NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1371208112|gb|PSP43210|]
View 

signal peptidase I [Halobacteriales archaeon QH_2_66_30]

Protein Classification

S24/S26 family peptidase( domain architecture ID 586)

S24/S26 family peptidase similar to human signal peptidase complex catalytic subunit SEC11C, a component of the microsomal signal peptidase complex which removes signal peptides from nascent proteins as they are translocated into the lumen of the endoplasmic reticulum

EC:  3.4.21.-
Gene Ontology:  GO:0017171

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
Peptidase_S24_S26 super family cl10465
The S24, S26 LexA/signal peptidase superfamily contains LexA-related and type I signal ...
31-136 3.25e-09

The S24, S26 LexA/signal peptidase superfamily contains LexA-related and type I signal peptidase families. The S24 LexA protein domains include: the lambda repressor CI/C2 family and related bacterial prophage repressor proteins; LexA (EC 3.4.21.88), the repressor of genes in the cellular SOS response to DNA damage; MucA and the related UmuD proteins, which are lesion-bypass DNA polymerases, induced in response to mitogenic DNA damage; RulA, a component of the rulAB locus that confers resistance to UV, and RuvA, which is a component of the RuvABC resolvasome that catalyzes the resolution of Holliday junctions that arise during genetic recombination and DNA repair. The S26 type I signal peptidase (SPase) family also includes mitochondrial inner membrane protease (IMP)-like members. SPases are essential membrane-bound proteases which function to cleave away the amino-terminal signal peptide from the translocated pre-protein, thus playing a crucial role in the transport of proteins across membranes in all living organisms. All members in this superfamily are unique serine proteases that carry out catalysis using a serine/lysine dyad instead of the prototypical serine/histidine/aspartic acid triad found in most serine proteases.


The actual alignment was detected with superfamily member TIGR02228:

Pssm-ID: 447902  Cd Length: 158  Bit Score: 55.52  E-value: 3.25e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1371208112  31 PILLSYVTTDSMEPALSPGDgFVAVPSAIAGDVGPGDVVVYEAEqiEGGGLTTHRVVE----ETERGYVTRGDANPFTD- 105
Cdd:TIGR02228  30 PDPVVVVLSGSMEPTFNTGD-LILVTGADPNDIQVGDVITYKSP--GFNTPVTHRVIEinnsGGELGFITKGDNNPAPDg 106
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 1371208112 106 ------------QGSGEPPVQDATVVAVAWQPTGSLLAIPGLG 136
Cdd:TIGR02228 107 epvpsenvigkyLGFTIPFAGYVLVFAPQAIGAAALLIIPGIG 149
 
Name Accession Description Interval E-value
sigpep_I_arch TIGR02228
signal peptidase I, archaeal type; This model represents signal peptidase I from most archaea, ...
31-136 3.25e-09

signal peptidase I, archaeal type; This model represents signal peptidase I from most archaea, a subunit of the eukaryotic endoplasmic reticulum signal peptidase I complex, and an apparent signal peptidase I from a small number of bacteria. It is related to but does not overlap in hits with TIGR02227, the bacterial and mitochondrial signal peptidase I.


Pssm-ID: 131283  Cd Length: 158  Bit Score: 55.52  E-value: 3.25e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1371208112  31 PILLSYVTTDSMEPALSPGDgFVAVPSAIAGDVGPGDVVVYEAEqiEGGGLTTHRVVE----ETERGYVTRGDANPFTD- 105
Cdd:TIGR02228  30 PDPVVVVLSGSMEPTFNTGD-LILVTGADPNDIQVGDVITYKSP--GFNTPVTHRVIEinnsGGELGFITKGDNNPAPDg 106
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 1371208112 106 ------------QGSGEPPVQDATVVAVAWQPTGSLLAIPGLG 136
Cdd:TIGR02228 107 epvpsenvigkyLGFTIPFAGYVLVFAPQAIGAAALLIIPGIG 149
Peptidase_S24_S26 cd06462
The S24, S26 LexA/signal peptidase superfamily contains LexA-related and type I signal ...
36-105 6.92e-09

The S24, S26 LexA/signal peptidase superfamily contains LexA-related and type I signal peptidase families. The S24 LexA protein domains include: the lambda repressor CI/C2 family and related bacterial prophage repressor proteins; LexA (EC 3.4.21.88), the repressor of genes in the cellular SOS response to DNA damage; MucA and the related UmuD proteins, which are lesion-bypass DNA polymerases, induced in response to mitogenic DNA damage; RulA, a component of the rulAB locus that confers resistance to UV, and RuvA, which is a component of the RuvABC resolvasome that catalyzes the resolution of Holliday junctions that arise during genetic recombination and DNA repair. The S26 type I signal peptidase (SPase) family also includes mitochondrial inner membrane protease (IMP)-like members. SPases are essential membrane-bound proteases which function to cleave away the amino-terminal signal peptide from the translocated pre-protein, thus playing a crucial role in the transport of proteins across membranes in all living organisms. All members in this superfamily are unique serine proteases that carry out catalysis using a serine/lysine dyad instead of the prototypical serine/histidine/aspartic acid triad found in most serine proteases.


Pssm-ID: 119396 [Multi-domain]  Cd Length: 84  Bit Score: 52.27  E-value: 6.92e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1371208112  36 YVTTDSMEPALSPGDgFVAVpSAIAGDVGPGDVVVYeaeQIEGGGLTTHRVVEETERG-YVTRGDANPFTD 105
Cdd:cd06462     4 RVEGDSMEPTIPDGD-LVLV-DKSSYEPKRGDIVVF---RLPGGELTVKRVIGLPGEGhYFLLGDNPNSPD 69
 
Name Accession Description Interval E-value
sigpep_I_arch TIGR02228
signal peptidase I, archaeal type; This model represents signal peptidase I from most archaea, ...
31-136 3.25e-09

signal peptidase I, archaeal type; This model represents signal peptidase I from most archaea, a subunit of the eukaryotic endoplasmic reticulum signal peptidase I complex, and an apparent signal peptidase I from a small number of bacteria. It is related to but does not overlap in hits with TIGR02227, the bacterial and mitochondrial signal peptidase I.


Pssm-ID: 131283  Cd Length: 158  Bit Score: 55.52  E-value: 3.25e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1371208112  31 PILLSYVTTDSMEPALSPGDgFVAVPSAIAGDVGPGDVVVYEAEqiEGGGLTTHRVVE----ETERGYVTRGDANPFTD- 105
Cdd:TIGR02228  30 PDPVVVVLSGSMEPTFNTGD-LILVTGADPNDIQVGDVITYKSP--GFNTPVTHRVIEinnsGGELGFITKGDNNPAPDg 106
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 1371208112 106 ------------QGSGEPPVQDATVVAVAWQPTGSLLAIPGLG 136
Cdd:TIGR02228 107 epvpsenvigkyLGFTIPFAGYVLVFAPQAIGAAALLIIPGIG 149
Peptidase_S24_S26 cd06462
The S24, S26 LexA/signal peptidase superfamily contains LexA-related and type I signal ...
36-105 6.92e-09

The S24, S26 LexA/signal peptidase superfamily contains LexA-related and type I signal peptidase families. The S24 LexA protein domains include: the lambda repressor CI/C2 family and related bacterial prophage repressor proteins; LexA (EC 3.4.21.88), the repressor of genes in the cellular SOS response to DNA damage; MucA and the related UmuD proteins, which are lesion-bypass DNA polymerases, induced in response to mitogenic DNA damage; RulA, a component of the rulAB locus that confers resistance to UV, and RuvA, which is a component of the RuvABC resolvasome that catalyzes the resolution of Holliday junctions that arise during genetic recombination and DNA repair. The S26 type I signal peptidase (SPase) family also includes mitochondrial inner membrane protease (IMP)-like members. SPases are essential membrane-bound proteases which function to cleave away the amino-terminal signal peptide from the translocated pre-protein, thus playing a crucial role in the transport of proteins across membranes in all living organisms. All members in this superfamily are unique serine proteases that carry out catalysis using a serine/lysine dyad instead of the prototypical serine/histidine/aspartic acid triad found in most serine proteases.


Pssm-ID: 119396 [Multi-domain]  Cd Length: 84  Bit Score: 52.27  E-value: 6.92e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1371208112  36 YVTTDSMEPALSPGDgFVAVpSAIAGDVGPGDVVVYeaeQIEGGGLTTHRVVEETERG-YVTRGDANPFTD 105
Cdd:cd06462     4 RVEGDSMEPTIPDGD-LVLV-DKSSYEPKRGDIVVF---RLPGGELTVKRVIGLPGEGhYFLLGDNPNSPD 69
S26_SPase_I cd06530
The S26 Type I signal peptidase (SPase; LepB; leader peptidase B; leader peptidase I; EC 3.4. ...
34-122 1.31e-08

The S26 Type I signal peptidase (SPase; LepB; leader peptidase B; leader peptidase I; EC 3.4.21.89) family members are essential membrane-bound serine proteases that function to cleave the amino-terminal signal peptide extension from proteins that are translocated across biological membranes. The bacterial signal peptidase I, which is the most intensively studied, has two N-terminal transmembrane segments inserted in the plasma membrane and a hydrophilic, C-terminal catalytic region that is located in the periplasmic space. Although the bacterial signal peptidase I is monomeric, signal peptidases of eukaryotic cells commonly function as oligomeric complexes containing two divergent copies of the catalytic monomer. These are the IMP1 and IMP2 signal peptidases of the mitochondrial inner membrane that remove leader peptides from nuclear- and mitochondrial-encoded proteins. Also, two components of the endoplasmic reticulum signal peptidase in mammals (18-kDa and 21-kDa) belong to this family and they process many proteins that enter the ER for retention or for export to the Golgi apparatus, secretory vesicles, plasma membranes or vacuole. An atypical member of the S26 SPase type I family is the TraF peptidase which has the remarkable activity of producing a cyclic protein of the Pseudomonas pilin system. The type I signal peptidases are unique serine proteases that utilize a serine/lysine catalytic dyad mechanism in place of the classical serine/histidine/aspartic acid catalytic triad mechanism.


Pssm-ID: 119398 [Multi-domain]  Cd Length: 85  Bit Score: 51.43  E-value: 1.31e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1371208112  34 LSYVTTDSMEPALSPGDGFVAVP-SAIAGDVGPGDVVVYEAEQiEGGGLTTHRVVeeterGYVTRGDA--NPFTDQGSGE 110
Cdd:cd06530     2 PVVVPGGSMEPTLQPGDLVLVNKlSYGFREPKRGDVVVFKSPG-DPGKPIIKRVI-----GYFVLGDNrnNSLDSRYWGP 75
                          90
                  ....*....|..
gi 1371208112 111 PPVQDatVVAVA 122
Cdd:cd06530    76 VPEDD--IVGKV 85
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH