NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|754169469|ref|NP_001291674|]
View 

nucleotide triphosphate diphosphatase NUDT15 isoform 2 [Homo sapiens]

Protein Classification

NUDIX hydrolase( domain architecture ID 10140375)

NUDIX hydrolase catalyzes the hydrolysis of nucleoside diphosphates (NDPs) linked to other moieties (X); it requires a divalent cation, such as Mg2+ or Mn2+ for its activity; similar to human nucleotide triphosphate diphosphatase NUDT15 (MTH2) which may catalyze the hydrolysis of nucleoside triphosphates including dGTP, dTTP, dCTP, their oxidized forms such as 8-oxo-dGTP, thiopurine active metabolites 6-thio-GTP and 6-thio-dGTP, and some NDP derivatives

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
NUDIX_MTH2_Nudt15 cd04678
MutT homolog 2; MutT Homolog 2 (MTH2; EC 3.6.1.9), also known as NUDIX (nucleoside ...
24-119 1.67e-44

MutT homolog 2; MutT Homolog 2 (MTH2; EC 3.6.1.9), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 15/Nudt15, may catalyze the hydrolysis of nucleoside diphosphates, triphosphates including dGTP, dTTP, dCTP, their oxidized forms like 8-oxo-dGTP, and prodrug thiopurine derivatives 6-thio-dGTP and 6-thio-GTP. MTH2 may also play a role in DNA synthesis and cell cycle progression by stabilizing PCNA. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


:

Pssm-ID: 467561 [Multi-domain]  Cd Length: 128  Bit Score: 141.93  E-value: 1.67e-44
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469  24 KHPRCVLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFIEKENYHYVTILMKGEVDv 103
Cdd:cd04678   11 NDDGKVLLGRRKGSHGAGTWALPGGHLEFGESFEECAAREVLEETGLEIRNVRFLTVTNDVFEEEGKHYVTIFVLAEVD- 89
                         90
                 ....*....|....*.
gi 754169469 104 tHDSEPKNVEPEKNES 119
Cdd:cd04678   90 -DGEPEENMEPDKCEG 104
 
Name Accession Description Interval E-value
NUDIX_MTH2_Nudt15 cd04678
MutT homolog 2; MutT Homolog 2 (MTH2; EC 3.6.1.9), also known as NUDIX (nucleoside ...
24-119 1.67e-44

MutT homolog 2; MutT Homolog 2 (MTH2; EC 3.6.1.9), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 15/Nudt15, may catalyze the hydrolysis of nucleoside diphosphates, triphosphates including dGTP, dTTP, dCTP, their oxidized forms like 8-oxo-dGTP, and prodrug thiopurine derivatives 6-thio-dGTP and 6-thio-GTP. MTH2 may also play a role in DNA synthesis and cell cycle progression by stabilizing PCNA. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467561 [Multi-domain]  Cd Length: 128  Bit Score: 141.93  E-value: 1.67e-44
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469  24 KHPRCVLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFIEKENYHYVTILMKGEVDv 103
Cdd:cd04678   11 NDDGKVLLGRRKGSHGAGTWALPGGHLEFGESFEECAAREVLEETGLEIRNVRFLTVTNDVFEEEGKHYVTIFVLAEVD- 89
                         90
                 ....*....|....*.
gi 754169469 104 tHDSEPKNVEPEKNES 119
Cdd:cd04678   90 -DGEPEENMEPDKCEG 104
PLN02325 PLN02325
nudix hydrolase
29-118 1.03e-30

nudix hydrolase


Pssm-ID: 215184 [Multi-domain]  Cd Length: 144  Bit Score: 107.64  E-value: 1.03e-30
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469  29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFI--EKENYHYVTILMKGEVdVTHD 106
Cdd:PLN02325  22 VLLGRRRSSIGDSTFALPGGHLEFGESFEECAAREVKEETGLEIEKIELLTVTNNVFleEPKPSHYVTVFMRAVL-ADPS 100
                         90
                 ....*....|..
gi 754169469 107 SEPKNVEPEKNE 118
Cdd:PLN02325 101 QVPQNLEPEKCY 112
YjhB COG1051
ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism];
29-101 1.75e-16

ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism];


Pssm-ID: 440671 [Multi-domain]  Cd Length: 125  Bit Score: 70.39  E-value: 1.75e-16
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 754169469  29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFIEkenYHYVTILMKGEV 101
Cdd:COG1051   20 VLLVRRADEPGKGLWALPGGKVEPGETPEEAALRELREETGLEVEVLELLGVFDHPDR---GHVVSVAFLAEV 89
NUDIX pfam00293
NUDIX domain;
29-104 1.24e-13

NUDIX domain;


Pssm-ID: 395229 [Multi-domain]  Cd Length: 132  Bit Score: 63.27  E-value: 1.24e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469   29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFIEKENY----HYVTILMKGEVDVT 104
Cdd:pfam00293  17 VLLVRRSKKPFPGWWSLPGGKVEPGETPEEAARRELEEETGLEPELLELLGSLHYLAPFDGRfpdeHEILYVFLAEVEGE 96
 
Name Accession Description Interval E-value
NUDIX_MTH2_Nudt15 cd04678
MutT homolog 2; MutT Homolog 2 (MTH2; EC 3.6.1.9), also known as NUDIX (nucleoside ...
24-119 1.67e-44

MutT homolog 2; MutT Homolog 2 (MTH2; EC 3.6.1.9), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 15/Nudt15, may catalyze the hydrolysis of nucleoside diphosphates, triphosphates including dGTP, dTTP, dCTP, their oxidized forms like 8-oxo-dGTP, and prodrug thiopurine derivatives 6-thio-dGTP and 6-thio-GTP. MTH2 may also play a role in DNA synthesis and cell cycle progression by stabilizing PCNA. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467561 [Multi-domain]  Cd Length: 128  Bit Score: 141.93  E-value: 1.67e-44
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469  24 KHPRCVLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFIEKENYHYVTILMKGEVDv 103
Cdd:cd04678   11 NDDGKVLLGRRKGSHGAGTWALPGGHLEFGESFEECAAREVLEETGLEIRNVRFLTVTNDVFEEEGKHYVTIFVLAEVD- 89
                         90
                 ....*....|....*.
gi 754169469 104 tHDSEPKNVEPEKNES 119
Cdd:cd04678   90 -DGEPEENMEPDKCEG 104
PLN02325 PLN02325
nudix hydrolase
29-118 1.03e-30

nudix hydrolase


Pssm-ID: 215184 [Multi-domain]  Cd Length: 144  Bit Score: 107.64  E-value: 1.03e-30
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469  29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFI--EKENYHYVTILMKGEVdVTHD 106
Cdd:PLN02325  22 VLLGRRRSSIGDSTFALPGGHLEFGESFEECAAREVKEETGLEIEKIELLTVTNNVFleEPKPSHYVTVFMRAVL-ADPS 100
                         90
                 ....*....|..
gi 754169469 107 SEPKNVEPEKNE 118
Cdd:PLN02325 101 QVPQNLEPEKCY 112
YjhB COG1051
ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism];
29-101 1.75e-16

ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism];


Pssm-ID: 440671 [Multi-domain]  Cd Length: 125  Bit Score: 70.39  E-value: 1.75e-16
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 754169469  29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFIEkenYHYVTILMKGEV 101
Cdd:COG1051   20 VLLVRRADEPGKGLWALPGGKVEPGETPEEAALRELREETGLEVEVLELLGVFDHPDR---GHVVSVAFLAEV 89
NUDIX_Hydrolase cd02883
NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three ...
29-102 2.86e-16

NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467528 [Multi-domain]  Cd Length: 106  Bit Score: 69.36  E-value: 2.86e-16
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 754169469  29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFIEKENYHYVTILMKGEVD 102
Cdd:cd02883   14 VLLVRRSDGPGPGGWELPGGGVEPGETPEEAAVREVREETGLDVEVLRLLGVYEFPDPDEGRHVVVLVFLARVV 87
NUDIX_MutT_Nudt1 cd04679
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ...
29-116 1.66e-14

MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467562 [Multi-domain]  Cd Length: 126  Bit Score: 65.41  E-value: 1.66e-14
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469  29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFIEKENYHYVTILMKGEVDvthDSE 108
Cdd:cd04679   15 LLLVLRLRAPEAGHWGLPGGKVDWLETVEDAVRREILEELGLEIELTRLLCVVDQIDAADGEHWVAPVYLAEIF---SGE 91

                 ....*...
gi 754169469 109 PKNVEPEK 116
Cdd:cd04679   92 PRLMEPEK 99
NUDIX pfam00293
NUDIX domain;
29-104 1.24e-13

NUDIX domain;


Pssm-ID: 395229 [Multi-domain]  Cd Length: 132  Bit Score: 63.27  E-value: 1.24e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469   29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFIEKENY----HYVTILMKGEVDVT 104
Cdd:pfam00293  17 VLLVRRSKKPFPGWWSLPGGKVEPGETPEEAARRELEEETGLEPELLELLGSLHYLAPFDGRfpdeHEILYVFLAEVEGE 96
NUDIX_ADPRase cd04673
ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the ...
23-93 2.66e-13

ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer.


Pssm-ID: 467557 [Multi-domain]  Cd Length: 128  Bit Score: 62.15  E-value: 2.66e-13
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 754169469  23 CKHPRCVLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFIEKEN----YHYV 93
Cdd:cd04673    8 VFRDGRVLLVRRGNPPDAGLWSFPGGKVELGETLEDAALRELREETGLEAEVVGLLTVVDVIERDEAgrvrFHYV 82
MutT COG0494
8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX ...
29-109 3.60e-13

8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX family [Defense mechanisms];


Pssm-ID: 440260 [Multi-domain]  Cd Length: 143  Bit Score: 62.36  E-value: 3.60e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469  29 VLLGKR-KGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNS--FIEKENYHYVTILMKGEVDVTH 105
Cdd:COG0494   27 VLLVRRyRYGVGPGLWEFPGGKIEPGESPEEAALRELREETGLTAEDLELLGELPSpgYTDEKVHVFLARGLGPGEEVGL 106

                 ....
gi 754169469 106 DSEP 109
Cdd:COG0494  107 DDED 110
NUDIX_MTH1_Nudt1 cd03427
MutT homolog-1 (MTH1); MutT homolog-1 (MTH1; EC 3.6.1.- ), also called nucleoside ...
29-95 8.83e-12

MutT homolog-1 (MTH1); MutT homolog-1 (MTH1; EC 3.6.1.- ), also called nucleoside diphosphate-linked moiety X)) motif 1 (Nudt1), is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467533 [Multi-domain]  Cd Length: 136  Bit Score: 58.70  E-value: 8.83e-12
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 754169469  29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVN-SFIEKENYHYVTI 95
Cdd:cd03427   15 VLLGLKKRGFGAGKWNGFGGKVEPGETIEEAAVRELEEEAGLTATELEKVGRLKfEFPDDPEAMDVHV 82
NUDIX_Hydrolase cd04677
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
29-92 1.78e-09

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467560 [Multi-domain]  Cd Length: 137  Bit Score: 52.51  E-value: 1.78e-09
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 754169469  29 VLLGKRKGSvgaGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFasvVNSFIEKENYHY 92
Cdd:cd04677   26 ILLQKRTDT---GDWGLPGGAMELGESLEETARREVFEETGLTVEELEL---LGVYSGKDLYYT 83
NUDIX_Hydrolase cd18875
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
29-100 3.59e-09

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467587 [Multi-domain]  Cd Length: 144  Bit Score: 51.80  E-value: 3.59e-09
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 754169469  29 VLLGKRKgSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVnSFIEKENYHYVTILMKGE 100
Cdd:cd18875   16 VLVLDRV-KKDWGGYTFPGGHVEPGESFVDSVIREVKEETGLTIKNPELCGIK-QWINPDGERYIVFLYKTD 85
NUDIX_Hydrolase cd04688
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
23-91 4.53e-09

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467570 [Multi-domain]  Cd Length: 130  Bit Score: 51.40  E-value: 4.53e-09
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 754169469  23 CKHPRCVLLGKrkgSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSF--IEKENYH 91
Cdd:cd04688    9 IIRDGKVLLAR---GEDDDYYRLPGGRVEFGETSEDALVREFKEELGVEVEVVRLLFVVENFftYDGKPFH 76
NUDIX_Hydrolase cd18874
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
45-114 1.92e-08

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467586 [Multi-domain]  Cd Length: 125  Bit Score: 49.59  E-value: 1.92e-08
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 754169469  45 LPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFIEKENY---HYVTIlmkgevDVTHDSEPKNVEP 114
Cdd:cd18874   30 IPGGKVEWGETLEEALKREVKEETGLDITDIRFILVQESINSEEFHkpaHFVFV------DYLARTDSSEVVL 96
NUDIX_MutT_Nudt1 cd18886
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ...
21-82 2.77e-08

MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467596 [Multi-domain]  Cd Length: 147  Bit Score: 49.54  E-value: 2.77e-08
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 754169469  21 TSC--KHPRCVLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVN 82
Cdd:cd18886    3 TLCfiIRDDEVLLLNRNKKPNMGKWNGVGGKLEPGESPEECAIREVFEETGLELEDLQLRGIVT 66
NUDIX_NadM_like cd18873
bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase and similar proteins; ...
28-77 2.88e-08

bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase and similar proteins; Bacterial NadM-Nudix is a bifunctional enzyme containing a nicotinamide mononucleotide (NMN) adenylyltransferase (NMNAT) and an ADP-ribose pyrophosphatase (ADPRase) domain. NMNAT was initially identified as an NAD+ synthase that catalyzes the reversible conversion of NMN to NAD+ in the final step of both the de novo biosynthesis and salvage pathways in most organisms across all three kingdoms of life ADPRase is a member of the NUDIX family proteins, catalyzes the metal-induced and concerted general acid-base hydrolysis of ADP ribose (ADPR) into AMP and ribose-5'-phosphate (R5P). Additional members in this cd include bacterial transcriptional regulator, NrtR, which represses the transcription of NAD biosynthetic genes in vitro and adenosine diphosphate ribose (ADPR), as well as NadQ, a NUDIX-like ATP-responsive regulator of NAD biosynthesis. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belong to this superfamily requires a divalent cation, such as Mg2+ or Mn2+ for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, U=I, L or V) which functions as metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467585 [Multi-domain]  Cd Length: 132  Bit Score: 49.08  E-value: 2.88e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 754169469  28 CVLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAalHLKNVHF 77
Cdd:cd18873   18 KVLLIKRKNEPFKGGWALPGGFVREDETLEDAARRELREET--GLKDIYL 65
NUDIX_Hydrolase cd04683
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
29-117 5.55e-08

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467566 [Multi-domain]  Cd Length: 137  Bit Score: 48.37  E-value: 5.55e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469  29 VLLGKRKGSVGA-GSFQLPGGHLEFGETWEECAQRETWEEAALHLK--NVHFASVVNSFIEKENYHYVTILMkgevdVTH 105
Cdd:cd04683   13 VLLLRRANTGYDdGWWHLPAGHVEAGETVRAAAVREAKEELGVEIDpeDLRLVHTMHRRSDGGRERIDFFFR-----ATR 87
                         90
                 ....*....|...
gi 754169469 106 -DSEPKNVEPEKN 117
Cdd:cd04683   88 wSGEPRNREPDKC 100
NUDIX_Hydrolase cd04686
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
27-119 6.07e-08

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467569 [Multi-domain]  Cd Length: 130  Bit Score: 48.44  E-value: 6.07e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469  27 RCVLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNSFIE---KENYHYVTILMKGEVDV 103
Cdd:cd04686   12 DKLLLIRKTRGPYQGRYDLPGGSQEFGESLEDALKREFAEETGMTVTSYDNLGVYDFFVPwsdKELGDVHHIGVFYDVEL 91
                         90
                 ....*....|....*.
gi 754169469 104 THDSEPKNVEPEKNES 119
Cdd:cd04686   92 LDNNISELLQFEGQDS 107
NUDIX_Hydrolase cd04681
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
29-110 9.63e-08

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467564 [Multi-domain]  Cd Length: 135  Bit Score: 47.95  E-value: 9.63e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469  29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHF-ASVVNSFIEKeNYHYVTILMKGEVDVTHDS 107
Cdd:cd04681   19 ILFVRRAKEPGKGKLDLPGGFVDPGESAEEALRRELREELGLKIPKLRYlCSLPNTYLYK-GITYKTCDLFFTAELDEKP 97

                 ...
gi 754169469 108 EPK 110
Cdd:cd04681   98 KLK 100
NUDIX_Hydrolase cd04690
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
30-73 1.04e-07

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467572 [Multi-domain]  Cd Length: 123  Bit Score: 47.53  E-value: 1.04e-07
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....
gi 754169469  30 LLGKRKgsVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLK 73
Cdd:cd04690   14 LLLVRK--RGTDAFYLPGGKREPGETPLQALVRELKEELGLDLD 55
NUDIX_Hydrolase cd18882
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
45-77 1.30e-07

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467593 [Multi-domain]  Cd Length: 130  Bit Score: 47.25  E-value: 1.30e-07
                         10        20        30
                 ....*....|....*....|....*....|...
gi 754169469  45 LPGGHLEFGETWEECAQRETWEEAALHLKNVHF 77
Cdd:cd18882   34 LFGGHLEPGETPEEAIRRELEEEIGYEPGEFRF 66
NUDIX_NADH_pyrophosphatase_Nudt13 cd03429
NADH pyrophosphatase; NADH pyrophosphatase, also known as NUDIX (nucleoside diphosphate linked ...
29-79 1.69e-07

NADH pyrophosphatase; NADH pyrophosphatase, also known as NUDIX (nucleoside diphosphate linked moiety X)) motif 13/Nudt13, is thought to have NADH pyrophosphatase activity, be involved in NADH metabolic process and NADP catabolic process, catalyzing the cleavage of NADH into reduced nicotinamide mononucleotide (NMNH) and AMP, and located in mitochondrion. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity. Members of this family are also recognized by the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. A block of 8 conserved amino acids downstream of the NUDIX motif is thought to give NADH pyrophosphatase its specificity for NADH. NADH pyrophosphatase forms a dimer.


Pssm-ID: 467535 [Multi-domain]  Cd Length: 126  Bit Score: 47.10  E-value: 1.69e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 754169469  29 VLLGKRKGSVGaGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFAS 79
Cdd:cd03429   15 ILLARQPRWPP-GRYSLLAGFVEPGETLEEAVRREVKEEVGLRVKNVRYVG 64
NUDIX_MutT_Nudt1 cd04699
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ...
29-70 2.00e-07

MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467579 [Multi-domain]  Cd Length: 118  Bit Score: 46.46  E-value: 2.00e-07
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|..
gi 754169469  29 VLLGKRKgSVGAGSFQLPGGHLEFGETWEECAQRETWEEAAL 70
Cdd:cd04699   15 VLLLRRS-RAGAGEWELPGGRLEPGESPEEALKREVKEETGL 55
NUDIX_Hydrolase cd04511
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
29-82 4.50e-07

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467545 [Multi-domain]  Cd Length: 123  Bit Score: 45.65  E-value: 4.50e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 754169469  29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVN 82
Cdd:cd04511   15 VLLCRRAIEPRKGYWTLPAGFMELGETTEQGAARETREEAGARVEIGSLYAVYS 68
NUDIX_RppH cd04665
RNA pyrophosphohydrolase; The initiation of mRNA degradation often requires deprotection of ...
45-80 9.28e-07

RNA pyrophosphohydrolase; The initiation of mRNA degradation often requires deprotection of its 5' end. In eukaryotes, the 5'-methylguanosine (cap) structure is principally removed by the NUDIX family decapping enzyme Dcp2, yielding a 5'-monophosphorylated RNA that is a substrate for 5' exoribonucleases. In bacteria, the 5'-triphosphate group of primary transcripts is also converted to a 5' monophosphate by a NUDIX protein called RNA pyrophosphohydrolase (RppH), allowing access to both endo- and 5' exoribonucleases. NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467550 [Multi-domain]  Cd Length: 121  Bit Score: 44.93  E-value: 9.28e-07
                         10        20        30
                 ....*....|....*....|....*....|....*.
gi 754169469  45 LPGGHLEFGETWEECAQRETWEEAALHLKNVHFASV 80
Cdd:cd04665   26 FPGGKREPGETIEEAARRELYEETGAVIFELKPLGQ 61
NUDIX_Hydrolase cd04674
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
39-70 1.34e-06

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467558 [Multi-domain]  Cd Length: 118  Bit Score: 44.38  E-value: 1.34e-06
                         10        20        30
                 ....*....|....*....|....*....|..
gi 754169469  39 GAGSFQLPGGHLEFGETWEECAQRETWEEAAL 70
Cdd:cd04674   27 GHGELALPGGYIEYGETWQEAAVRELREETGV 58
NUDIX_Ap4A_Nudt2 cd03428
diadenosine tetraphosphate; Diadenosine tetraphosphate (Ap4A; EC 3.6.1.17), also called NUDIX ...
45-93 2.06e-06

diadenosine tetraphosphate; Diadenosine tetraphosphate (Ap4A; EC 3.6.1.17), also called NUDIX (nucleoside diphosphate-linked moiety X)) motif 2/Nudt2, is a member of the NUDIX hydrolase superfamily. Ap4A hydrolases are well represented in a variety of prokaryotic and eukaryotic organisms. Phylogenetic analysis reveals two distinct subgroups where plant enzymes fall into one subfamily and fungi/animals/archaea enzymes, represented by this subfamily, fall into another. Bacterial enzymes are found in both subfamilies. Ap4A is a potential by-product of aminoacyl tRNA synthesis, and accumulation of Ap4A has been implicated in a range of biological events, such as DNA replication, cellular differentiation, heat shock, metabolic stress, and apoptosis. Ap4A hydrolase cleaves Ap4A asymmetrically into ATP and AMP. It is important in the invasive properties of bacteria and thus presents a potential target for inhibition of such invasive bacteria. Besides the signature NUDIX motif (G[X5]E[X7]REUXEEXGU, where U is Ile, Leu, or Val) that functions as a metal binding and catalytic site, and a required divalent cation, Ap4A hydrolase is structurally similar to the other members of the NUDIX hydrolase superfamily with some degree of variation. Several regions in the sequences are poorly defined and substrate and metal binding sites are only predicted based on kinetic studies.


Pssm-ID: 467534 [Multi-domain]  Cd Length: 132  Bit Score: 44.08  E-value: 2.06e-06
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*....
gi 754169469  45 LPGGHLEFGETWEECAQRETWEEAALHLKNVHfasvvNSFIEKENYHYV 93
Cdd:cd03428   32 FPKGHVEPGESELETALRETKEETGLTVDDLP-----PGFRETLTYSFK 75
NUDIX_Ap4A_hydrolase_plant_like cd03671
plant diadenosine tetraphosphate (Ap4A) hydrolase and similar proteins; Diadenosine ...
29-92 6.00e-06

plant diadenosine tetraphosphate (Ap4A) hydrolase and similar proteins; Diadenosine tetraphosphate (Ap4A) hydrolase is a member of the NUDIX hydrolase superfamily. Members of this family are well represented in a variety of prokaryotic and eukaryotic organisms. Phylogenetic analysis reveals two distinct subgroups where plant enzymes fall into one group (represented by this subfamily) and fungi/animals/archaea enzymes fall into another. Bacterial enzymes are found in both subfamilies. Ap4A is a potential by-product of aminoacyl tRNA synthesis, and accumulation of Ap4A has been implicated in a range of biological events, such as DNA replication, cellular differentiation, heat shock, metabolic stress, and apoptosis. Ap4A hydrolase cleaves Ap4A asymmetrically into ATP and AMP. It is important in the invasive properties of bacteria and thus presents a potential target for the inhibition of such invasive bacteria. Besides the signature NUDIX motif (G[X5]E[X7]REUXEEXGU where U is Ile, Leu, or Val), Ap4A hydrolase is structurally similar to the other members of the NUDIX hydrolase superfamily with some degree of variations. Several regions in the sequences are poorly defined and substrate and metal binding sites are only predicted based on kinetic studies.


Pssm-ID: 467539 [Multi-domain]  Cd Length: 147  Bit Score: 43.32  E-value: 6.00e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 754169469  29 VLLGKRKGSvgAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVnsfieKENYHY 92
Cdd:cd03671   17 VLVGRRIDV--PGAWQFPQGGIDEGEDPEEAALRELYEETGLSPEDVEIIAET-----PDWLTY 73
NUDIX_Hydrolase cd04667
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
23-110 7.58e-06

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467552 [Multi-domain]  Cd Length: 117  Bit Score: 42.27  E-value: 7.58e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469  23 CKHPRCVLLGKRKGsvgaGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASvvnSFIEKENYHYVTilmkgEVD 102
Cdd:cd04667    7 CRRGDRILLVARRG----GRWLLPGGKIEPGESPLEAAIRELKEETGLAALSLLYLF---EHEGPHKLHHVF-----LAE 74

                 ....*...
gi 754169469 103 VTHDSEPK 110
Cdd:cd04667   75 APDGGRPR 82
NUDIX_Hydrolase cd03675
uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase ...
46-77 1.15e-05

uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase from Nitrosomonas europaea, which has an unknown function. NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467543 [Multi-domain]  Cd Length: 138  Bit Score: 42.13  E-value: 1.15e-05
                         10        20        30
                 ....*....|....*....|....*....|..
gi 754169469  46 PGGHLEFGETWEECAQRETWEEAALHLKNVHF 77
Cdd:cd03675   29 PAGHLEPGESLLEAAIRETLEETGWEVEPTAL 60
NUDIX_ASFGF2_Nudt6 cd04670
Antisense Basic Fibroblast Growth Factor; Antisense Basic Fibroblast Growth Factor (ASFGF2; EC ...
27-67 1.55e-05

Antisense Basic Fibroblast Growth Factor; Antisense Basic Fibroblast Growth Factor (ASFGF2; EC 3.6.1.-), also known as nucleoside diphosphate-linked moiety X)) motif 6/Nudt6, and similar proteins including peroxisomal coenzyme A diphosphatase/Nudt7 and mitochondrial coenzyme A diphosphatase/Nudt8. The Nudt6 gene overlaps and lies on the opposite strand from FGF2 gene, and is thought to be the FGF2 antisense gene. The two genes are independently transcribed, and their expression shows an inverse relationship, suggesting that this antisense transcript may regulate FGF2 expression. This gene has also been shown to have hormone-regulatory and antiproliferative actions in the pituitary that are independent of FGF2 expression. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467554 [Multi-domain]  Cd Length: 131  Bit Score: 41.75  E-value: 1.55e-05
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|.
gi 754169469  27 RCVLLGKRKGSvGAGSFQLPGGHLEFGETWEECAQRETWEE 67
Cdd:cd04670   14 NEVLVVQEKYG-GPGGWKLPGGLVDPGEDIGEAAVREVFEE 53
NUDIX_ADPRase cd04691
ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1. ...
29-73 1.61e-05

ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer.


Pssm-ID: 467573 [Multi-domain]  Cd Length: 122  Bit Score: 41.52  E-value: 1.61e-05
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*
gi 754169469  29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLK 73
Cdd:cd04691   14 VLLVKRAYGPGKGRWTLPGGFVEEGETLDEAIVREVLEETGIDAK 58
NUDIX_MutT_NudA_like cd03425
MutT pyrophosphohydrolase; The MutT pyrophosphohydrolase is a prototypical NUDIX hydrolase ...
29-92 2.66e-05

MutT pyrophosphohydrolase; The MutT pyrophosphohydrolase is a prototypical NUDIX hydrolase that catalyzes the hydrolysis of nucleoside and deoxynucleoside triphosphates (NTPs and dNTPs) by substitution at a beta-phosphorus to yield a nucleotide monophosphate (NMP) and inorganic pyrophosphate (PPi). This enzyme requires two divalent cations for activity; one coordinates the phosphoryl groups of the NTP/dNTP substrate, and the other coordinates to the enzyme. It also contains the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as metal binding and catalytic site. MutT pyrophosphohydrolase is important in preventing errors in DNA replication by hydrolyzing mutagenic nucleotides such as 8-oxo-dGTP (a product of oxidative damage), which can mispair with template adenine during DNA replication, to guanine nucleotides.


Pssm-ID: 467531 [Multi-domain]  Cd Length: 123  Bit Score: 40.90  E-value: 2.66e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 754169469  29 VLLGKRK-GSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKnvhfasvVNSFIEKENYHY 92
Cdd:cd03425   14 VLIAQRPeGKHLAGLWEFPGGKVEPGETPEQALVRELREELGIEVE-------VGEPLGTVEHDY 71
NPY1 COG2816
NADH pyrophosphatase NudC, Nudix superfamily [Nucleotide transport and metabolism];
29-79 2.70e-05

NADH pyrophosphatase NudC, Nudix superfamily [Nucleotide transport and metabolism];


Pssm-ID: 442065 [Multi-domain]  Cd Length: 288  Bit Score: 42.21  E-value: 2.70e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 754169469  29 VLLGkRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVH-FAS 79
Cdd:COG2816  171 ILLA-RQARWPPGRYSLLAGFVEPGETLEQAVRREVFEEVGVRVKNVRyVGS 221
NUDIX_Hydrolase cd04682
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
45-72 4.05e-05

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467565 [Multi-domain]  Cd Length: 123  Bit Score: 40.74  E-value: 4.05e-05
                         10        20
                 ....*....|....*....|....*...
gi 754169469  45 LPGGHLEFGETWEECAQRETWEEAALHL 72
Cdd:cd04682   32 LPGGGREGDETPFACVLRELREELGLAL 59
NUDIX_ADPRase_Nudt5_UGPPase_Nudt14 cd03424
ADP-ribose pyrophosphatase, UDP-glucose pyrophosphatase, and similar proteins; ADP-ribose ...
45-77 5.07e-05

ADP-ribose pyrophosphatase, UDP-glucose pyrophosphatase, and similar proteins; ADP-ribose pyrophosphatase (ADPRase) ( NUDIX (Nucleoside diphosphate-linked moiety X)) motif 5; Nudt5) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site.


Pssm-ID: 467530 [Multi-domain]  Cd Length: 134  Bit Score: 40.57  E-value: 5.07e-05
                         10        20        30
                 ....*....|....*....|....*....|...
gi 754169469  45 LPGGHLEFGETWEECAQRETWEEAALHLKNVHF 77
Cdd:cd03424   33 LPAGKIDPGEDPEEAARRELEEETGYTAGDLEL 65
NUDIX_Ap6A_hydrolase cd03673
diadenosine hexaphosphate (Ap6A) hydrolase; Diadenosine hexaphosphate (Ap6A) hydrolase is a ...
45-67 5.21e-05

diadenosine hexaphosphate (Ap6A) hydrolase; Diadenosine hexaphosphate (Ap6A) hydrolase is a member of the NUDIX hydrolase superfamily. Ap6A hydrolase specifically hydrolyzes diadenosine polyphosphates, but not ATP or diadenosine triphosphate, and it generates ATP as the product. Ap6A, the most preferred substrate, hydrolyzes to produce two ATP molecules, which is a novel hydrolysis mode for Ap6A. These results indicate that Ap6A hydrolase is a diadenosine polyphosphate hydrolase. It requires the presence of a divalent cation, such as Mn2+, Mg2+, Zn2+, and Co2+, for activity. Members of the NUDIX hydrolase superfamily are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site.


Pssm-ID: 467541 [Multi-domain]  Cd Length: 131  Bit Score: 40.23  E-value: 5.21e-05
                         10        20
                 ....*....|....*....|...
gi 754169469  45 LPGGHLEFGETWEECAQRETWEE 67
Cdd:cd03673   31 LPKGKLEPGETPEEAAVREVEEE 53
NUDIX_MutT_Nudt1 cd18883
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ...
45-119 5.61e-05

MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases.


Pssm-ID: 467594  Cd Length: 136  Bit Score: 40.53  E-value: 5.61e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 754169469  45 LPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVV-NSFIEKENYHyVTILMKGEVDVTHDsePKNVEPEKNES 119
Cdd:cd18883   26 LPGGHIEIGESAEIALVRELREELGLSCKVGRYLGAVeNQWQDKEVIH-VELNHLFEVELQDL--HTSDTPESQEP 98
PRK05379 PRK05379
bifunctional nicotinamide-nucleotide adenylyltransferase/Nudix hydroxylase;
29-72 6.35e-05

bifunctional nicotinamide-nucleotide adenylyltransferase/Nudix hydroxylase;


Pssm-ID: 235436 [Multi-domain]  Cd Length: 340  Bit Score: 41.53  E-value: 6.35e-05
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....
gi 754169469  29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHL 72
Cdd:PRK05379 216 VLLVRRRAEPGKGLWALPGGFLEQDETLLDACLRELREETGLKL 259
NUDIX_DIPP2_like_Nudt4 cd04666
diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 and similar proteins; Diadenosine 5', ...
45-122 6.42e-05

diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 and similar proteins; Diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 (DIPP2), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 4; Nudt4, and other proteins including DIPP1/Nudt3, DIPP3a;APS2/Nudt10 and DIPP3beta;APS1/Nudt11. DIPP regulates the turnover of diphosphoinositol polyphosphates. The turnover of these high-energy diphosphoinositol polyphosphates represents a molecular switching activity with important regulatory consequences. Molecular switching by diphosphoinositol polyphosphates may contribute to regulating intracellular trafficking. Several alternatively spliced transcript variants have been described, but the full-length nature of some variants has not been determined. Isoforms DIPP2alpha and DIPP2beta are distinguishable from each other solely by DIPP2beta possessing one additional amino acid due to intron boundary skidding in alternate splicing. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467551 [Multi-domain]  Cd Length: 128  Bit Score: 40.21  E-value: 6.42e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469  45 LPGGHLEFGETWEECAQRETWEEAAlhlknvhfasVVNSFIEKE--NYHYVTILMKGEVDVTHDSEPKNVE------PEK 116
Cdd:cd04666   30 LPKGGPEKGETPAEAAAREAWEEAG----------VRGKVLKRPlgVYRYRKRLKGRGLPCRVHVFPLEVTeelddwPEK 99

                 ....*.
gi 754169469 117 NESKRI 122
Cdd:cd04666  100 HERKRR 105
NUDIX_CoAse_Nudt7 cd03426
coenzyme A pyrophosphatase and similar proteins; Coenzyme A pyrophosphatase (CoAse; EC 3.6.1.1) ...
28-76 1.18e-04

coenzyme A pyrophosphatase and similar proteins; Coenzyme A pyrophosphatase (CoAse; EC 3.6.1.1), also called nucleoside diphosphate-linked moiety X)) motif 7, is a member of the NUDIX hydrolase superfamily, functions to catalyze the elimination of oxidized inactive CoA, which can inhibit CoA-utilizing enzymes. The need of CoAses mainly arises under conditions of oxidative stress. CoAse has a conserved NUDIX fold and requires a single divalent cation for catalysis. In addition to a signature NUDIX motif G[X5]E[X7]REUXEEXGU, where U is Ile, Leu, or Val, CoAse contains an additional motif upstream called the NuCoA motif (LLTXT(SA)X3RX3GX3FPGG) which is postulated to be involved in CoA recognition. CoA plays a central role in lipid metabolism. It is involved in the initial steps of fatty acid sythesis in the cytosol, in the oxidation of fatty acids and the citric acid cycle in the mitochondria, and in the oxidation of long-chain fatty acids in peroxisomes. CoA has the important role of activating fatty acids for further modification into key biological signalling molecules.


Pssm-ID: 467532 [Multi-domain]  Cd Length: 158  Bit Score: 39.78  E-value: 1.18e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 754169469  28 CVLLGKRKGSVG--AGSFQLPGGHLEFG-ETWEECAQRETWEEAALHLKNVH 76
Cdd:cd03426   17 HVLLTKRASHLRshPGQIAFPGGKREPGdESPVETALRETEEEIGLPPESVE 68
NUDIX_ADPRase cd18880
ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1. ...
45-117 1.41e-04

ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer.


Pssm-ID: 467591 [Multi-domain]  Cd Length: 126  Bit Score: 39.05  E-value: 1.41e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 754169469  45 LPGGHLEFGETWEECAQRETWEEAALHLKnVHFASVVNSFIEKENY-HYVTILMkgEVDVTHDSEPKNVEPEKN 117
Cdd:cd18880   29 LPGGGQEHGETLPEALKRECLEETGLDVE-VGDLLFVREYIGPNKPvHQVELFF--LCTLEGGELTLGSDPDLN 99
nudC PRK00241
NAD(+) diphosphatase;
48-79 1.65e-04

NAD(+) diphosphatase;


Pssm-ID: 234699 [Multi-domain]  Cd Length: 256  Bit Score: 39.83  E-value: 1.65e-04
                         10        20        30
                 ....*....|....*....|....*....|...
gi 754169469  48 GHLEFGETWEECAQRETWEEAALHLKNVH-FAS 79
Cdd:PRK00241 163 GFVEVGETLEQCVAREVMEESGIKVKNLRyVGS 195
NUDIX_Hydrolase cd04676
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
27-73 1.89e-04

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467559 [Multi-domain]  Cd Length: 144  Bit Score: 38.92  E-value: 1.89e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*..
gi 754169469  27 RCVLLGKRKGsvGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLK 73
Cdd:cd04676   28 DGRILLQRKG--GLGLWSLPAGAIEPGEHPAEAVIREVREETGLLVK 72
NUDIX_ADPRase cd24155
Adp Ribose Pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ...
45-79 1.99e-04

Adp Ribose Pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site.


Pssm-ID: 467603 [Multi-domain]  Cd Length: 187  Bit Score: 39.43  E-value: 1.99e-04
                         10        20        30
                 ....*....|....*....|....*....|....*
gi 754169469  45 LPGGHLEFGETWEECAQRETWEEAALHLKNVHFAS 79
Cdd:cd24155   80 IVAGMIDAGETPEDVARREAEEEAGLTLDALEPIA 114
NUDIX_Hydrolase cd18877
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
29-70 2.14e-04

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467589 [Multi-domain]  Cd Length: 141  Bit Score: 38.88  E-value: 2.14e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|...
gi 754169469  29 VLLGKRKG-SVGAGSFQLPGGHLEFGETWEECAQRETWEEAAL 70
Cdd:cd18877   34 VLLQHRAWwTHQGGTWALPGGARDSGETPEAAALRETEEETGL 76
NUDIX_GDPMH_NudD cd03430
GDP-mannose glycosyl hydrolase; GDP-mannose glycosyl hydrolase, also known as GDP-mannose ...
29-95 3.39e-04

GDP-mannose glycosyl hydrolase; GDP-mannose glycosyl hydrolase, also known as GDP-mannose mannosyl hydrolase/GDPMH, is a member of the NUDIX hydrolase superfamily. This class of enzymes is unique from other members of the superfamily in two aspects. First, it contains a modified NUDIX signature sequence. The slight changes to the conserved sequence motif, GX5EX7REUXEEXGU, where U = I, L or V), are believed to contribute to the removal of all magnesium binding sites but one, retaining only the metal site that coordinates the pyrophosphate of the substrate. Secondly, it is not a pyrophosphatase that substitutes at a phosphorus; instead, it hydrolyzes nucleotide sugars such as GDP-mannose to GDP and mannose, cleaving the phosphoglycosyl bond by substituting at a carbon position. GDP-mannose provides mannosyl components for cell wall synthesis and is required for the synthesis of other glycosyl donors (such as GDP-fucose and colitose) for the cell wall. The importance of GDP-sugar hydrolase activities is thus closely related to the regulation of cell wall biosynthesis. Enzymes in this family are believed to regulate the concentration of GDP-mannose and GDP-glucose in the bacterial cell wall.


Pssm-ID: 467536 [Multi-domain]  Cd Length: 146  Bit Score: 38.38  E-value: 3.39e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 754169469  29 VLLGKRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEE--AALHLKNVHFASV------VNSFIEKENYHYVTI 95
Cdd:cd03430   29 ILLGKRNNRPAQGYWFVPGGRILKNETLDDAFKRIAREElgLEVTINAAEFLGVyehfydDNFSGEDFSTHYVVL 103
NUDIX_Nudt17 cd04694
nucleoside diphosphate-linked moiety X)) motif 17; Nucleoside diphosphate-linked moiety X)) ...
28-72 4.71e-04

nucleoside diphosphate-linked moiety X)) motif 17; Nucleoside diphosphate-linked moiety X)) motif 17 (EC 3.6.1.-) encoded by the NUDT17 gene on chromosome 1q21.1 and encodes an enzyme thought to hydrolyse some nucleoside diphosphate derivatives. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467576 [Multi-domain]  Cd Length: 135  Bit Score: 38.04  E-value: 4.71e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*..
gi 754169469  28 CVLLGKR--KGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAALHL 72
Cdd:cd04694   15 RVLLTRRakHMRTFPGVWVPPGGHVELGESLLEAGLRELQEETGLEV 61
PRK08999 PRK08999
Nudix family hydrolase;
29-67 7.18e-04

Nudix family hydrolase;


Pssm-ID: 236361 [Multi-domain]  Cd Length: 312  Bit Score: 38.32  E-value: 7.18e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|
gi 754169469  29 VLLGKR-KGSVGAGSFQLPGGHLEFGETWEECAQRETWEE 67
Cdd:PRK08999  19 ILLARRpEGKHQGGLWEFPGGKVEPGETVEQALARELQEE 58
NUDIX_Hydrolase cd04684
uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase ...
38-67 1.49e-03

uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase from Enterococcus faecalis, which has an unknown function. NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467567 [Multi-domain]  Cd Length: 140  Bit Score: 36.45  E-value: 1.49e-03
                         10        20        30
                 ....*....|....*....|....*....|
gi 754169469  38 VGAGSFQLPGGHLEFGETWEECAQRETWEE 67
Cdd:cd04684   34 TPNGGYFLPGGGIEPGETPEEALHREVLEE 63
NUDIX_ADPRase_Ndx2 cd24161
NUDIX family Ndx2; NUDIX family protein Ndx2 found in Thermus thermophilus has ADP-ribose ...
38-70 1.93e-03

NUDIX family Ndx2; NUDIX family protein Ndx2 found in Thermus thermophilus has ADP-ribose pyrophosphatase (ADPRase) as well as flavin adenine dinucleotide (FAD) activity. ADPRase (EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity.Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467609 [Multi-domain]  Cd Length: 137  Bit Score: 35.99  E-value: 1.93e-03
                         10        20        30
                 ....*....|....*....|....*....|...
gi 754169469  38 VGAGSFQLPGGHLEFGETWEECAQRETWEEAAL 70
Cdd:cd24161   27 LGGWSWEIPAGGWPEGEDPEEAARRELREETGL 59
NUDIX_DR1025_like cd04700
DR1025 and similar proteins; DR1025 from Deinococcus radiodurans, a member of the NUDIX ...
29-77 2.74e-03

DR1025 and similar proteins; DR1025 from Deinococcus radiodurans, a member of the NUDIX hydrolase superfamily, show nucleoside triphosphatase and dinucleoside polyphosphate pyrophosphatase activities. Like other enzymes belonging to this superfamily, it requires a divalent cation, in this case Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. In general, substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467580 [Multi-domain]  Cd Length: 147  Bit Score: 36.04  E-value: 2.74e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 754169469  29 VLLGKRKGSVG----AGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHF 77
Cdd:cd04700   27 ILLVQEKGISGhpekAGLWHIPSGAVEDGENPQDAAVREACEETGLRVRLVKF 79
NUDIX_ADPRase cd24160
Adp-ribose pyrophosphatase (ADPRase) found in Thermus thermophilus, and similar proteins; ...
33-70 3.73e-03

Adp-ribose pyrophosphatase (ADPRase) found in Thermus thermophilus, and similar proteins; ADP-ribose pyrophosphatase (ADPRase) such as found in extreme thermophile Thermus thermophilus (TtADPRase) catalyzes the hydrolysis of ADPR to AMP and ribose 5'-phosphate in the presence of Mg2+ and Zn2+ ions. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site.


Pssm-ID: 467608 [Multi-domain]  Cd Length: 151  Bit Score: 35.56  E-value: 3.73e-03
                         10        20        30
                 ....*....|....*....|....*....|....*...
gi 754169469  33 KRKGSVGAGSFQLPGGHLEFGETWEECAQRETWEEAAL 70
Cdd:cd24160   39 QMRPAVGAATLEIPAGLIDPGETPEEAARRELAEETGL 76
NUDIX_Hydrolase cd04685
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
46-72 4.11e-03

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467568 [Multi-domain]  Cd Length: 138  Bit Score: 35.24  E-value: 4.11e-03
                         10        20
                 ....*....|....*....|....*..
gi 754169469  46 PGGHLEFGETWEECAQRETWEEAALHL 72
Cdd:cd04685   33 PGGGVEPGESPEQAAVRELREETGLRL 59
NUDIX_DHNTPase_like cd04664
dihydroneopterin hydrolase; DHNTP pyrophosphatase (DHNTPase) catalyzes the hydrolysis of ...
29-76 4.42e-03

dihydroneopterin hydrolase; DHNTP pyrophosphatase (DHNTPase) catalyzes the hydrolysis of dihydroneopterin triphosphate (DHNTP) to dihydroneopterin monophosphate (DHNMP) and pyrophosphate,the second step in the pterin branch of the folate synthesis pathway in bacteria. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467549 [Multi-domain]  Cd Length: 132  Bit Score: 35.30  E-value: 4.42e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 754169469  29 VLLGKRKGsvGAGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVH 76
Cdd:cd04664   16 VLLLKRTD--DGGFWQSVTGGIEDGETPWQAALRELKEETGLDPLELQ 61
NUDIX_8DGDPP_Nudt18 cd04671
8-oxo-DGDP phosphatase; 8-oxo-DGDP phosphatase (8DGDPP; EC 3.6.1.55), also known as NUDIX ...
40-73 5.58e-03

8-oxo-DGDP phosphatase; 8-oxo-DGDP phosphatase (8DGDPP; EC 3.6.1.55), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 18/Nudt18; 2-hydroxy-DADP phosphatase; 7,8-dihydro-8-oxoguanine phosphatase, hydrolyzes 8-oxo-7,8-dihydroguanine (8-oxo-Gua)-containing deoxyribo- and ribonucleoside diphosphates to the monophosphates. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467555 [Multi-domain]  Cd Length: 130  Bit Score: 34.98  E-value: 5.58e-03
                         10        20        30
                 ....*....|....*....|....*....|....
gi 754169469  40 AGSFQLPGGHLEFGETWEECAQRETWEEAALHLK 73
Cdd:cd04671   25 RGKWYLPAGRVEPGESIVEAAKREVKEETGLKCE 58
PRK00714 PRK00714
RNA pyrophosphohydrolase; Reviewed
29-67 6.17e-03

RNA pyrophosphohydrolase; Reviewed


Pssm-ID: 234820 [Multi-domain]  Cd Length: 156  Bit Score: 35.13  E-value: 6.17e-03
                         10        20        30
                 ....*....|....*....|....*....|....*....
gi 754169469  29 VLLGKRKGSVGagSFQLPGGHLEFGETWEECAQRETWEE 67
Cdd:PRK00714  22 VFWGRRIGQGH--SWQFPQGGIDPGETPEQAMYRELYEE 58
NUDIX_Hydrolase cd04680
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
44-72 7.06e-03

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467563 [Multi-domain]  Cd Length: 121  Bit Score: 34.53  E-value: 7.06e-03
                         10        20
                 ....*....|....*....|....*....
gi 754169469  44 QLPGGHLEFGETWEECAQRETWEEAALHL 72
Cdd:cd04680   26 YLPGGGVDKGETAEEAARRELREEAGVVL 54
NUDIX_Hydrolase cd03674
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
46-113 7.06e-03

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467542 [Multi-domain]  Cd Length: 130  Bit Score: 34.54  E-value: 7.06e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 754169469  46 PGGHLEFGETWEECAQRETWEEAALHLKNVHFAS----------VVNSFIEKENYHY-VTILMK--GEVDVTHDSEPKNV 112
Cdd:cd03674   30 PGGHVEPDEDPLEAALREAREETGLDVELLSPLSpdpldidvhpIPANPGEPAHLHLdVRYLAVadGDEALRKSDESSDV 109

                 .
gi 754169469 113 E 113
Cdd:cd03674  110 R 110
NUDIX_Hydrolase cd18879
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ...
29-83 8.74e-03

uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase.


Pssm-ID: 467590 [Multi-domain]  Cd Length: 142  Bit Score: 34.48  E-value: 8.74e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 754169469  29 VLLGKRKGSvgaGSFQLPGGHLEFGETWEECAQRETWEEAALHLKNVHFASVVNS 83
Cdd:cd18879   32 VLLVRRADN---GRWTPVTGIVEPGEQPADAAVREVLEETGVDVEVERLASVGAS 83
NUDIX_DR0079 cd24154
NUDIX domain family found in Deinococcus radiodurans, and similar proteins; Deinococcus ...
47-75 9.48e-03

NUDIX domain family found in Deinococcus radiodurans, and similar proteins; Deinococcus radiodurans protein DR_0079 is one of 21 NUDIX hydrolases that it encodes, and it has been observed to have a marked preference for cytosine ribonucleoside 5'-diphosphate (CDP) and cytosine ribonucleoside 5'-triphosphate (CTP), and for their corresponding deoxyribose nucleotides, dCDP and dCTP, to a lesser degree. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required.


Pssm-ID: 467602 [Multi-domain]  Cd Length: 121  Bit Score: 34.11  E-value: 9.48e-03
                         10        20
                 ....*....|....*....|....*....
gi 754169469  47 GGHLEFGETWEECAQRETWEEAALHLKNV 75
Cdd:cd24154   37 GGHVSSGETYEQAFVRELQEELNLDLDQL 65
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH