Envelope surface glycoprotein gp160, precursor [Human immunodeficiency virus 1]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||||
GP120 | pfam00516 | Envelope glycoprotein GP120; The entry of HIV requires interaction of viral GP120 with Swiss: ... |
34-511 | 0e+00 | ||||||||
Envelope glycoprotein GP120; The entry of HIV requires interaction of viral GP120 with Swiss:P01730 and a chemokine receptor on the cell surface. : Pssm-ID: 278917 Cd Length: 525 Bit Score: 887.20 E-value: 0e+00
|
||||||||||||
GP41 | pfam00517 | Retroviral envelope protein; This family includes envelope protein from a variety of ... |
530-726 | 4.76e-55 | ||||||||
Retroviral envelope protein; This family includes envelope protein from a variety of retroviruses. It includes the GP41 subunit of the envelope protein complex from human and simian immunodeficiency viruses (HIV and SIV) which mediate membrane fusion during viral entry. The family also includes bovine immunodeficiency virus, feline immunodeficiency virus and Equine infectious anaemia (EIAV). The family also includes the Gp36 protein from mouse mammary tumour virus (MMTV) and human endogenous retroviruses (HERVs). : Pssm-ID: 395415 Cd Length: 197 Bit Score: 188.65 E-value: 4.76e-55
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
GP120 | pfam00516 | Envelope glycoprotein GP120; The entry of HIV requires interaction of viral GP120 with Swiss: ... |
34-511 | 0e+00 | ||||||||
Envelope glycoprotein GP120; The entry of HIV requires interaction of viral GP120 with Swiss:P01730 and a chemokine receptor on the cell surface. Pssm-ID: 278917 Cd Length: 525 Bit Score: 887.20 E-value: 0e+00
|
||||||||||||
GP41 | pfam00517 | Retroviral envelope protein; This family includes envelope protein from a variety of ... |
530-726 | 4.76e-55 | ||||||||
Retroviral envelope protein; This family includes envelope protein from a variety of retroviruses. It includes the GP41 subunit of the envelope protein complex from human and simian immunodeficiency viruses (HIV and SIV) which mediate membrane fusion during viral entry. The family also includes bovine immunodeficiency virus, feline immunodeficiency virus and Equine infectious anaemia (EIAV). The family also includes the Gp36 protein from mouse mammary tumour virus (MMTV) and human endogenous retroviruses (HERVs). Pssm-ID: 395415 Cd Length: 197 Bit Score: 188.65 E-value: 4.76e-55
|
||||||||||||
HIV-1-like_HR1-HR2 | cd09909 | heptad repeat 1-heptad repeat 2 region (ectodomain) of the gp41 subunit of human ... |
539-665 | 3.48e-44 | ||||||||
heptad repeat 1-heptad repeat 2 region (ectodomain) of the gp41 subunit of human immunodeficiency virus (HIV-1), and related domains; This domain family spans both heptad repeats of the glycoprotein (gp)/transmembrane subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including human, simian, and feline immunodeficiency viruses (HIV, SIV, and FIV), bovine immunodeficiency-like virus (BIV), equine infectious anaemia virus (EIAV), and Jaagsiekte sheep retrovirus (JSRV), mouse mammary tumour virus (MMTV) and various ERVs including sheep enJSRV-26, and human ERVs (HERVs): HERV-K_c1q23.3 and HERV-K_c12q14.1. This domain belongs to a larger superfamily containing the HR1-HR2 domain of ERVs and infectious retroviruses, including Ebola virus, and Rous sarcoma virus. Proteins in this family lack the canonical CSK17-like immunosuppressive sequence, and the intrasubunit disulfide bond-forming CX6C motif found in linker region between HR1 and HR2 in the Ebola_RSV-like_HR1-HR2 family. N-terminal to the HR1-HR2 region is a fusion peptide (FP), and C-terminal is a membrane-spanning region (MSR). Viral infection involves the formation of a trimer-of-hairpins structure (three HR1 helices, buttressed by three HR2 helices lying in antiparallel orientation). In this structure, the FP (inserted in the host cell membrane) and MSR (inserted in the viral membrane) are in close proximity. ERVs are likely to originate from ancient germ-line infections by active retroviruses. Some modern ERVs, those that integrated into the host genome post-speciation, have a currently active exogenous counterpart, such as JSRV. Some ERVs play specific roles in the host, including placental development, protection of the host from infection by related pathogenic and exogenous retroviruses, and genome plasticity. Included in this subgroup are ERVs from domestic sheep that are related to JSRV, the agent of transmissible lung cancer in sheep, for example enJSRV-26 that retains an intact genome. These endogenous JSRVs protect the sheep against JSRV infection and are required for sheep placental development. HERV-K_c12q14.1 is potentially a complete envelope protein; however, it does not appear to be fusogenic. Pssm-ID: 197369 Cd Length: 128 Bit Score: 155.63 E-value: 3.48e-44
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
GP120 | pfam00516 | Envelope glycoprotein GP120; The entry of HIV requires interaction of viral GP120 with Swiss: ... |
34-511 | 0e+00 | ||||||||
Envelope glycoprotein GP120; The entry of HIV requires interaction of viral GP120 with Swiss:P01730 and a chemokine receptor on the cell surface. Pssm-ID: 278917 Cd Length: 525 Bit Score: 887.20 E-value: 0e+00
|
||||||||||||
GP41 | pfam00517 | Retroviral envelope protein; This family includes envelope protein from a variety of ... |
530-726 | 4.76e-55 | ||||||||
Retroviral envelope protein; This family includes envelope protein from a variety of retroviruses. It includes the GP41 subunit of the envelope protein complex from human and simian immunodeficiency viruses (HIV and SIV) which mediate membrane fusion during viral entry. The family also includes bovine immunodeficiency virus, feline immunodeficiency virus and Equine infectious anaemia (EIAV). The family also includes the Gp36 protein from mouse mammary tumour virus (MMTV) and human endogenous retroviruses (HERVs). Pssm-ID: 395415 Cd Length: 197 Bit Score: 188.65 E-value: 4.76e-55
|
||||||||||||
HIV-1-like_HR1-HR2 | cd09909 | heptad repeat 1-heptad repeat 2 region (ectodomain) of the gp41 subunit of human ... |
539-665 | 3.48e-44 | ||||||||
heptad repeat 1-heptad repeat 2 region (ectodomain) of the gp41 subunit of human immunodeficiency virus (HIV-1), and related domains; This domain family spans both heptad repeats of the glycoprotein (gp)/transmembrane subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including human, simian, and feline immunodeficiency viruses (HIV, SIV, and FIV), bovine immunodeficiency-like virus (BIV), equine infectious anaemia virus (EIAV), and Jaagsiekte sheep retrovirus (JSRV), mouse mammary tumour virus (MMTV) and various ERVs including sheep enJSRV-26, and human ERVs (HERVs): HERV-K_c1q23.3 and HERV-K_c12q14.1. This domain belongs to a larger superfamily containing the HR1-HR2 domain of ERVs and infectious retroviruses, including Ebola virus, and Rous sarcoma virus. Proteins in this family lack the canonical CSK17-like immunosuppressive sequence, and the intrasubunit disulfide bond-forming CX6C motif found in linker region between HR1 and HR2 in the Ebola_RSV-like_HR1-HR2 family. N-terminal to the HR1-HR2 region is a fusion peptide (FP), and C-terminal is a membrane-spanning region (MSR). Viral infection involves the formation of a trimer-of-hairpins structure (three HR1 helices, buttressed by three HR2 helices lying in antiparallel orientation). In this structure, the FP (inserted in the host cell membrane) and MSR (inserted in the viral membrane) are in close proximity. ERVs are likely to originate from ancient germ-line infections by active retroviruses. Some modern ERVs, those that integrated into the host genome post-speciation, have a currently active exogenous counterpart, such as JSRV. Some ERVs play specific roles in the host, including placental development, protection of the host from infection by related pathogenic and exogenous retroviruses, and genome plasticity. Included in this subgroup are ERVs from domestic sheep that are related to JSRV, the agent of transmissible lung cancer in sheep, for example enJSRV-26 that retains an intact genome. These endogenous JSRVs protect the sheep against JSRV infection and are required for sheep placental development. HERV-K_c12q14.1 is potentially a complete envelope protein; however, it does not appear to be fusogenic. Pssm-ID: 197369 Cd Length: 128 Bit Score: 155.63 E-value: 3.48e-44
|
||||||||||||
Ebola_HIV-1-like_HR1-HR2 | cd09947 | heptad repeat 1-heptad repeat 2 region (ectodomain) of the transmembrane subunit of various ... |
562-597 | 4.82e-03 | ||||||||
heptad repeat 1-heptad repeat 2 region (ectodomain) of the transmembrane subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including Ebola virus and human immunodeficiency virus type 1 (HIV-1); This domain superfamily spans both heptad repeats of the glycoprotein (gp)/transmembrane subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including Ebola virus gp2, Rous sarcoma virus gp37, human immunodeficiency virus type 1 (HIV-1) gp41, and the envelope proteins of various ERVs. In the HR1-HR2 region of Ebola virus and RSV, the linker region between the two repeats includes a CKS17-like immunosuppressive region and a CX6C motif that forms an intra-subunit disulfide bond; MMTV, HIV-1, HERV-K endogenous retroviruses and related sequences lack a canonical CSK17-like sequence, and CX6C motif. N-terminal to the HR1-HR2 region is a fusion peptide (FP), and C-terminal, is a membrane-spanning region (MSR). Viral infection involves the formation of a trimer-of-hairpins structure (three HR1 helices, buttressed by three HR2 helices lying in antiparallel orientation). In this structure, the FP (inserted in the host cell membrane) and MSR (inserted in the viral membrane) are in close proximity. ERVs are likely to originate from ancient germ-line infections by active retroviruses. Some modern ERVs, those that integrated into the host genome post-speciation, have a currently active exogenous counterpart, such as Jaagsiekte sheep retrovirus (JSRV), feline leukemia virus (FeLV), and avian leukemia virus (ALV). Some ERVs play specific roles in the host, including placental development, protection of the host from infection by related pathogenic and exogenous retroviruses, and genome plasticity. Human ERVs (HERVs) belonging to this superfamily include Syncytin-1 (HERV-W_c7q21.2/ ERVWE1), and Syncytin-2 (HERV-FRD_6p24.1) which are expressed in the placenta, and are fusogenic, although they have a different cell specificity for fusion. Syncytin-2, but not Syncytin-1, is immunosuppressive; its immunosuppressive domain may protect the fetus from the mother's immune system. Syncytin-1 may participate in the formation of the placental trophoblast; it is also implicated in cell fusions between cancer and host cells and between cancer cell, and in human osteclast fusion. This superfamily also contains human HERV-R_c7q21.2 (ERV-3), which is also expressed in the placenta, but is not fusogenic, and has an immunosuppressive domain, but lacks a fusion peptide. It is unclear whether ERV-3 has a critical biological role. Included in this superfamily are ERVs from domestic sheep that are related to JSRV, the agent of transmissible lung cancer in sheep; for example, enJSRV-26 that retains an intact genome. These endogenous JSRVs protect the sheep against JSRV infection and are required for sheep placental development. Pssm-ID: 197370 Cd Length: 73 Bit Score: 36.44 E-value: 4.82e-03
|
||||||||||||
Blast search parameters | ||||
|