NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|526253092|ref|NP_001268229|]
View 

arf-GAP with GTPase, ANK repeat and PH domain-containing protein 3 isoform c [Homo sapiens]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
ArfGap_AGAP3 cd08855
ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation ...
331-439 9.07e-82

ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion.


:

Pssm-ID: 350080 [Multi-domain]  Cd Length: 110  Bit Score: 251.51  E-value: 9.07e-82
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 331 ALAVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSV 410
Cdd:cd08855    2 ALAIQSIRNVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRNLGTHLSRVRSLDLDDWPVELSMVMTAIGNAMANSV 81
                         90       100
                 ....*....|....*....|....*....
gi 526253092 411 WEGALGGYSKPGPDACREEKERWIRAKYE 439
Cdd:cd08855   82 WEGALDGYSKPGPDSTREEKERWIRAKYE 110
PH_AGAP cd01250
Arf-GAP with GTPase, ANK repeat and PH domain-containing protein Pleckstrin homology (PH) ...
173-314 6.44e-68

Arf-GAP with GTPase, ANK repeat and PH domain-containing protein Pleckstrin homology (PH) domain; AGAP (also called centaurin gamma; PIKE/Phosphatidylinositol-3-kinase enhancer) reside mainly in the nucleus and are known to activate phosphoinositide 3-kinase, a key regulator of cell proliferation, motility and vesicular trafficking. There are 3 isoforms of AGAP (PIKE-A, PIKE-L, and PIKE-S) the longest of which PIKE-L consists of N-terminal proline rich domains (PRDs), followed by a GTPase domain, a split PH domain (PHN and PHC), an ArfGAP domain and two ankyrin repeats. PIKE-S terminates after the PHN domain and PIKE-A is missing the PRD region. Centaurin binds phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 241281  Cd Length: 114  Bit Score: 215.26  E-value: 6.44e-68
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 173 RAIPIKQGILLKRSGKSLNKEWKKKYVTLCDNGLLTYHPSLHDYMQNIHGKEIDLLRTTVKVPGKRLPRATPATApgtsp 252
Cdd:cd01250    1 RAIPIKQGYLYKRSSKSLNKEWKKKYVTLCDDGRLTYHPSLHDYMENVHGKEIDLLRTTVKVPGKRPPRASSKSA----- 75
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 526253092 253 ranglsversntqlgggteaeesFEFVVVSLTGQTWHFEASTAEERELWVQSVQAQILASLQ 314
Cdd:cd01250   76 -----------------------FEFIIVSLDGKQWHFEAASSEERDEWVQAIEQQILASLQ 114
P-loop_NTPase super family cl38936
P-loop containing Nucleoside Triphosphate Hydrolases; Members of the P-loop NTPase domain ...
1-57 8.22e-35

P-loop containing Nucleoside Triphosphate Hydrolases; Members of the P-loop NTPase domain superfamily are characterized by a conserved nucleotide phosphate-binding motif, also referred to as the Walker A motif (GxxxxGK[S/T], where x is any residue), and the Walker B motif (hhhh[D/E], where h is a hydrophobic residue). The Walker A and B motifs bind the beta-gamma phosphate moiety of the bound nucleotide (typically ATP or GTP) and the Mg2+ cation, respectively. The P-loop NTPases are involved in diverse cellular functions, and they can be divided into two major structural classes: the KG (kinase-GTPase) class which includes Ras-like GTPases and its circularly permutated YlqF-like; and the ASCE (additional strand catalytic E) class which includes ATPase Binding Cassette (ABC), DExD/H-like helicases, 4Fe-4S iron sulfur cluster binding proteins of NifH family, RecA-like F1-ATPases, and ATPases Associated with a wide variety of Activities (AAA). Also included are a diverse set of nucleotide/nucleoside kinase families.


The actual alignment was detected with superfamily member cd04103:

Pssm-ID: 476819  Cd Length: 158  Bit Score: 128.77  E-value: 8.22e-35
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 526253092   1 MVLVGTQDAISAANPRVIDDSRARKLSTDLKRCTYYETCATYGLNVERVFQDVAQKV 57
Cdd:cd04103  102 LILVGTQDAISASNPRVIDDARARQLCADMKRCSYYETCATYGLNVERVFQEAAQKI 158
ANKYR COG0666
Ankyrin repeat [Signal transduction mechanisms];
458-547 2.28e-11

Ankyrin repeat [Signal transduction mechanisms];


:

Pssm-ID: 440430 [Multi-domain]  Cd Length: 289  Bit Score: 64.98  E-value: 2.28e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 458 LLRAVVEDDLRLLVMLLAHGskEEVNETygDGDGRTALHLSSAMANVVFTQLLIWYGVDVRSRDARGLTPLAYARRAGSQ 537
Cdd:COG0666   91 LHAAARNGDLEIVKLLLEAG--ADVNAR--DKDGETPLHLAAYNGNLEIVKLLLEAGADVNAQDNDGNTPLHLAAANGNL 166
                         90
                 ....*....|
gi 526253092 538 ECADILIQHG 547
Cdd:COG0666  167 EIVKLLLEAG 176
 
Name Accession Description Interval E-value
ArfGap_AGAP3 cd08855
ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation ...
331-439 9.07e-82

ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion.


Pssm-ID: 350080 [Multi-domain]  Cd Length: 110  Bit Score: 251.51  E-value: 9.07e-82
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 331 ALAVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSV 410
Cdd:cd08855    2 ALAIQSIRNVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRNLGTHLSRVRSLDLDDWPVELSMVMTAIGNAMANSV 81
                         90       100
                 ....*....|....*....|....*....
gi 526253092 411 WEGALGGYSKPGPDACREEKERWIRAKYE 439
Cdd:cd08855   82 WEGALDGYSKPGPDSTREEKERWIRAKYE 110
PH_AGAP cd01250
Arf-GAP with GTPase, ANK repeat and PH domain-containing protein Pleckstrin homology (PH) ...
173-314 6.44e-68

Arf-GAP with GTPase, ANK repeat and PH domain-containing protein Pleckstrin homology (PH) domain; AGAP (also called centaurin gamma; PIKE/Phosphatidylinositol-3-kinase enhancer) reside mainly in the nucleus and are known to activate phosphoinositide 3-kinase, a key regulator of cell proliferation, motility and vesicular trafficking. There are 3 isoforms of AGAP (PIKE-A, PIKE-L, and PIKE-S) the longest of which PIKE-L consists of N-terminal proline rich domains (PRDs), followed by a GTPase domain, a split PH domain (PHN and PHC), an ArfGAP domain and two ankyrin repeats. PIKE-S terminates after the PHN domain and PIKE-A is missing the PRD region. Centaurin binds phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241281  Cd Length: 114  Bit Score: 215.26  E-value: 6.44e-68
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 173 RAIPIKQGILLKRSGKSLNKEWKKKYVTLCDNGLLTYHPSLHDYMQNIHGKEIDLLRTTVKVPGKRLPRATPATApgtsp 252
Cdd:cd01250    1 RAIPIKQGYLYKRSSKSLNKEWKKKYVTLCDDGRLTYHPSLHDYMENVHGKEIDLLRTTVKVPGKRPPRASSKSA----- 75
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 526253092 253 ranglsversntqlgggteaeesFEFVVVSLTGQTWHFEASTAEERELWVQSVQAQILASLQ 314
Cdd:cd01250   76 -----------------------FEFIIVSLDGKQWHFEAASSEERDEWVQAIEQQILASLQ 114
ArfGap pfam01412
Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating ...
333-446 1.66e-50

Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 460200 [Multi-domain]  Cd Length: 117  Bit Score: 169.71  E-value: 1.66e-50
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092  333 AVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWE 412
Cdd:pfam01412   3 VLRELLKLPGNKVCADCGAPNPTWASVNLGIFICIDCSGVHRSLGVHISKVRSLTLDTWTDEQLELMKAGGNDRANEFWE 82
                          90       100       110
                  ....*....|....*....|....*....|....
gi 526253092  413 GALGGYSKPGPDACREEKERWIRAKYEQKLFLAP 446
Cdd:pfam01412  83 ANLPPSYKPPPSSDREKRESFIRAKYVEKKFAKP 116
ArfGap smart00105
Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with ...
335-451 5.25e-49

Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 214518 [Multi-domain]  Cd Length: 119  Bit Score: 165.98  E-value: 5.25e-49
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092   335 QAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGA 414
Cdd:smart00105   2 KLLRSIPGNKKCFDCGAPNPTWASVNLGVFLCIECSGIHRSLGVHISKVRSLTLDTWTEEELRLLQKGGNENANSIWESN 81
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 526253092   415 LG-GYSKPGPDACREEKERWIRAKYEQKLFLAPLPSSD 451
Cdd:smart00105  82 LDdFSLKPPDDDDQQKYESFIAAKYEEKLFVPPESAEE 119
Centaurin_gamma cd04103
Centaurin gamma (CENTG) GTPase; The centaurins (alpha, beta, gamma, and delta) are large, ...
1-57 8.22e-35

Centaurin gamma (CENTG) GTPase; The centaurins (alpha, beta, gamma, and delta) are large, multi-domain proteins that all contain an ArfGAP domain and ankyrin repeats, and in some cases, numerous additional domains. Centaurin gamma contains an additional GTPase domain near its N-terminus. The specific function of this GTPase domain has not been well characterized, but centaurin gamma 2 (CENTG2) may play a role in the development of autism. Centaurin gamma 1 is also called PIKE (phosphatidyl inositol (PI) 3-kinase enhancer) and centaurin gamma 2 is also known as AGAP (ArfGAP protein with a GTPase-like domain, ankyrin repeats and a Pleckstrin homology domain) or GGAP. Three isoforms of PIKE have been identified. PIKE-S (short) and PIKE-L (long) are brain-specific isoforms, with PIKE-S restricted to the nucleus and PIKE-L found in multiple cellular compartments. A third isoform, PIKE-A was identified in human glioblastoma brain cancers and has been found in various tissues. GGAP has been shown to have high GTPase activity due to a direct intramolecular interaction between the N-terminal GTPase domain and the C-terminal ArfGAP domain. In human tissue, AGAP mRNA was detected in skeletal muscle, kidney, placenta, brain, heart, colon, and lung. Reduced expression levels were also observed in the spleen, liver, and small intestine.


Pssm-ID: 133303  Cd Length: 158  Bit Score: 128.77  E-value: 8.22e-35
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 526253092   1 MVLVGTQDAISAANPRVIDDSRARKLSTDLKRCTYYETCATYGLNVERVFQDVAQKV 57
Cdd:cd04103  102 LILVGTQDAISASNPRVIDDARARQLCADMKRCSYYETCATYGLNVERVFQEAAQKI 158
COG5347 COG5347
GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ...
326-510 1.29e-29

GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion];


Pssm-ID: 227651 [Multi-domain]  Cd Length: 319  Bit Score: 119.11  E-value: 1.29e-29
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 326 GNQNAALAVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNA 405
Cdd:COG5347    3 TKSEDRKLLKLLKSDSSNKKCADCGAPNPTWASVNLGVFLCIDCAGVHRSLGVHISKVKSLTLDNWTEEELRRMEVGGNS 82
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 406 LANSVWEG----ALGGYSKPGPDAcrEEKERWIRAKYEQKLFL----APLPSSDVPLGQQLLRAVVEDDLRLL-----VM 472
Cdd:COG5347   83 NANRFYEKnlldQLLLPIKAKYDS--SVAKKYIRKKYELKKFIddssSPSDFSSFSASSTRTVDSVDDRLDSEsqsrsSS 160
                        170       180       190       200
                 ....*....|....*....|....*....|....*....|....
gi 526253092 473 LLAHGSKEEVNETYGDGDGRTALHL------SSAMANVVFTQLL 510
Cdd:COG5347  161 ASLGNSNRPDDELNVESFQSTGSKPrsltstKSNKDNLLNSELL 204
PLN03114 PLN03114
ADP-ribosylation factor GTPase-activating protein AGD10; Provisional
327-455 5.33e-18

ADP-ribosylation factor GTPase-activating protein AGD10; Provisional


Pssm-ID: 178661 [Multi-domain]  Cd Length: 395  Bit Score: 86.45  E-value: 5.33e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 327 NQNAALAV-QAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNA 405
Cdd:PLN03114   5 NLNDKISVfKKLKAKSDNKICFDCNAKNPTWASVTYGIFLCIDCSAVHRSLGVHISFVRSTNLDSWSSEQLKMMIYGGNN 84
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 526253092 406 LANSVWEG---ALGG-----YSKPGPDACREEKERWI-RAKYEQKLFLAPLP--SSDVPLG 455
Cdd:PLN03114  85 RAQVFFKQygwSDGGkteakYTSRAADLYKQILAKEVaKSKAEEELDLPPSPpdSTQVPNG 145
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
176-309 2.25e-12

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 63.34  E-value: 2.25e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092   176 PIKQGILLKRSGKSlNKEWKKKYVTLCdNGLLTYHPSLHDYMQNIHGKEIDLLRTTVKVPGKrlpratpatapgtspran 255
Cdd:smart00233   1 VIKEGWLYKKSGGG-KKSWKKRYFVLF-NSTLLYYKSKKDKKSYKPKGSIDLSGCTVREAPD------------------ 60
                           90       100       110       120       130
                   ....*....|....*....|....*....|....*....|....*....|....
gi 526253092   256 glsversntqlggGTEAEESFEFVVVSLTGQTWHFEASTAEERELWVQSVQAQI 309
Cdd:smart00233  61 -------------PDSSKKPHCFEIKTSDRKTLLLQAESEEEREKWVEALRKAI 101
ANKYR COG0666
Ankyrin repeat [Signal transduction mechanisms];
458-547 2.28e-11

Ankyrin repeat [Signal transduction mechanisms];


Pssm-ID: 440430 [Multi-domain]  Cd Length: 289  Bit Score: 64.98  E-value: 2.28e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 458 LLRAVVEDDLRLLVMLLAHGskEEVNETygDGDGRTALHLSSAMANVVFTQLLIWYGVDVRSRDARGLTPLAYARRAGSQ 537
Cdd:COG0666   91 LHAAARNGDLEIVKLLLEAG--ADVNAR--DKDGETPLHLAAYNGNLEIVKLLLEAGADVNAQDNDGNTPLHLAAANGNL 166
                         90
                 ....*....|
gi 526253092 538 ECADILIQHG 547
Cdd:COG0666  167 EIVKLLLEAG 176
Ank_2 pfam12796
Ankyrin repeats (3 copies);
458-548 2.37e-09

Ankyrin repeats (3 copies);


Pssm-ID: 463710 [Multi-domain]  Cd Length: 91  Bit Score: 54.35  E-value: 2.37e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092  458 LLRAVVEDDLRLLVMLLAHGSKEEVNetygDGDGRTALHLSSAMANVVFTQLLIWYgVDVRSRDaRGLTPLAYARRAGSQ 537
Cdd:pfam12796   1 LHLAAKNGNLELVKLLLENGADANLQ----DKNGRTALHLAAKNGHLEIVKLLLEH-ADVNLKD-NGRTALHYAARSGHL 74
                          90
                  ....*....|.
gi 526253092  538 ECADILIQHGC 548
Cdd:pfam12796  75 EIVKLLLEKGA 85
PH pfam00169
PH domain; PH stands for pleckstrin homology.
176-309 1.30e-08

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 52.95  E-value: 1.30e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092  176 PIKQGILLKRSGKsLNKEWKKKYVTLCDNGLLTYHPSLHDYMQNIHGKeIDLLRTTVKVPGkrlpratpatAPGTSPRAN 255
Cdd:pfam00169   1 VVKEGWLLKKGGG-KKKSWKKRYFVLFDGSLLYYKDDKSGKSKEPKGS-ISLSGCEVVEVV----------ASDSPKRKF 68
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 526253092  256 glsversntqlgggteaeeSFEFVVVSLTG-QTWHFEASTAEERELWVQSVQAQI 309
Cdd:pfam00169  69 -------------------CFELRTGERTGkRTYLLQAESEEERKDWIKAIQSAI 104
PTZ00322 PTZ00322
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase; Provisional
488-569 1.42e-05

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase; Provisional


Pssm-ID: 140343 [Multi-domain]  Cd Length: 664  Bit Score: 47.97  E-value: 1.42e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 488 DGDGRTALHLSSAMANVVFTQLLIWYGVDVRSRDARGLTPLAYARRAGSQECADILIQH----------GCPGEGCGLAP 557
Cdd:PTZ00322 112 DYDGRTPLHIACANGHVQVVRVLLEFGADPTLLDKDGKTPLELAEENGFREVVQLLSRHsqchfelganAKPDSFTGKPP 191
                         90
                 ....*....|..
gi 526253092 558 TPNREPANGTNP 569
Cdd:PTZ00322 192 SLEDSPISSHHP 203
TRPV5-6 cd22192
Transient Receptor Potential channel, Vanilloid subfamily (TRPV), types 5 and 6; TRPV5 and ...
448-547 6.83e-04

Transient Receptor Potential channel, Vanilloid subfamily (TRPV), types 5 and 6; TRPV5 and TRPV6 (TRPV5/6) are two homologous members within the vanilloid subfamily of the transient receptor potential (TRP) family. TRPV5 and TRPV6 show only 30-40% homology with other members of the TRP family and have unique properties that differentiates them from other TRP channels. They mediate calcium uptake in epithelia and their expression is dramatically increased in numerous types of cancer. The structure of TRPV5/6 shows the typical topology features of all TRP family members, such as six transmembrane regions, a short hydrophobic stretch between transmembrane segments 5 and 6, which is predicted to form the Ca2+ pore, and large intracellular N- and C-terminal domains. The N-terminal domain of TRPV5/6 contains three ankyrin repeats. This structural element is present in several proteins and plays a role in protein-protein interactions. The N- and C-terminal tails of TRPV5/6 each contain an internal PDZ motif which can function as part of a molecular scaffold via interaction with PDZ-domain containing proteins. A major difference between the properties of TRPV5 and TRPV6 is in their tissue distribution: TRPV5 is predominantly expressed in the distal convoluted tubules (DCT) and connecting tubules (CNT) of the kidney, with limited expression in extrarenal tissues. In contrast, TRPV6 has a broader expression pattern such as expression in the intestine, kidney, placenta, epididymis, exocrine tissues, and a few other tissues.


Pssm-ID: 411976 [Multi-domain]  Cd Length: 609  Bit Score: 42.69  E-value: 6.83e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 448 PSSDV----PLGQQLLRAVVEDDLRLLVMLLAHGSKEEVNE--TYGDGDGRTALHLSSAMANVVFTQLLIWYGVDVRSRD 521
Cdd:cd22192   40 PSCDLfqrgALGETALHVAALYDNLEAAVVLMEAAPELVNEpmTSDLYQGETALHIAVVNQNLNLVRELIARGADVVSPR 119
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|
gi 526253092 522 ARGLT--------------PLAYARRAGSQECADILIQHG 547
Cdd:cd22192  120 ATGTFfrpgpknliyygehPLSFAACVGNEEIVRLLIEHG 159
RAB smart00175
Rab subfamily of small GTPases; Rab GTPases are implicated in vesicle trafficking.
2-60 3.90e-03

Rab subfamily of small GTPases; Rab GTPases are implicated in vesicle trafficking.


Pssm-ID: 197555 [Multi-domain]  Cd Length: 164  Bit Score: 38.26  E-value: 3.90e-03
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*....
gi 526253092     2 VLVGTQdaISAANPRVIDDSRARKLSTDLKrCTYYETCATYGLNVERVFQDVAQKVVAL 60
Cdd:smart00175 109 MLVGNK--SDLEEQRQVSREEAEAFAEEHG-LPFFETSAKTNTNVEEAFEELAREILKR 164
 
Name Accession Description Interval E-value
ArfGap_AGAP3 cd08855
ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation ...
331-439 9.07e-82

ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion.


Pssm-ID: 350080 [Multi-domain]  Cd Length: 110  Bit Score: 251.51  E-value: 9.07e-82
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 331 ALAVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSV 410
Cdd:cd08855    2 ALAIQSIRNVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRNLGTHLSRVRSLDLDDWPVELSMVMTAIGNAMANSV 81
                         90       100
                 ....*....|....*....|....*....
gi 526253092 411 WEGALGGYSKPGPDACREEKERWIRAKYE 439
Cdd:cd08855   82 WEGALDGYSKPGPDSTREEKERWIRAKYE 110
ArfGap_AGAP cd08836
ArfGAP with GTPase domain, ANK repeat and PH domains; The AGAP subfamily of ADP-ribosylation ...
333-439 2.34e-79

ArfGAP with GTPase domain, ANK repeat and PH domains; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350065 [Multi-domain]  Cd Length: 108  Bit Score: 244.89  E-value: 2.34e-79
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 333 AVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWE 412
Cdd:cd08836    2 ALQAIRNVRGNDHCVDCGAPNPDWASLNLGALMCIECSGIHRNLGTHISRVRSLDLDDWPVELLKVMSAIGNDLANSVWE 81
                         90       100
                 ....*....|....*....|....*..
gi 526253092 413 GALGGYSKPGPDACREEKERWIRAKYE 439
Cdd:cd08836   82 GNTQGRTKPTPDSSREEKERWIRAKYE 108
PH_AGAP cd01250
Arf-GAP with GTPase, ANK repeat and PH domain-containing protein Pleckstrin homology (PH) ...
173-314 6.44e-68

Arf-GAP with GTPase, ANK repeat and PH domain-containing protein Pleckstrin homology (PH) domain; AGAP (also called centaurin gamma; PIKE/Phosphatidylinositol-3-kinase enhancer) reside mainly in the nucleus and are known to activate phosphoinositide 3-kinase, a key regulator of cell proliferation, motility and vesicular trafficking. There are 3 isoforms of AGAP (PIKE-A, PIKE-L, and PIKE-S) the longest of which PIKE-L consists of N-terminal proline rich domains (PRDs), followed by a GTPase domain, a split PH domain (PHN and PHC), an ArfGAP domain and two ankyrin repeats. PIKE-S terminates after the PHN domain and PIKE-A is missing the PRD region. Centaurin binds phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241281  Cd Length: 114  Bit Score: 215.26  E-value: 6.44e-68
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 173 RAIPIKQGILLKRSGKSLNKEWKKKYVTLCDNGLLTYHPSLHDYMQNIHGKEIDLLRTTVKVPGKRLPRATPATApgtsp 252
Cdd:cd01250    1 RAIPIKQGYLYKRSSKSLNKEWKKKYVTLCDDGRLTYHPSLHDYMENVHGKEIDLLRTTVKVPGKRPPRASSKSA----- 75
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 526253092 253 ranglsversntqlgggteaeesFEFVVVSLTGQTWHFEASTAEERELWVQSVQAQILASLQ 314
Cdd:cd01250   76 -----------------------FEFIIVSLDGKQWHFEAASSEERDEWVQAIEQQILASLQ 114
ArfGap_AGAP2 cd08853
ArfGAP with GTPase domain, ANK repeat and PH domain 2; The AGAP subfamily of ADP-ribosylation ...
331-439 2.51e-63

ArfGAP with GTPase domain, ANK repeat and PH domain 2; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350078 [Multi-domain]  Cd Length: 109  Bit Score: 203.32  E-value: 2.51e-63
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 331 ALAVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSV 410
Cdd:cd08853    1 AMALQSIRNMRGNSHCVDCETQNPKWASLNLGVLMCIECSGIHRNLGTHLSRVRSLDLDDWPVELRKVMSSIGNELANSI 80
                         90       100
                 ....*....|....*....|....*....
gi 526253092 411 WEGALGGYSKPGPDACREEKERWIRAKYE 439
Cdd:cd08853   81 WEGSSQGQTKPSSDSTREEKERWIRAKYE 109
ArfGap_AGAP1 cd08854
ArfGAP with GTPase domain, ANK repeat and PH domain 1; The AGAP subfamily of ADP-ribosylation ...
331-439 7.98e-59

ArfGAP with GTPase domain, ANK repeat and PH domain 1; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350079 [Multi-domain]  Cd Length: 109  Bit Score: 191.38  E-value: 7.98e-59
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 331 ALAVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSV 410
Cdd:cd08854    1 AVAIQAIRNAKGNSLCVDCGAPNPTWASLNLGALICIECSGIHRNLGTHLSRVRSLDLDDWPRELTLVLTAIGNHMANSI 80
                         90       100
                 ....*....|....*....|....*....
gi 526253092 411 WEGALGGYSKPGPDACREEKERWIRAKYE 439
Cdd:cd08854   81 WESCTQGRTKPAPDSSREERESWIRAKYE 109
ArfGap cd08204
GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs); ArfGAPs are a family ...
334-438 3.40e-54

GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs); ArfGAPs are a family of proteins containing an ArfGAP catalytic domain that induces the hydrolysis of GTP bound to the small guanine nucleotide-binding protein Arf, a member of the Ras superfamily of GTPases. Like all GTP-binding proteins, Arf proteins function as molecular switches, cycling between GTP (active-membrane bound) and GDP (inactive-cytosolic) form. Conversion to the GTP-bound form requires a guanine nucleotide exchange factor (GEF), whereas conversion to the GDP-bound form is catalyzed by a GTPase activating protein (GAP). In that sense, ArfGAPs were originally proposed to function as terminators of Arf signaling, which is mediated by regulating Arf family GTP-binding proteins. However, recent studies suggest that ArfGAPs can also function as Arf effectors, independently of their GAP enzymatic activity to transduce signals in cells. The ArfGAP domain contains a C4-type zinc finger motif and a conserved arginine that is required for activity, within a specific spacing (CX2CX16CX2CX4R). ArfGAPs, which have multiple functional domains, regulate the membrane trafficking and actin cytoskeleton remodeling via specific interactions with signaling lipids such as phosphoinositides and trafficking proteins, which consequently affect cellular events such as cell growth, migration, and cancer invasion. The ArfGAP family, which includes 31 human ArfGAP-domain containing proteins, is divided into 10 subfamilies based on domain structure and sequence similarity. The ArfGAP nomenclature is mainly based on the protein domain structure. For example, ASAP1 contains ArfGAP, SH3, ANK repeat and PH domains; ARAPs contain ArfGAP, Rho GAP, ANK repeat and PH domains; ACAPs contain ArfGAP, BAR (coiled coil), ANK repeat and PH domains; and AGAPs contain Arf GAP, GTP-binding protein-like, ANK repeat and PH domains. Furthermore, the ArfGAPs can be classified into two major types of subfamilies, according to the overall domain structure: the ArfGAP1 type includes 6 subfamilies (ArfGAP1, ArfGAP2/3, ADAP, SMAP, AGFG, and GIT), which contain the ArfGAP domain at the N-terminus of the protein; and the AZAP type includes 4 subfamilies (ASAP, ACAP, AGAP, and ARAP), which contain an ArfGAP domain between the PH and ANK repeat domains.


Pssm-ID: 350058 [Multi-domain]  Cd Length: 106  Bit Score: 179.23  E-value: 3.40e-54
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 334 VQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEG 413
Cdd:cd08204    1 LEELLKLPGNKVCADCGAPDPRWASINLGVFICIRCSGIHRSLGVHISKVRSLTLDSWTPEQVELMKAIGNARANAYYEA 80
                         90       100
                 ....*....|....*....|....*.
gi 526253092 414 ALG-GYSKPGPDACREEKERWIRAKY 438
Cdd:cd08204   81 NLPpGFKKPTPDSSDEEREQFIRAKY 106
ArfGap pfam01412
Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating ...
333-446 1.66e-50

Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 460200 [Multi-domain]  Cd Length: 117  Bit Score: 169.71  E-value: 1.66e-50
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092  333 AVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWE 412
Cdd:pfam01412   3 VLRELLKLPGNKVCADCGAPNPTWASVNLGIFICIDCSGVHRSLGVHISKVRSLTLDTWTDEQLELMKAGGNDRANEFWE 82
                          90       100       110
                  ....*....|....*....|....*....|....
gi 526253092  413 GALGGYSKPGPDACREEKERWIRAKYEQKLFLAP 446
Cdd:pfam01412  83 ANLPPSYKPPPSSDREKRESFIRAKYVEKKFAKP 116
ArfGap smart00105
Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with ...
335-451 5.25e-49

Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 214518 [Multi-domain]  Cd Length: 119  Bit Score: 165.98  E-value: 5.25e-49
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092   335 QAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGA 414
Cdd:smart00105   2 KLLRSIPGNKKCFDCGAPNPTWASVNLGVFLCIECSGIHRSLGVHISKVRSLTLDTWTEEELRLLQKGGNENANSIWESN 81
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 526253092   415 LG-GYSKPGPDACREEKERWIRAKYEQKLFLAPLPSSD 451
Cdd:smart00105  82 LDdFSLKPPDDDDQQKYESFIAAKYEEKLFVPPESAEE 119
ArfGap_ACAP cd08835
ArfGAP domain of ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domains) proteins; ArfGAP ...
333-444 4.82e-46

ArfGAP domain of ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domains) proteins; ArfGAP domain is an essential part of ACAP proteins that play important role in endocytosis, actin remodeling and receptor tyrosine kinase-dependent cell movement. ACAP subfamily of ArfGAPs are composed of coiled coils (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. In addition, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350064 [Multi-domain]  Cd Length: 116  Bit Score: 157.81  E-value: 4.82e-46
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 333 AVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWE 412
Cdd:cd08835    3 ALEQVLSVPGNAQCCDCGSPDPRWASINLGVTLCIECSGIHRSLGVHVSKVRSLTLDSWEPELLKVMLELGNDVVNRIYE 82
                         90       100       110
                 ....*....|....*....|....*....|....
gi 526253092 413 GALGGYS--KPGPDACREEKERWIRAKYEQKLFL 444
Cdd:cd08835   83 ANVPDDGsvKPTPDSSRQEREAWIRAKYVEKKFV 116
ArfGap_ACAP3 cd08850
ArfGAP domain of ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domains 3); ACAP3 belongs ...
334-444 1.48e-43

ArfGAP domain of ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domains 3); ACAP3 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. It has been shown that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) also have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages.


Pssm-ID: 350075 [Multi-domain]  Cd Length: 116  Bit Score: 151.25  E-value: 1.48e-43
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 334 VQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEG 413
Cdd:cd08850    4 LQRVQSIAGNDQCCDCGQPDPRWASINLGILLCIECSGIHRSLGVHCSKVRSLTLDSWEPELLKLMCELGNSTVNQIYEA 83
                         90       100       110
                 ....*....|....*....|....*....|...
gi 526253092 414 AL--GGYSKPGPDACREEKERWIRAKYEQKLFL 444
Cdd:cd08850   84 QCeeLGLKKPTASSSRQDKEAWIKAKYVEKKFL 116
ArfGap_ACAP1 cd08852
ArfGAP domain of ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domains 1); ACAP1 belongs ...
333-448 6.32e-42

ArfGAP domain of ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domains 1); ACAP1 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350077 [Multi-domain]  Cd Length: 120  Bit Score: 147.03  E-value: 6.32e-42
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 333 AVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWE 412
Cdd:cd08852    3 AVAQVQSVDGNAQCCDCREPAPEWASINLGVTLCIQCSGIHRSLGVHFSKVRSLTLDSWEPELVKLMCELGNVIINQIYE 82
                         90       100       110
                 ....*....|....*....|....*....|....*...
gi 526253092 413 GALGGYS--KPGPDACREEKERWIRAKYEQKLFLAPLP 448
Cdd:cd08852   83 ARIEAMAikKPGPSSSRQEKEAWIRAKYVEKKFITKLP 120
ArfGap_ACAP2 cd08851
ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs ...
333-444 2.39e-39

ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350076 [Multi-domain]  Cd Length: 116  Bit Score: 139.73  E-value: 2.39e-39
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 333 AVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWE 412
Cdd:cd08851    3 ALQRVQCIPGNASCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRIYE 82
                         90       100       110
                 ....*....|....*....|....*....|....
gi 526253092 413 GALG--GYSKPGPDACREEKERWIRAKYEQKLFL 444
Cdd:cd08851   83 ARVEkmGAKKPQPGGQRQEKEAYIRAKYVERKFV 116
ArfGap_ADAP cd08832
ArfGap with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) ...
342-438 4.32e-39

ArfGap with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350061 [Multi-domain]  Cd Length: 113  Bit Score: 138.93  E-value: 4.32e-39
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 342 GNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGAL-GGYSK 420
Cdd:cd08832   16 GNNTCADCGAPDPEWASYNLGVFICLDCSGIHRSLGTHISKVKSLRLDNWDDSQVEFMEENGNEKAKAKYEAHVpAFYRR 95
                         90
                 ....*....|....*...
gi 526253092 421 PGPDACREEKERWIRAKY 438
Cdd:cd08832   96 PTPTDPQVLREQWIRAKY 113
ArfGap_ASAP cd08834
ArfGAP domain of ASAP (Arf GAP, SH3, ANK repeat and PH domains) subfamily of ADP-ribosylation ...
334-443 1.74e-38

ArfGAP domain of ASAP (Arf GAP, SH3, ANK repeat and PH domains) subfamily of ADP-ribosylation factor GTPase-activating proteins; The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. Both ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350063 [Multi-domain]  Cd Length: 117  Bit Score: 137.35  E-value: 1.74e-38
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 334 VQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEG 413
Cdd:cd08834    6 IAEVKRLPGNDVCCDCGSPDPTWLSTNLGILTCIECSGVHRELGVHVSRIQSLTLDNLGTSELLLARNLGNEGFNEIMEA 85
                         90       100       110
                 ....*....|....*....|....*....|
gi 526253092 414 ALGGYSKPGPDACREEKERWIRAKYEQKLF 443
Cdd:cd08834   86 NLPPGYKPTPNSDMEERKDFIRAKYVEKKF 115
ArfGap_SMAP cd08839
Stromal membrane-associated proteins; a subfamily of the ArfGAP family; The SMAP subfamily of ...
342-438 3.03e-36

Stromal membrane-associated proteins; a subfamily of the ArfGAP family; The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not.


Pssm-ID: 350068 [Multi-domain]  Cd Length: 103  Bit Score: 130.85  E-value: 3.03e-36
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 342 GNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGAL-GGYSK 420
Cdd:cd08839    9 DNKYCADCGAKGPRWASWNLGVFICIRCAGIHRNLGVHISKVKSVNLDSWTPEQVQSMQEMGNARANAYYEANLpDGFRR 88
                         90
                 ....*....|....*...
gi 526253092 421 PGPDAcreEKERWIRAKY 438
Cdd:cd08839   89 PQTDS---ALENFIRDKY 103
Centaurin_gamma cd04103
Centaurin gamma (CENTG) GTPase; The centaurins (alpha, beta, gamma, and delta) are large, ...
1-57 8.22e-35

Centaurin gamma (CENTG) GTPase; The centaurins (alpha, beta, gamma, and delta) are large, multi-domain proteins that all contain an ArfGAP domain and ankyrin repeats, and in some cases, numerous additional domains. Centaurin gamma contains an additional GTPase domain near its N-terminus. The specific function of this GTPase domain has not been well characterized, but centaurin gamma 2 (CENTG2) may play a role in the development of autism. Centaurin gamma 1 is also called PIKE (phosphatidyl inositol (PI) 3-kinase enhancer) and centaurin gamma 2 is also known as AGAP (ArfGAP protein with a GTPase-like domain, ankyrin repeats and a Pleckstrin homology domain) or GGAP. Three isoforms of PIKE have been identified. PIKE-S (short) and PIKE-L (long) are brain-specific isoforms, with PIKE-S restricted to the nucleus and PIKE-L found in multiple cellular compartments. A third isoform, PIKE-A was identified in human glioblastoma brain cancers and has been found in various tissues. GGAP has been shown to have high GTPase activity due to a direct intramolecular interaction between the N-terminal GTPase domain and the C-terminal ArfGAP domain. In human tissue, AGAP mRNA was detected in skeletal muscle, kidney, placenta, brain, heart, colon, and lung. Reduced expression levels were also observed in the spleen, liver, and small intestine.


Pssm-ID: 133303  Cd Length: 158  Bit Score: 128.77  E-value: 8.22e-35
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 526253092   1 MVLVGTQDAISAANPRVIDDSRARKLSTDLKRCTYYETCATYGLNVERVFQDVAQKV 57
Cdd:cd04103  102 LILVGTQDAISASNPRVIDDARARQLCADMKRCSYYETCATYGLNVERVFQEAAQKI 158
ArfGap_ARAP cd08837
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing proteins; The ARAP subfamily ...
334-443 6.62e-32

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing proteins; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics.


Pssm-ID: 350066 [Multi-domain]  Cd Length: 116  Bit Score: 119.40  E-value: 6.62e-32
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 334 VQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDD--WPPELLAVMTAMGNALANSVW 411
Cdd:cd08837    4 AEKIWSNPANRFCADCGAPDPDWASINLCVVICKQCAGEHRSLGSNISKVRSLKMDTkvWTEELVELFLKLGNDRANRFW 83
                         90       100       110
                 ....*....|....*....|....*....|....*.
gi 526253092 412 EGALggysKPG----PDACREEKERWIRAKYEQKLF 443
Cdd:cd08837   84 AANL----PPSealhPDADSEQRREFITAKYREGKY 115
ArfGap_GIT cd08833
The GIT subfamily of ADP-ribosylation factor GTPase-activating proteins; The GIT (G-protein ...
337-438 8.59e-31

The GIT subfamily of ADP-ribosylation factor GTPase-activating proteins; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350062 [Multi-domain]  Cd Length: 109  Bit Score: 115.86  E-value: 8.59e-31
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 337 VRTVRGNSF-CIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGAL 415
Cdd:cd08833    1 IRGKSSNARvCADCSAPDPEWASINRGVLICDECCSIHRSLGRHISQVKSLRKDQWPPSLLEMVQTLGNNGANSIWEHSL 80
                         90       100
                 ....*....|....*....|....*....
gi 526253092 416 GGYS------KPGPDACREEKERWIRAKY 438
Cdd:cd08833   81 LDPSqsgkrkPIPPDPVHPTKEEFIKAKY 109
COG5347 COG5347
GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ...
326-510 1.29e-29

GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion];


Pssm-ID: 227651 [Multi-domain]  Cd Length: 319  Bit Score: 119.11  E-value: 1.29e-29
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 326 GNQNAALAVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNA 405
Cdd:COG5347    3 TKSEDRKLLKLLKSDSSNKKCADCGAPNPTWASVNLGVFLCIDCAGVHRSLGVHISKVKSLTLDNWTEEELRRMEVGGNS 82
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 406 LANSVWEG----ALGGYSKPGPDAcrEEKERWIRAKYEQKLFL----APLPSSDVPLGQQLLRAVVEDDLRLL-----VM 472
Cdd:COG5347   83 NANRFYEKnlldQLLLPIKAKYDS--SVAKKYIRKKYELKKFIddssSPSDFSSFSASSTRTVDSVDDRLDSEsqsrsSS 160
                        170       180       190       200
                 ....*....|....*....|....*....|....*....|....
gi 526253092 473 LLAHGSKEEVNETYGDGDGRTALHL------SSAMANVVFTQLL 510
Cdd:COG5347  161 ASLGNSNRPDDELNVESFQSTGSKPrsltstKSNKDNLLNSELL 204
ArfGap_ArfGap1 cd08830
Arf1 GTPase-activating protein 1; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
335-412 3.80e-29

Arf1 GTPase-activating protein 1; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350059 [Multi-domain]  Cd Length: 115  Bit Score: 111.44  E-value: 3.80e-29
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 526253092 335 QAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWE 412
Cdd:cd08830    6 RELQKLPGNNRCFDCGAPNPQWASVSYGIFICLECSGVHRGLGVHISFVRSITMDSWSEKQLKKMELGGNAKLREFFE 83
ArfGap_ArfGap1_like cd08959
ARF1 GTPase-activating protein 1-like; ArfGAP (ADP Ribosylation Factor GTPase Activating ...
335-408 2.10e-28

ARF1 GTPase-activating protein 1-like; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350084 [Multi-domain]  Cd Length: 115  Bit Score: 109.52  E-value: 2.10e-28
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 526253092 335 QAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALAN 408
Cdd:cd08959    6 KKLRSKPENKVCFDCGAKNPQWASVTYGIFICLDCSGVHRGLGVHISFVRSTTMDKWTEEQLRKMKVGGNANAR 79
ArfGap_SMAP2 cd08859
Stromal membrane-associated protein 2; a subfamily of the ArfGAP family; The SMAP subfamily of ...
343-441 7.47e-28

Stromal membrane-associated protein 2; a subfamily of the ArfGAP family; The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not.


Pssm-ID: 350083 [Multi-domain]  Cd Length: 107  Bit Score: 107.77  E-value: 7.47e-28
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 343 NSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGAL-GGYSKP 421
Cdd:cd08859   10 NKFCADCQSKGPRWASWNIGVFICIRCAGIHRNLGVHISRVKSVNLDQWTQEQIQCMQEMGNGKANRLYEAFLpENFRRP 89
                         90       100
                 ....*....|....*....|
gi 526253092 422 GPDacrEEKERWIRAKYEQK 441
Cdd:cd08859   90 QTD---QAVEGFIRDKYEKK 106
ArfGap_ArfGap2_3_like cd08831
Arf1 GTPase-activating protein 2/3-like; ArfGAP (ADP Ribosylation Factor GTPase Activating ...
334-412 2.17e-27

Arf1 GTPase-activating protein 2/3-like; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350060 [Multi-domain]  Cd Length: 116  Bit Score: 106.48  E-value: 2.17e-27
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 526253092 334 VQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWE 412
Cdd:cd08831    6 FKKLRSKPENKVCFDCGAKNPTWASVTFGVFLCLDCSGVHRSLGVHISFVRSTNLDSWTPEQLRRMKVGGNAKAREFFK 84
ArfGap_ADAP1 cd08843
ADAP1 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
342-438 5.77e-27

ADAP1 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350069 [Multi-domain]  Cd Length: 112  Bit Score: 105.47  E-value: 5.77e-27
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 342 GNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLgAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGALGG-YSK 420
Cdd:cd08843   16 GNARCADCGAPDPDWASYTLGVFICLSCSGIHRNI-PQVSKVKSVRLDAWEEAQVEFMASHGNDAARARFESKVPSfYYR 94
                         90
                 ....*....|....*...
gi 526253092 421 PGPDACREEKERWIRAKY 438
Cdd:cd08843   95 PTPSDCQLLREQWIRAKY 112
ArfGap_ASAP1 cd08848
ArfGAP domain of ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain-containing protein 1); ...
334-443 1.94e-26

ArfGAP domain of ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain-containing protein 1); The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350073 [Multi-domain]  Cd Length: 122  Bit Score: 104.35  E-value: 1.94e-26
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 334 VQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEG 413
Cdd:cd08848    6 IDDVQRLPGNEVCCDCGSPDPTWLSTNLGILTCIECSGIHREMGVHISRIQSLELDKLGTSELLLAKNVGNNSFNDIMEG 85
                         90       100       110
                 ....*....|....*....|....*....|.
gi 526253092 414 ALGGYS-KPGPDACREEKERWIRAKYEQKLF 443
Cdd:cd08848   86 NLPSPSpKPSPSSDMTARKEYITAKYVEHRF 116
ArfGap_ARAP1 cd17901
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 1; The ARAP subfamily ...
335-440 3.20e-26

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 1; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP1 localizes to the plasma membrane, the Golgi complex, and endosomal compartments. It displays PI(3,4,5)P3-dependent ArfGAP activity that regulates Arf-, RhoA-, and Cdc42-dependent cellular events. For example, ARAP1 inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome.


Pssm-ID: 350088 [Multi-domain]  Cd Length: 116  Bit Score: 103.35  E-value: 3.20e-26
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 335 QAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDD--WPPELLAVMTAMGNALANSVWE 412
Cdd:cd17901    5 EKIWSVESNRFCADCGSPKPDWASVNLCVVICKRCAGEHRGLGPSVSKVRSLKMDRkvWTEELIELFLLLGNGKANQFWA 84
                         90       100
                 ....*....|....*....|....*...
gi 526253092 413 GALGGYSKPGPDACREEKERWIRAKYEQ 440
Cdd:cd17901   85 ANVPPSEALCPSSSSEERRHFITAKYKE 112
ArfGap_ASAP3 cd17900
ArfGAP domain of ASAP3 (ArfGAP with ANK repeat and PH domain-containing protein 3); The ...
332-443 1.80e-25

ArfGAP domain of ASAP3 (ArfGAP with ANK repeat and PH domain-containing protein 3); The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP1 and ASAP2, ASAP3 do not have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350087 [Multi-domain]  Cd Length: 124  Bit Score: 101.46  E-value: 1.80e-25
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 332 LAVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVW 411
Cdd:cd17900    4 LLIAEVKSRPGNSQCCDCGAPDPTWLSTNLGILTCIECSGIHRELGVRYSRIQSLTLDLLSTSELLLAVSMGNTRFNEVM 83
                         90       100       110
                 ....*....|....*....|....*....|....
gi 526253092 412 EGAL--GGYSKPGPDACREEKERWIRAKYEQKLF 443
Cdd:cd17900   84 EATLpaHGGPKPSAESDMGTRKDYIMAKYVEHRF 117
ArfGap_ADAP2 cd08844
ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
342-438 1.93e-25

ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350070 [Multi-domain]  Cd Length: 112  Bit Score: 101.00  E-value: 1.93e-25
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 342 GNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAhLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGALGG-YSK 420
Cdd:cd08844   16 GNSVCADCGAPDPDWASYTLGIFICLNCSGVHRNLPD-ISRVKSIRLDFWEDELVEFMKENGNLKAKAKFEAFVPPfYYR 94
                         90
                 ....*....|....*...
gi 526253092 421 PGPDACREEKERWIRAKY 438
Cdd:cd08844   95 PQANDCDVLKEQWIRAKY 112
ArfGap_GIT2 cd08847
GIT2 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting ...
338-438 3.85e-25

GIT2 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350072 [Multi-domain]  Cd Length: 111  Bit Score: 100.10  E-value: 3.85e-25
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 338 RTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGAL-- 415
Cdd:cd08847    3 KRLRSSEVCADCSTSDPRWASVNRGVLICDECCSVHRSLGRHISQVRHLKHTSWPPTLLQMVQTLYNNGANSIWEHSLld 82
                         90       100
                 ....*....|....*....|....*....
gi 526253092 416 -----GGYSKPGP-DACREEKERWIRAKY 438
Cdd:cd08847   83 pasimSGKRKANPqDKVHPNKAEFIRAKY 111
ArfGap_ASAP2 cd08849
ArfGAP domain of ASAP2 (ArfGAP2 with SH3 domain, ANK repeat and PH domain-containing protein 2) ...
337-443 1.28e-23

ArfGAP domain of ASAP2 (ArfGAP2 with SH3 domain, ANK repeat and PH domain-containing protein 2); The Arf GAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf , thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport.


Pssm-ID: 350074 [Multi-domain]  Cd Length: 123  Bit Score: 96.20  E-value: 1.28e-23
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 337 VRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGALG 416
Cdd:cd08849    9 VQRMTGNDVCCDCGAPDPTWLSTNLGILTCIECSGIHRELGVHYSRMQSLTLDVLGTSELLLAKNIGNAGFNEIMEACLP 88
                         90       100
                 ....*....|....*....|....*....
gi 526253092 417 GYS--KPGPDACREEKERWIRAKYEQKLF 443
Cdd:cd08849   89 AEDvvKPNPGSDMNARKDYITAKYIERRY 117
ArfGap_ARAP3 cd17902
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily ...
341-443 4.79e-23

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP3 possesses a unique dual-specificity GAP activity for Arf6 and RhoA regulated by PI(3,4,5)P3 and a small GTPase Rap1-GTP. The RhoGAP activity of ARAP3 is enhanced by direct binding of Rap1-GTP to the Ras-association (RA) domain. ARAP3 is involved in regulation of cell shape and adhesion.


Pssm-ID: 350089 [Multi-domain]  Cd Length: 116  Bit Score: 94.20  E-value: 4.79e-23
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 341 RGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDD--WPPELLAVMTAMGNALANSVWEGALGGY 418
Cdd:cd17902   11 KANRFCADCHASSPDWASINLCVVICKQCAGQHRSLGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWAARLPAS 90
                         90       100
                 ....*....|....*....|....*
gi 526253092 419 SKPGPDACREEKERWIRAKYEQKLF 443
Cdd:cd17902   91 EALHPDATPEQRREFISRKYREGRF 115
ArfGap_ARAP2 cd08856
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily ...
343-443 1.72e-21

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP2 localizes to the cell periphery and on focal adhesions composed of paxillin and vinculin, and functions downstream of RhoA to regulate focal adhesion dynamics. ARAP2 is a PI(3,4,5)P3-dependent Arf6 GAP that binds RhoA-GTP, but it lacks the predicted catalytic arginine in the RhoGAP domain and does not have RhoGAP activity. ARAP2 reduces Rac1oGTP levels by reducing Arf6oGTP levels through GAP activity. AGAP2 also binds to and regulates focal adhesion kinase (FAK). Thus, ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology.


Pssm-ID: 350081 [Multi-domain]  Cd Length: 121  Bit Score: 89.97  E-value: 1.72e-21
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 343 NSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDD--WPPELLAVMTAMGNALANSVWEGALGGYSK 420
Cdd:cd08856   18 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVVGNKPANLFWAANLFSEED 97
                         90       100
                 ....*....|....*....|...
gi 526253092 421 PGPDACREEKERWIRAKYEQKLF 443
Cdd:cd08856   98 LHMDSDVEQRTPFITQKYKEGKF 120
ArfGap_ArfGap3 cd09028
Arf1 GTPase-activating protein 3; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
328-409 1.08e-19

Arf1 GTPase-activating protein 3; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350085 [Multi-domain]  Cd Length: 120  Bit Score: 85.12  E-value: 1.08e-19
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 328 QNAALAVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLD-DWPPELLAVMTAMGNAL 406
Cdd:cd09028    4 QDIAAIFKRLRSVPTNKVCFDCGAKNPSWASITYGVFLCIDCSGIHRSLGVHLSFIRSTELDsNWSWFQLRCMQVGGNAN 83

                 ...
gi 526253092 407 ANS 409
Cdd:cd09028   84 ASA 86
ArfGap_GIT1 cd08846
GIT1 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting ...
338-438 1.86e-19

GIT1 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350071 [Multi-domain]  Cd Length: 111  Bit Score: 84.00  E-value: 1.86e-19
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 338 RTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGAL-- 415
Cdd:cd08846    3 RKGPRAEVCADCSAPDPGWASINRGVLICDECCSVHRSLGRHISIVKHLRHSAWPPTLLQMVHTLASNGANSIWEHSLld 82
                         90       100
                 ....*....|....*....|....*....
gi 526253092 416 -----GGYSKPGP-DACREEKERWIRAKY 438
Cdd:cd08846   83 paqvqSGRRKANPqDKVHPTKSEFIRAKY 111
ArfGap_ArfGap2 cd09029
Arf1 GTPase-activating protein 2; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
337-409 1.31e-18

Arf1 GTPase-activating protein 2; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350086 [Multi-domain]  Cd Length: 120  Bit Score: 82.03  E-value: 1.31e-18
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 526253092 337 VRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLD-DWPPELLAVMTAMGNALANS 409
Cdd:cd09029   13 LRAIPTNKACFDCGAKNPSWASITYGVFLCIDCSGVHRSLGVHLSFIRSTELDsNWNWFQLRCMQVGGNANATA 86
PLN03114 PLN03114
ADP-ribosylation factor GTPase-activating protein AGD10; Provisional
327-455 5.33e-18

ADP-ribosylation factor GTPase-activating protein AGD10; Provisional


Pssm-ID: 178661 [Multi-domain]  Cd Length: 395  Bit Score: 86.45  E-value: 5.33e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 327 NQNAALAV-QAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNA 405
Cdd:PLN03114   5 NLNDKISVfKKLKAKSDNKICFDCNAKNPTWASVTYGIFLCIDCSAVHRSLGVHISFVRSTNLDSWSSEQLKMMIYGGNN 84
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 526253092 406 LANSVWEG---ALGG-----YSKPGPDACREEKERWI-RAKYEQKLFLAPLP--SSDVPLG 455
Cdd:PLN03114  85 RAQVFFKQygwSDGGkteakYTSRAADLYKQILAKEVaKSKAEEELDLPPSPpdSTQVPNG 145
ArfGap_AGFG cd08838
ArfGAP domain of the AGFG subfamily (ArfGAP domain and FG repeat-containing proteins); The ...
342-443 3.02e-17

ArfGAP domain of the AGFG subfamily (ArfGAP domain and FG repeat-containing proteins); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350067 [Multi-domain]  Cd Length: 113  Bit Score: 77.62  E-value: 3.02e-17
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 342 GNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGaHlsRVRSLDLDDWPPELLAVMTAMGNALANSVWegaLGGY--- 418
Cdd:cd08838   12 ENKRCFDCGQRGPTYVNLTFGTFVCTTCSGIHREFN-H--RVKSISMSTFTPEEVEFLQAGGNEVARKIW---LAKWdpr 85
                         90       100
                 ....*....|....*....|....*.
gi 526253092 419 SKPGPDACREEKER-WIRAKYEQKLF 443
Cdd:cd08838   86 TDPEPDSGDDQKIReFIRLKYVDKRW 111
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
176-309 2.25e-12

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 63.34  E-value: 2.25e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092   176 PIKQGILLKRSGKSlNKEWKKKYVTLCdNGLLTYHPSLHDYMQNIHGKEIDLLRTTVKVPGKrlpratpatapgtspran 255
Cdd:smart00233   1 VIKEGWLYKKSGGG-KKSWKKRYFVLF-NSTLLYYKSKKDKKSYKPKGSIDLSGCTVREAPD------------------ 60
                           90       100       110       120       130
                   ....*....|....*....|....*....|....*....|....*....|....
gi 526253092   256 glsversntqlggGTEAEESFEFVVVSLTGQTWHFEASTAEERELWVQSVQAQI 309
Cdd:smart00233  61 -------------PDSSKKPHCFEIKTSDRKTLLLQAESEEEREKWVEALRKAI 101
ANKYR COG0666
Ankyrin repeat [Signal transduction mechanisms];
458-547 2.28e-11

Ankyrin repeat [Signal transduction mechanisms];


Pssm-ID: 440430 [Multi-domain]  Cd Length: 289  Bit Score: 64.98  E-value: 2.28e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 458 LLRAVVEDDLRLLVMLLAHGskEEVNETygDGDGRTALHLSSAMANVVFTQLLIWYGVDVRSRDARGLTPLAYARRAGSQ 537
Cdd:COG0666   91 LHAAARNGDLEIVKLLLEAG--ADVNAR--DKDGETPLHLAAYNGNLEIVKLLLEAGADVNAQDNDGNTPLHLAAANGNL 166
                         90
                 ....*....|
gi 526253092 538 ECADILIQHG 547
Cdd:COG0666  167 EIVKLLLEAG 176
ANKYR COG0666
Ankyrin repeat [Signal transduction mechanisms];
458-547 6.09e-11

Ankyrin repeat [Signal transduction mechanisms];


Pssm-ID: 440430 [Multi-domain]  Cd Length: 289  Bit Score: 63.43  E-value: 6.09e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 458 LLRAVVEDDLRLLVMLLAHGSkeEVNETygDGDGRTALHLSSAMANVVFTQLLIWYGVDVRSRDARGLTPLAYARRAGSQ 537
Cdd:COG0666  124 LHLAAYNGNLEIVKLLLEAGA--DVNAQ--DNDGNTPLHLAAANGNLEIVKLLLEAGADVNARDNDGETPLHLAAENGHL 199
                         90
                 ....*....|
gi 526253092 538 ECADILIQHG 547
Cdd:COG0666  200 EIVKLLLEAG 209
ArfGap_AGFG1 cd08857
ArfGAP domain of AGFG1 (ArfGAP domain and FG repeat-containing protein 1); The ArfGAP domain ...
343-441 5.02e-10

ArfGAP domain of AGFG1 (ArfGAP domain and FG repeat-containing protein 1); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG1 is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG1 plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG1 promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350082 [Multi-domain]  Cd Length: 116  Bit Score: 57.36  E-value: 5.02e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 343 NSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHlSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGALGGYSKPG 422
Cdd:cd08857   14 NRKCFDCDQRGPTYANMTVGSFVCTSCSGILRGLNPP-HRVKSISMTTFTQQEIEFLQKHGNEVCKQIWLGLFDDRSSAI 92
                         90       100
                 ....*....|....*....|
gi 526253092 423 PDACREEK-ERWIRAKYEQK 441
Cdd:cd08857   93 PDFRDPQKvKEFLQEKYEKK 112
ANKYR COG0666
Ankyrin repeat [Signal transduction mechanisms];
458-547 2.20e-09

Ankyrin repeat [Signal transduction mechanisms];


Pssm-ID: 440430 [Multi-domain]  Cd Length: 289  Bit Score: 58.81  E-value: 2.20e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 458 LLRAVVEDDLRLLVMLLAHGSkeEVNETygDGDGRTALHLSSAMANVVFTQLLIWYGVDVRSRDARGLTPLAYARRAGSQ 537
Cdd:COG0666  157 LHLAAANGNLEIVKLLLEAGA--DVNAR--DNDGETPLHLAAENGHLEIVKLLLEAGADVNAKDNDGKTALDLAAENGNL 232
                         90
                 ....*....|
gi 526253092 538 ECADILIQHG 547
Cdd:COG0666  233 EIVKLLLEAG 242
Ank_2 pfam12796
Ankyrin repeats (3 copies);
458-548 2.37e-09

Ankyrin repeats (3 copies);


Pssm-ID: 463710 [Multi-domain]  Cd Length: 91  Bit Score: 54.35  E-value: 2.37e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092  458 LLRAVVEDDLRLLVMLLAHGSKEEVNetygDGDGRTALHLSSAMANVVFTQLLIWYgVDVRSRDaRGLTPLAYARRAGSQ 537
Cdd:pfam12796   1 LHLAAKNGNLELVKLLLENGADANLQ----DKNGRTALHLAAKNGHLEIVKLLLEH-ADVNLKD-NGRTALHYAARSGHL 74
                          90
                  ....*....|.
gi 526253092  538 ECADILIQHGC 548
Cdd:pfam12796  75 EIVKLLLEKGA 85
ANKYR COG0666
Ankyrin repeat [Signal transduction mechanisms];
436-547 1.22e-08

Ankyrin repeat [Signal transduction mechanisms];


Pssm-ID: 440430 [Multi-domain]  Cd Length: 289  Bit Score: 56.50  E-value: 1.22e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 436 AKYEQKLFLAPLPSSDVPLGQQLLRAVVEDDLRLLVMLLAHGSkeeVNETYGDGDGRTALHLSSAMANVVFTQLLIWYGV 515
Cdd:COG0666   35 LLLLLLLLALLALALADALGALLLLAAALAGDLLVALLLLAAG---ADINAKDDGGNTLLHAAARNGDLEIVKLLLEAGA 111
                         90       100       110
                 ....*....|....*....|....*....|..
gi 526253092 516 DVRSRDARGLTPLAYARRAGSQECADILIQHG 547
Cdd:COG0666  112 DVNARDKDGETPLHLAAYNGNLEIVKLLLEAG 143
PH pfam00169
PH domain; PH stands for pleckstrin homology.
176-309 1.30e-08

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 52.95  E-value: 1.30e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092  176 PIKQGILLKRSGKsLNKEWKKKYVTLCDNGLLTYHPSLHDYMQNIHGKeIDLLRTTVKVPGkrlpratpatAPGTSPRAN 255
Cdd:pfam00169   1 VVKEGWLLKKGGG-KKKSWKKRYFVLFDGSLLYYKDDKSGKSKEPKGS-ISLSGCEVVEVV----------ASDSPKRKF 68
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 526253092  256 glsversntqlgggteaeeSFEFVVVSLTG-QTWHFEASTAEERELWVQSVQAQI 309
Cdd:pfam00169  69 -------------------CFELRTGERTGkRTYLLQAESEEERKDWIKAIQSAI 104
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
178-305 1.58e-08

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 52.16  E-value: 1.58e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 178 KQGILLKRSGKSLnKEWKKKYVTLCDNGLLtYHPSLHDYMQNIHGkEIDLLRTTVKVPGKRLPRatpatapgtsprangl 257
Cdd:cd00821    1 KEGYLLKRGGGGL-KSWKKRWFVLFEGVLL-YYKSKKDSSYKPKG-SIPLSGILEVEEVSPKER---------------- 61
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|....*...
gi 526253092 258 sversntqlgggteaeeSFEFVVVSLTGQTWHFEASTAEERELWVQSV 305
Cdd:cd00821   62 -----------------PHCFELVTPDGRTYYLQADSEEERQEWLKAL 92
ArfGap_AGFG2 cd17903
ArfGAP domain of AGFG2 (ArfGAP domain and FG repeat-containing protein 2); The ArfGAP domain ...
342-441 1.53e-06

ArfGAP domain of AGFG2 (ArfGAP domain and FG repeat-containing protein 2); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG2 is a member of the HIV-1 Rev binding protein (HRB) family and contains one Arf-GAP zinc finger domain, several Phe-Gly (FG) motifs, and four Asn-Pro-Phe (NPF) motifs. AGFG2 interacts with Eps15 homology (EH) domains and plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350090 [Multi-domain]  Cd Length: 116  Bit Score: 47.29  E-value: 1.53e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 342 GNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHlSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGALGGYSKP 421
Cdd:cd17903   13 ANRHCFECAQRGVTYVDITVGSFVCTTCSGLLRGLNPP-HRVKSISMTTFTEPEVLFLQARGNEVCRKIWLGLFDARTSL 91
                         90       100
                 ....*....|....*....|.
gi 526253092 422 GPDACREEK-ERWIRAKYEQK 441
Cdd:cd17903   92 IPDSRDPQKvKEFLQEKYEKK 112
PLN03131 PLN03131
hypothetical protein; Provisional
338-468 7.19e-06

hypothetical protein; Provisional


Pssm-ID: 178677 [Multi-domain]  Cd Length: 705  Bit Score: 49.01  E-value: 7.19e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 338 RTVRG------NSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLgAHlsRVRSLDLDDWPPELLAVMTAMGNALANSVW 411
Cdd:PLN03131  12 KIIRGlmklppNRRCINCNSLGPQFVCTNFWTFICMTCSGIHREF-TH--RVKSVSMSKFTSQDVEALQNGGNQRAREIY 88
                         90       100       110       120       130
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 526253092 412 EGALGGYSKPGPDACREEKER-WIRAKYEQKLFLAPLPSSDVPLGQQLLRAvVEDDLR 468
Cdd:PLN03131  89 LKDWDQQRQRLPDNSKVDKIReFIKDIYVDKKYAGGKTHDKPPRDLQRIRS-HEDETR 145
PTZ00322 PTZ00322
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase; Provisional
488-569 1.42e-05

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase; Provisional


Pssm-ID: 140343 [Multi-domain]  Cd Length: 664  Bit Score: 47.97  E-value: 1.42e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 488 DGDGRTALHLSSAMANVVFTQLLIWYGVDVRSRDARGLTPLAYARRAGSQECADILIQH----------GCPGEGCGLAP 557
Cdd:PTZ00322 112 DYDGRTPLHIACANGHVQVVRVLLEFGADPTLLDKDGKTPLELAEENGFREVVQLLSRHsqchfelganAKPDSFTGKPP 191
                         90
                 ....*....|..
gi 526253092 558 TPNREPANGTNP 569
Cdd:PTZ00322 192 SLEDSPISSHHP 203
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
178-314 1.57e-05

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 43.75  E-value: 1.57e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 178 KQGILLKRSGKSlNKEWKKKYVTLcDNGLLTYHPSLHDYMQNIHgkEIDLLRTTVKvpgkrlpratpatapgtsprangl 257
Cdd:cd13250    1 KEGYLFKRSSNA-FKTWKRRWFSL-QNGQLYYQKRDKKDEPTVM--VEDLRLCTVK------------------------ 52
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 258 sversntqlgggtEAEES---FEFVVVSLTGqTWHFEASTAEERELWVQSVQAQILASLQ 314
Cdd:cd13250   53 -------------PTEDSdrrFCFEVISPTK-SYMLQAESEEDRQAWIQAIQSAIASALN 98
Ank_5 pfam13857
Ankyrin repeats (many copies);
473-531 1.92e-04

Ankyrin repeats (many copies);


Pssm-ID: 433530 [Multi-domain]  Cd Length: 56  Bit Score: 39.64  E-value: 1.92e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 526253092  473 LLAHGSkEEVNetYGDGDGRTALHLSSAMANVVFTQLLIWYGVDVRSRDARGLTPLAYA 531
Cdd:pfam13857   1 LLEHGP-IDLN--RLDGEGYTPLHVAAKYGALEIVRVLLAYGVDLNLKDEEGLTALDLA 56
PLN03119 PLN03119
putative ADP-ribosylation factor GTPase-activating protein AGD14; Provisional
343-468 2.03e-04

putative ADP-ribosylation factor GTPase-activating protein AGD14; Provisional


Pssm-ID: 178666  Cd Length: 648  Bit Score: 44.45  E-value: 2.03e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 343 NSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLgahLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGALGGYSKPG 422
Cdd:PLN03119  23 NRRCINCNSLGPQYVCTTFWTFVCMACSGIHREF---THRVKSVSMSKFTSKEVEVLQNGGNQRAREIYLKNWDHQRQRL 99
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|....*..
gi 526253092 423 PDACREEKER-WIRAKYEQKLFlAPLPSSDVPLGQQLLRAVVEDDLR 468
Cdd:PLN03119 100 PENSNAERVReFIKNVYVQKKY-AGANDADKPSKDSQDHVSSEDMTR 145
RSR1 cd04177
RSR1/Bud1p family GTPase; RSR1/Bud1p is a member of the Rap subfamily of the Ras family that ...
1-58 2.67e-04

RSR1/Bud1p family GTPase; RSR1/Bud1p is a member of the Rap subfamily of the Ras family that is found in fungi. In budding yeasts, RSR1 is involved in selecting a site for bud growth on the cell cortex, which directs the establishment of cell polarization. The Rho family GTPase cdc42 and its GEF, cdc24, then establish an axis of polarized growth by organizing the actin cytoskeleton and secretory apparatus at the bud site. It is believed that cdc42 interacts directly with RSR1 in vivo. In filamentous fungi, polar growth occurs at the tips of hypha and at novel growth sites along the extending hypha. In Ashbya gossypii, RSR1 is a key regulator of hyphal growth, localizing at the tip region and regulating in apical polarization of the actin cytoskeleton. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins.


Pssm-ID: 133377 [Multi-domain]  Cd Length: 168  Bit Score: 42.08  E-value: 2.67e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 526253092   1 MVLVGTQ-DAIsaaNPRVIDDSRARKLSTDLKRCTYYETCATYGLNVERVFQDVAQKVV 58
Cdd:cd04177  109 MVLVGNKaDLE---DDRQVSREDGVSLSQQWGNVPFYETSARKRTNVDEVFIDLVRQII 164
PHA03095 PHA03095
ankyrin-like protein; Provisional
453-548 3.95e-04

ankyrin-like protein; Provisional


Pssm-ID: 222980 [Multi-domain]  Cd Length: 471  Bit Score: 43.09  E-value: 3.95e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 453 PLGQQLLRAVVEDDLRLLVmllAHGskeeVNETYGDGDGRTALH--LSSAMANVVFTQLLIWYGVDVRSRDARGLTPLA- 529
Cdd:PHA03095  86 PLHLYLYNATTLDVIKLLI---KAG----ADVNAKDKVGRTPLHvyLSGFNINPKVIRLLLRKGADVNALDLYGMTPLAv 158
                         90       100
                 ....*....|....*....|
gi 526253092 530 YARRAG-SQECADILIQHGC 548
Cdd:PHA03095 159 LLKSRNaNVELLRLLIDAGA 178
TRPV5-6 cd22192
Transient Receptor Potential channel, Vanilloid subfamily (TRPV), types 5 and 6; TRPV5 and ...
448-547 6.83e-04

Transient Receptor Potential channel, Vanilloid subfamily (TRPV), types 5 and 6; TRPV5 and TRPV6 (TRPV5/6) are two homologous members within the vanilloid subfamily of the transient receptor potential (TRP) family. TRPV5 and TRPV6 show only 30-40% homology with other members of the TRP family and have unique properties that differentiates them from other TRP channels. They mediate calcium uptake in epithelia and their expression is dramatically increased in numerous types of cancer. The structure of TRPV5/6 shows the typical topology features of all TRP family members, such as six transmembrane regions, a short hydrophobic stretch between transmembrane segments 5 and 6, which is predicted to form the Ca2+ pore, and large intracellular N- and C-terminal domains. The N-terminal domain of TRPV5/6 contains three ankyrin repeats. This structural element is present in several proteins and plays a role in protein-protein interactions. The N- and C-terminal tails of TRPV5/6 each contain an internal PDZ motif which can function as part of a molecular scaffold via interaction with PDZ-domain containing proteins. A major difference between the properties of TRPV5 and TRPV6 is in their tissue distribution: TRPV5 is predominantly expressed in the distal convoluted tubules (DCT) and connecting tubules (CNT) of the kidney, with limited expression in extrarenal tissues. In contrast, TRPV6 has a broader expression pattern such as expression in the intestine, kidney, placenta, epididymis, exocrine tissues, and a few other tissues.


Pssm-ID: 411976 [Multi-domain]  Cd Length: 609  Bit Score: 42.69  E-value: 6.83e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 448 PSSDV----PLGQQLLRAVVEDDLRLLVMLLAHGSKEEVNE--TYGDGDGRTALHLSSAMANVVFTQLLIWYGVDVRSRD 521
Cdd:cd22192   40 PSCDLfqrgALGETALHVAALYDNLEAAVVLMEAAPELVNEpmTSDLYQGETALHIAVVNQNLNLVRELIARGADVVSPR 119
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|
gi 526253092 522 ARGLT--------------PLAYARRAGSQECADILIQHG 547
Cdd:cd22192  120 ATGTFfrpgpknliyygehPLSFAACVGNEEIVRLLIEHG 159
Ank_4 pfam13637
Ankyrin repeats (many copies);
458-511 1.35e-03

Ankyrin repeats (many copies);


Pssm-ID: 372654 [Multi-domain]  Cd Length: 54  Bit Score: 36.87  E-value: 1.35e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 526253092  458 LLRAVVEDDLRLLVMLLAHGSkeEVNETygDGDGRTALHLSSAMANVVFTQLLI 511
Cdd:pfam13637   5 LHAAAASGHLELLRLLLEKGA--DINAV--DGNGETALHFAASNGNVEVLKLLL 54
PHA02875 PHA02875
ankyrin repeat protein; Provisional
461-547 2.59e-03

ankyrin repeat protein; Provisional


Pssm-ID: 165206 [Multi-domain]  Cd Length: 413  Bit Score: 40.36  E-value: 2.59e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 461 AVVEDDLRLLVMLLAHGSKEEVNETygdgDGRTALHLSSAMANVVFTQLLIWYGVDVRSRDARGLTPLAYARRAGSQECA 540
Cdd:PHA02875 109 ATILKKLDIMKLLIARGADPDIPNT----DKFSPLHLAVMMGDIKGIELLIDHKACLDIEDCCGCTPLIIAMAKGDIAIC 184

                 ....*..
gi 526253092 541 DILIQHG 547
Cdd:PHA02875 185 KMLLDSG 191
PHA02875 PHA02875
ankyrin repeat protein; Provisional
457-557 3.55e-03

ankyrin repeat protein; Provisional


Pssm-ID: 165206 [Multi-domain]  Cd Length: 413  Bit Score: 39.97  E-value: 3.55e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 457 QLLRAVVEDDLRLLVMLLAHGskeevneTYGDG----DGRTALHLSSAMANVVFTQLLIWYGVDVRSRDARGLTPLAYAR 532
Cdd:PHA02875  71 ELHDAVEEGDVKAVEELLDLG-------KFADDvfykDGMTPLHLATILKKLDIMKLLIARGADPDIPNTDKFSPLHLAV 143
                         90       100
                 ....*....|....*....|....*...
gi 526253092 533 RAGSQECADILIQH-GCPG--EGCGLAP 557
Cdd:PHA02875 144 MMGDIKGIELLIDHkACLDieDCCGCTP 171
RAB smart00175
Rab subfamily of small GTPases; Rab GTPases are implicated in vesicle trafficking.
2-60 3.90e-03

Rab subfamily of small GTPases; Rab GTPases are implicated in vesicle trafficking.


Pssm-ID: 197555 [Multi-domain]  Cd Length: 164  Bit Score: 38.26  E-value: 3.90e-03
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*....
gi 526253092     2 VLVGTQdaISAANPRVIDDSRARKLSTDLKrCTYYETCATYGLNVERVFQDVAQKVVAL 60
Cdd:smart00175 109 MLVGNK--SDLEEQRQVSREEAEAFAEEHG-LPFFETSAKTNTNVEEAFEELAREILKR 164
Rap_like cd04136
Rap-like family consists of Rap1, Rap2 and RSR1; The Rap subfamily consists of the Rap1, Rap2, ...
1-57 5.10e-03

Rap-like family consists of Rap1, Rap2 and RSR1; The Rap subfamily consists of the Rap1, Rap2, and RSR1. Rap subfamily proteins perform different cellular functions, depending on the isoform and its subcellular localization. For example, in rat salivary gland, neutrophils, and platelets, Rap1 localizes to secretory granules and is believed to regulate exocytosis or the formation of secretory granules. Rap1 has also been shown to localize in the Golgi of rat fibroblasts, zymogen granules, plasma membrane, and microsomal membrane of the pancreatic acini, as well as in the endocytic compartment of skeletal muscle cells and fibroblasts. Rap1 localizes in the nucleus of human oropharyngeal squamous cell carcinomas (SCCs) and cell lines. Rap1 plays a role in phagocytosis by controlling the binding of adhesion receptors (typically integrins) to their ligands. In yeast, Rap1 has been implicated in multiple functions, including activation and silencing of transcription and maintenance of telomeres. Rap2 is involved in multiple functions, including activation of c-Jun N-terminal kinase (JNK) to regulate the actin cytoskeleton and activation of the Wnt/beta-catenin signaling pathway in embryonic Xenopus. A number of effector proteins for Rap2 have been identified, including isoform 3 of the human mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) and Traf2- and Nck-interacting kinase (TNIK), and the RalGEFs RalGDS, RGL, and Rlf, which also interact with Rap1 and Ras. RSR1 is the fungal homolog of Rap1 and Rap2. In budding yeasts, it is involved in selecting a site for bud growth, which directs the establishment of cell polarization. The Rho family GTPase Cdc42 and its GEF, Cdc24, then establish an axis of polarized growth. It is believed that Cdc42 interacts directly with RSR1 in vivo. In filamentous fungi such as Ashbya gossypii, RSR1 is a key regulator of polar growth in the hypha. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206708 [Multi-domain]  Cd Length: 164  Bit Score: 37.92  E-value: 5.10e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 526253092   1 MVLVGTQdaISAANPRVIDDSRARKLSTDLKRCTYYETCATYGLNVERVFQDVAQKV 57
Cdd:cd04136  109 MILVGNK--CDLEDERVVSKEEGQNLARQWGNCPFLETSAKSKINVDEIFYDLVRQI 163
Rab7 cd01862
Rab GTPase family 7 (Rab7); Rab7 subfamily. Rab7 is a small Rab GTPase that regulates ...
2-62 6.68e-03

Rab GTPase family 7 (Rab7); Rab7 subfamily. Rab7 is a small Rab GTPase that regulates vesicular traffic from early to late endosomal stages of the endocytic pathway. The yeast Ypt7 and mammalian Rab7 are both involved in transport to the vacuole/lysosome, whereas Ypt7 is also required for homotypic vacuole fusion. Mammalian Rab7 is an essential participant in the autophagic pathway for sequestration and targeting of cytoplasmic components to the lytic compartment. Mammalian Rab7 is also proposed to function as a tumor suppressor. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206655 [Multi-domain]  Cd Length: 172  Bit Score: 37.64  E-value: 6.68e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 526253092   2 VLVGTQdaISAANPRVIDDSRARKLSTDLKRCTYYETCATYGLNVERVFQDVAQKVVALRK 62
Cdd:cd01862  113 VVLGNK--IDLEEKRQVSTKKAQQWCKSKGNIPYFETSAKEAINVDQAFETIARLALEQEK 171
PHA02878 PHA02878
ankyrin repeat protein; Provisional
466-548 8.93e-03

ankyrin repeat protein; Provisional


Pssm-ID: 222939 [Multi-domain]  Cd Length: 477  Bit Score: 38.71  E-value: 8.93e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 526253092 466 DLRLLVMLLAHGSKEEVNETYgdgDGRTALHLSSAMANVvfTQLLIWYGVDVRSRDARGLTPLAYARRAGSQ-ECADILI 544
Cdd:PHA02878 247 DYDILKLLLEHGVDVNAKSYI---LGLTALHSSIKSERK--LKLLLEYGADINSLNSYKLTPLSSAVKQYLCiNIGRILI 321

                 ....
gi 526253092 545 QHGC 548
Cdd:PHA02878 322 SNIC 325
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH