NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1027096718|ref|XP_016648098|]
View 

PREDICTED: structure-specific endonuclease subunit SLX1 homolog [Prunus mume]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
GIY-YIG_SF super family cl15257
GIY-YIG nuclease domain superfamily; The GIY-YIG nuclease domain superfamily includes a large ...
41-51 1.03e-03

GIY-YIG nuclease domain superfamily; The GIY-YIG nuclease domain superfamily includes a large and diverse group of proteins involved in many cellular processes, such as class I homing GIY-YIG family endonucleases, prokaryotic nucleotide excision repair proteins UvrC and Cho, type II restriction enzymes, the endonuclease/reverse transcriptase of eukaryotic retrotransposable elements, and a family of eukaryotic enzymes that repair stalled replication forks. All of these members contain a conserved GIY-YIG nuclease domain that may serve as a scaffold for the coordination of a divalent metal ion required for catalysis of the phosphodiester bond cleavage. By combining with different specificity, targeting, or other domains, the GIY-YIG nucleases may perform different functions.


The actual alignment was detected with superfamily member cd10455:

Pssm-ID: 472790  Cd Length: 76  Bit Score: 36.44  E-value: 1.03e-03
                          10
                  ....*....|.
gi 1027096718  41 LQFEWAWQHPT 51
Cdd:cd10455    66 LQFEWAWQHPS 76
 
Name Accession Description Interval E-value
GIY-YIG_SLX1 cd10455
Catalytic GIY-YIG domain of yeast structure-specific endonuclease subunit SLX1 and its ...
41-51 1.03e-03

Catalytic GIY-YIG domain of yeast structure-specific endonuclease subunit SLX1 and its eukaryotic homologs; Structure-specific endonuclease subunit SLX1 is a highly conserved protein from yeast to human, with an N-terminal GIY-YIG endonuclease domain and a C-terminal PHD-type zinc finger postulated to mediate protein-protein or protein-DNA interaction. SLX1 forms active heterodimeric complexes with its SLX4 partner, which has additional roles in the DNA damage response that are distinct from the function of the heterodimeric SLX1-SLX4 nuclease. In yeast, the SLX1-SLX4 complex functions as a 5' flap endonuclease that maintains ribosomal DNA copy number, where SLX1 and SLX4 are shown to be catalytic and regulatory subunits, respectively. This endonuclease introduces single-strand cuts in duplex DNA on the 3' side of junctions with single-strand DNA. In addition to 5' flap endonuclease activity, human SLX1-SLX4 complex has been identified as a Holliday junction resolvase that promotes symmetrical cleavage of static and migrating Holliday junctions. SLX1 also associates with MUS81, EME1, C20orf94, PLK1, and ERCC1. Some eukaryotic SLX1 homologs lack the zinc finger domain, but possess intrinsically unstructured extensions of unknown function. These unstructured segments might be involved in interactions with other proteins.


Pssm-ID: 198402  Cd Length: 76  Bit Score: 36.44  E-value: 1.03e-03
                          10
                  ....*....|.
gi 1027096718  41 LQFEWAWQHPT 51
Cdd:cd10455    66 LQFEWAWQHPS 76
 
Name Accession Description Interval E-value
GIY-YIG_SLX1 cd10455
Catalytic GIY-YIG domain of yeast structure-specific endonuclease subunit SLX1 and its ...
41-51 1.03e-03

Catalytic GIY-YIG domain of yeast structure-specific endonuclease subunit SLX1 and its eukaryotic homologs; Structure-specific endonuclease subunit SLX1 is a highly conserved protein from yeast to human, with an N-terminal GIY-YIG endonuclease domain and a C-terminal PHD-type zinc finger postulated to mediate protein-protein or protein-DNA interaction. SLX1 forms active heterodimeric complexes with its SLX4 partner, which has additional roles in the DNA damage response that are distinct from the function of the heterodimeric SLX1-SLX4 nuclease. In yeast, the SLX1-SLX4 complex functions as a 5' flap endonuclease that maintains ribosomal DNA copy number, where SLX1 and SLX4 are shown to be catalytic and regulatory subunits, respectively. This endonuclease introduces single-strand cuts in duplex DNA on the 3' side of junctions with single-strand DNA. In addition to 5' flap endonuclease activity, human SLX1-SLX4 complex has been identified as a Holliday junction resolvase that promotes symmetrical cleavage of static and migrating Holliday junctions. SLX1 also associates with MUS81, EME1, C20orf94, PLK1, and ERCC1. Some eukaryotic SLX1 homologs lack the zinc finger domain, but possess intrinsically unstructured extensions of unknown function. These unstructured segments might be involved in interactions with other proteins.


Pssm-ID: 198402  Cd Length: 76  Bit Score: 36.44  E-value: 1.03e-03
                          10
                  ....*....|.
gi 1027096718  41 LQFEWAWQHPT 51
Cdd:cd10455    66 LQFEWAWQHPS 76
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH