ... |
270-319 | 8.28e-07 | |||||
PHD finger found in inhibitor of growth protein 3 (ING3) and similar proteins; ING3, also termed p47ING3, is one member of the inhibitor of growth (ING) family of type II tumor suppressors. It is ubiquitously expressed and has been implicated in transcription modulation, cell cycle control, and the induction of apoptosis. It is an important subunit of human NuA4 histone acetyltransferase complex, which regulates the acetylation of histones H2A and H4. Moreover, ING3 promotes ultraviolet (UV)-induced apoptosis through the Fas/caspase-8-dependent pathway in melanoma cells. It physically interacts with subunits of E3 ligase Skp1-Cullin-F-boxprotein complex (SCF complex) and is degraded by the SCF (F-box protein S-phase kinase-associated protein 2, Skp2)-mediated ubiquitin-proteasome system. It also acts as a suppression factor during tumorigenesis and progression of hepatocellular carcinoma (HCC). ING3 contains an N-terminal ING domain and a C-terminal plant homeodomain (PHD) finger. Pssm-ID: 277060 [Multi-domain] Cd Length: 45 Bit Score: 46.68 E-value: 8.28e-07
|
|||||||||
SPOC_FPA-like | cd21546 | SPOC (Spen paralog and ortholog C-terminal) domain found in Arabidopsis thaliana flowering ... |
1056-1187 | 5.40e-06 | |||||
SPOC (Spen paralog and ortholog C-terminal) domain found in Arabidopsis thaliana flowering time control protein FPA and similar proteins; FPA plays a role in the regulation of flowering time in the autonomous flowering pathway by decreasing FLOWERING LOCUS C mRNA levels. It is required for RNA-mediated chromatin silencing of a range of loci in the genome. FPA cotranscriptionally recognizes aberrant RNA and marks it for silencing. It controls alternative cleavage and polyadenylation on pre-mRNAs and antisense RNAs. FPA functions redundantly with FCA to prevent the expression of distally polyadenylated antisense RNAs at the FLC locus. FPA belongs to the Spen (split end) protein family, whose members contain three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC domain. This model corresponds to the SPOC domain that is involved in developmental signaling and has also been proposed to be a phosphorylation binding module. Pssm-ID: 439209 Cd Length: 125 Bit Score: 46.90 E-value: 5.40e-06
|
|||||||||
PHD3_Lid2p_like | cd15520 | PHD finger 3 found in Schizosaccharomyces pombe Lid2 complex component Lid2p and similar ... |
271-319 | 7.05e-06 | |||||
PHD finger 3 found in Schizosaccharomyces pombe Lid2 complex component Lid2p and similar proteins; Lid2p is a trimethyl H3K4 (H3K4me3) demethylase responsible for H3K4 hypomethylation in heterochromatin. It interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, and mediates H3K9 methylation and small RNA production. It also acts cooperatively with the histone modification enzymes Set1 and Lsd1, and plays an essential role in cross-talk between H3K4 and H3K9 methylation in euchromatin. Lid2p contains a JmjC domain, three PHD fingers and a JmjN domain. The family corresponds to the third PHD finger. Pssm-ID: 276995 Cd Length: 47 Bit Score: 44.13 E-value: 7.05e-06
|
|||||||||
PHD_Bye1p_SIZ1_like | cd15570 | PHD domain found in Saccharomyces cerevisiae bypass of ESS1 protein 1 (Bye1p), the E3 Sumo ... |
271-319 | 1.22e-05 | |||||
PHD domain found in Saccharomyces cerevisiae bypass of ESS1 protein 1 (Bye1p), the E3 Sumo Ligase SIZ1, and similar proteins; Yeast Bye1p is a nuclear transcription factor with a domain resembling the central domain in the transcription elongation factor TFIIS and plays an inhibitory role during transcription elongation. It functions as a multicopy suppressor of Ess1, a peptidyl-prolyl cis-trans isomerase involved in proline isomerization of the C-terminal domain (CTD) of RNA polymerase II (Pol II). Bye1p contains an N-terminal plant homeodomain (PHD) finger, a central Pol II-binding TFIIS-like domain (TLD) domain, and a C-terminal Spen paralogue and orthologue C-terminal (SPOC) domain. The PHD domain binds to a histone H3 tail peptide containing trimethylated lysine 4 (H3K4me3). The TLD domain is responsible for the association with chromatin. Plant SIZ1 protein is a SUMO (small ubiquitin-related modifier) E3 ligase that facilitates conjugation of SUMO to substrate target proteins (sumoylation) and belongs to the protein inhibitor of activated STAT (PIAS) protein family. It negatively regulates abscisic acid (ABA) signaling, which is dependent on the bZIP transcripton factor ABI5. It also modulates plant growth and plays a role in drought stress response likely through the regulation of gene expression. SIZ1 functions as a floral repressor that not only represses the salicylic acid (SA)-dependent pathway, but also promotes FLOWERING LOCUS C (FLC) expression by repressing FLOWERING LOCUS D (FLD) activity through sumoylation. SIZ1 contains a PHD finger, which specifically binds methylated histone H3 at lysine 4 and arginine 2. Pssm-ID: 277045 Cd Length: 50 Bit Score: 43.60 E-value: 1.22e-05
|
|||||||||
PHD_PHF20 | cd15634 | PHD finger found in PHD finger protein 20 (PHF20); PHF20, also termed Glioma-expressed antigen ... |
271-319 | 1.26e-05 | |||||
PHD finger found in PHD finger protein 20 (PHF20); PHF20, also termed Glioma-expressed antigen 2, or hepatocellular carcinoma-associated antigen 58, or novel zinc finger protein, or transcription factor TZP (referring to Tudor and zinc finger domain containing protein), is a regulator of NF-kappaB activation by disrupting recruitment of PP2A to p65. It also functions as a transcription factor that binds Akt and plays a role in Akt cell survival/growth signaling. Moreover, it transcriptionally regulates p53. The phosphorylation of PHF20 on Ser291 mediated by protein kinase B (PKB) is essential in tumorigenesis via the regulation of p53 mediated signaling. PHF20 contains an N-terminal malignant brain tumor (MBT) domain, two Tudor domains, a plant homeodomain (PHD) finger and the putative DNA-binding domains, AT hook and Cys2His2-type zinc finger. Pssm-ID: 277104 Cd Length: 44 Bit Score: 43.40 E-value: 1.26e-05
|
|||||||||
PHD1_KMT2A_like | cd15506 | PHD finger 1 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B); This ... |
282-319 | 3.72e-05 | |||||
PHD finger 1 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B); This family includes histone-lysine N-methyltransferase trithorax (Trx) like proteins, KMT2A (MLL1) and KMT2B (MLL2), which comprise the mammalian Trx branch of the COMPASS family, and are both essential for mammalian embryonic development. KMT2A regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex. KMT2B is a second human homolog of Drosophila trithorax, located on chromosome 19 and functions as the catalytic subunit in the MLL2 complex. It plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Both KMT2A and KMT2B contain a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the first PHD finger. Pssm-ID: 276981 Cd Length: 47 Bit Score: 41.96 E-value: 3.72e-05
|
|||||||||
PHD2_KDM5A_like | cd15516 | PHD finger 2 found in Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D, and similar ... |
270-319 | 4.49e-05 | |||||
PHD finger 2 found in Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D, and similar proteins; The JARID subfamily within the JmjC proteins includes Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and a Drosophila homolog protein, little imaginal discs (Lid). KDM5A was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK, and BMAL1. KDM5B has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. Both KDM5A and KDM5B function as trimethylated histone H3 lysine 4 (H3K4me3) demethylases. KDM5C is a H3K4 trimethyl-histone demethylase that catalyzes demethylation of H3K4me3 and H3K4me2 to H3K4me1. It plays a role in neuronal survival and dendrite development. KDM5C defects are associated with X-linked mental retardation (XLMR). KDM5D is a male-specific antigen that shows a demethylase activity specific for di- and tri-methylated histone H3K4 (H3K4me3 and H3K4me2), and has a male-specific function as a histone H3K4 demethylase by recruiting a meiosis-regulatory protein, MSH5, to condensed DNA. KDM5D directly interacts with a polycomb-like protein Ring6a/MBLR, and plays a role in regulation of transcriptional initiation through H3K4 demethylation. The family also includes Drosophila melanogaster protein little imaginal discs (Lid) that functions as a JmjC-dependent trimethyl histone H3K4 (H3K4me3) demethylase, which is required for dMyc-induced cell growth. It positively regulates Hox gene expression in S2 cells. Members in this family contain the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as two or three plant homeodomain (PHD) fingers. This model corresponds to the second PHD finger. Pssm-ID: 276991 Cd Length: 53 Bit Score: 42.30 E-value: 4.49e-05
|
|||||||||
PHD_PHF20_like | cd15549 | PHD finger found in PHD finger protein 20 (PHF20) and PHD finger protein 20-like protein 1 ... |
271-319 | 4.94e-05 | |||||
PHD finger found in PHD finger protein 20 (PHF20) and PHD finger protein 20-like protein 1 (P20L1); PHF20, also termed Glioma-expressed antigen 2, or hepatocellular carcinoma-associated antigen 58, or novel zinc finger protein, or transcription factor TZP (referring to Tudor and zinc finger domain containing protein), is a regulator of NF-kappaB activation by disrupting recruitment of PP2A to p65. It also functions as a transcription factor that binds Akt and plays a role in Akt cell survival/growth signaling. Moreover, it transcriptionally regulates p53. The phosphorylation of PHF20 on Ser291 mediated by protein kinase B (PKB) is essential in tumorigenesis via the regulation of p53 mediated signaling. P20L1 is an active malignant brain tumor (MBT) domain-containing protein that binds to monomethylated lysine 142 on DNA (Cytosine-5) Methyltransferase 1 (DNMT1) (DNMT1K142me1) and colocalizes at the perinucleolar space in a SET7-dependent manner. Its MBT domain reads and controls enzyme levels of methylated DNMT1 in cells, thus representing a novel antagonist of DNMT1 proteasomal degradation. Both PHF20 and PHF20L1 contain an N-terminal MBT domain, two Tudor domains, a plant homeodomain (PHD) finger and the putative DNA-binding domains, AT hook and Cys2His2-type zinc finger. Pssm-ID: 277024 Cd Length: 45 Bit Score: 41.69 E-value: 4.94e-05
|
|||||||||
PHA03247 | PHA03247 | large tegument protein UL36; Provisional |
773-1044 | 1.01e-04 | |||||
large tegument protein UL36; Provisional Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 46.86 E-value: 1.01e-04
|
|||||||||
PHD2_PHF10 | cd15529 | PHD finger 2 found in PHD finger protein 10 (PHF10) and similar proteins; PHF10, also termed ... |
271-319 | 1.03e-04 | |||||
PHD finger 2 found in PHD finger protein 10 (PHF10) and similar proteins; PHF10, also termed BRG1-associated factor 45a (BAF45a), or XAP135, is a ubiquitously expressed transcriptional regulator that is required for maintaining the undifferentiated status of neuroblasts. It contains a SAY (supporter of activation of yellow) domain and two adjacent plant homeodomain (PHD) fingers. This model corresponds to the second PHD finger. Pssm-ID: 277004 Cd Length: 44 Bit Score: 40.75 E-value: 1.03e-04
|
|||||||||
PHD_ING1_2 | cd15584 | PHD finger found in inhibitor of growth protein 1 (ING1) and 2 (ING2); ING1 is an epigenetic ... |
270-319 | 1.04e-04 | |||||
PHD finger found in inhibitor of growth protein 1 (ING1) and 2 (ING2); ING1 is an epigenetic regulator and a type II tumor suppressor that impacts cell growth, aging, apoptosis, and DNA repair, by affecting chromatin conformation and gene expression. It acts as a reader of the active chromatin mark, the trimethylation of histone H3 lysine 4 (H3K4me3). It binds and directs Growth arrest and DNA damage inducible protein 45 a (Gadd45a) to target sites, thus linking the histone code with DNA demethylation. It interacts with the proliferating cell nuclear antigen (PCNA) via the PCNA-interacting protein (PIP) domain in a UV-inducible manner. It also interacts with a PCNA-interacting protein, p15 (PAF). Moreover, ING1 associates with members of the 14-3-3 family, which is necessary for cytoplasmic relocalization. Endogenous ING1 protein specifically interacts with the pro-apoptotic BCL2 family member BAX and colocalizes with BAX in a UV-inducible manner. It stabilizes the p53 tumor suppressor by inhibiting polyubiquitination of multi-monoubiquitinated forms via interaction with and colocalization of the herpesvirus-associated ubiquitin-specific protease (HAUSP)-deubiquitinase with p53. It is also involved in trichostatin A-induced apoptosis and caspase 3 signaling in p53-deficient glioblastoma cells. In addition, tyrosine kinase Src can bind and phosphorylate ING1 and further regulates its activity. ING2, also termed inhibitor of growth 1-like protein (ING1Lp), or p32, or p33ING2, belongs to the inhibitor of growth (ING) family of type II tumor suppressors. It is a core component of a multi-factor chromatin-modifying complex containing the transcriptional co-repressor SIN3A and histone deacetylase 1 (HDAC1). It has been implicated in the control of cell cycle, in genome stability, and in muscle differentiation. ING2 independently interacts with H3K4me3 (Histone H3 trimethylated on lysine 4) and PtdIns(5)P, and modulates crosstalk between lysine methylation and lysine acetylation on histone proteins through association with chromatin in the presence of DNA damage. It collaborates with SnoN to mediate transforming growth factor (TGF)-beta-induced Smad-dependent transcription and cellular responses. It is upregulated in colon cancer and increases invasion by enhanced MMP13 expression. It also acts as a cofactor of p300 for p53 acetylation and plays a positive regulatory role during p53-mediated replicative senescence. Both ING1 and ING2 contain an N-terminal ING domain and a C-terminal plant homeodomain (PHD) finger. Pssm-ID: 277059 [Multi-domain] Cd Length: 45 Bit Score: 40.89 E-value: 1.04e-04
|
|||||||||
PHD_PHF20L1 | cd15633 | PHD finger found in PHD finger protein 20-like protein 1 (P20L1); P20L1 is an active malignant ... |
271-320 | 1.41e-04 | |||||
PHD finger found in PHD finger protein 20-like protein 1 (P20L1); P20L1 is an active malignant brain tumor (MBT) domain-containing protein that binds to monomethylated lysine 142 on DNA (Cytosine-5) Methyltransferase 1 (DNMT1) (DNMT1K142me1) and colocalizes at the perinucleolar space in a SET7-dependent manner. Its MBT domain reads and controls enzyme levels of methylated DNMT1 in cells, thus representing a novel antagonist of DNMT1 proteasomal degradation. In addition to the MBT domain, PHF20L1 also contains two Tudor domains, a plant homeodomain (PHD) finger and the putative DNA-binding domains, AT hook and Cys2His2-type zinc finger. Pssm-ID: 277103 Cd Length: 46 Bit Score: 40.39 E-value: 1.41e-04
|
|||||||||
PHD_ASH1L | cd15548 | PHD finger found in histone-lysine N-methyltransferase ASH1L; ASH1L, also termed ASH1-like ... |
271-319 | 1.79e-04 | |||||
PHD finger found in histone-lysine N-methyltransferase ASH1L; ASH1L, also termed ASH1-like protein, or absent small and homeotic disks protein 1 homolog, or lysine N-methyltransferase 2H, is a protein belonging to the Trithorax family. It methylates Lys36 of histone H3 independently of transcriptional elongation to promote the establishment of Hox gene expression by counteracting Polycomb silencing. It can suppress interleukin-6 (IL-6), and tumor necrosis factor (TNF) production in Toll-like receptor (TLR)-triggered macrophages, and inflammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20. ASH1L contains an associated with SET domain (AWS), a SET domain, a post-SET domain, a bromodomain, a bromo-adjacent homology domain (BAH), and a plant homeodomain (PHD) finger. Pssm-ID: 277023 Cd Length: 43 Bit Score: 40.14 E-value: 1.79e-04
|
|||||||||
PHD_ARID4_like | cd15615 | PHD finger found in Arabidopsis thaliana AT-rich interactive domain-containing protein 4 ... |
283-319 | 2.08e-04 | |||||
PHD finger found in Arabidopsis thaliana AT-rich interactive domain-containing protein 4 (ARID4) and similar proteins; This family includes A. thaliana ARID4 (ARID domain-containing protein 4) and similar proteins. Their biological roles remain unclear, but they all contain an AT-rich interactive domain (ARID) and a plant homeodomain (PHD) finger at the C-terminus. ARID is a helix-turn-helix motif-based DNA-binding domain conserved in all eukaryotes. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. Pssm-ID: 277087 Cd Length: 57 Bit Score: 40.16 E-value: 2.08e-04
|
|||||||||
PHD_Yng1p_like | cd15587 | PHD finger found in yeast orthologs of ING tumor suppressor family; The yeast orthologs of the ... |
270-320 | 4.57e-04 | |||||
PHD finger found in yeast orthologs of ING tumor suppressor family; The yeast orthologs of the plant homeodomain (PHD) finger-containing ING tumor suppressor family consists of chromatin modification-related protein YNG1 (Yng1p), YNG2 (Yng2p), and transcriptional regulatory protein PHO23 (Pho23p). Yng1p, also termed ING1 homolog 1, is one of the components of the NuA3 histone acetyltransferase (HAT) complex. Its PHD finger binding to H3 Trimethylated at K4 (H3K4me3) promotes NuA3 H3 HAT activity at K14 of H3 on chromatin. Yng2p, also termed ESA1-associated factor 4, or ING1 homolog 2, is a subunit of the NuA4 HAT complex. It plays a critical role in intra-S-phase DNA damage response. Pho23p is part of the Rpd3/Sin3 histone deacetylase (HDAC) complex. It is required for the normal function of Rpd3 in the silencing of rDNA, telomeric, and mating-type loci. Yng1p and Pho23p inhibit p53-dependent transcription. In contrast, Yng2p has the opposite effect. All family members contain an N-terminal ING histone-binding domain and a C-terminal PHD finger. Pssm-ID: 277062 [Multi-domain] Cd Length: 47 Bit Score: 38.94 E-value: 4.57e-04
|
|||||||||
PHD_SHPRH | cd15547 | PHD finger found in E3 ubiquitin-protein ligase SHPRH; SHPRH, also termed SNF2, histone-linker, ... |
271-319 | 4.96e-04 | |||||
PHD finger found in E3 ubiquitin-protein ligase SHPRH; SHPRH, also termed SNF2, histone-linker, PHD and RING finger domain-containing helicase, belongs to the SWI2/SNF2 family of ATP-dependent chromatin remodeling enzymes, containing the Cys3HisCys4 RING-finger characteristic of E3 ubiquitin ligases. It plays a key role in the error-free branch of DNA damage tolerance. As functional homologs of Saccharomyces cerevisiae Rad5, SHPRH and its closely-related protein, helicase like transcription factor (HLTF), act as ubiquitin ligases that cooperatively mediate Ubc13-Mms2-dependent polyubiquitination of proliferating cell nuclear antigen (PCNA) and maintain genomic stability. SHPRH contains a SNF2 domain, a H1.5 (linker histone H1 and H5) domain, a plant homeodomain (PHD) finger, a Cys3HisCys4 RING-finger, and a C-terminal helicase domain. Pssm-ID: 277022 [Multi-domain] Cd Length: 47 Bit Score: 38.93 E-value: 4.96e-04
|
|||||||||
PHD3_KDM5A | cd15686 | PHD finger 3 found in Lysine-specific demethylase 5A (KDM5A); KDM5A, also termed Histone ... |
273-320 | 5.04e-04 | |||||
PHD finger 3 found in Lysine-specific demethylase 5A (KDM5A); KDM5A, also termed Histone demethylase JARID1A, or Jumonji/ARID domain-containing protein 1A, or Retinoblastoma-binding protein 2 (RBBP-2 or RBP2), was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5A functions as a trimethylated histone H3 lysine 4 (H3K4me3) demethylase that belongs to the JARID subfamily within the JmjC proteins. It also displays DNA-binding activities that can recognize the specific DNA sequence CCGCCC. KDM5A contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the third PHD finger. Pssm-ID: 277156 Cd Length: 52 Bit Score: 39.28 E-value: 5.04e-04
|
|||||||||
PHD3_KDM5B | cd15687 | PHD finger 3 found in lysine-specific demethylase 5B (KDM5B); KDM5B, also termed Cancer/testis ... |
273-319 | 1.31e-03 | |||||
PHD finger 3 found in lysine-specific demethylase 5B (KDM5B); KDM5B, also termed Cancer/testis antigen 31 (CT31), or Histone demethylase JARID1B, or Jumonji/ARID domain-containing protein 1B (JARID1B), or PLU-1, or retinoblastoma-binding protein 2 homolog 1 (RBP2-H1 or RBBP2H1A), is a member of the JARID subfamily within the JmjC proteins. It has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. KDM5B acts as a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by polychlorinated biphenyls (PCBs). It also mediates demethylation of H3K4me2 and H3K4me1. Moreover, KDM5B functions as a negative regulator of hematopoietic stem cell (HSC) self-renewal and progenitor cell activity. KDM5B has also been shown to interact with the DNA binding transcription factors BF-1 and PAX9, as well as TIEG1/KLF10 (transforming growth factor-beta inducible early gene-1/Kruppel-like transcription factor 10), and possibly function as a transcriptional corepressor. KDM5B contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the third PHD finger. Pssm-ID: 277157 Cd Length: 50 Bit Score: 38.00 E-value: 1.31e-03
|
|||||||||
PHD3_KMT2C | cd15511 | PHD finger 3 found in Histone-lysine N-methyltransferase 2C (KMT2C); KMT2C, also termed ... |
273-319 | 1.32e-03 | |||||
PHD finger 3 found in Histone-lysine N-methyltransferase 2C (KMT2C); KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2C contains several plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, an ATPase alpha beta signature, a high mobility group (HMG)-1 box, a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain and two FY (phenylalanine tyrosine)-rich domains. This model corresponds to the third PHD finger. Pssm-ID: 276986 Cd Length: 52 Bit Score: 37.85 E-value: 1.32e-03
|
|||||||||
PHD_PHF13 | cd15632 | PHD finger found in PHD finger protein 13 (PHF13); PHF13, also termed survival time-associated ... |
271-319 | 1.75e-03 | |||||
PHD finger found in PHD finger protein 13 (PHF13); PHF13, also termed survival time-associated PHD finger protein in ovarian cancer 1 (SPOC1), is a novel plant homeodomain (PHD) finger-containing protein that shows strong expression in spermatogonia and ovarian cancer cells, modulates chromatin structure and mitotic chromosome condensation, and is important for proper cell division. It is also required for spermatogonial stem cell differentiation and sustained spermatogenesis. The overexpression of PHF13 associates with unresectable carcinomas and shorter survival in ovarian cancer. Pssm-ID: 277102 Cd Length: 47 Bit Score: 37.33 E-value: 1.75e-03
|
|||||||||
PHD_PHF13_like | cd15546 | PHD finger found in PHD finger proteins PHF13 and PHF23; PHF13, also termed survival ... |
271-319 | 2.07e-03 | |||||
PHD finger found in PHD finger proteins PHF13 and PHF23; PHF13, also termed survival time-associated PHD finger protein in ovarian cancer 1 (SPOC1), is a novel plant homeodomain (PHD) finger-containing protein that shows strong expression in spermatogonia and ovarian cancer cells, modulates chromatin structure and mitotic chromosome condensation, and is important for proper cell division. It is also required for spermatogonial stem cell differentiation and sustained spermatogenesis. The overexpression of PHF13 associates with unresectable carcinomas and shorter survival in ovarian cancer. PHF23, also termed PHD-containing protein JUNE-1, is a hypothetical protein with a PHD finger. It is encoded by gene PHF23 that acts as a candidate fusion partner for the nucleoporin gene NUP98. The NUP98-PHF23 fusion results from a cryptic translocation t(11;17)(p15;p13) in acute myeloid leukemia (AML). Pssm-ID: 277021 Cd Length: 44 Bit Score: 37.04 E-value: 2.07e-03
|
|||||||||
PHD2_MTF2_PHF19_like | cd15503 | PHD finger 2 found in polycomb repressive complex 2 (PRC2)-associated polycomb-like (PCL) ... |
270-297 | 2.26e-03 | |||||
PHD finger 2 found in polycomb repressive complex 2 (PRC2)-associated polycomb-like (PCL) family proteins MTF2, PHF19, and similar proteins; The PCL family includes PHD finger protein1 (PHF1) and its homologs metal-response element-binding transcription factor 2 (MTF2/PCL2) and PHF19/PCL3, which are accessory components of the Polycomb repressive complex 2 (PRC2) core complex and all contain an N-terminal Tudor domain followed by two plant homeodomain (PHD) fingers, and a C-terminal MTF2 domain. PCL proteins specifically recognize tri-methylated H3K36 (H3K36me3) through their N-terminal Tudor domains. The interaction between their Tudor domains and H3K36me3 is critical for both the targeting and spreading of PRC2 into active chromatin regions and for the maintenance of optimal repression of poised developmental genes where PCL proteins, H3K36me3, and H3K27me3 coexist. Moreover, unlike other PHD finger-containing proteins, the first PHD finger of PCL proteins do not display histone H3K4 binding affinity and they do not affect the Tudor domain binding to histones. This model corresponds to the second PHD finger. Pssm-ID: 276978 Cd Length: 52 Bit Score: 37.38 E-value: 2.26e-03
|
|||||||||
PHD_RSF1 | cd15543 | PHD finger found in Remodeling and spacing factor 1 (Rsf-1); Rsf-1, also termed HBV ... |
271-319 | 2.93e-03 | |||||
PHD finger found in Remodeling and spacing factor 1 (Rsf-1); Rsf-1, also termed HBV pX-associated protein 8, or Hepatitis B virus X-associated protein alpha (HBxAPalpha), or p325 subunit of RSF chromatin-remodeling complex, is a novel nuclear protein with histone chaperon function. It is a subunit of an ISWI chromatin remodeling complex, remodeling and spacing factor (RSF), and plays a role in mediating ATPase-dependent chromatin remodeling and conferring tumor aggressiveness in common carcinomas. As an ataxia-telangiectasia mutated (ATM)-dependent chromatin remodeler, Rsf-1 facilitates DNA damage checkpoints and homologous recombination repair. It regulates the mitotic spindle checkpoint and chromosome instability through the association with serine/threonine kinase BubR1 (BubR1) and Hepatitis B virus (HBV) X protein (HBx) in the chromatin fraction during mitosis. It also interacts with cyclin E1 and promotes tumor development. Rsf-1 contains a plant homeodomain (PHD) finger. Pssm-ID: 277018 [Multi-domain] Cd Length: 46 Bit Score: 36.86 E-value: 2.93e-03
|
|||||||||
PHA03247 | PHA03247 | large tegument protein UL36; Provisional |
486-663 | 4.41e-03 | |||||
large tegument protein UL36; Provisional Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 41.46 E-value: 4.41e-03
|
|||||||||
PLN03209 | PLN03209 | translocon at the inner envelope of chloroplast subunit 62; Provisional |
860-1022 | 5.07e-03 | |||||
translocon at the inner envelope of chloroplast subunit 62; Provisional Pssm-ID: 178748 [Multi-domain] Cd Length: 576 Bit Score: 41.07 E-value: 5.07e-03
|
|||||||||
PLN03209 | PLN03209 | translocon at the inner envelope of chloroplast subunit 62; Provisional |
860-1041 | 5.76e-03 | |||||
translocon at the inner envelope of chloroplast subunit 62; Provisional Pssm-ID: 178748 [Multi-domain] Cd Length: 576 Bit Score: 40.68 E-value: 5.76e-03
|
|||||||||
PHD_Hop1p_like | cd15558 | PHD finger found in Schizosaccharomyces pombe meiosis-specific protein hop1 (Hop1p) and ... |
271-319 | 5.80e-03 | |||||
PHD finger found in Schizosaccharomyces pombe meiosis-specific protein hop1 (Hop1p) and similar proteins; Fission yeast Hop1p, also termed linear element-associated protein hop1, is an S. pombe homolog of the synaptonemal complex (SC)-associated protein Hop1 in Saccharomyces cerevisiae. In contrast to S. cerevisiae, S. pombe forms thin threads, known as linear elements (LinEs), in meiotic nuclei, instead of a canonical synaptonemal complex. LinEs contain Rec10 protein and are evolutionary relics of SC axial elements. Fission yeast Hop1p is a linear element (LinE)-associated protein. It also associates with Rec10, which plays a role in recruiting the recombination machinery to chromatin. Hop1p contains an N-terminal HORMA (for Hop1p, Rev7p, and MAD2) domain and a C-terminal plant homeodomain (PHD) finger. Pssm-ID: 277033 Cd Length: 47 Bit Score: 35.88 E-value: 5.80e-03
|
|||||||||
PHD_BAZ2A | cd15629 | PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A); BAZ2A, also ... |
272-319 | 6.99e-03 | |||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A); BAZ2A, also termed transcription termination factor I-interacting protein 5 (TTF-I-interacting protein 5, or Tip5), or WALp3, is an epigenetic regulator. It has been implicated in epigenetic rRNA gene silencing, as the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. BAZ2A has also been shown to be broadly overexpressed in prostate cancer, to regulate numerous protein-coding genes and to cooperate with EZH2 (enhancer of zeste homolog 2) to maintain epigenetic silencing at genes repressed in prostate cancer metastasis. Its overexpression is tightly associated with a prostate cancer subtype displaying CpG island methylator phenotype (CIMP) in tumors and with prostate cancer recurrence in patients. It contains a TAM (TIP5/ARBP/MBD) domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277099 Cd Length: 47 Bit Score: 35.60 E-value: 6.99e-03
|
|||||||||
PHD_ING4_5 | cd15586 | PHD finger found in inhibitor of growth protein 4 (ING4) and 5 (ING5); ING4, also termed ... |
270-319 | 7.41e-03 | |||||
PHD finger found in inhibitor of growth protein 4 (ING4) and 5 (ING5); ING4, also termed p29ING4, and ING5, also termed p28ING5, belong to the inhibitor of growth (ING) family of type II tumor suppressors. ING4 acts as an E3 ubiquitin ligase to induce ubiquitination of the p65 subunit of NF-kappaB and inhibit the transactivation of NF-kappaB target genes. It also induces apoptosis through a p53 dependent pathway, including increasing p53 acetylation, inhibiting Mdm2-mediated degradation of p53 and enhancing the expression of p53 responsive genes both at the transcriptional and post-translational levels. Moreover, ING4 can inhibit the translation of proto-oncogene MYC by interacting with AUF1. It also regulates other transcription factors, such as hypoxia-inducible factor (HIF). ING5 is a Tip60 cofactor that acetylates p53 at K120 and subsequently activates the expression of p53-dependent apoptotic genes in response to DNA damage. Aberrant ING5 expression may contribute to pathogenesis, growth, and invasion of gastric carcinomas and colorectal cancer. ING5 can physically interact with p300 and p53 in vivo, and its overexpression induces apoptosis in colorectal cancer cells. It also associates with cyclin A1 (INCA1) and functions as a growth suppressor with suppressed expression in Acute Myeloid Leukemia (AML). Moreover, ING5 translocation from the nucleus to the cytoplasm might be a critical event for carcinogenesis and tumor progression in human head and neck squamous cell carcinoma. Both ING4 and ING5 contain an N-terminal ING histone-binding domain and a C-terminal plant homeodomain (PHD) finger. They associate with histone acetyltransferase (HAT) complexes containing MOZ (monocytic leukemia zinc finger protein)/MORF (MOZ-related factor) and HBO1, and further direct the MOZ/MORF and HBO1 complexes to chromatin. Pssm-ID: 277061 [Multi-domain] Cd Length: 45 Bit Score: 35.63 E-value: 7.41e-03
|
|||||||||
PHD2_CHD_II | cd15532 | PHD finger 2 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD ... |
270-319 | 8.32e-03 | |||||
PHD finger 2 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD proteins includes chromodomain-helicase-DNA-binding protein CHD3, CHD4, and CHD5, which are nuclear and ubiquitously expressed chromatin remodelling ATPases generally associated with histone deacetylases (HDACs). They are involved in DNA Double Strand Break (DSB) signaling, DSB repair and/or p53-dependent pathways such as apoptosis and senescence, as well as in the maintenance of genomic stability, and/or cancer prevention. They function as subunits of the Nucleosome Remodelling and Deacetylase (NuRD) complex, which is generally associated with gene repression, heterochromatin formation, and overall chromatin compaction. In contrast to the class I CHD enzymes (CHD1 and CHD2), class II CHD proteins lack identifiable DNA-binding domains, but possess a C-terminal coiled-coil region. Moreover, in addition to the tandem chromodomains and a helicase domain, they all harbor tandem plant homeodomain (PHD) zinc fingers involved in the recognition of methylated histone tails. This model corresponds to the second PHD finger. Pssm-ID: 277007 [Multi-domain] Cd Length: 43 Bit Score: 35.33 E-value: 8.32e-03
|
|||||||||
PHD3_KMT2A_like | cd15508 | PHD finger 3 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B); This ... |
282-319 | 8.89e-03 | |||||
PHD finger 3 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B); This family includes histone-lysine N-methyltransferase trithorax (Trx) like proteins, KMT2A (MLL1) and KMT2B (MLL2), which comprise the mammalian Trx branch of the COMPASS family, and are both essential for mammalian embryonic development. KMT2A regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex. KMT2B is a second human homolog of Drosophila trithorax, located on chromosome 19 and functions as the catalytic subunit in the MLL2 complex. It plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Both KMT2A and KMT2B contain a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the third PHD finger. Pssm-ID: 276983 Cd Length: 57 Bit Score: 35.88 E-value: 8.89e-03
|
|||||||||
PHD_PYGO | cd15551 | PHD finger found in PYGO proteins; The family includes Drosophila melanogaster protein pygopus ... |
271-319 | 9.16e-03 | |||||
PHD finger found in PYGO proteins; The family includes Drosophila melanogaster protein pygopus (dPYGO) and its two homologs, PYGO1 and PYGO2. dPYGO is a fundamental Wnt signaling transcriptional component in Drosophila. PYGO1 is essential for the association with Legless (Lgs)/Bcl9 that acts an adaptor between Pygopus (Pygo) and Arm/beta-catenin. dPYGO and PYGO2 function as context-dependent beta-catenin coactivators, and they bind di- and trimethylated lysine 4 of histone H3 (H3K4me2/3). Moreover, PYGO2 acts as a histone methylation reader, and a chromatin remodeler in a testis-specific and Wnt-unrelated manner. It also mediates chromatin regulation and links Wnt signaling and Notch signaling to suppress the luminal/alveolar differentiation competence of mammary stem and basal cells. PYGO2 also plays a new role in rRNA transcription during cancer cell growth. It regulates mammary tumor initiation and heterogeneity in MMTV-Wnt1 mice. All family members contain a plant homeodomain (PHD) finger. Pssm-ID: 277026 Cd Length: 54 Bit Score: 35.42 E-value: 9.16e-03
|
|||||||||
Blast search parameters | ||||
|