phosphohexomutase domain-containing protein catalyzes catalyzes the reversible conversion of 1-phospho to 6-phosphohexose, with various sugars including glucose, mannose, glucosamine, and N-acetylglucosamine
The alpha-D-phosphohexomutase superfamily includes several related enzymes that catalyze a ...
1-365
0e+00
The alpha-D-phosphohexomutase superfamily includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Members of this family include the phosphoglucomutases (PGM1 and PGM2), phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). These enzymes play important and diverse roles in carbohydrate metabolism in organisms from bacteria to humans. Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model.
The actual alignment was detected with superfamily member cd03085:
Pssm-ID: 476822 [Multi-domain] Cd Length: 548 Bit Score: 757.52 E-value: 0e+00
Phosphoglucomutase 1 (PGM1) catalyzes the bidirectional interconversion of glucose-1-phosphate ...
1-365
0e+00
Phosphoglucomutase 1 (PGM1) catalyzes the bidirectional interconversion of glucose-1-phosphate (G-1-P) and glucose-6-phosphate (G-6-P) via a glucose 1,6-diphosphate intermediate, an important metabolic step in prokaryotes and eukaryotes. In one direction, G-1-P produced from sucrose catabolism is converted to G-6-P, the first intermediate in glycolysis. In the other direction, conversion of G-6-P to G-1-P generates a substrate for synthesis of UDP-glucose which is required for synthesis of a variety of cellular constituents including cell wall polymers and glycoproteins. The PGM1 family also includes a non-enzymatic PGM-related protein (PGM-RP) thought to play a structural role in eukaryotes, as well as pp63/parafusin, a phosphoglycoprotein that plays an important role in calcium-regulated exocytosis in ciliated protozoans. PGM1 belongs to the alpha-D-phosphohexomutase superfamily which includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Other members of this superfamily include phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model.
Pssm-ID: 100087 [Multi-domain] Cd Length: 548 Bit Score: 757.52 E-value: 0e+00
Phosphoglucomutase 1 (PGM1) catalyzes the bidirectional interconversion of glucose-1-phosphate ...
1-365
0e+00
Phosphoglucomutase 1 (PGM1) catalyzes the bidirectional interconversion of glucose-1-phosphate (G-1-P) and glucose-6-phosphate (G-6-P) via a glucose 1,6-diphosphate intermediate, an important metabolic step in prokaryotes and eukaryotes. In one direction, G-1-P produced from sucrose catabolism is converted to G-6-P, the first intermediate in glycolysis. In the other direction, conversion of G-6-P to G-1-P generates a substrate for synthesis of UDP-glucose which is required for synthesis of a variety of cellular constituents including cell wall polymers and glycoproteins. The PGM1 family also includes a non-enzymatic PGM-related protein (PGM-RP) thought to play a structural role in eukaryotes, as well as pp63/parafusin, a phosphoglycoprotein that plays an important role in calcium-regulated exocytosis in ciliated protozoans. PGM1 belongs to the alpha-D-phosphohexomutase superfamily which includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Other members of this superfamily include phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model.
Pssm-ID: 100087 [Multi-domain] Cd Length: 548 Bit Score: 757.52 E-value: 0e+00
The alpha-D-phosphohexomutase superfamily includes several related enzymes that catalyze a ...
2-225
2.26e-53
The alpha-D-phosphohexomutase superfamily includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Members of this family include the phosphoglucomutases (PGM1 and PGM2), phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). These enzymes play important and diverse roles in carbohydrate metabolism in organisms from bacteria to humans. Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model.
Pssm-ID: 100086 [Multi-domain] Cd Length: 355 Bit Score: 179.86 E-value: 2.26e-53
This PGM-like (phosphoglucomutase-like) protein of unknown function belongs to the ...
2-310
2.47e-42
This PGM-like (phosphoglucomutase-like) protein of unknown function belongs to the alpha-D-phosphohexomutase superfamily and is found in both archaea and bacteria. The alpha-D-phosphohexomutases include several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Other members of this superfamily include phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four structural domains (subdomains) with a centrally located active site formed by four loops, one from each subdomain. All four subdomains are included in this alignment model.
Pssm-ID: 100093 Cd Length: 461 Bit Score: 153.48 E-value: 2.47e-42
The phosphomannomutase/phosphoglucomutase (PMM/PGM) bifunctional enzyme catalyzes the ...
1-120
4.96e-13
The phosphomannomutase/phosphoglucomutase (PMM/PGM) bifunctional enzyme catalyzes the reversible conversion of 1-phospho to 6-phospho-sugars (e.g. between mannose-1-phosphate and mannose-6-phosphate or glucose-1-phosphate and glucose-6-phosphate) via a bisphosphorylated sugar intermediate. The reaction involves two phosphoryl transfers, with an intervening 180 degree reorientation of the reaction intermediate during catalysis. Reorientation of the intermediate occurs without dissociation from the active site of the enzyme and is thus, a simple example of processivity, as defined by multiple rounds of catalysis without release of substrate. Glucose-6-phosphate and glucose-1-phosphate are known to be utilized for energy metabolism and cell surface construction, respectively. PMM/PGM belongs to the alpha-D-phosphohexomutase superfamily which includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Other members of this superfamily include phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the phosphoglucomutases (PGM1 and PGM2). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model.
Pssm-ID: 100091 Cd Length: 443 Bit Score: 69.85 E-value: 4.96e-13
This archaeal PGM-like (phosphoglucomutase-like) protein of unknown function belongs to the ...
20-330
1.31e-11
This archaeal PGM-like (phosphoglucomutase-like) protein of unknown function belongs to the alpha-D-phosphohexomutase superfamily which includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. The alpha-D-phosphohexomutases include several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Members of this superfamily include the phosphoglucomutases (PGM1 and PGM2), phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model.
Pssm-ID: 100089 Cd Length: 439 Bit Score: 65.28 E-value: 1.31e-11
This PGM-like (phosphoglucomutase-like) domain is located C-terminal to a mannose-1-phosphate ...
20-161
1.41e-08
This PGM-like (phosphoglucomutase-like) domain is located C-terminal to a mannose-1-phosphate guanyltransferase domain in a protein of unknown function that is found in both prokaryotes and eukaryotes. This domain belongs to the alpha-D-phosphohexomutase superfamily which includes several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Members of this superfamily include the phosphoglucomutases (PGM1 and PGM2), phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model.
Pssm-ID: 100096 Cd Length: 445 Bit Score: 56.16 E-value: 1.41e-08
This bacterial PGM-like (phosphoglucomutase-like) protein of unknown function belongs to the ...
66-233
1.56e-07
This bacterial PGM-like (phosphoglucomutase-like) protein of unknown function belongs to the alpha-D-phosphohexomutase superfamily. The alpha-D-phosphohexomutases include several related enzymes that catalyze a reversible intramolecular phosphoryl transfer on their sugar substrates. Other members of this superfamily include phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, the bacterial phosphoglucosamine mutase GlmM, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model.
Pssm-ID: 100094 [Multi-domain] Cd Length: 522 Bit Score: 53.02 E-value: 1.56e-07
GlmM is a bacterial phosphoglucosamine mutase (PNGM) that belongs to the ...
2-223
6.66e-06
GlmM is a bacterial phosphoglucosamine mutase (PNGM) that belongs to the alpha-D-phosphohexomutase superfamily. It is required for the interconversion of glucosamine-6-phosphate and glucosamine-1-phosphate in the biosynthetic pathway of UDP-N-acetylglucosamine, an essential precursor to components of the cell envelope. In order to be active, GlmM must be phosphorylated, which can occur via autophosphorylation or by the Ser/Thr kinase StkP. GlmM functions in a classical ping-pong bi-bi mechanism with glucosamine-1,6-diphosphate as an intermediate. Other members of the alpha-D-phosphohexomutase superfamily include phosphoglucosamine mutase (PNGM), phosphoacetylglucosamine mutase (PAGM), the bacterial phosphomannomutase ManB, and the bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM). Each of these enzymes has four domains with a centrally located active site formed by four loops, one from each domain. All four domains are included in this alignment model.
Pssm-ID: 100095 Cd Length: 434 Bit Score: 47.86 E-value: 6.66e-06
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options