tapasin [Latimeria chalumnae]
immunoglobulin domain-containing family protein( domain architecture ID 34076)
immunoglobulin (Ig) domain-containing family protein is a member of a large superfamily containing cell surface antigen receptors, co-receptors and co-stimulatory molecules of the immune system, molecules involved in antigen presentation to lymphocytes, cell adhesion molecules, certain cytokine receptors and intracellular muscle proteins; immunoglobulin domains are typically divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets
List of domain hits
Name | Accession | Description | Interval | E-value | |||
Ig super family | cl11960 | Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found ... |
296-389 | 1.70e-24 | |||
Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, including T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, including butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. Ig superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Typically, the V-set domains have A, B, E, and D strands in one sheet and A', G, F, C, C' and C" in the other. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other by strands G, F, C, and C'. Moreover, a C1-set Ig domain contains a short C' strand (three residues) and lacks A' and C" strand. Unlike other Ig domain sets, C2-set structures do not have a D strand. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. The actual alignment was detected with superfamily member cd05771: Pssm-ID: 472250 Cd Length: 100 Bit Score: 97.18 E-value: 1.70e-24
|
|||||||
Ig super family | cl11960 | Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found ... |
198-277 | 3.18e-06 | |||
Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, including T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, including butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. Ig superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Typically, the V-set domains have A, B, E, and D strands in one sheet and A', G, F, C, C' and C" in the other. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other by strands G, F, C, and C'. Moreover, a C1-set Ig domain contains a short C' strand (three residues) and lacks A' and C" strand. Unlike other Ig domain sets, C2-set structures do not have a D strand. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. The actual alignment was detected with superfamily member cd20984: Pssm-ID: 472250 Cd Length: 110 Bit Score: 45.67 E-value: 3.18e-06
|
|||||||
Name | Accession | Description | Interval | E-value | |||
IgC1_Tapasin_R | cd05771 | Tapasin-R immunoglobulin-like domain; member of the C1-set of Ig superfamily (IgSF) domains; ... |
296-389 | 1.70e-24 | |||
Tapasin-R immunoglobulin-like domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin-like domain on Tapasin-R. Tapasin is a V-C1 (variable-constant) immunoglobulin superfamily molecule present in the endoplasmic reticulum (ER), where it links MHC class I molecules to the transporter associated with antigen processing (TAP). Tapasin-R is a tapasin-related protein that contains similar structural motifs to Tapasin, with some marked differences, especially in the V domain, transmembrane and cytoplasmic regions. The majority of Tapasin-R is located within the ER; however, there may be some expression of Tapasin-R at the cell surface. Tapasin-R lacks an obvious ER retention signal. Pssm-ID: 409428 Cd Length: 100 Bit Score: 97.18 E-value: 1.70e-24
|
|||||||
IGc1 | smart00407 | Immunoglobulin C-Type; |
315-391 | 1.22e-10 | |||
Immunoglobulin C-Type; Pssm-ID: 214651 Cd Length: 75 Bit Score: 57.32 E-value: 1.22e-10
|
|||||||
C1-set | pfam07654 | Immunoglobulin C1-set domain; |
300-389 | 1.74e-10 | |||
Immunoglobulin C1-set domain; Pssm-ID: 462221 Cd Length: 85 Bit Score: 57.26 E-value: 1.74e-10
|
|||||||
IgV_B7-H4 | cd20984 | Immunoglobulin Variable (IgV) domain of B7-H4; The members here are composed of the ... |
198-277 | 3.18e-06 | |||
Immunoglobulin Variable (IgV) domain of B7-H4; The members here are composed of the immunoglobulin variable (IgV) domain of B7-H4 (also known as B7-S1, B7x, or Vtcn1). B7-H4 is one of the B7 family of immune-regulatory ligands that act as negative regulators of T cell function; it contains one IgV domain and one IgC domain. The B7-family consists of structurally related cell-surface protein ligands, which bind to receptors on lymphocytes that regulate immune responses. The binding of B7-H4 to unidentified receptors results in the inhibition of TCR-mediated T cell proliferation, cell-cycle progression and IL-2 production. As a co-inhibitory molecule, B7-H4 is widely expressed in tumor tissues and its expression is significantly associated with poor prognosis in human cancers such as glioma, pancreatic cancer, oral squamous cell carcinoma, renal cell carcinoma, and lung cancer. Pssm-ID: 409576 Cd Length: 110 Bit Score: 45.67 E-value: 3.18e-06
|
|||||||
V-set | pfam07686 | Immunoglobulin V-set domain; This domain is found in antibodies as well as neural protein P0 ... |
189-293 | 1.19e-05 | |||
Immunoglobulin V-set domain; This domain is found in antibodies as well as neural protein P0 and CTL4 amongst others. Pssm-ID: 462230 Cd Length: 109 Bit Score: 43.99 E-value: 1.19e-05
|
|||||||
PHA03273 | PHA03273 | envelope glycoprotein C; Provisional |
254-377 | 3.02e-04 | |||
envelope glycoprotein C; Provisional Pssm-ID: 223031 Cd Length: 486 Bit Score: 43.06 E-value: 3.02e-04
|
|||||||
IGv | smart00406 | Immunoglobulin V-Type; |
198-277 | 7.30e-04 | |||
Immunoglobulin V-Type; Pssm-ID: 214650 Cd Length: 81 Bit Score: 38.13 E-value: 7.30e-04
|
|||||||
Name | Accession | Description | Interval | E-value | |||
IgC1_Tapasin_R | cd05771 | Tapasin-R immunoglobulin-like domain; member of the C1-set of Ig superfamily (IgSF) domains; ... |
296-389 | 1.70e-24 | |||
Tapasin-R immunoglobulin-like domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin-like domain on Tapasin-R. Tapasin is a V-C1 (variable-constant) immunoglobulin superfamily molecule present in the endoplasmic reticulum (ER), where it links MHC class I molecules to the transporter associated with antigen processing (TAP). Tapasin-R is a tapasin-related protein that contains similar structural motifs to Tapasin, with some marked differences, especially in the V domain, transmembrane and cytoplasmic regions. The majority of Tapasin-R is located within the ER; however, there may be some expression of Tapasin-R at the cell surface. Tapasin-R lacks an obvious ER retention signal. Pssm-ID: 409428 Cd Length: 100 Bit Score: 97.18 E-value: 1.70e-24
|
|||||||
IgC1 | cd00098 | Immunoglobulin Constant-1 (C1)-set domain; The members here are composed of C1-set domains, ... |
297-397 | 2.25e-17 | |||
Immunoglobulin Constant-1 (C1)-set domain; The members here are composed of C1-set domains, classical Ig-like domains resembling the antibody constant domain. Members of the IgC1 family are components of immunoglobulin, T-cell receptors, CD1 cell surface glycoproteins, secretory glycoproteins A/C, and major histocompatibility complex (MHC) class I/II molecules. In immunoglobulins, each chain is composed of one variable domain (IgV) and one or more IgC domains. These names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. The IgV domain is responsible for antigen binding, while the IgC domain is involved in oligomerization and molecular interactions. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other strands by G, F, C, and C'. Pssm-ID: 409354 Cd Length: 95 Bit Score: 77.11 E-value: 2.25e-17
|
|||||||
IGc1 | smart00407 | Immunoglobulin C-Type; |
315-391 | 1.22e-10 | |||
Immunoglobulin C-Type; Pssm-ID: 214651 Cd Length: 75 Bit Score: 57.32 E-value: 1.22e-10
|
|||||||
C1-set | pfam07654 | Immunoglobulin C1-set domain; |
300-389 | 1.74e-10 | |||
Immunoglobulin C1-set domain; Pssm-ID: 462221 Cd Length: 85 Bit Score: 57.26 E-value: 1.74e-10
|
|||||||
IgC1_MHC-like_ZAG | cd21010 | Immunoglobulin domain of Zn-alpha2-glycoprotein (ZAG); member of the C1-set of Ig superfamily ... |
293-389 | 4.02e-09 | |||
Immunoglobulin domain of Zn-alpha2-glycoprotein (ZAG); member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin domain of Zn-alpha2-glycoprotein (ZAG). ZAG is a soluble protein that is present in serum and other body fluids. ZAG stimulates lipid degradation in adipocytes and causes the extensive fat losses associated with some advanced cancers. The 2.8 angstrom crystal structure of ZAG resembles a class I major histocompatibility complex (MHC) heavy chain, but ZAG does not bind the class I light chain beta-2-microglobulin. The ZAG structure includes a large groove analogous to class I MHC peptide binding grooves. Instead of a peptide, the ZAG groove contains a nonpeptidic compound that may be implicated in lipid catabolism under normal or pathological conditions. IgC_MHC_I_alpha3; Immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class I alpha chain. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409601 Cd Length: 93 Bit Score: 53.48 E-value: 4.02e-09
|
|||||||
IgC1_MHC_II_beta_HLA-DQ_I-A | cd21001 | Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain of ... |
293-391 | 4.70e-08 | |||
Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain of histocompatibility antigen (HLA) DQ and I-A; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain of human histocompatibility antigen (HLA) DQ and mouse I-A. Three genetically distinct isotypes of class II MHC molecules are found in humans (HLA-DR, HLA-DQ, and HLA-DP), and two in mice (I-E and I-A). I-A and I-E have the same basic features insofar as peptide loading and presentation, they differ in that each interacts with distinctly different sets of peptides, and in the incidence of deletion of their genes. A structural understanding of the similarities and differences between I-A and I-E may help with understanding their roles in peptide presentation and T cell activation. Mouse I-Ag7 has a genetic susceptibility to autoimmune diabetes due to its small, uncharged amino acid residue at position 57 of their beta chain which results in the absence of a salt bridge between beta 57 and Arg alpha 76, which is adjacent to the P9 pocket of the peptide-binding groove. Human HLA-DR, -DQ, and -DP are about 70% similar to each other. HLA-DQ (DQ) is a cell surface receptor protein found on antigen presenting cells. It is an alphabeta heterodimer of type MHC class II. The alpha and beta chains are encoded by two loci, HLA-DQA1 and HLA-DQB1, that are adjacent to each other on chromosome band 6p21.3. A person often produces two alpha-chain and two beta chain variants and thus 4 isoforms of DQ. HLA-DQ is involved in the autoimmune diseases celiac disease and diabetes mellitus type. DQ is one of several antigens involved in rejection of organ transplants. DQ2 is encoded by the HLA-DQB1*02 allele group. DQ6 is encoded by the HLA-DQB1*06 allele group. DQ2 beta-chains combine with alpha-chains, encoded by genetically linked HLA-DQA1 alleles, to form the cis-haplotype isoforms. These isoforms, nicknamed DQ2.2 and DQ2.5, are also encoded by the DQA1*0201 and DQA1*0501 genes, respectively. DQ6 beta-chains combine with alpha-chains, encoded by genetically linked HLA-DQA1 alleles, to form the cis-haplotype isoforms. For DQ6, however, cis-isoform pairing only occurs with DQ1 alpha-chains. There are many haplotypes of DQ6. Susceptibility to Leptospirosis infection was found associated with undifferentiated DQ6. DQ8 is determined by the antibody recognition of beta8 and this generally detects the gene product of DQB1*0302. DQ8 is commonly linked to autoimmune disease in the human population. DQ8 is the second most predominant isoform linked to celiac disease and the DQ most linked to Type 1 diabetes. DQ8 increases the risk for rheumatoid arthritis and is linked to the primary risk locus for RA, HLA-DR4. DR4 also plays an important role in Type 1 diabetes. DQ8 is a split antigen of the DQ3 broad antigen. MHC class II molecules play a key role in the initiation of the antigen-specific immune response. They are expressed constitutively on the cell surface of professional antigen-presenting cells (APCs), including B-lymphocytes, monocytes, and macrophages in both humans and mice, and induced in nonprofessional APCs, such as keratinocyctes; they are expressed on the surface of activated human T cells and on T cells from other species. MHC II molecules present antigenic peptides to CD4(+) T-lymphocytes; these peptides derive mostly from proteolytic processing via the endocytic pathway, of antigens internalized by the APC, and bind to the MHC class II molecules in the endosome before they are transported to the cell surface. MHC class II molecules are heterodimers, comprised of two similarly-sized membrane-spanning chains, alpha and beta. Each chain had two globular domains (N- and C-terminal), and a membrane-anchoring transmembrane segment. The two chains form a compact four-domain structure. The peptide-binding site is a cleft in the structure. Pssm-ID: 409592 Cd Length: 97 Bit Score: 50.49 E-value: 4.70e-08
|
|||||||
IgC1_MHC_II_beta | cd05766 | Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain; member of ... |
293-390 | 5.21e-08 | |||
Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class II beta chain. MHC class II molecules play a key role in the initiation of the antigen-specific immune reponse. These molecules have been shown to be expressed constitutively on the cell surface of professional antigen-presenting cells (APCs), including B-lymphocytes, monocytes, and macrophages in both humans and mice. The expression of these molecules has been shown to be induced in nonprofessional APCs such as keratinocyctes and they are also expressed on the surface of activated human T cells and on T cells from other species. The MHC II molecules present antigenic peptides to CD4(+) T-lymphocytes. These peptides derive mostly from proteolytic processing via the endocytic pathway of antigens internalized by the APC. These peptides bind to the MHC class II molecules in the endosome before they are transported to the cell surface. MHC class II molecules are heterodimers, comprised of two similarly-sized membrane-spanning chains, alpha and beta. Each chain has two globular domains (N- and C-terminal) and a membrane-anchoring transmembrane segment. The two chains form a compact four-domain structure. The peptide-binding site is a cleft in the structure. Pssm-ID: 409423 Cd Length: 96 Bit Score: 50.41 E-value: 5.21e-08
|
|||||||
IgC1_CH3_IgAGD_CH4_IgAEM | cd05768 | CH3 domain (third constant Ig domain of the heavy chain) in immunoglobulin heavy alpha, gamma, ... |
315-391 | 1.13e-07 | |||
CH3 domain (third constant Ig domain of the heavy chain) in immunoglobulin heavy alpha, gamma, and delta chains, and CH4 domain (fourth constant Ig domain of the heavy chain) in immunoglobulin heavy alpha, epsilon, and mu chains; member of the C1-set of I; The members here are composed of the third and fourth immunoglobulin constant domain (IgC) of alpha, delta, gamma and alpha, epsilon, and mu heavy chains, respectively. This domain is found on the Fc fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each is composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma, and mu, all consisting of a variable domain (VH) with three (alpha, delta and gamma) or four (epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. Pssm-ID: 409425 Cd Length: 105 Bit Score: 49.64 E-value: 1.13e-07
|
|||||||
IgC1_MHC_I_alpha3 | cd07698 | Class I major histocompatibility complex (MHC) alpha chain, alpha3 immunoglobulin domain; ... |
294-400 | 2.49e-07 | |||
Class I major histocompatibility complex (MHC) alpha chain, alpha3 immunoglobulin domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class I alpha chain. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409495 Cd Length: 92 Bit Score: 48.38 E-value: 2.49e-07
|
|||||||
IgV_B7-H4 | cd20984 | Immunoglobulin Variable (IgV) domain of B7-H4; The members here are composed of the ... |
198-277 | 3.18e-06 | |||
Immunoglobulin Variable (IgV) domain of B7-H4; The members here are composed of the immunoglobulin variable (IgV) domain of B7-H4 (also known as B7-S1, B7x, or Vtcn1). B7-H4 is one of the B7 family of immune-regulatory ligands that act as negative regulators of T cell function; it contains one IgV domain and one IgC domain. The B7-family consists of structurally related cell-surface protein ligands, which bind to receptors on lymphocytes that regulate immune responses. The binding of B7-H4 to unidentified receptors results in the inhibition of TCR-mediated T cell proliferation, cell-cycle progression and IL-2 production. As a co-inhibitory molecule, B7-H4 is widely expressed in tumor tissues and its expression is significantly associated with poor prognosis in human cancers such as glioma, pancreatic cancer, oral squamous cell carcinoma, renal cell carcinoma, and lung cancer. Pssm-ID: 409576 Cd Length: 110 Bit Score: 45.67 E-value: 3.18e-06
|
|||||||
IgC1_MHC_Ia_HLA-F | cd21023 | Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte ... |
294-389 | 4.67e-06 | |||
Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) F; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen alpha chain F (HLA-F). HLA-F, encoded by the HLA-F gene in humans, belongs to the non-classical HLA class I heavy chain paralogs. This class I molecule mainly exists as a heterodimer associated with the invariant light chain beta-2-microglobulin. HLA-F molecules can interact with both activating and inhibitory receptors on immune cells, such as NK cells, and can present a diverse panel of peptides. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409614 Cd Length: 98 Bit Score: 45.19 E-value: 4.67e-06
|
|||||||
IgV_B7-H3 | cd20934 | Immunoglobulin Variable (IgV) domain of B7-H3, a member of the B7 family of immune checkpoint ... |
187-277 | 1.05e-05 | |||
Immunoglobulin Variable (IgV) domain of B7-H3, a member of the B7 family of immune checkpoint molecules; The members here are composed of the immunoglobulin variable (IgV) domain of B7-H3 also known as CD276), a member of the B7 family of immune checkpoint molecules. B7-H3 is an important immune checkpoint member of the B7 family and shares homology with other B7 ligands such as programmed death ligand 1 (PD-L1). The B7 family molecules interact with CD28 on T-cells to provide co-stimulatory signals that regulate T-cell activation and T-helper cell differentiation. Although B7-H3 has been shown to have both co-stimulatory and co-inhibitory effects on T-cell responses, the most current studies describe B7-H3 as a T cell inhibitor that promotes tumor aggressiveness and proliferation. Moreover, B7-H3 is highly overexpressed on a wide range of human solid cancers and promotes tumor growth, metastasis, and drug resistance. Thus, B7-H3 expression in tumors often correlates with both negative prognosis and poor clinical outcome in cancer patients. B7-H3 protein contains a predicted signal peptide, V- and C-like Ig domains (IgV and IgC), a transmembrane region, and an intracellular tail. Pssm-ID: 409528 Cd Length: 115 Bit Score: 44.52 E-value: 1.05e-05
|
|||||||
Ig6_Contactin-4 | cd05853 | Sixth immunoglobulin (Ig) domain of contactin-4; The members here are composed of the sixth ... |
195-296 | 1.13e-05 | |||
Sixth immunoglobulin (Ig) domain of contactin-4; The members here are composed of the sixth immunoglobulin (Ig) domain of the neural cell adhesion molecule contactin-4. Contactins are neural cell adhesion molecules, and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The different contactins show different expression patterns in the central nervous system. Highest expression of contactin-4 is in testes, thyroid, small intestine, uterus, and brain. Contactin-4 plays a role in the response of neuroblastoma cells to differentiating agents, such as retinoids. The contactin 4 gene is associated with cerebellar degeneration in spinocerebellar ataxia type 16. Pssm-ID: 409439 Cd Length: 102 Bit Score: 44.23 E-value: 1.13e-05
|
|||||||
IgC1_CD1 | cd21029 | Immunoglobulin domain of Cluster of Differentiation (CD) 1; member of the C1-set of Ig ... |
314-391 | 1.18e-05 | |||
Immunoglobulin domain of Cluster of Differentiation (CD) 1; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin domain of Cluster of Differentiation (CD) 1. CD1 family of transmembrane glycoproteins, are structurally related to the major histocompatibility complex (MHC) proteins and form heterodimers with beta-2-microglobulin. They mediate the presentation of primarily lipid and glycolipid antigens of self or microbial origin to T cells. The human genome contains five CD1 family genes (CD1a, CD1b, CD1c, CD1d, and CD1e) organized in a cluster on chromosome 1. The CD1 family members are thought to differ in their cellular localization and specificity for particular lipid ligands. CD1a localizes to the plasma membrane and to recycling vesicles of the early endocytic system. Alternative splicing results in multiple transcript variants. Immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class I alpha chain. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. C1-set Ig domains have one beta sheet that is formed by strands A, B, E, and D and the other strands by G, F, C, and C'. Pssm-ID: 409620 Cd Length: 93 Bit Score: 43.85 E-value: 1.18e-05
|
|||||||
V-set | pfam07686 | Immunoglobulin V-set domain; This domain is found in antibodies as well as neural protein P0 ... |
189-293 | 1.19e-05 | |||
Immunoglobulin V-set domain; This domain is found in antibodies as well as neural protein P0 and CTL4 amongst others. Pssm-ID: 462230 Cd Length: 109 Bit Score: 43.99 E-value: 1.19e-05
|
|||||||
IgC1_MHC_Ia_HLA-G | cd21022 | Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte ... |
295-389 | 1.57e-05 | |||
Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) G; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) G. HLA-G histocompatibility antigen (also known as human leukocyte antigen G ; HLA-G) is a protein that in humans is encoded by the HLA-G gene. HLA-G belongs to the HLA nonclassical class I heavy chain paralogs. This class I molecule is a heterodimer consisting of a heavy chain and light chain, beta-2-microglobulin. The heavy chain is anchored in the membrane. HLA-G may play a role in immune tolerance in pregnancy, being expressed in the placenta by extravillous trophoblast cells (EVT), while the classical MHC class I genes (HLA-A and HLA-B) are not. Immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class I and class II. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. MHC class II molecules play a key role in the initiation of the antigen-specific immune repose. These molecules have been shown to be expressed constitutively on the cell surface of professional antigen-presenting cells (APCs), including B-lymphocytes, monocytes, and macrophages in both humans and mice. The expression of these molecules has been shown to be induced in nonprofessional APCs such as keratinocyctes, and they are expressed on the surface of activated human T cells and on T cells from other species. The MHC II molecules present antigenic peptides to CD4(+) T-lymphocytes. These peptides derive mostly from proteolytic processing via the endocytic pathway, of antigens internalized by the APC. These peptides bind to the MHC class II molecules in the endosome before they are transported to the cell surface. MHC class II molecules are heterodimers, comprised of two similarly-sized membrane-spanning chains, alpha and beta. Each chain had two globular domains (N- and C-terminal), and a membrane-anchoring transmembrane segment. The two chains form a compact four-domain structure. The peptide-binding site is a cleft in the structure. Pssm-ID: 409613 Cd Length: 94 Bit Score: 43.59 E-value: 1.57e-05
|
|||||||
IgC1_CH2_Mu | cd16093 | CH2 domain (second constant Ig domain of the heavy chain) in immunoglobulin mu chain; member ... |
295-391 | 1.65e-05 | |||
CH2 domain (second constant Ig domain of the heavy chain) in immunoglobulin mu chain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the second immunoglobulin constant domain (IgC) of mu heavy chains. This domain is found on the Fc fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each is composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma, and mu, all consisting of a variable domain (VH) with three (alpha, delta and gamma) or four (epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. Pssm-ID: 409513 Cd Length: 99 Bit Score: 43.54 E-value: 1.65e-05
|
|||||||
IgC1_MHC_Ia_HLA-B | cd21026 | Class Ia major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte ... |
294-400 | 2.42e-05 | |||
Class Ia major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) B and similar proteins; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the class Ia major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) B and similar proteins. The classical class I molecules (HLA-A, -B, and -C) are responsible for the presentation of endogenous antigen to CD8+ T cells. The receptor is a heterodimer, and is composed of a heavy alpha chain and smaller beta chain. The alpha chain is encoded by a variant HLA-B gene, and the beta chain (beta-2-microglobulin) is an invariant beta-2-microglobulin molecule. The beta-2-microglobulin protein is coded for by a separate region of the human genome. Human leukocyte antigen (HLA) B*3501 (B35) is a common human allele involved in mediating protective immunity against HIV. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409617 Cd Length: 97 Bit Score: 42.88 E-value: 2.42e-05
|
|||||||
IgC1_MHC_II_beta_HLA-DP | cd21003 | Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain of ... |
293-389 | 7.43e-05 | |||
Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain of histocompatibility antigen (HLA) DP; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain of histocompatibility antigen (HLA) DP. HLA class II histocompatibility antigen, DP(W2) beta chain is a protein that in humans is encoded by the HLA-DPB1 gene. It plays a central role in the immune system by presenting peptides derived from extracellular proteins. MHC class II molecules are encoded by three different loci, HLA-DR, -DQ, and -DP, which are about 70% similar to each other. HLA-DP is an alphabeta heterodimer cell-surface receptor. Each DP subunit (alpha-subunit, beta-subunit) is composed of a alpha-helical N-terminal domain, an IgG-like beta sheet, a membrane spanning domain, and a cytoplasmic domain. The alpha-helical domain forms the sides of the peptide binding groove. The beta sheet regions form the base of the binding groove and the bulk of the molecule as well as the inter-subunit (non-covalent) binding region. Individuals carrying the MHCII allele, HLA-DP2, are at risk for chronic beryllium disease (CBD), a debilitating inflammatory lung condition caused by the reaction of CD4 T cells to inhaled beryllium. MHC class II molecules play a key role in the initiation of the antigen-specific immune reponse. These molecules have been shown to be expressed constitutively on the cell surface of professional antigen-presenting cells (APCs), including B-lymphocytes, monocytes, and macrophages in both humans and mice. The expression of these molecules has been shown to be induced in nonprofessional APCs such as keratinocyctes, and they are expressed on the surface of activated human T cells and on T cells from other species. The MHC II molecules present antigenic peptides to CD4(+) T-lymphocytes. These peptides derive mostly from proteolytic processing via the endocytic pathway, of antigens internalized by the APC. These peptides bind to the MHC class II molecules in the endosome before they are transported to the cell surface. MHC class II molecules are heterodimers, comprised of two similarly-sized membrane-spanning chains, alpha and beta. Each chain had two globular domains (N- and C-terminal), and a membrane-anchoring transmembrane segment. The two chains form a compact four-domain structure. The peptide-binding site is a cleft in the structure. Pssm-ID: 409594 Cd Length: 96 Bit Score: 41.67 E-value: 7.43e-05
|
|||||||
Ig_3 | pfam13927 | Immunoglobulin domain; This family contains immunoglobulin-like domains. |
295-385 | 1.06e-04 | |||
Immunoglobulin domain; This family contains immunoglobulin-like domains. Pssm-ID: 464046 [Multi-domain] Cd Length: 78 Bit Score: 40.63 E-value: 1.06e-04
|
|||||||
IgC1_CH1_IgEG | cd21817 | CH1 domain (first constant Ig domain of the heavy chain) in immunoglobulin heavy epsilon and ... |
315-397 | 1.10e-04 | |||
CH1 domain (first constant Ig domain of the heavy chain) in immunoglobulin heavy epsilon and gamma chain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the first immunoglobulin constant-1 set domain of epsilon and gamma chains. It belongs to a family composed of the first immunoglobulin constant-1 set domain of alpha, delta, epsilon, gamma, and mu heavy chains. This domain is found on the Fab antigen-binding fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each is composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma, and mu, all consisting of a variable domain (VH) with three (alpha, delta and gamma) or four (epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. This group belongs to the C1-set of IgSF domains, which are classical Ig-like domains resembling the antibody constant domain. C1-set domains are found almost exclusively in molecules involved in the immune system, such as in immunoglobulin light and heavy chains, in the major histocompatibility complex (MHC) class I and II complex molecules, and in various T-cell receptors. Pssm-ID: 409622 Cd Length: 94 Bit Score: 40.89 E-value: 1.10e-04
|
|||||||
IgC1_CH3_IgAEM_CH2_IgG | cd07696 | CH3 domain (third constant Ig domain of heavy chains) in immunoglobulin heavy alpha, epsilon, ... |
302-398 | 1.15e-04 | |||
CH3 domain (third constant Ig domain of heavy chains) in immunoglobulin heavy alpha, epsilon, and mu chains, and CH2 domain (second constant Ig domain of the gheavy chain) in immunoglobulin heavy gamma chain; member of the C1-set of Ig superfamily (IgSF) ; The members here are composed of the third immunoglobulin constant domain (IgC) of the gamma heavy chains and the second immunoglobulin constant domain (IgC) of alpha, epsilon, and mu heavy chains. This domain is found on the Fc fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each is composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma, and mu, all consisting of a variable domain (VH) with three (alpha, delta and gamma) or four (epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. Pssm-ID: 409493 Cd Length: 98 Bit Score: 40.90 E-value: 1.15e-04
|
|||||||
IgC1_MHC_II_alpha | cd05767 | Class II major histocompatibility complex (MHC) alpha chain immunoglobulin domain; member of ... |
294-389 | 1.68e-04 | |||
Class II major histocompatibility complex (MHC) alpha chain immunoglobulin domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig) domain of the major histocompatibility complex (MHC) class II alpha chain. MHC class II molecules play a key role in the initiation of the antigen-specific immune reponse. These molecules have been shown to be expressed constitutively on the cell surface of professional antigen-presenting cells (APCs), including B-lymphocytes, monocytes, and macrophages in both humans and mice. The expression of these molecules has been shown to be induced in nonprofessional APCs such as keratinocyctes, and they are also expressed on the surface of activated human T cells and on T cells from other species. The MHC II molecules present antigenic peptides to CD4(+) T-lymphocytes. These peptides derive mostly from proteolytic processing via the endocytic pathway, of antigens internalized by the APC. These peptides bind to the MHC class II molecules in the endosome before they are transported to the cell surface. MHC class II molecules are heterodimers, comprised of two similarly-sized membrane-spanning chains, alpha and beta. Each chain had two globular domains (N- and C-terminal), and a membrane-anchoring transmembrane segment. The two chains form a compact four-domain structure. The peptide-binding site is a cleft in the structure. Pssm-ID: 409424 Cd Length: 95 Bit Score: 40.37 E-value: 1.68e-04
|
|||||||
IgC1_TCR_gamma | cd07697 | T cell receptor (TCR) gamma chain constant immunoglobulin domain; member of the C1-set of Ig ... |
301-397 | 2.00e-04 | |||
T cell receptor (TCR) gamma chain constant immunoglobulin domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig) constant (C) domain of the gamma chain of gamma-delta T-cell receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes and are heterodimers consisting of alpha and beta chains or gamma and delta chains. Each chain contains a variable (V) and a constant (C) region. The majority of T cells contain alpha-beta TCRs, but a small subset contain gamma-delta TCRs. Alpha-beta TCRs recognize antigen as peptide fragments presented by major histocompatibility complex (MHC) molecules. Gamma-delta TCRs recognize intact protein antigens; they recognize protein antigens directly and without antigen processing and MHC independently of the bound peptide. Gamma-delta T cells can also be stimulated by non-peptide antigens such as small phosphate- or amine-containing compounds. Pssm-ID: 409494 Cd Length: 98 Bit Score: 40.32 E-value: 2.00e-04
|
|||||||
IgV_P0-like | cd05715 | Immunoglobulin (Ig)-like domain of protein zero (P0) and similar proteins; The members here ... |
199-280 | 2.04e-04 | |||
Immunoglobulin (Ig)-like domain of protein zero (P0) and similar proteins; The members here are composed of the immunoglobulin (Ig) domain of protein zero (P0), a myelin membrane adhesion molecule. P0 accounts for over 50% of the total protein in peripheral nervous system (PNS) myelin. P0 is a single-pass transmembrane glycoprotein with a highly basic intracellular domain and an extracellular Ig domain. The extracellular domain of P0 (P0-ED) is similar to the Ig variable domain, carrying one acceptor sequence for N-linked glycosylation. P0 plays a role in membrane adhesion in the spiral wraps of the myelin sheath. The intracellular domain is thought to mediate membrane apposition of the cytoplasmic faces and may, through electrostatic interactions, interact directly with lipid headgroups. It is thought that homophilic interactions of the P0 extracellular domain mediate membrane juxtaposition in the extracellular space of PNS myelin. This group also contains the Ig domain of sodium channel subunit beta-2 (SCN2B), and of epithelial V-like antigen 1 (EVA). EVA, also known as myelin protein zero-like 2, is an adhesion molecule, which may play a role in structural organization of the thymus and early lymphocyte development. SCN2B subunits play a role in determining sodium channel density and function in neurons,and in control of electrical excitability in the brain. Pssm-ID: 409380 Cd Length: 117 Bit Score: 40.87 E-value: 2.04e-04
|
|||||||
IgI_2_Necl-1-4 | cd05761 | Second immunoglobulin (Ig)-like domain of the nectin-like molecules Necl-1 - Necl-4; member of ... |
290-394 | 2.56e-04 | |||
Second immunoglobulin (Ig)-like domain of the nectin-like molecules Necl-1 - Necl-4; member of the I-set of Ig superfamily domains; The members here are composed of the second immunoglobulin (Ig)-like domain of the nectin-like molecules Necl-1 (also known as cell adhesion molecule 3 or CADM3), Necl-2 (also known as CADM1), Necl-3 (also known as CADM2) and Necl-4 (also known as CADM4). These nectin-like molecules have similar domain structures to those of nectins. At least five nectin-like molecules have been identified (Necl-1 through Necl-5). These have an extracellular region containing three Ig-like domains, one transmembrane region, and one cytoplasmic region. The N-terminal Ig-like domain of the extracellular region belongs to the V-type subfamily of Ig domains, is essential to cell-cell adhesion, and plays a part in the interaction with the envelope glycoprotein D of various viruses. Necl-1 and Necl-2 have Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity. Necl-1 is specifically expressed in neural tissue and is important to the formation of synapses, axon bundles, and myelinated axons. Necl-2 is expressed in a wide variety of tissues, and is a putative tumour suppressor gene, which is downregulated in aggressive neuroblastoma. Necl-3 has been shown to accumulate in tissues of the central and peripheral nervous system, where it is expressed in ependymal cells and myelinated axons. It is observed at the interface between the axon shaft and the myelin sheath. Necl-4 is expressed on Schwann cells, and plays a key part in initiating peripheral nervous system (PNS) myelination. Necl-4 participates in cell-cell adhesion and is proposed to play a role in tumor suppression. Pssm-ID: 409418 Cd Length: 102 Bit Score: 40.10 E-value: 2.56e-04
|
|||||||
IgC1_MHC_Ib_HLA-H | cd21021 | Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte ... |
315-389 | 2.87e-04 | |||
Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen H; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen H (HLA-H). HLA-H (also known as hereditary hemochromatosis protein; HFE) is a major histocompatibility complex (MHC) class I-like protein that is mutated in Hereditary Hemochromatosis. HFE is a protein of 343 amino acids that includes a signal peptide, an extracellular transferrin receptor-binding region (a1 and a2), an immunoglobulin-like domain (a3), a transmembrane region, and a short cytoplasmic tail. HFE binds beta-2-microglobulin to form a heterodimer expressed at the cell surface. It binds transferrin receptor (TFRC) in its extracellular alpha1-alpha2 domain. HFE plays an important part in the regulation of hepcidin expression in response to iron overload and the liver is important in the pathophysiology of HFE-associated hemochromatosis. Nine HFE splicing variants have been reported with transcripts lacking exon 2 or exon 3, or exons 2-3, 2-4, or 2-5. Diverse mutations involving HFE introns and exons discovered in persons with hemochromatosis or their family members cause or probably cause high iron phenotypes. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409612 Cd Length: 94 Bit Score: 39.76 E-value: 2.87e-04
|
|||||||
PHA03273 | PHA03273 | envelope glycoprotein C; Provisional |
254-377 | 3.02e-04 | |||
envelope glycoprotein C; Provisional Pssm-ID: 223031 Cd Length: 486 Bit Score: 43.06 E-value: 3.02e-04
|
|||||||
Ig6_Contactin | cd04970 | Sixth immunoglobulin (Ig) domain of contactin; The members here are composed of the sixth ... |
243-296 | 3.31e-04 | |||
Sixth immunoglobulin (Ig) domain of contactin; The members here are composed of the sixth immunoglobulin (Ig) domain of contactins. Contactins are neural cell adhesion molecules and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module via contacts between Ig domains 1 and 4, and between Ig domains 2 and 3. Contactin-2 (TAG-1, axonin-1) may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. This group also includes contactin-1 and contactin-5. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-5 is expressed specifically in the rat postnatal nervous system, peaking at about 3 weeks postnatal, and a lack of contactin-5 (NB-2) results in an impairment of neuronal activity in the rat auditory system. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. Pssm-ID: 409359 Cd Length: 102 Bit Score: 39.84 E-value: 3.31e-04
|
|||||||
IgC1_beta2m | cd05770 | Class I major histocompatibility complex (MHC) beta-2-microglobulin; member of the C1-set of ... |
310-390 | 4.77e-04 | |||
Class I major histocompatibility complex (MHC) beta-2-microglobulin; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin-like domain in beta-2-microglobulin (beta2m). Beta2m is the non-covalently bound light chain of the human class I major histocompatibility complex (MHC-I). Beta2m is structured as a beta-sandwich domain composed of two facing beta-sheets (four stranded and three stranded), that is typical of the C-type immunoglobulin superfamily. This structure is stabilized by an intramolecular disulfide bridge connecting two Cys residues in the facing beta-sheets. In vivo, MHC-I continuously exposes beta2m on the cell surface, where it may be released to plasmatic fluids, transported to the kidneys, degraded, and finally excreted. Pssm-ID: 409427 Cd Length: 94 Bit Score: 39.00 E-value: 4.77e-04
|
|||||||
IgV_HHLA2 | cd16091 | Immunoglobulin Variable (IgV) domain in HERV-H LTR-associating 2 (HHLA2); The members here are ... |
185-277 | 5.24e-04 | |||
Immunoglobulin Variable (IgV) domain in HERV-H LTR-associating 2 (HHLA2); The members here are composed of the immunoglobulin variable (IgV) region in HERV-H LTR-associating 2 (HHLA2; also known as B7-H7/B7 homolog 7). HHLA2 is a member of the B7 family of immune regulatory proteins. Mature human HHLA2 consists of an extracellular domain (ECD) with three immunoglobulin-like domains, a transmembrane segment, and a cytoplasmic domain. HHLA2 is widely expressed in human cancers including non-small cell lung carcinoma (NSCLS), triple negative breast cancer (TNBC), and melanoma, but has limited expression on normal tissues. Interestingly, unlike other members of B7 family, HHLA2 is not expressed in mice or rats. HHLA2 functions as a T cell coinhibitory molecules as it inhibits the proliferation of activated CD4(+) and CD8(+) T cells and their cytokine production. Furthermore, HHLA2 is constitutively expressed on the surface of human monocytes and is induced on B cells after stimulation, however it is not inducible on T cells. Pssm-ID: 409512 Cd Length: 107 Bit Score: 39.29 E-value: 5.24e-04
|
|||||||
IgC1_L | cd07699 | Immunoglobulin light chain Constant domain; member of the C1-set of Ig superfamily (IgSF) ... |
295-397 | 6.61e-04 | |||
Immunoglobulin light chain Constant domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig) light chain constant (C) domain. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. In Ig, each chain is composed of one variable domain (IgV) and one or more constant domains (IgC); these names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. There are five types of heavy chains (alpha, gamma, delta, epsilon, and mu), which determine the type of immunoglobulin: IgA, IgG, IgD, IgE, and IgM, respectively. In higher vertebrates, there are two types of light chain, designated kappa and lambda, which seem to be functionally identical, and can associate with any of the heavy chains. Pssm-ID: 409496 Cd Length: 99 Bit Score: 38.98 E-value: 6.61e-04
|
|||||||
IGv | smart00406 | Immunoglobulin V-Type; |
198-277 | 7.30e-04 | |||
Immunoglobulin V-Type; Pssm-ID: 214650 Cd Length: 81 Bit Score: 38.13 E-value: 7.30e-04
|
|||||||
IgC1_SIRP_domain_3 | cd16085 | Signal-regulatory protein (SIRP) immunoglobulin-like domain 3; member of the C1-set of Ig ... |
295-386 | 1.24e-03 | |||
Signal-regulatory protein (SIRP) immunoglobulin-like domain 3; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig)-like domain in Signal-Regulatory Protein (SIRP), domain 3 (C1 repeat 2). The SIRPs belong to the "paired receptors" class of membrane proteins that comprise several genes coding for proteins with similar extracellular regions but very different transmembrane/cytoplasmic regions with different (activating or inhibitory) signaling potentials. They are commonly on NK cells, but are also on many myeloid cells. Their extracellular region contains three Immunoglobulin superfamily domains a single V-set and two C1-set IgSF domains. Their cytoplasmic tails that contain either ITIMs or transmembrane regions that have positively charged residues that allow an association with adaptor proteins, such as DAP12/KARAP, containing ITAMs. There are 3 distinct SIRP members: alpha, beta, and gamma. SIRP alpha (also known as CD172a or SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1/Shps-1) is a membrane receptor that interacts with a ligand CD47 expressed on many cells and gives an inhibitory signal through immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region that interact with phosphatases SHP-1 and SHP-2. SIRP beta has a short cytoplasmic region and associates with a transmembrane adapter protein DAP12 containing immunoreceptor tyrosine-based activation motifs to give an activating signal. SIRP gamma contains a very short cytoplasmic region lacking obvious signaling motifs but also binds CD47, but with much less affinity. Pssm-ID: 409507 Cd Length: 96 Bit Score: 38.17 E-value: 1.24e-03
|
|||||||
IgC1_MHC_II_beta_I-E | cd20998 | Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain of ... |
315-391 | 1.39e-03 | |||
Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain of histocompatibility antigen (HLA) I-E; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain of histocompatibility antigen (HLA) I-E. Three genetically distinct isotypes of class II MHC molecules are found in humans (HLA-DR, HLA-DQ, and HLA-DP), and two in mice (I-E and I-A). I-A and I-E molecules have the same basic features insofar as peptide loading and presentation, although each interacts with distinctly different sets of peptides. They also differ in that there is a relatively high incidence of deletion of the I-E gene in both inbred strains of mice as well as wild mice and the lack of the reverse situation i.e. the deletion of I-A genes. A detailed structural understanding of the similarities and differences between I-A and the paralogous I-E could help illuminate the respective roles these molecules play in peptide presentation and T cell activation. Mouse I-Ag7 has a genetic susceptibility to autoimmune diabetes due to its small, uncharged amino acid residue at position 57 of their beta chain which results in the absence of a salt bridge between beta 57 and Arg alpha 76, which is adjacent to the P9 pocket of the peptide-binding groove. MHC class II molecules play a key role in the initiation of the antigen-specific immune reponse. These molecules have been shown to be expressed constitutively on the cell surface of professional antigen-presenting cells (APCs), including B-lymphocytes, monocytes, and macrophages in both humans and mice. The expression of these molecules has been shown to be induced in nonprofessional APCs such as keratinocyctes, and they are expressed on the surface of activated human T cells and on T cells from other species. The MHC II molecules present antigenic peptides to CD4(+) T-lymphocytes. These peptides derive mostly from proteolytic processing via the endocytic pathway, of antigens internalized by the APC. These peptides bind to the MHC class II molecules in the endosome before they are transported to the cell surface. MHC class II molecules are heterodimers, comprised of two similarly-sized membrane-spanning chains, alpha and beta. Each chain had two globular domains (N- and C-terminal), and a membrane-anchoring transmembrane segment. The two chains form a compact four-domain structure. The peptide-binding site is a cleft in the structure. Pssm-ID: 409590 Cd Length: 99 Bit Score: 38.21 E-value: 1.39e-03
|
|||||||
IgV_P0 | cd05879 | Immunoglobulin (Ig)-like domain of protein zero (P0); The members here are composed of the ... |
190-280 | 3.43e-03 | |||
Immunoglobulin (Ig)-like domain of protein zero (P0); The members here are composed of the immunoglobulin (Ig) domain of protein zero (P0), a myelin membrane adhesion molecule. P0 accounts for over 50% of the total protein in peripheral nervous system (PNS) myelin. P0 is a single-pass transmembrane glycoprotein with a highly basic intracellular domain and an Ig domain. The extracellular domain of P0 (P0-ED) is similar to the Ig variable domain, carrying one acceptor sequence for N-linked glycosylation. P0 plays a role in membrane adhesion in the spiral wraps of the myelin sheath. The intracellular domain is thought to mediate membrane apposition of the cytoplasmic faces and may, through electrostatic interactions, interact directly with lipid headgroups. It is thought that homophilic interactions of the P0 extracellular domain mediate membrane juxtaposition in the extracellular space of PNS myelin. Pssm-ID: 409463 Cd Length: 117 Bit Score: 37.16 E-value: 3.43e-03
|
|||||||
IgV_1_PVR_like | cd05718 | First immunoglobulin variable (IgV) domain of poliovirus receptor (PVR, also known as CD155 ... |
189-278 | 3.64e-03 | |||
First immunoglobulin variable (IgV) domain of poliovirus receptor (PVR, also known as CD155 and necl-5), and similar domains; The members here are composed of the first immunoglobulin (Ig) domain of poliovirus receptor (PVR, also known as CD155 and nectin-like protein 5 (necl-5)). Poliovirus (PV) binds to its cellular receptor (PVR/CD155) to initiate infection. CD155 is a membrane-anchored, single-span glycoprotein; its extracellular region has three Ig-like domains. There are four different isotypes of CD155 (referred to as alpha, beta, gamma, and delta), that result from alternate splicing of the CD155 mRNA, and have identical extracellular domains. CD155-beta and CD155-gamma are secreted; CD155-alpha and CD155-delta are membrane-bound and function as PV receptors. The virus recognition site is contained in the amino-terminal domain, D1. Having the virus attachment site on the receptor distal from the plasma membrane may be important for successful initiation of infection of cells by the virus. CD155 binds in the poliovirus "canyon" with a footprint similar to that of the intercellular adhesion molecule-1 receptor on human rhinoviruses. This group also includes the first Ig-like domain of nectin-1 (also known as poliovirus receptor related protein(PVRL)1; CD111), nectin-3 (also known as PVRL 3), nectin-4 (also known as PVRL4; LNIR receptor)and DNAX accessory molecule 1 (DNAM-1; CD226). Pssm-ID: 409383 Cd Length: 113 Bit Score: 37.04 E-value: 3.64e-03
|
|||||||
IG_like | smart00410 | Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. |
189-292 | 5.53e-03 | |||
Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. Pssm-ID: 214653 [Multi-domain] Cd Length: 85 Bit Score: 35.94 E-value: 5.53e-03
|
|||||||
Ig | cd00096 | Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found ... |
246-277 | 5.93e-03 | |||
Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, including T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, including butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. Ig superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Typically, the V-set domains have A, B, E, and D strands in one sheet and A', G, F, C, C' and C" in the other. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other by strands G, F, C, and C'. Moreover, a C1-set Ig domain contains a short C' strand (three residues) and lacks A' and C" strand. Unlike other Ig domain sets, C2-set structures do not have a D strand. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409353 [Multi-domain] Cd Length: 70 Bit Score: 35.38 E-value: 5.93e-03
|
|||||||
Blast search parameters | ||||
|