YncE family protein contains repeats resembling the NHL (NCL-1, HT2A and LIN-41) and YVTN-type repeats, similar to DNA-binding beta-propeller protein YncE and Bacillus subtilis uncharacterized protein YwhL
PQQ-dependent catabolism-associated beta-propeller protein; Members of this protein family ...
99-338
3.46e-07
PQQ-dependent catabolism-associated beta-propeller protein; Members of this protein family consist of seven repeats each of the YVTN family beta-propeller repeat (see TIGR02276). Members occur invariably as part of a transport operon that is associated with PQQ-dependent catabolism of alcohols such as phenylethanol.
Pssm-ID: 274824 [Multi-domain] Cd Length: 310 Bit Score: 51.19 E-value: 3.46e-07
eight-bladed beta-propeller heme-binding domain in cytochrome cd1 and similar proteins; ...
110-310
6.00e-05
eight-bladed beta-propeller heme-binding domain in cytochrome cd1 and similar proteins; Members here contain an 8-bladed beta-propeller heme-binding domain in cytochrome cd1 (nitrite reductase) and similar proteins including NirN and NirF. During denitrification, nitrate (Nar), nitrite (Nir), nitric oxide (Nor), and nitrous oxide (Nos) reductases catalyze the reaction cascade of NO(3-)-> NO(2-)-> NO -> N2O -> N2. The integral membrane proteins NorC, NorB, and NosR form the core assembly platform that binds the nitrate reductase NarGHI and the periplasmic nitrite reductase NirS via its maturation factor NirF. NirN and NirF form a stable complex with the nitrite reductase NirS during enzyme maturation. NirF is involved in heme d1 insertion.
Pssm-ID: 467720 [Multi-domain] Cd Length: 380 Bit Score: 44.64 E-value: 6.00e-05
PQQ-dependent catabolism-associated beta-propeller protein; Members of this protein family ...
99-338
3.46e-07
PQQ-dependent catabolism-associated beta-propeller protein; Members of this protein family consist of seven repeats each of the YVTN family beta-propeller repeat (see TIGR02276). Members occur invariably as part of a transport operon that is associated with PQQ-dependent catabolism of alcohols such as phenylethanol.
Pssm-ID: 274824 [Multi-domain] Cd Length: 310 Bit Score: 51.19 E-value: 3.46e-07
eight-bladed beta-propeller heme-binding domain in cytochrome cd1 and similar proteins; ...
110-310
6.00e-05
eight-bladed beta-propeller heme-binding domain in cytochrome cd1 and similar proteins; Members here contain an 8-bladed beta-propeller heme-binding domain in cytochrome cd1 (nitrite reductase) and similar proteins including NirN and NirF. During denitrification, nitrate (Nar), nitrite (Nir), nitric oxide (Nor), and nitrous oxide (Nos) reductases catalyze the reaction cascade of NO(3-)-> NO(2-)-> NO -> N2O -> N2. The integral membrane proteins NorC, NorB, and NosR form the core assembly platform that binds the nitrate reductase NarGHI and the periplasmic nitrite reductase NirS via its maturation factor NirF. NirN and NirF form a stable complex with the nitrite reductase NirS during enzyme maturation. NirF is involved in heme d1 insertion.
Pssm-ID: 467720 [Multi-domain] Cd Length: 380 Bit Score: 44.64 E-value: 6.00e-05
PQQ-dependent catabolism-associated beta-propeller protein; Members of this protein family ...
108-332
1.41e-04
PQQ-dependent catabolism-associated beta-propeller protein; Members of this protein family consist of seven repeats each of the YVTN family beta-propeller repeat (see TIGR02276). Members occur invariably as part of a transport operon that is associated with PQQ-dependent catabolism of alcohols such as phenylethanol.
Pssm-ID: 274824 [Multi-domain] Cd Length: 310 Bit Score: 43.10 E-value: 1.41e-04
Sugar lactone lactonase YvrE [Carbohydrate transport and metabolism]; Sugar lactone lactonase ...
183-360
2.39e-03
Sugar lactone lactonase YvrE [Carbohydrate transport and metabolism]; Sugar lactone lactonase YvrE is part of the Pathway/BioSystem: Non-phosphorylated Entner-Doudoroff pathway
Pssm-ID: 442613 [Multi-domain] Cd Length: 266 Bit Score: 39.10 E-value: 2.39e-03
eight-bladed beta-propeller heme-binding domain in cytochrome cd1 and similar proteins; ...
75-268
5.17e-03
eight-bladed beta-propeller heme-binding domain in cytochrome cd1 and similar proteins; Members here contain an 8-bladed beta-propeller heme-binding domain in cytochrome cd1 (nitrite reductase) and similar proteins including NirN and NirF. During denitrification, nitrate (Nar), nitrite (Nir), nitric oxide (Nor), and nitrous oxide (Nos) reductases catalyze the reaction cascade of NO(3-)-> NO(2-)-> NO -> N2O -> N2. The integral membrane proteins NorC, NorB, and NosR form the core assembly platform that binds the nitrate reductase NarGHI and the periplasmic nitrite reductase NirS via its maturation factor NirF. NirN and NirF form a stable complex with the nitrite reductase NirS during enzyme maturation. NirF is involved in heme d1 insertion.
Pssm-ID: 467720 [Multi-domain] Cd Length: 380 Bit Score: 38.47 E-value: 5.17e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options