regulating synaptic membrane exocytosis protein 1 isoform 40 [Homo sapiens]
regulating synaptic membrane exocytosis protein( domain architecture ID 10097801)
regulating synaptic membrane exocytosis protein is a Rab effector involved in exocytosis, and may act as scaffold protein that regulates neurotransmitter release at active zones
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
C2B_RIM1alpha | cd04028 | C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are ... |
768-913 | 3.27e-96 | ||||
C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. : Pssm-ID: 175994 [Multi-domain] Cd Length: 146 Bit Score: 298.92 E-value: 3.27e-96
|
||||||||
C2A_RIM1alpha | cd04031 | C2 domain first repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are ... |
216-342 | 4.49e-69 | ||||
C2 domain first repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. : Pssm-ID: 175997 [Multi-domain] Cd Length: 125 Bit Score: 225.20 E-value: 4.49e-69
|
||||||||
PDZ_RIM-like | cd06714 | PDZ domain of Rab3-interacting molecule 1 (RIM), RIM2, piccolo and related domains; PDZ ... |
68-164 | 2.57e-47 | ||||
PDZ domain of Rab3-interacting molecule 1 (RIM), RIM2, piccolo and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of RIM, RIM2, piccolo and related domains. RIM proteins and Gallus gallus protein piccolo (also called aczonin) are involved in neurotransmitter release at presynaptic active zones, the site of vesicle fusion. A protein complex containing RIM proteins positions synaptic vesicles containing synaptotagmin at the active zone. RIM proteins simultaneously activate docking and priming of synaptic vesicles and recruit Ca2+-channels to active zones, thereby connecting primed synaptic vesicles to Ca2+-channels. RIM binding to vesicular Rab proteins (Rab3 and Rab27 isoforms) mediates vesicle docking; RIM binding to Munc13 activates vesicle priming; RIM binding to the Ca2+-channel, both directly and indirectly via RIM-BP, recruits the Ca2+-channels. The RIM PDZ domain interacts with the C-termini of N- and P/Q-type voltage-gated Ca2+-channels. RIM1, RIM2 and piccolo also participate in regulated exocytosis through binding cAMP-GEFII (cAMP-binding protein-guanidine nucleotide exchange factor II). The piccolo PDZ domain binds cAMP-GEFII. RIM2 also plays a role in dendrite formation by melanocytes. Caenorhabditis elegans RIM (also known as unc-10) may be involved in the regulation of defecation and daumone response. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This RIM-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. : Pssm-ID: 467198 [Multi-domain] Cd Length: 95 Bit Score: 163.49 E-value: 2.57e-47
|
||||||||
PHA03307 super family | cl33723 | transcriptional regulator ICP4; Provisional |
345-556 | 5.60e-03 | ||||
transcriptional regulator ICP4; Provisional The actual alignment was detected with superfamily member PHA03307: Pssm-ID: 223039 [Multi-domain] Cd Length: 1352 Bit Score: 40.54 E-value: 5.60e-03
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
C2B_RIM1alpha | cd04028 | C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are ... |
768-913 | 3.27e-96 | ||||
C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. Pssm-ID: 175994 [Multi-domain] Cd Length: 146 Bit Score: 298.92 E-value: 3.27e-96
|
||||||||
C2A_RIM1alpha | cd04031 | C2 domain first repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are ... |
216-342 | 4.49e-69 | ||||
C2 domain first repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. Pssm-ID: 175997 [Multi-domain] Cd Length: 125 Bit Score: 225.20 E-value: 4.49e-69
|
||||||||
PDZ_RIM-like | cd06714 | PDZ domain of Rab3-interacting molecule 1 (RIM), RIM2, piccolo and related domains; PDZ ... |
68-164 | 2.57e-47 | ||||
PDZ domain of Rab3-interacting molecule 1 (RIM), RIM2, piccolo and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of RIM, RIM2, piccolo and related domains. RIM proteins and Gallus gallus protein piccolo (also called aczonin) are involved in neurotransmitter release at presynaptic active zones, the site of vesicle fusion. A protein complex containing RIM proteins positions synaptic vesicles containing synaptotagmin at the active zone. RIM proteins simultaneously activate docking and priming of synaptic vesicles and recruit Ca2+-channels to active zones, thereby connecting primed synaptic vesicles to Ca2+-channels. RIM binding to vesicular Rab proteins (Rab3 and Rab27 isoforms) mediates vesicle docking; RIM binding to Munc13 activates vesicle priming; RIM binding to the Ca2+-channel, both directly and indirectly via RIM-BP, recruits the Ca2+-channels. The RIM PDZ domain interacts with the C-termini of N- and P/Q-type voltage-gated Ca2+-channels. RIM1, RIM2 and piccolo also participate in regulated exocytosis through binding cAMP-GEFII (cAMP-binding protein-guanidine nucleotide exchange factor II). The piccolo PDZ domain binds cAMP-GEFII. RIM2 also plays a role in dendrite formation by melanocytes. Caenorhabditis elegans RIM (also known as unc-10) may be involved in the regulation of defecation and daumone response. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This RIM-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467198 [Multi-domain] Cd Length: 95 Bit Score: 163.49 E-value: 2.57e-47
|
||||||||
C2 | pfam00168 | C2 domain; |
231-341 | 2.88e-24 | ||||
C2 domain; Pssm-ID: 425499 [Multi-domain] Cd Length: 104 Bit Score: 98.16 E-value: 2.88e-24
|
||||||||
C2 | pfam00168 | C2 domain; |
796-903 | 3.03e-24 | ||||
C2 domain; Pssm-ID: 425499 [Multi-domain] Cd Length: 104 Bit Score: 97.77 E-value: 3.03e-24
|
||||||||
C2 | smart00239 | Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, ... |
232-339 | 9.36e-21 | ||||
Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, protein kinases C, and synaptotagmins (among others). Some do not appear to contain Ca2+-binding sites. Particular C2s appear to bind phospholipids, inositol polyphosphates, and intracellular proteins. Unusual occurrence in perforin. Synaptotagmin and PLC C2s are permuted in sequence with respect to N- and C-terminal beta strands. SMART detects C2 domains using one or both of two profiles. Pssm-ID: 214577 [Multi-domain] Cd Length: 101 Bit Score: 87.93 E-value: 9.36e-21
|
||||||||
C2 | smart00239 | Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, ... |
797-900 | 1.21e-15 | ||||
Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, protein kinases C, and synaptotagmins (among others). Some do not appear to contain Ca2+-binding sites. Particular C2s appear to bind phospholipids, inositol polyphosphates, and intracellular proteins. Unusual occurrence in perforin. Synaptotagmin and PLC C2s are permuted in sequence with respect to N- and C-terminal beta strands. SMART detects C2 domains using one or both of two profiles. Pssm-ID: 214577 [Multi-domain] Cd Length: 101 Bit Score: 73.29 E-value: 1.21e-15
|
||||||||
PDZ | smart00228 | Domain present in PSD-95, Dlg, and ZO-1/2; Also called DHR (Dlg homologous region) or GLGF ... |
81-166 | 2.51e-12 | ||||
Domain present in PSD-95, Dlg, and ZO-1/2; Also called DHR (Dlg homologous region) or GLGF (relatively well conserved tetrapeptide in these domains). Some PDZs have been shown to bind C-terminal polypeptides; others appear to bind internal (non-C-terminal) polypeptides. Different PDZs possess different binding specificities. Pssm-ID: 214570 [Multi-domain] Cd Length: 85 Bit Score: 63.17 E-value: 2.51e-12
|
||||||||
PDZ | pfam00595 | PDZ domain; PDZ domains are found in diverse signaling proteins. |
81-162 | 8.32e-11 | ||||
PDZ domain; PDZ domains are found in diverse signaling proteins. Pssm-ID: 395476 [Multi-domain] Cd Length: 81 Bit Score: 58.83 E-value: 8.32e-11
|
||||||||
DegQ | COG0265 | Periplasmic serine protease, S1-C subfamily, contain C-terminal PDZ domain [Posttranslational ... |
106-165 | 2.04e-04 | ||||
Periplasmic serine protease, S1-C subfamily, contain C-terminal PDZ domain [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440035 [Multi-domain] Cd Length: 274 Bit Score: 44.37 E-value: 2.04e-04
|
||||||||
PHA03307 | PHA03307 | transcriptional regulator ICP4; Provisional |
345-556 | 5.60e-03 | ||||
transcriptional regulator ICP4; Provisional Pssm-ID: 223039 [Multi-domain] Cd Length: 1352 Bit Score: 40.54 E-value: 5.60e-03
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
C2B_RIM1alpha | cd04028 | C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are ... |
768-913 | 3.27e-96 | ||||
C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. Pssm-ID: 175994 [Multi-domain] Cd Length: 146 Bit Score: 298.92 E-value: 3.27e-96
|
||||||||
C2A_RIM1alpha | cd04031 | C2 domain first repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are ... |
216-342 | 4.49e-69 | ||||
C2 domain first repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. Pssm-ID: 175997 [Multi-domain] Cd Length: 125 Bit Score: 225.20 E-value: 4.49e-69
|
||||||||
PDZ_RIM-like | cd06714 | PDZ domain of Rab3-interacting molecule 1 (RIM), RIM2, piccolo and related domains; PDZ ... |
68-164 | 2.57e-47 | ||||
PDZ domain of Rab3-interacting molecule 1 (RIM), RIM2, piccolo and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of RIM, RIM2, piccolo and related domains. RIM proteins and Gallus gallus protein piccolo (also called aczonin) are involved in neurotransmitter release at presynaptic active zones, the site of vesicle fusion. A protein complex containing RIM proteins positions synaptic vesicles containing synaptotagmin at the active zone. RIM proteins simultaneously activate docking and priming of synaptic vesicles and recruit Ca2+-channels to active zones, thereby connecting primed synaptic vesicles to Ca2+-channels. RIM binding to vesicular Rab proteins (Rab3 and Rab27 isoforms) mediates vesicle docking; RIM binding to Munc13 activates vesicle priming; RIM binding to the Ca2+-channel, both directly and indirectly via RIM-BP, recruits the Ca2+-channels. The RIM PDZ domain interacts with the C-termini of N- and P/Q-type voltage-gated Ca2+-channels. RIM1, RIM2 and piccolo also participate in regulated exocytosis through binding cAMP-GEFII (cAMP-binding protein-guanidine nucleotide exchange factor II). The piccolo PDZ domain binds cAMP-GEFII. RIM2 also plays a role in dendrite formation by melanocytes. Caenorhabditis elegans RIM (also known as unc-10) may be involved in the regulation of defecation and daumone response. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This RIM-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467198 [Multi-domain] Cd Length: 95 Bit Score: 163.49 E-value: 2.57e-47
|
||||||||
C2 | pfam00168 | C2 domain; |
231-341 | 2.88e-24 | ||||
C2 domain; Pssm-ID: 425499 [Multi-domain] Cd Length: 104 Bit Score: 98.16 E-value: 2.88e-24
|
||||||||
C2 | pfam00168 | C2 domain; |
796-903 | 3.03e-24 | ||||
C2 domain; Pssm-ID: 425499 [Multi-domain] Cd Length: 104 Bit Score: 97.77 E-value: 3.03e-24
|
||||||||
C2B_PI3K_class_II | cd08381 | C2 domain second repeat present in class II phosphatidylinositol 3-kinases (PI3Ks); There are ... |
218-341 | 2.28e-23 | ||||
C2 domain second repeat present in class II phosphatidylinositol 3-kinases (PI3Ks); There are 3 classes of PI3Ks based on structure, regulation, and specificity. All classes contain a N-terminal C2 domain, a PIK domain, and a kinase catalytic domain. Unlike class I and class III, class II PI3Ks have additionally a PX domain and a C-terminal C2 domain containing a nuclear localization signal both of which bind phospholipids though in a slightly different fashion. PI3Ks (AKA phosphatidylinositol (PtdIns) 3-kinases) regulate cell processes such as cell growth, differentiation, proliferation, and motility. PI3Ks work on phosphorylation of phosphatidylinositol, phosphatidylinositide (4)P (PtdIns (4)P),2 or PtdIns(4,5)P2. Specifically they phosphorylate the D3 hydroxyl group of phosphoinositol lipids on the inositol ring. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176027 [Multi-domain] Cd Length: 122 Bit Score: 96.21 E-value: 2.28e-23
|
||||||||
C2A_SLP | cd08521 | C2 domain first repeat present in Synaptotagmin-like proteins; All Slp members basically share ... |
218-341 | 1.19e-22 | ||||
C2 domain first repeat present in Synaptotagmin-like proteins; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike the case in Slp3 and Slp4/granuphilin in which their C2A domains are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp3 and Slp4/granuphilin promote dense-core vesicle exocytosis. Slp5 mRNA has been shown to be restricted to human placenta and liver suggesting a role in Rab27A-dependent membrane trafficking in specific tissues. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176056 [Multi-domain] Cd Length: 123 Bit Score: 94.24 E-value: 1.19e-22
|
||||||||
C2B_SLP_1-2-3-4 | cd04020 | C2 domain second repeat present in Synaptotagmin-like proteins 1-4; All Slp members basically ... |
208-321 | 1.30e-22 | ||||
C2 domain second repeat present in Synaptotagmin-like proteins 1-4; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike the case in Slp3 and Slp4/granuphilin in which their C2A domains are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp3 and Slp4/granuphilin promote dense-core vesicle exocytosis. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175987 [Multi-domain] Cd Length: 162 Bit Score: 95.47 E-value: 1.30e-22
|
||||||||
C2C_KIAA1228 | cd04030 | C2 domain third repeat present in uncharacterized human KIAA1228-like proteins; KIAA proteins ... |
218-342 | 2.00e-21 | ||||
C2 domain third repeat present in uncharacterized human KIAA1228-like proteins; KIAA proteins are uncharacterized human proteins. They were compiled by the Kazusa mammalian cDNA project which identified more than 2000 human genes. They are identified by 4 digit codes that precede the KIAA designation. Many KIAA genes are still functionally uncharacterized including KIAA1228. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. Pssm-ID: 175996 [Multi-domain] Cd Length: 127 Bit Score: 90.80 E-value: 2.00e-21
|
||||||||
C2B_PI3K_class_II | cd08381 | C2 domain second repeat present in class II phosphatidylinositol 3-kinases (PI3Ks); There are ... |
785-903 | 2.08e-21 | ||||
C2 domain second repeat present in class II phosphatidylinositol 3-kinases (PI3Ks); There are 3 classes of PI3Ks based on structure, regulation, and specificity. All classes contain a N-terminal C2 domain, a PIK domain, and a kinase catalytic domain. Unlike class I and class III, class II PI3Ks have additionally a PX domain and a C-terminal C2 domain containing a nuclear localization signal both of which bind phospholipids though in a slightly different fashion. PI3Ks (AKA phosphatidylinositol (PtdIns) 3-kinases) regulate cell processes such as cell growth, differentiation, proliferation, and motility. PI3Ks work on phosphorylation of phosphatidylinositol, phosphatidylinositide (4)P (PtdIns (4)P),2 or PtdIns(4,5)P2. Specifically they phosphorylate the D3 hydroxyl group of phosphoinositol lipids on the inositol ring. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176027 [Multi-domain] Cd Length: 122 Bit Score: 90.43 E-value: 2.08e-21
|
||||||||
C2 | smart00239 | Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, ... |
232-339 | 9.36e-21 | ||||
Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, protein kinases C, and synaptotagmins (among others). Some do not appear to contain Ca2+-binding sites. Particular C2s appear to bind phospholipids, inositol polyphosphates, and intracellular proteins. Unusual occurrence in perforin. Synaptotagmin and PLC C2s are permuted in sequence with respect to N- and C-terminal beta strands. SMART detects C2 domains using one or both of two profiles. Pssm-ID: 214577 [Multi-domain] Cd Length: 101 Bit Score: 87.93 E-value: 9.36e-21
|
||||||||
C2A_SLP-1_2 | cd08393 | C2 domain first repeat present in Synaptotagmin-like proteins 1 and 2; All Slp members ... |
218-342 | 3.53e-20 | ||||
C2 domain first repeat present in Synaptotagmin-like proteins 1 and 2; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike Slp3 and Slp4/granuphilin which are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176039 [Multi-domain] Cd Length: 125 Bit Score: 87.10 E-value: 3.53e-20
|
||||||||
C2 | cd00030 | C2 domain; The C2 domain was first identified in PKC. C2 domains fold into an 8-standed ... |
233-341 | 4.97e-19 | ||||
C2 domain; The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 175973 [Multi-domain] Cd Length: 102 Bit Score: 82.89 E-value: 4.97e-19
|
||||||||
C2A_Rabphilin_Doc2 | cd04035 | C2 domain first repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons ... |
218-327 | 4.56e-18 | ||||
C2 domain first repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons and in neuroendrocrine cells, while Doc2 is found not only in the brain but in tissues, including mast cells, chromaffin cells, and osteoblasts. Rabphilin and Doc2s share highly homologous tandem C2 domains, although their N-terminal structures are completely different: rabphilin contains an N-terminal Rab-binding domain (RBD),7 whereas Doc2 contains an N-terminal Munc13-1-interacting domain (MID). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176000 [Multi-domain] Cd Length: 123 Bit Score: 81.17 E-value: 4.56e-18
|
||||||||
C2A_SLP | cd08521 | C2 domain first repeat present in Synaptotagmin-like proteins; All Slp members basically share ... |
785-903 | 5.37e-18 | ||||
C2 domain first repeat present in Synaptotagmin-like proteins; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike the case in Slp3 and Slp4/granuphilin in which their C2A domains are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp3 and Slp4/granuphilin promote dense-core vesicle exocytosis. Slp5 mRNA has been shown to be restricted to human placenta and liver suggesting a role in Rab27A-dependent membrane trafficking in specific tissues. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176056 [Multi-domain] Cd Length: 123 Bit Score: 80.76 E-value: 5.37e-18
|
||||||||
C2_PKC_alpha_gamma | cd04026 | C2 domain in Protein Kinase C (PKC) alpha and gamma; A single C2 domain is found in PKC alpha ... |
218-348 | 1.15e-17 | ||||
C2 domain in Protein Kinase C (PKC) alpha and gamma; A single C2 domain is found in PKC alpha and gamma. The PKC family of serine/threonine kinases regulates apoptosis, proliferation, migration, motility, chemo-resistance, and differentiation. There are 3 groups: group 1(alpha, betaI, beta II, gamma) which require phospholipids and calcium, group 2 (delta, epsilon, theta, eta) which do not require calcium for activation, and group 3 (xi, iota/lambda) which are atypical and can be activated in the absence of diacylglycerol and calcium. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology. Pssm-ID: 175992 [Multi-domain] Cd Length: 131 Bit Score: 80.00 E-value: 1.15e-17
|
||||||||
PDZ_canonical | cd00136 | canonical PDZ domain; Canonical PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs ... |
81-163 | 1.32e-16 | ||||
canonical PDZ domain; Canonical PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain. PDZ domains usually bind to short specific peptide sequences located at the C-terminal end of their partner proteins known as PDZ binding motifs. These domains can also interact with internal peptide motifs and certain lipids, and can take part in a head-to-tail oligomerization with other PDZ domains. The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. The canonical PDZ domain contains six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467153 [Multi-domain] Cd Length: 81 Bit Score: 75.27 E-value: 1.32e-16
|
||||||||
C2B_Rabphilin_Doc2 | cd08384 | C2 domain second repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons ... |
219-340 | 1.16e-15 | ||||
C2 domain second repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons and in neuroendrocrine cells, while Doc2 is found not only in the brain but in tissues, including mast cells, chromaffin cells, and osteoblasts. Rabphilin and Doc2s share highly homologous tandem C2 domains, although their N-terminal structures are completely different: rabphilin contains an N-terminal Rab-binding domain (RBD),7 whereas Doc2 contains an N-terminal Munc13-1-interacting domain (MID). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176030 [Multi-domain] Cd Length: 133 Bit Score: 74.31 E-value: 1.16e-15
|
||||||||
C2 | smart00239 | Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, ... |
797-900 | 1.21e-15 | ||||
Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, protein kinases C, and synaptotagmins (among others). Some do not appear to contain Ca2+-binding sites. Particular C2s appear to bind phospholipids, inositol polyphosphates, and intracellular proteins. Unusual occurrence in perforin. Synaptotagmin and PLC C2s are permuted in sequence with respect to N- and C-terminal beta strands. SMART detects C2 domains using one or both of two profiles. Pssm-ID: 214577 [Multi-domain] Cd Length: 101 Bit Score: 73.29 E-value: 1.21e-15
|
||||||||
C2 | cd00030 | C2 domain; The C2 domain was first identified in PKC. C2 domains fold into an 8-standed ... |
798-903 | 1.44e-15 | ||||
C2 domain; The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 175973 [Multi-domain] Cd Length: 102 Bit Score: 73.26 E-value: 1.44e-15
|
||||||||
C2A_Synaptotagmin-1-5-6-9-10 | cd08385 | C2A domain first repeat present in Synaptotagmins 1, 5, 6, 9, and 10; Synaptotagmin is a ... |
218-308 | 5.38e-15 | ||||
C2A domain first repeat present in Synaptotagmins 1, 5, 6, 9, and 10; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 1, a member of class 1 synaptotagmins, is located in the brain and endocranium and localized to the synaptic vesicles and secretory granules. It functions as a Ca2+ sensor for fast exocytosis as do synaptotagmins 5, 6, and 10. It is distinguished from the other synaptotagmins by having an N-glycosylated N-terminus. Synaptotagmins 5, 6, and 10, members of class 3 synaptotagmins, are located primarily in the brain and localized to the active zone and plasma membrane. They is distinguished from the other synaptotagmins by having disulfide bonds at its N-terminus. Synaptotagmin 6 also regulates the acrosome reaction, a unique Ca2+-regulated exocytosis, in sperm. Synaptotagmin 9, a class 5 synaptotagmins, is located in the brain and localized to the synaptic vesicles. It is thought to be a Ca2+-sensor for dense-core vesicle exocytosis. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176031 [Multi-domain] Cd Length: 124 Bit Score: 72.30 E-value: 5.38e-15
|
||||||||
C2A_Synaptotagmin-7 | cd08386 | C2A domain first repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking ... |
218-340 | 6.99e-15 | ||||
C2A domain first repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 7, a member of class 2 synaptotagmins, is located in presynaptic plasma membranes in neurons, dense-core vesicles in endocrine cells, and lysosomes in fibroblasts. It has been shown to play a role in regulation of Ca2+-dependent lysosomal exocytosis in fibroblasts and may also function as a vesicular Ca2+-sensor. It is distinguished from the other synaptotagmins by having over 12 splice forms. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176032 [Multi-domain] Cd Length: 125 Bit Score: 71.98 E-value: 6.99e-15
|
||||||||
C2A_Synaptotagmin-15-17 | cd08390 | C2A domain first repeat present in Synaptotagmins 15 and 17; Synaptotagmin is a ... |
218-340 | 8.98e-15 | ||||
C2A domain first repeat present in Synaptotagmins 15 and 17; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. It is thought to be involved in the trafficking and exocytosis of secretory vesicles in non-neuronal tissues and is Ca2+ independent. Human synaptotagmin 15 has 2 alternatively spliced forms that encode proteins with different C-termini. The larger, SYT15a, contains a N-terminal TM region, a putative fatty-acylation site, and 2 tandem C terminal C2 domains. The smaller, SYT15b, lacks the C-terminal portion of the second C2 domain. Unlike most other synaptotagmins it is nearly absent in the brain and rather is found in the heart, lungs, skeletal muscle, and testis. Synaptotagmin 17 is located in the brain, kidney, and prostate and is thought to be a peripheral membrane protein. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176036 [Multi-domain] Cd Length: 123 Bit Score: 71.52 E-value: 8.98e-15
|
||||||||
C2A_SLP-1_2 | cd08393 | C2 domain first repeat present in Synaptotagmin-like proteins 1 and 2; All Slp members ... |
785-903 | 3.39e-14 | ||||
C2 domain first repeat present in Synaptotagmin-like proteins 1 and 2; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike Slp3 and Slp4/granuphilin which are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176039 [Multi-domain] Cd Length: 125 Bit Score: 70.15 E-value: 3.39e-14
|
||||||||
C2A_RIM1alpha | cd04031 | C2 domain first repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are ... |
787-903 | 4.12e-14 | ||||
C2 domain first repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. Pssm-ID: 175997 [Multi-domain] Cd Length: 125 Bit Score: 69.58 E-value: 4.12e-14
|
||||||||
C2B_Synaptotagmin | cd00276 | C2 domain second repeat present in Synaptotagmin; Synaptotagmin is a membrane-trafficking ... |
785-882 | 6.17e-14 | ||||
C2 domain second repeat present in Synaptotagmin; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. There are several classes of Synaptotagmins. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175975 [Multi-domain] Cd Length: 134 Bit Score: 69.53 E-value: 6.17e-14
|
||||||||
C2_PKC_alpha_gamma | cd04026 | C2 domain in Protein Kinase C (PKC) alpha and gamma; A single C2 domain is found in PKC alpha ... |
785-903 | 3.54e-13 | ||||
C2 domain in Protein Kinase C (PKC) alpha and gamma; A single C2 domain is found in PKC alpha and gamma. The PKC family of serine/threonine kinases regulates apoptosis, proliferation, migration, motility, chemo-resistance, and differentiation. There are 3 groups: group 1(alpha, betaI, beta II, gamma) which require phospholipids and calcium, group 2 (delta, epsilon, theta, eta) which do not require calcium for activation, and group 3 (xi, iota/lambda) which are atypical and can be activated in the absence of diacylglycerol and calcium. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology. Pssm-ID: 175992 [Multi-domain] Cd Length: 131 Bit Score: 67.29 E-value: 3.54e-13
|
||||||||
C2A_SLP-4_5 | cd04029 | C2 domain first repeat present in Synaptotagmin-like proteins 4 and 5; All Slp members ... |
218-351 | 3.96e-13 | ||||
C2 domain first repeat present in Synaptotagmin-like proteins 4 and 5; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. SHD of Slp (except for the Slp4-SHD) function as a specific Rab27A/B-binding domain. In addition to Slp, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp4/granuphilin promotes dense-core vesicle exocytosis. The C2A domain of Slp4 is Ca2+ dependent. Slp5 mRNA has been shown to be restricted to human placenta and liver suggesting a role in Rab27A-dependent membrane trafficking in specific tissues. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 175995 [Multi-domain] Cd Length: 125 Bit Score: 67.08 E-value: 3.96e-13
|
||||||||
C2C_KIAA1228 | cd04030 | C2 domain third repeat present in uncharacterized human KIAA1228-like proteins; KIAA proteins ... |
785-903 | 1.60e-12 | ||||
C2 domain third repeat present in uncharacterized human KIAA1228-like proteins; KIAA proteins are uncharacterized human proteins. They were compiled by the Kazusa mammalian cDNA project which identified more than 2000 human genes. They are identified by 4 digit codes that precede the KIAA designation. Many KIAA genes are still functionally uncharacterized including KIAA1228. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. Pssm-ID: 175996 [Multi-domain] Cd Length: 127 Bit Score: 65.37 E-value: 1.60e-12
|
||||||||
PDZ2_PDZD2-like | cd06758 | PDZ domain 2 of PDZ domain containing 2 (PDZD2), and related domains; PDZ (PSD-95 ... |
82-166 | 1.72e-12 | ||||
PDZ domain 2 of PDZ domain containing 2 (PDZD2), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of PDZD2, also known as KIAA0300, PIN-1, activated in prostate cancer (AIPC) and PDZ domain-containing protein 3 (PDZK3). PDZD2 has seven PDZ domains, and is expressed at exceptionally high levels in the pancreas and certain cancer tissues such as prostate cancer. It promotes the proliferation of insulinoma cells and is upregulated during prostate tumorigenesis. In osteosarcoma (OS), the microRNA miR-363 acts as a tumor suppressor by inhibiting PDZD2. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDZD2-like family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467239 [Multi-domain] Cd Length: 88 Bit Score: 63.91 E-value: 1.72e-12
|
||||||||
PDZ | smart00228 | Domain present in PSD-95, Dlg, and ZO-1/2; Also called DHR (Dlg homologous region) or GLGF ... |
81-166 | 2.51e-12 | ||||
Domain present in PSD-95, Dlg, and ZO-1/2; Also called DHR (Dlg homologous region) or GLGF (relatively well conserved tetrapeptide in these domains). Some PDZs have been shown to bind C-terminal polypeptides; others appear to bind internal (non-C-terminal) polypeptides. Different PDZs possess different binding specificities. Pssm-ID: 214570 [Multi-domain] Cd Length: 85 Bit Score: 63.17 E-value: 2.51e-12
|
||||||||
C2B_Synaptotagmin-3-5-6-9-10 | cd08403 | C2 domain second repeat present in Synaptotagmins 3, 5, 6, 9, and 10; Synaptotagmin is a ... |
796-886 | 6.35e-12 | ||||
C2 domain second repeat present in Synaptotagmins 3, 5, 6, 9, and 10; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 3, a member of class 3 synaptotagmins, is located in the brain and localized to the active zone and plasma membrane. It functions as a Ca2+ sensor for fast exocytosis. It, along with synaptotagmins 5,6, and 10, has disulfide bonds at its N-terminus. Synaptotagmin 9, a class 5 synaptotagmins, is located in the brain and localized to the synaptic vesicles. It is thought to be a Ca2+-sensor for dense-core vesicle exocytosis. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176048 [Multi-domain] Cd Length: 134 Bit Score: 63.68 E-value: 6.35e-12
|
||||||||
C2A_SLP-3 | cd08392 | C2 domain first repeat present in Synaptotagmin-like protein 3; All Slp members basically ... |
218-341 | 2.08e-11 | ||||
C2 domain first repeat present in Synaptotagmin-like protein 3; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. SHD of Slp (except for the Slp4-SHD) function as a specific Rab27A/B-binding domain. In addition to Slp, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. Little is known about the expression or localization of Slp3. The C2A domain of Slp3 is Ca2+ dependent. It has been demonstrated that Slp3 promotes dense-core vesicle exocytosis. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176038 [Multi-domain] Cd Length: 128 Bit Score: 62.15 E-value: 2.08e-11
|
||||||||
C2A_Synaptotagmin-8 | cd08387 | C2A domain first repeat present in Synaptotagmin 8; Synaptotagmin is a membrane-trafficking ... |
796-903 | 2.58e-11 | ||||
C2A domain first repeat present in Synaptotagmin 8; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176033 [Multi-domain] Cd Length: 124 Bit Score: 61.65 E-value: 2.58e-11
|
||||||||
PDZ4_PDZD2-PDZ2_hPro-IL-16-like | cd06760 | PDZ domain 4 of PDZ domain containing 2 (PDZD2), PDZ domain 2 of human pro-interleukin-16 ... |
68-165 | 3.48e-11 | ||||
PDZ domain 4 of PDZ domain containing 2 (PDZD2), PDZ domain 2 of human pro-interleukin-16 (isoform 1, 1332 AA), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 4 of PDZD2, also known as KIAA0300, PIN-1, activated in prostate cancer (AIPC) and PDZ domain-containing protein 3 (PDZK3). PDZD2 has seven PDZ domains. PDZD2 is expressed at exceptionally high levels in the pancreas and certain cancer tissues, such as prostate cancer. It promotes the proliferation of insulinoma cells and is upregulated during prostate tumorigenesis. In osteosarcoma (OS), the microRNA miR-363 acts as a tumor suppressor by inhibiting PDZD2. This family also includes the second PDZ domain (PDZ2) of human pro-interleukin-16 (isoform 1, also known as nPro-Il-16; 1332 amino-acid protein). Precursor IL-16 is cleaved to produce pro-IL-16 and mature IL-16 (derived from the C-terminal 121 AA). Pro-IL-16 functions as a regulator of T cell growth; mature IL-16 is a CD4 ligand that induces chemotaxis and CD25 expression in CD4+ T cells. IL-16 bioactivity has been closely associated with the progression of several different cancers PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDZD2-like family PDZ4 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467241 [Multi-domain] Cd Length: 90 Bit Score: 60.36 E-value: 3.48e-11
|
||||||||
C2A_SLP-4_5 | cd04029 | C2 domain first repeat present in Synaptotagmin-like proteins 4 and 5; All Slp members ... |
785-903 | 4.75e-11 | ||||
C2 domain first repeat present in Synaptotagmin-like proteins 4 and 5; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. SHD of Slp (except for the Slp4-SHD) function as a specific Rab27A/B-binding domain. In addition to Slp, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp4/granuphilin promotes dense-core vesicle exocytosis. The C2A domain of Slp4 is Ca2+ dependent. Slp5 mRNA has been shown to be restricted to human placenta and liver suggesting a role in Rab27A-dependent membrane trafficking in specific tissues. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 175995 [Multi-domain] Cd Length: 125 Bit Score: 60.92 E-value: 4.75e-11
|
||||||||
PDZ | pfam00595 | PDZ domain; PDZ domains are found in diverse signaling proteins. |
81-162 | 8.32e-11 | ||||
PDZ domain; PDZ domains are found in diverse signaling proteins. Pssm-ID: 395476 [Multi-domain] Cd Length: 81 Bit Score: 58.83 E-value: 8.32e-11
|
||||||||
C2A_Synaptotagmin-15-17 | cd08390 | C2A domain first repeat present in Synaptotagmins 15 and 17; Synaptotagmin is a ... |
797-905 | 2.61e-10 | ||||
C2A domain first repeat present in Synaptotagmins 15 and 17; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. It is thought to be involved in the trafficking and exocytosis of secretory vesicles in non-neuronal tissues and is Ca2+ independent. Human synaptotagmin 15 has 2 alternatively spliced forms that encode proteins with different C-termini. The larger, SYT15a, contains a N-terminal TM region, a putative fatty-acylation site, and 2 tandem C terminal C2 domains. The smaller, SYT15b, lacks the C-terminal portion of the second C2 domain. Unlike most other synaptotagmins it is nearly absent in the brain and rather is found in the heart, lungs, skeletal muscle, and testis. Synaptotagmin 17 is located in the brain, kidney, and prostate and is thought to be a peripheral membrane protein. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176036 [Multi-domain] Cd Length: 123 Bit Score: 58.81 E-value: 2.61e-10
|
||||||||
C2_RGS-like | cd08685 | C2 domain of the Regulator Of G-Protein Signaling (RGS) family; This CD contains members of ... |
218-321 | 3.81e-10 | ||||
C2 domain of the Regulator Of G-Protein Signaling (RGS) family; This CD contains members of the regulator of G-protein signaling (RGS) family. RGS is a GTPase activating protein which inhibits G-protein mediated signal transduction. The protein is largely cytosolic, but G-protein activation leads to translocation of this protein to the plasma membrane. A nuclear form of this protein has also been described, but its sequence has not been identified. There are multiple alternatively spliced transcript variants in this family with some members having additional domains (ex. PDZ and RGS) downstream of the C2 domain. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176067 [Multi-domain] Cd Length: 119 Bit Score: 58.23 E-value: 3.81e-10
|
||||||||
C2B_Synaptotagmin | cd00276 | C2 domain second repeat present in Synaptotagmin; Synaptotagmin is a membrane-trafficking ... |
218-325 | 4.57e-10 | ||||
C2 domain second repeat present in Synaptotagmin; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. There are several classes of Synaptotagmins. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175975 [Multi-domain] Cd Length: 134 Bit Score: 58.36 E-value: 4.57e-10
|
||||||||
C2B_Synaptotagmin-1 | cd08402 | C2 domain second repeat present in Synaptotagmin 1; Synaptotagmin is a membrane-trafficking ... |
795-875 | 5.61e-10 | ||||
C2 domain second repeat present in Synaptotagmin 1; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 1, a member of the class 1 synaptotagmins, is located in the brain and endocranium and localized to the synaptic vesicles and secretory granules. It functions as a Ca2+ sensor for fast exocytosis. It, like synaptotagmin-2, has an N-glycosylated N-terminus. Synaptotagmin 4, a member of class 4 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmin-11, has an Asp to Ser substitution in its C2A domain. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176047 [Multi-domain] Cd Length: 136 Bit Score: 58.18 E-value: 5.61e-10
|
||||||||
PDZ1_GgSTXBP4-like | cd06692 | PDZ1 domain of Gallus gallus uncharacterized syntaxin-binding protein 4 (STXBP4) isoform X1, ... |
90-165 | 7.98e-10 | ||||
PDZ1 domain of Gallus gallus uncharacterized syntaxin-binding protein 4 (STXBP4) isoform X1, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of Gallus gallus uncharacterized syntaxin-binding protein 4 (STXBP4) isoform X1, and related domains. Gallus gallus STXBP4 isoform X1 contains 2 PDZ domains (PDZ1 and PDZ2). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This STXBP4-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467179 [Multi-domain] Cd Length: 88 Bit Score: 56.46 E-value: 7.98e-10
|
||||||||
C2B_Munc13-like | cd04009 | C2 domain second repeat in Munc13 (mammalian uncoordinated)-like proteins; C2-like domains are ... |
218-295 | 1.12e-09 | ||||
C2 domain second repeat in Munc13 (mammalian uncoordinated)-like proteins; C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. Pssm-ID: 175976 [Multi-domain] Cd Length: 133 Bit Score: 57.25 E-value: 1.12e-09
|
||||||||
C2A_Synaptotagmin-8 | cd08387 | C2A domain first repeat present in Synaptotagmin 8; Synaptotagmin is a membrane-trafficking ... |
217-342 | 1.96e-09 | ||||
C2A domain first repeat present in Synaptotagmin 8; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176033 [Multi-domain] Cd Length: 124 Bit Score: 56.26 E-value: 1.96e-09
|
||||||||
C2B_Synaptotagmin-4 | cd08404 | C2 domain second repeat present in Synaptotagmin 4; Synaptotagmin is a membrane-trafficking ... |
796-856 | 2.77e-09 | ||||
C2 domain second repeat present in Synaptotagmin 4; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 4, a member of class 4 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmin-11, has an Asp to Ser substitution in its C2A domain. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176049 [Multi-domain] Cd Length: 136 Bit Score: 56.28 E-value: 2.77e-09
|
||||||||
C2B_Synaptotagmin-4 | cd08404 | C2 domain second repeat present in Synaptotagmin 4; Synaptotagmin is a membrane-trafficking ... |
218-316 | 3.35e-09 | ||||
C2 domain second repeat present in Synaptotagmin 4; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 4, a member of class 4 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmin-11, has an Asp to Ser substitution in its C2A domain. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176049 [Multi-domain] Cd Length: 136 Bit Score: 55.90 E-value: 3.35e-09
|
||||||||
C2B_Synaptotagmin-7 | cd08405 | C2 domain second repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking ... |
218-338 | 4.02e-09 | ||||
C2 domain second repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 7, a member of class 2 synaptotagmins, is located in presynaptic plasma membranes in neurons, dense-core vesicles in endocrine cells, and lysosomes in fibroblasts. It has been shown to play a role in regulation of Ca2+-dependent lysosomal exocytosis in fibroblasts and may also function as a vesicular Ca2+-sensor. It is distinguished from the other synaptotagmins by having over 12 splice forms. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176050 [Multi-domain] Cd Length: 136 Bit Score: 55.89 E-value: 4.02e-09
|
||||||||
C2C_MCTP_PRT | cd08377 | C2 domain third repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
233-343 | 9.90e-09 | ||||
C2 domain third repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); MCTPs are involved in Ca2+ signaling at the membrane. The cds in this family contain multiple C2 domains as well as a C-terminal PRT domain. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. Pssm-ID: 176023 [Multi-domain] Cd Length: 119 Bit Score: 54.23 E-value: 9.90e-09
|
||||||||
C2A_MCTP_PRT_plant | cd04022 | C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
233-342 | 1.04e-08 | ||||
C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset; MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. Pssm-ID: 175989 [Multi-domain] Cd Length: 127 Bit Score: 54.27 E-value: 1.04e-08
|
||||||||
C2A_SLP-3 | cd08392 | C2 domain first repeat present in Synaptotagmin-like protein 3; All Slp members basically ... |
784-903 | 1.08e-08 | ||||
C2 domain first repeat present in Synaptotagmin-like protein 3; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. SHD of Slp (except for the Slp4-SHD) function as a specific Rab27A/B-binding domain. In addition to Slp, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. Little is known about the expression or localization of Slp3. The C2A domain of Slp3 is Ca2+ dependent. It has been demonstrated that Slp3 promotes dense-core vesicle exocytosis. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176038 [Multi-domain] Cd Length: 128 Bit Score: 54.45 E-value: 1.08e-08
|
||||||||
C2B_RasGAP | cd08675 | C2 domain second repeat of Ras GTPase activating proteins (GAPs); RasGAPs suppress Ras ... |
233-348 | 1.20e-08 | ||||
C2 domain second repeat of Ras GTPase activating proteins (GAPs); RasGAPs suppress Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. The proteins here all contain two tandem C2 domains, a Ras-GAP domain, and a pleckstrin homology (PH)-like domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology. Pssm-ID: 176057 [Multi-domain] Cd Length: 137 Bit Score: 54.30 E-value: 1.20e-08
|
||||||||
C2_cPLA2 | cd04036 | C2 domain present in cytosolic PhosphoLipase A2 (cPLA2); A single copy of the C2 domain is ... |
232-316 | 1.25e-08 | ||||
C2 domain present in cytosolic PhosphoLipase A2 (cPLA2); A single copy of the C2 domain is present in cPLA2 which releases arachidonic acid from membranes initiating the biosynthesis of potent inflammatory mediators such as prostaglandins, leukotrienes, and platelet-activating factor. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members of this cd have a type-II topology. Pssm-ID: 176001 [Multi-domain] Cd Length: 119 Bit Score: 53.81 E-value: 1.25e-08
|
||||||||
C2A_Synaptotagmin-4-11 | cd08388 | C2A domain first repeat present in Synaptotagmins 4 and 11; Synaptotagmin is a ... |
218-287 | 1.38e-08 | ||||
C2A domain first repeat present in Synaptotagmins 4 and 11; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmins 4 and 11, class 4 synaptotagmins, are located in the brain. Their functions are unknown. They are distinguished from the other synaptotagmins by having and Asp to Ser substitution in their C2A domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176034 [Multi-domain] Cd Length: 128 Bit Score: 53.89 E-value: 1.38e-08
|
||||||||
PDZ1_PTPN13_FRMPD2-like | cd06694 | PDZ domain 1 of protein tyrosine phosphatase non-receptor type 13 (PTPN13),FERM and PDZ ... |
79-166 | 1.38e-08 | ||||
PDZ domain 1 of protein tyrosine phosphatase non-receptor type 13 (PTPN13),FERM and PDZ domain-containing protein 2 (FRMPD2), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of PTPN13 [also known as Fas-associated protein-tyrosine phosphatase 1 (FAP-1), protein-tyrosine phosphatase 1E (PTP-E1), and protein-tyrosine phosphatase (PTPL1)], FRMPD2 (also known as PDZ domain-containing protein 4; PDZ domain-containing protein 5C), and related domains. PTPN13 regulates negative apoptotic signaling and mediates phosphoinositide 3-kinase (PI3K) signaling. PTPN13 has five PDZ domains. Proteins known to interact with PTPN13 PDZ domains include: PLEKHA1 and PLEKHA2 via PTPN13-PDZ domain 1, Fas receptor and thyroid receptor-interacting protein 6 via PTPN13-PDZ domain 2, nerve growth factor receptor and protein kinase N2 via PTPN13-PDZ domain 3, PDZ and LIM domain 4 (PDLIM4) via PTPN13-PDZ domains 2 and 4, and brain calpain-2 via PTPN13-PDZ domains 3, 4 and 5. Calpain-2-mediated PTPN13 fragments may be involved in abnormal tau aggregation and increased risk for Alzheimer's disease. FRMPD2 is localized in the basolateral membranes of polarized epithelial cells and is associated with tight junction formation and immune response; it contains 3 PDZ domains. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PTPN13 family PDZ1 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467180 [Multi-domain] Cd Length: 92 Bit Score: 52.78 E-value: 1.38e-08
|
||||||||
C2B_SLP_1-2-3-4 | cd04020 | C2 domain second repeat present in Synaptotagmin-like proteins 1-4; All Slp members basically ... |
794-900 | 2.17e-08 | ||||
C2 domain second repeat present in Synaptotagmin-like proteins 1-4; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike the case in Slp3 and Slp4/granuphilin in which their C2A domains are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp3 and Slp4/granuphilin promote dense-core vesicle exocytosis. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175987 [Multi-domain] Cd Length: 162 Bit Score: 54.25 E-value: 2.17e-08
|
||||||||
C2A_Synaptotagmin-1-5-6-9-10 | cd08385 | C2A domain first repeat present in Synaptotagmins 1, 5, 6, 9, and 10; Synaptotagmin is a ... |
795-900 | 2.23e-08 | ||||
C2A domain first repeat present in Synaptotagmins 1, 5, 6, 9, and 10; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 1, a member of class 1 synaptotagmins, is located in the brain and endocranium and localized to the synaptic vesicles and secretory granules. It functions as a Ca2+ sensor for fast exocytosis as do synaptotagmins 5, 6, and 10. It is distinguished from the other synaptotagmins by having an N-glycosylated N-terminus. Synaptotagmins 5, 6, and 10, members of class 3 synaptotagmins, are located primarily in the brain and localized to the active zone and plasma membrane. They is distinguished from the other synaptotagmins by having disulfide bonds at its N-terminus. Synaptotagmin 6 also regulates the acrosome reaction, a unique Ca2+-regulated exocytosis, in sperm. Synaptotagmin 9, a class 5 synaptotagmins, is located in the brain and localized to the synaptic vesicles. It is thought to be a Ca2+-sensor for dense-core vesicle exocytosis. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176031 [Multi-domain] Cd Length: 124 Bit Score: 53.42 E-value: 2.23e-08
|
||||||||
C2B_Rabphilin_Doc2 | cd08384 | C2 domain second repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons ... |
787-876 | 2.37e-08 | ||||
C2 domain second repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons and in neuroendrocrine cells, while Doc2 is found not only in the brain but in tissues, including mast cells, chromaffin cells, and osteoblasts. Rabphilin and Doc2s share highly homologous tandem C2 domains, although their N-terminal structures are completely different: rabphilin contains an N-terminal Rab-binding domain (RBD),7 whereas Doc2 contains an N-terminal Munc13-1-interacting domain (MID). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176030 [Multi-domain] Cd Length: 133 Bit Score: 53.51 E-value: 2.37e-08
|
||||||||
C2A_Synaptotagmin-7 | cd08386 | C2A domain first repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking ... |
784-905 | 2.45e-08 | ||||
C2A domain first repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 7, a member of class 2 synaptotagmins, is located in presynaptic plasma membranes in neurons, dense-core vesicles in endocrine cells, and lysosomes in fibroblasts. It has been shown to play a role in regulation of Ca2+-dependent lysosomal exocytosis in fibroblasts and may also function as a vesicular Ca2+-sensor. It is distinguished from the other synaptotagmins by having over 12 splice forms. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176032 [Multi-domain] Cd Length: 125 Bit Score: 53.10 E-value: 2.45e-08
|
||||||||
C2B_Synaptotagmin-12 | cd08406 | C2 domain second repeat present in Synaptotagmin 12; Synaptotagmin is a membrane-trafficking ... |
797-859 | 2.54e-08 | ||||
C2 domain second repeat present in Synaptotagmin 12; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 12, a member of class 6 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmins 8 and 13, do not have any consensus Ca2+ binding sites. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176051 [Multi-domain] Cd Length: 136 Bit Score: 53.64 E-value: 2.54e-08
|
||||||||
PDZ2_LNX1_2-like | cd06678 | PDZ domain 2 of human Ligand of Numb protein X 1 (LNX1) and LNX2, and related domains; PDZ ... |
73-165 | 3.16e-08 | ||||
PDZ domain 2 of human Ligand of Numb protein X 1 (LNX1) and LNX2, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of LNX1 (also known as PDZ domain-containing RING finger protein 2, PDZRN2) and LNX2 (also known as PDZ domain-containing RING finger protein 1, PDZRN1), and related domains. LNX1 and LNX2 are Ring (Really Interesting New Gene) finger and PDZ domain-containing E3 ubiquitin ligases that bind to the cell fate determinant protein NUMB and mediate its ubiquitination. LNX1 can ubiquitinate a number of other ligands including PPFIA1, KLHL11, KIF7 and ERC2. LNX1 and LNX2 each have four PDZ domains. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This LNX family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467166 [Multi-domain] Cd Length: 82 Bit Score: 51.48 E-value: 3.16e-08
|
||||||||
PDZ3_PDZD2-PDZ1_hPro-IL-16-like | cd06759 | PDZ domain 3 of PDZ domain containing 2 (PDZD2), PDZ domain 1 of human pro-interleukin-16 ... |
90-159 | 3.86e-08 | ||||
PDZ domain 3 of PDZ domain containing 2 (PDZD2), PDZ domain 1 of human pro-interleukin-16 (isoform 1, 1332 AA), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of PDZD2, also known as KIAA0300, PIN-1, activated in prostate cancer (AIPC) and PDZ domain-containing protein 3 (PDZK3). PDZD2 has seven PDZ domains. PDZD2 is expressed at exceptionally high levels in the pancreas and certain cancer tissues, such as prostate cancer. It promotes the proliferation of insulinoma cells and is upregulated during prostate tumorigenesis. In osteosarcoma (OS), the microRNA miR-363 acts as a tumor suppressor by inhibiting PDZD2. This family also includes the first PDZ domain (PDZ1) of human pro-interleukin-16 (isoform 1, also known as nPro-Il-16; 1332 amino-acid protein). Precursor IL-16 is cleaved to produce pro-IL-16 and mature IL-16 (derived from the C-terminal 121 AA). Pro-IL-16 functions as a regulator of T cell growth; mature IL-16 is a CD4 ligand that induces chemotaxis and CD25 expression in CD4+ T cells. IL-16 bioactivity has been closely associated with the progression of several different cancers. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDZD2-like family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467240 [Multi-domain] Cd Length: 87 Bit Score: 51.51 E-value: 3.86e-08
|
||||||||
C2B_Synaptotagmin-7 | cd08405 | C2 domain second repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking ... |
796-856 | 4.75e-08 | ||||
C2 domain second repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 7, a member of class 2 synaptotagmins, is located in presynaptic plasma membranes in neurons, dense-core vesicles in endocrine cells, and lysosomes in fibroblasts. It has been shown to play a role in regulation of Ca2+-dependent lysosomal exocytosis in fibroblasts and may also function as a vesicular Ca2+-sensor. It is distinguished from the other synaptotagmins by having over 12 splice forms. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176050 [Multi-domain] Cd Length: 136 Bit Score: 52.81 E-value: 4.75e-08
|
||||||||
PDZ_AFDN-like | cd06789 | PDZ domain of afadin (AFDN), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95) ... |
71-162 | 4.81e-08 | ||||
PDZ domain of afadin (AFDN), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of afadin (AFDN, also known as ALL1-fused gene from chromosome 6 protein (AF6) and MLLT4), and related domains. AFDN belongs to the adhesion system, probably together with the E-cadherin-catenin system, that plays a role in the organization of homotypic, interneuronal, and heterotypic cell-cell adherens junctions. The AFDN PDZ domain interaction partners include poliovirus receptor-related protein PRR2/nectin, the junctional adhesion molecule (JAM), the breakpoint-cluster-region protein (BCR), connexin36 (Cx36), and a subset of Eph-related receptor tyrosine kinases; it can also bind low molecular weight ligands, in competition with a natural peptide ligand. Other AFDN-binding proteins have been identified. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This AFDN family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467251 [Multi-domain] Cd Length: 89 Bit Score: 51.13 E-value: 4.81e-08
|
||||||||
C2A_Rabphilin_Doc2 | cd04035 | C2 domain first repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons ... |
797-891 | 5.00e-08 | ||||
C2 domain first repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons and in neuroendrocrine cells, while Doc2 is found not only in the brain but in tissues, including mast cells, chromaffin cells, and osteoblasts. Rabphilin and Doc2s share highly homologous tandem C2 domains, although their N-terminal structures are completely different: rabphilin contains an N-terminal Rab-binding domain (RBD),7 whereas Doc2 contains an N-terminal Munc13-1-interacting domain (MID). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176000 [Multi-domain] Cd Length: 123 Bit Score: 52.28 E-value: 5.00e-08
|
||||||||
C2D_Tricalbin-like | cd04040 | C2 domain fourth repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are ... |
233-327 | 7.48e-08 | ||||
C2 domain fourth repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are present in Tricalbin, a yeast homolog of Synaptotagmin, which is involved in membrane trafficking and sorting. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the fifth C2 repeat, C2E, and has a type-II topology. Pssm-ID: 176005 [Multi-domain] Cd Length: 115 Bit Score: 51.41 E-value: 7.48e-08
|
||||||||
PDZ7_PDZD2-PDZ4_hPro-IL-16-like | cd06763 | PDZ domain 7 of PDZ domain containing 2 (PDZD2), PDZ domain 4 of human pro-interleukin-16 ... |
81-157 | 8.32e-08 | ||||
PDZ domain 7 of PDZ domain containing 2 (PDZD2), PDZ domain 4 of human pro-interleukin-16 (isoform 1, 1332 AA), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 7 of PDZD2, also known as KIAA0300, PIN-1, PAPIN, activated in prostate cancer (AIPC) and PDZ domain-containing protein 3 (PDZK3). PDZD2 has seven PDZ domains. PDZD2 is expressed at exceptionally high levels in the pancreas and certain cancer tissues, such as prostate cancer. It promotes the proliferation of insulinoma cells and is upregulated during prostate tumorigenesis. In osteosarcoma (OS), the microRNA miR-363 acts as a tumor suppressor by inhibiting PDZD2. This family include the PDZ domain of the secreted mature form of human interleukin-16 (IL-16); this is the fourth PDZ domain (PDZ4) of human pro-interleukin-16 (isoform 1, also known as nPro-Il-16). Precursor IL-16 is cleaved to produce pro-IL-16 and C-terminal mature IL-16. Pro-IL-16 functions as a regulator of T cell growth; mature IL-16 is a CD4 ligand that induces chemotaxis and CD25 expression in CD4+ T cells. IL-16 bioactivity has been closely associated with the progression of several different cancers PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDZD2-like family PDZ7 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467244 [Multi-domain] Cd Length: 86 Bit Score: 50.69 E-value: 8.32e-08
|
||||||||
PDZ1_PTPN13-like | cd23072 | PDZ domain 1 of protein tyrosine phosphatase non-receptor type 13 (PTPN13), and related ... |
84-166 | 9.29e-08 | ||||
PDZ domain 1 of protein tyrosine phosphatase non-receptor type 13 (PTPN13), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of PTPN13 [also known as Fas-associated protein-tyrosine phosphatase 1 (FAP-1), protein-tyrosine phosphatase 1E (PTP-E1), and protein-tyrosine phosphatase (PTPL1)], and related domains. PTPN13 regulates negative apoptotic signaling and mediates phosphoinositide 3-kinase (PI3K) signaling. PTPN13 has five PDZ domains. Proteins known to interact with PTPN13 PDZ domains include: PLEKHA1 and PLEKHA2 via PTPN13-PDZ domain 1, Fas receptor and thyroid receptor-interacting protein 6 via PTPN13-PDZ domain 2, nerve growth factor receptor and protein kinase N2 via PTPN13-PDZ domain 3, PDZ and LIM domain 4 (PDLIM4) via PTPN13-PDZ domains 2 and 4, and brain calpain-2 via PTPN13-PDZ domains 3, 4 and 5. Calpain-2-mediated PTPN13 fragments may be involved in abnormal tau aggregation and increased risk for Alzheimer's disease. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PTPN13 family PDZ1 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467285 [Multi-domain] Cd Length: 92 Bit Score: 50.57 E-value: 9.29e-08
|
||||||||
C2B_RIM1alpha | cd04028 | C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are ... |
213-341 | 1.92e-07 | ||||
C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. Pssm-ID: 175994 [Multi-domain] Cd Length: 146 Bit Score: 51.23 E-value: 1.92e-07
|
||||||||
C2B_MCTP_PRT | cd08376 | C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
234-341 | 2.04e-07 | ||||
C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); MCTPs are involved in Ca2+ signaling at the membrane. MCTP is composed of a variable N-terminal sequence, three C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 176022 [Multi-domain] Cd Length: 116 Bit Score: 50.33 E-value: 2.04e-07
|
||||||||
PDZ3_Dlg1-2-4-like | cd06795 | PDZ domain 3 of human discs large homolog 1 (Dlg1), Dlg2, and Dlg4, Drosophila disc large (Dlg) ... |
73-145 | 2.35e-07 | ||||
PDZ domain 3 of human discs large homolog 1 (Dlg1), Dlg2, and Dlg4, Drosophila disc large (Dlg), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of Drosophila Dlg1, human Dlg1, 2, and 4 and related domains. Dlg1 (also known as synapse-associated protein Dlg197; SAP-97), Dlg2 (also known as channel-associated protein of synapse-110; postsynaptic density protein 93, PSD-93), Dlg4 (also known as postsynaptic density protein 95, PSD-95; synapse-associated protein 90, SAP-90) each have 3 PDZ domains and belong to the membrane-associated guanylate kinase family. Dlg1 regulates antigen receptor signaling and cell polarity in lymphocytes, B-cell proliferation and antibody production, and TGFalpha bioavailability; its PDZ3 domain binds pro-TGFalpha, and its PDZ2 domain binds the TACE metalloprotease responsible for cleaving pro-TGFalpha to a soluble form. Dlg2 is involved in N-methyl-D-aspartate (NMDA) receptor signaling, regulating surface expression of NMDA receptors in dorsal horn neurons of the spinal cord; it interacts with NMDA receptor subunits and with Shaker-type K+ channel subunits to cluster into a channel complex. The Dlg4 PDZ1 domain binds NMDA receptors, and its PDZ2 domain binds neuronal nitric oxide synthase (nNOS), forming a complex in neurons. The Drosophila Scribble complex (Scribble, Dlg, and lethal giant larvae) plays a role in apico-basal cell polarity, and in other forms of polarity, including regulation of the actin cytoskeleton, cell signaling and vesicular trafficking, and in tumor development; postsynaptic targeting of Drosophila DLG requires interactions mediated by the first two PDZ domains. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Dlg-like family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467257 [Multi-domain] Cd Length: 91 Bit Score: 49.28 E-value: 2.35e-07
|
||||||||
C2B_MCTP_PRT_plant | cd08378 | C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
233-341 | 2.59e-07 | ||||
C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset; MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 176024 [Multi-domain] Cd Length: 121 Bit Score: 50.39 E-value: 2.59e-07
|
||||||||
PDZ1_MUPP1-like | cd06689 | PDZ domain 1 of multi-PDZ-domain protein 1 (MUPP1) and PATJ (protein-associated tight junction) ... |
84-165 | 3.28e-07 | ||||
PDZ domain 1 of multi-PDZ-domain protein 1 (MUPP1) and PATJ (protein-associated tight junction), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of MUPP1 and PATJ, and related domains. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, 9, and 13; consequently, MUPP1 PDZ7 and 8 align with PATJ PDZ6 and 7; and MUPP1 PDZ domains 10-12 align with PATJ PDZ domains 8-10. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like family PDZ1 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467176 [Multi-domain] Cd Length: 102 Bit Score: 49.17 E-value: 3.28e-07
|
||||||||
PDZ1_harmonin | cd06737 | PDZ domain 1 of harmonin isoforms a, b, and c, and related domains; PDZ (PSD-95 (Postsynaptic ... |
78-168 | 3.51e-07 | ||||
PDZ domain 1 of harmonin isoforms a, b, and c, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of harmonin isoforms a, b, and c, and related domains. Harmonin (also known as Usher Type 1C, PDZ-73 and AIE-75) is a key organizer of the Usher (USH) protein interactome. USH syndrome is the leading cause of hereditary sensory deaf-blindness in humans; three clinically distinct types of USH have been identified, type 1 to 3. The gene encoding harmonin (USH1C) is the causative gene for the USH type 1C phenotype. There are at least 10 alternatively spliced isoforms of harmonin, which are divided into three subclasses (a, b, and c). All isoforms contain the first two PDZ domains and the first coiled-coil domain. The a and b isoforms all have a third PDZ domain. The different PDZ domains are responsible for interactions with all known Usher syndrome type 1 proteins, and most Usher syndrome type 2 proteins. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This harmonin family PDZ1 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467219 [Multi-domain] Cd Length: 85 Bit Score: 48.79 E-value: 3.51e-07
|
||||||||
C2A_Synaptotagmin-like | cd04024 | C2 domain first repeat present in Synaptotagmin-like proteins; Synaptotagmin is a ... |
233-342 | 6.39e-07 | ||||
C2 domain first repeat present in Synaptotagmin-like proteins; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 175990 [Multi-domain] Cd Length: 128 Bit Score: 49.34 E-value: 6.39e-07
|
||||||||
PDZ7_MUPP1-PD6_PATJ-like | cd06671 | PDZ domain 7 of multi-PDZ-domain protein 1 (MUPP1), PDZ domain 6 of PATJ (protein-associated ... |
78-167 | 6.63e-07 | ||||
PDZ domain 7 of multi-PDZ-domain protein 1 (MUPP1), PDZ domain 6 of PATJ (protein-associated tight junction) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 7 of MUPP1 and PDZ domain 6 of PATJ, and related domains. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, 9, and 13; consequently, MUPP1 PDZ7 and 8 align with PATJ PDZ6 and 7; and MUPP1 PDZ domains 10-12 align with PATJ PDZ domains 8-10. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like family PDZ7 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467159 [Multi-domain] Cd Length: 96 Bit Score: 48.47 E-value: 6.63e-07
|
||||||||
C2B_Munc13 | cd04027 | C2 domain second repeat in Munc13 (mammalian uncoordinated) proteins; C2-like domains are ... |
232-349 | 6.86e-07 | ||||
C2 domain second repeat in Munc13 (mammalian uncoordinated) proteins; C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 175993 [Multi-domain] Cd Length: 127 Bit Score: 49.10 E-value: 6.86e-07
|
||||||||
C2A_Synaptotagmin-like | cd04024 | C2 domain first repeat present in Synaptotagmin-like proteins; Synaptotagmin is a ... |
796-904 | 9.68e-07 | ||||
C2 domain first repeat present in Synaptotagmin-like proteins; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 175990 [Multi-domain] Cd Length: 128 Bit Score: 48.96 E-value: 9.68e-07
|
||||||||
PDZ4_DLG5-like | cd06766 | PDZ domain 4 of Discs Large 5 (Dlg5) and related domains; PDZ (PSD-95 (Postsynaptic density ... |
79-151 | 1.09e-06 | ||||
PDZ domain 4 of Discs Large 5 (Dlg5) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 4 of Drosophila and mammalian Dlg5, and related domains. Dlg5 is a scaffold protein with multiple conserved functions that are independent of each other in regulating growth, cell polarity, and cell adhesion. It has a coiled-coil domain, 4 PDZ domains and a MAGUK domain (an SH3 domain next to a non-catalytically active guanylate kinase domain). Deregulation of Dlg5 has been implicated in the malignancy of several cancer types. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Dlg5-like family PDZ4 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467247 [Multi-domain] Cd Length: 81 Bit Score: 47.38 E-value: 1.09e-06
|
||||||||
PDZ10_MUPP1-PDZ8_PATJ-like | cd06673 | PDZ domain 10 of multi-PDZ-domain protein 1 (MUPP1), domain 8 of PATJ (protein-associated ... |
78-165 | 1.44e-06 | ||||
PDZ domain 10 of multi-PDZ-domain protein 1 (MUPP1), domain 8 of PATJ (protein-associated tight junction) and similar domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 10 of MUPP1, PDZ domain 8 of PATJ, and related domains. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, 9, and 13; consequently, MUPP1 PDZ7 and 8 align with PATJ PDZ6 and 7; and MUPP1 PDZ domains 10-12 align with PATJ PDZ domains 8-10. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like family PDZ10 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467161 [Multi-domain] Cd Length: 86 Bit Score: 46.90 E-value: 1.44e-06
|
||||||||
C2_fungal_Inn1p-like | cd08681 | C2 domain found in fungal Ingression 1 (Inn1) proteins; Saccharomyces cerevisiae Inn1 ... |
233-342 | 1.67e-06 | ||||
C2 domain found in fungal Ingression 1 (Inn1) proteins; Saccharomyces cerevisiae Inn1 associates with the contractile actomyosin ring at the end of mitosis and is needed for cytokinesis. The C2 domain of Inn1, located at the N-terminus, is required for ingression of the plasma membrane. The C-terminus is relatively unstructured and contains eight PXXP motifs that are thought to mediate interaction of Inn1 with other proteins with SH3 domains in the cytokinesis proteins Hof1 (an F-BAR protein) and Cyk3 (whose overexpression can restore primary septum formation in Inn1Delta cells) as well as recruiting Inn1 to the bud-neck by binding to Cyk3. Inn1 and Cyk3 appear to cooperate in activating chitin synthase Chs2 for primary septum formation, which allows coordination of actomyosin ring contraction with ingression of the cleavage furrow. It is thought that the C2 domain of Inn1 helps to preserve the link between the actomyosin ring and the plasma membrane, contributing both to membrane ingression, as well as to stability of the contracting ring. Additionally, Inn1 might induce curvature of the plasma membrane adjacent to the contracting ring, thereby promoting ingression of the membrane. It has been shown that the C2 domain of human synaptotagmin induces curvature in target membranes and thereby contributes to fusion of these membranes with synaptic vesicles. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176063 [Multi-domain] Cd Length: 118 Bit Score: 47.63 E-value: 1.67e-06
|
||||||||
PDZ6_PDZD2-PDZ3_hPro-IL-16-like | cd06762 | PDZ domain 6 of PDZ domain containing 2 (PDZD2), PDZ domain 3 of human pro-interleukin-16 ... |
74-165 | 1.68e-06 | ||||
PDZ domain 6 of PDZ domain containing 2 (PDZD2), PDZ domain 3 of human pro-interleukin-16 (isoform 1, 1332 AA), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 6 of PDZD2, also known as KIAA0300, PIN-1, activated in prostate cancer (AIPC) and PDZ domain-containing protein 3 (PDZK3). PDZD2 has seven PDZ domains. PDZD2 is expressed at exceptionally high levels in the pancreas and certain cancer tissues, such as prostate cancer. It promotes the proliferation of insulinoma cells and is upregulated during prostate tumorigenesis. In osteosarcoma (OS), the microRNA miR-363 acts as a tumor suppressor by inhibiting PDZD2. This family also includes the third PDZ domain (PDZ3) of human pro-interleukin-16 (isoform 1, also known as nPro-IL-16). Precursor IL-16 is cleaved to produce pro-IL-16 and C-terminal mature IL-16. Pro-IL-16 functions as a regulator of T cell growth; mature IL-16 is a CD4 ligand that induces chemotaxis and CD25 expression in CD4+ T cells. IL-16 bioactivity has been closely associated with the progression of several different cancers. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDZD2-like family PDZ6 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467243 [Multi-domain] Cd Length: 86 Bit Score: 46.87 E-value: 1.68e-06
|
||||||||
PDZ5_DrPTPN13-like | cd23060 | PDZ domain 5 of Danio rerio tyrosine-protein phosphatase non-receptor type 13 (Ptpn13) and ... |
90-164 | 1.84e-06 | ||||
PDZ domain 5 of Danio rerio tyrosine-protein phosphatase non-receptor type 13 (Ptpn13) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 5 of Danio rerio Ptpn13, and related domains. Protein-tyrosine phosphatases (PTPs) dephosphorylate phosphotyrosyl residues in proteins that are phosphorylated by protein tyrosine kinases (PTKs). Danio rerio Ptpn13 is a classical non-receptor-like PTP. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PTPN13-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467273 [Multi-domain] Cd Length: 80 Bit Score: 46.57 E-value: 1.84e-06
|
||||||||
PDZ8_MUPP1-PDZ7_PATJ-PDZ2_INAD-like | cd06672 | PDZ domain 8 of multi-PDZ-domain protein 1 (MUPP1), PDZ domain 7 of protein-associated tight ... |
90-165 | 2.20e-06 | ||||
PDZ domain 8 of multi-PDZ-domain protein 1 (MUPP1), PDZ domain 7 of protein-associated tight junction (PATJ), PDZ domain 2 of Drosophila melanogaster inactivation-no-after-potential D (INAD), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 8 of MUPP1, PDZ domain 7 of PATJ, and PDZ domain 2 of Drosophila melanogaster INAD, and related domains. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, 9, and 13; consequently, MUPP1 PDZ7 and 8 align with PATJ PDZ6 and 7; and MUPP1 PDZ domains 10-12 align with PATJ PDZ domains 8-10. INAD assembles key enzymes of the Drosophila compound eye photo-transduction pathway into a supramolecular complex, supporting efficient and fast light signaling. It contains 5 PDZ domains arranged in tandem (PDZ1-PDZ5) which independently bind various proteins. INAD PDZ2 binds eye-specific protein kinase C. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like family PDZ8 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467160 [Multi-domain] Cd Length: 84 Bit Score: 46.52 E-value: 2.20e-06
|
||||||||
PDZ11_MUPP1-PDZ9_PATJ-like | cd06674 | PDZ domain 11 of MUPP1 of multi-PDZ-domain protein 1 (MUPP1), domain 9 of PATJ ... |
74-146 | 2.77e-06 | ||||
PDZ domain 11 of MUPP1 of multi-PDZ-domain protein 1 (MUPP1), domain 9 of PATJ (protein-associated tight junction) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 11 of MUPP1, PDZ domain 9 of PATJ, and related domains. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, 9, and 13; consequently, MUPP1 PDZ7 and 8 align with PATJ PDZ6 and 7; and MUPP1 PDZ domains 10-12 align with PATJ PDZ domains 8-10. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like family PDZ11 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467162 [Multi-domain] Cd Length: 87 Bit Score: 46.12 E-value: 2.77e-06
|
||||||||
PDZ2_FL-whirlin | cd06741 | PDZ domain 2 of the full-length isoform of whirlin and related domains; PDZ (PSD-95 ... |
78-154 | 3.49e-06 | ||||
PDZ domain 2 of the full-length isoform of whirlin and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of the full-length isoform of whirlin and related domains. Whirlin is an essential protein for developmental pathways in photoreceptor cells of the retina and hair cells of the inner ear. The full-length whirlin isoform has two harmonin N-like domains, three PDZ domains, a proline-rich region, and a PDZ-binding motif. Whirlin isoforms may form different complexes at the periciliary membrane complex (PMC) in photoreceptors, and the stereociliary tip and base in inner ear hair cells. It interacts with ADGRV1 and usherin at the PMC; with SANS and RpgrORF15 at the connecting cilium in photoreceptors; with EPS8, MYO15A, p55, and CASK proteins at the stereociliary tip of inner ear hair cells; and with ADGRV1, usherin, and PDZD7 at the stereociliary base in inner ear hair cells. Mutations in the gene encoding whirlin (WHRN; also known as USH2D and DFNB31), have been found to cause either USH2 subtype (USH2D) or autosomal recessive non-syndromic deafness type 31 (DFNB31). Whirlin is the key protein in the USH2 complex (whirlin, usherin and GPR98) which recruits other USH2 causative proteins at the periciliary membrane in photoreceptors and the ankle link of the stereocilia in hair cells. Whirlin's interaction with espin, another stereociliary protein, may be important for the architecture of the USH2 complex. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This whirlin family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467223 [Multi-domain] Cd Length: 84 Bit Score: 45.72 E-value: 3.49e-06
|
||||||||
C2B_Synaptotagmin-1 | cd08402 | C2 domain second repeat present in Synaptotagmin 1; Synaptotagmin is a membrane-trafficking ... |
217-325 | 3.70e-06 | ||||
C2 domain second repeat present in Synaptotagmin 1; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 1, a member of the class 1 synaptotagmins, is located in the brain and endocranium and localized to the synaptic vesicles and secretory granules. It functions as a Ca2+ sensor for fast exocytosis. It, like synaptotagmin-2, has an N-glycosylated N-terminus. Synaptotagmin 4, a member of class 4 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmin-11, has an Asp to Ser substitution in its C2A domain. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176047 [Multi-domain] Cd Length: 136 Bit Score: 47.40 E-value: 3.70e-06
|
||||||||
PDZ3_ZO1-like_domain | cd06729 | PDZ domain 3 of Zonula Occludens-1 (ZO-1), homologs ZO-2 and ZO-3, and related domains; PDZ ... |
90-165 | 3.79e-06 | ||||
PDZ domain 3 of Zonula Occludens-1 (ZO-1), homologs ZO-2 and ZO-3, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of ZO-1, -2, -3 and related domains. Zonula occludens proteins (ZO-1, ZO-2, ZO-3) are multi-PDZ domain proteins involved in the maintenance and biogenesis of multi-protein networks at the cytoplasmic surface of intercellular contacts in epithelial and endothelial cells. They have three N-terminal PDZ domains, PDZ1-3, followed by a Src homology-3 (SH3) domain and a guanylate kinase (GuK)-like domain. Among protein-protein interactions for all ZO proteins is the binding of the first PDZ domain (PDZ1) to the C-termini of claudins , and the homo- and hetero-dimerization of ZO-proteins via their second PDZ domain (PDZ2), which takes place by symmetrical domain swapping of the first two beta-strands of PDZ2. At the cell level, ZO-1 and ZO-2 are involved in polarity maintenance, gene transcription, cell proliferation, and tumor cell metastasis. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This ZO family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467211 [Multi-domain] Cd Length: 82 Bit Score: 45.64 E-value: 3.79e-06
|
||||||||
PDZ3_FL-whirlin-like | cd06742 | PDZ domain 3 of the full-length isoform of whirlin, PDZ domain 1 of the short isoform of ... |
79-167 | 4.18e-06 | ||||
PDZ domain 3 of the full-length isoform of whirlin, PDZ domain 1 of the short isoform of whirlin, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of the full-length isoform of whirlin, PDZ domain 1 of the short isoform of whirlin, and related domains. Whirlin is an essential protein for developmental pathways in photoreceptor cells of the retina and hair cells of the inner ear. The full-length whirlin isoform has two harmonin N-like domains, three PDZ domains, a proline-rich region, and a PDZ-binding motif. Whirlin isoforms may form different complexes at the periciliary membrane complex (PMC) in photoreceptors, and the stereociliary tip and base in inner ear hair cells. It interacts with ADGRV1 and usherin at the PMC; with SANS and RpgrORF15 at the connecting cilium in photoreceptors; with EPS8, MYO15A, p55, and CASK proteins at the stereociliary tip of inner ear hair cells; and with ADGRV1, usherin, and PDZD7 at the stereociliary base in inner ear hair cells. Mutations in the gene encoding whirlin (WHRN; also known as USH2D and DFNB31), have been found to cause either USH2 subtype (USH2D) or autosomal recessive non-syndromic deafness type 31 (DFNB31). Whirlin is the key protein in the USH2 complex (whirlin, usherin and GPR98) which recruits other USH2 causative proteins at the periciliary membrane in photoreceptors and the ankle link of the stereocilia in hair cells. Whirlin's interaction with espin, another stereociliary protein, may be important for the architecture of the USH2 complex. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This whirlin family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F Pssm-ID: 467224 [Multi-domain] Cd Length: 91 Bit Score: 45.81 E-value: 4.18e-06
|
||||||||
PDZ12_MUPP1-like | cd06675 | PDZ domain 12 of multi-PDZ-domain protein 1 (MUPP1), PDZ domain 10 of protein-associated tight ... |
83-150 | 4.24e-06 | ||||
PDZ domain 12 of multi-PDZ-domain protein 1 (MUPP1), PDZ domain 10 of protein-associated tight junction (PATJ, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 12 of MUPP1, PDZ domain 10 of PATJ, and related domains. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, 9, and 13; consequently, MUPP1 PDZ7 and 8 align with PATJ PDZ6 and 7; and MUPP1 PDZ domains 10-12 align with PATJ PDZ domains 8-10. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like PDZ12 family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F Pssm-ID: 467163 [Multi-domain] Cd Length: 86 Bit Score: 45.82 E-value: 4.24e-06
|
||||||||
C2A_Synaptotagmin-14_16 | cd08389 | C2A domain first repeat present in Synaptotagmins 14 and 16; Synaptotagmin 14 and 16 are ... |
217-335 | 4.37e-06 | ||||
C2A domain first repeat present in Synaptotagmins 14 and 16; Synaptotagmin 14 and 16 are membrane-trafficking proteins in specific tissues outside the brain. Both of these contain C-terminal tandem C2 repeats, but only Synaptotagmin 14 has an N-terminal transmembrane domain and a putative fatty-acylation site. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium and this is indeed the case here. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176035 [Multi-domain] Cd Length: 124 Bit Score: 46.85 E-value: 4.37e-06
|
||||||||
C2_Munc13_fungal | cd04043 | C2 domain in Munc13 (mammalian uncoordinated) proteins; fungal group; C2-like domains are ... |
235-344 | 4.68e-06 | ||||
C2 domain in Munc13 (mammalian uncoordinated) proteins; fungal group; C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 176008 [Multi-domain] Cd Length: 126 Bit Score: 46.87 E-value: 4.68e-06
|
||||||||
C2B_RasA3 | cd04010 | C2 domain second repeat present in RAS p21 protein activator 3 (RasA3); RasA3 are members of ... |
232-355 | 4.92e-06 | ||||
C2 domain second repeat present in RAS p21 protein activator 3 (RasA3); RasA3 are members of GTPase activating protein 1 (GAP1), a Ras-specific GAP, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. RasA3 contains an N-terminal C2 domain, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175977 [Multi-domain] Cd Length: 148 Bit Score: 47.39 E-value: 4.92e-06
|
||||||||
C2B_Synaptotagmin-17 | cd08410 | C2 domain second repeat present in Synaptotagmin 17; Synaptotagmin is a membrane-trafficking ... |
796-870 | 5.69e-06 | ||||
C2 domain second repeat present in Synaptotagmin 17; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 17 is located in the brain, kidney, and prostate and is thought to be a peripheral membrane protein. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176055 [Multi-domain] Cd Length: 135 Bit Score: 46.81 E-value: 5.69e-06
|
||||||||
C2B_Synaptotagmin-like | cd04050 | C2 domain second repeat present in Synaptotagmin-like proteins; Synaptotagmin is a ... |
233-342 | 6.09e-06 | ||||
C2 domain second repeat present in Synaptotagmin-like proteins; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176015 [Multi-domain] Cd Length: 105 Bit Score: 45.63 E-value: 6.09e-06
|
||||||||
PDZ2_MUPP1-like | cd06667 | PDZ domain 2 of multi-PDZ-domain protein 1 (MUPP1) and PATJ (protein-associated tight junction) ... |
87-165 | 8.35e-06 | ||||
PDZ domain 2 of multi-PDZ-domain protein 1 (MUPP1) and PATJ (protein-associated tight junction) and similar domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of MUPP1 and PATJ, and related domains. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, 9, and 13; consequently, MUPP1 PDZ7 and 8 align with PATJ PDZ6 and 7; and MUPP1 PDZ domains 10-12 align with PATJ PDZ domains 8-10. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F Pssm-ID: 467155 [Multi-domain] Cd Length: 80 Bit Score: 44.58 E-value: 8.35e-06
|
||||||||
PDZ13_MUPP1-like | cd06676 | PDZ domain 13 of multi-PDZ-domain protein 1 (MUPP1) and related domains; PDZ (PSD-95 ... |
90-155 | 8.66e-06 | ||||
PDZ domain 13 of multi-PDZ-domain protein 1 (MUPP1) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 13 of MUPP1. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, PDZ9, and PDZ13. This MuPP1-like PDZ13 domain is therefore absent from PATJ. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like family PDZ13 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467164 [Multi-domain] Cd Length: 83 Bit Score: 44.64 E-value: 8.66e-06
|
||||||||
C2A_Synaptotagmin-4-11 | cd08388 | C2A domain first repeat present in Synaptotagmins 4 and 11; Synaptotagmin is a ... |
795-855 | 1.24e-05 | ||||
C2A domain first repeat present in Synaptotagmins 4 and 11; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmins 4 and 11, class 4 synaptotagmins, are located in the brain. Their functions are unknown. They are distinguished from the other synaptotagmins by having and Asp to Ser substitution in their C2A domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176034 [Multi-domain] Cd Length: 128 Bit Score: 45.42 E-value: 1.24e-05
|
||||||||
C2_NEDD4_NEDD4L | cd04033 | C2 domain present in the Human neural precursor cell-expressed, developmentally down-regulated ... |
233-327 | 1.38e-05 | ||||
C2 domain present in the Human neural precursor cell-expressed, developmentally down-regulated 4 (NEDD4) and NEDD4-like (NEDD4L/NEDD42); Nedd4 and Nedd4-2 are two of the nine members of the Human Nedd4 family. All vertebrates appear to have both Nedd4 and Nedd4-2 genes. They are thought to participate in the regulation of epithelial Na+ channel (ENaC) activity. They also have identical specificity for ubiquitin conjugating enzymes (E2). Nedd4 and Nedd4-2 are composed of a C2 domain, 2-4 WW domains, and a ubiquitin ligase Hect domain. Their WW domains can bind PPxY (PY) or LPSY motifs, and in vitro studies suggest that WW3 and WW4 of both proteins bind PY motifs in the key substrates, with WW3 generally exhibiting higher affinity. Most Nedd4 family members, especially Nedd4-2, also have multiple splice variants, which might play different roles in regulating their substrates. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 175999 [Multi-domain] Cd Length: 133 Bit Score: 45.42 E-value: 1.38e-05
|
||||||||
C2B_Munc13-like | cd04009 | C2 domain second repeat in Munc13 (mammalian uncoordinated)-like proteins; C2-like domains are ... |
797-877 | 1.40e-05 | ||||
C2 domain second repeat in Munc13 (mammalian uncoordinated)-like proteins; C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. Pssm-ID: 175976 [Multi-domain] Cd Length: 133 Bit Score: 45.69 E-value: 1.40e-05
|
||||||||
C2_RGS-like | cd08685 | C2 domain of the Regulator Of G-Protein Signaling (RGS) family; This CD contains members of ... |
785-903 | 1.65e-05 | ||||
C2 domain of the Regulator Of G-Protein Signaling (RGS) family; This CD contains members of the regulator of G-protein signaling (RGS) family. RGS is a GTPase activating protein which inhibits G-protein mediated signal transduction. The protein is largely cytosolic, but G-protein activation leads to translocation of this protein to the plasma membrane. A nuclear form of this protein has also been described, but its sequence has not been identified. There are multiple alternatively spliced transcript variants in this family with some members having additional domains (ex. PDZ and RGS) downstream of the C2 domain. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176067 [Multi-domain] Cd Length: 119 Bit Score: 45.14 E-value: 1.65e-05
|
||||||||
PDZ4_INAD-like | cd23065 | PDZ domain 4 of inactivation-no-after-potential D (INAD), and related domains; PDZ (PSD-95 ... |
90-149 | 1.70e-05 | ||||
PDZ domain 4 of inactivation-no-after-potential D (INAD), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 4 of INAD, and related domains. INAD assembles key enzymes of the Drosophila compound eye photo-transduction pathway into a supramolecular complex, supporting efficient and fast light signaling. It contains 5 PDZ domains arranged in tandem (PDZ1-PDZ5) which independently bind various proteins. INAD PDZ2 binds eye-specific protein kinase C, INAD PDZ3 binds transient receptor potential (TRP) channel, and INAD PDZ4,5 tandem binds NORPA (phospholipase Cbeta, PLCbeta). Mutations of the inaD gene that lead to disruption of each of these interactions impair fly photo signal transduction. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This INAD-like family PDZ4 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467278 [Multi-domain] Cd Length: 82 Bit Score: 44.04 E-value: 1.70e-05
|
||||||||
PDZ3_Scribble-like | cd06702 | PDZ domain 3 of Drosophila Scribble, human Scribble homolog, and related domains; PDZ (PSD-95 ... |
81-161 | 1.94e-05 | ||||
PDZ domain 3 of Drosophila Scribble, human Scribble homolog, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of Drosophila Scribble (also known as LAP4), human Scribble homolog (also known as hScrib, LAP4, CriB1, ScrB1 and Vartul), and related domains. They belong to the LAP family, which describes proteins that contain either one or four PDZ domains and 16 LRRs (leucine-rich repeats) and function in controlling cell shape, size and subcellular protein localization. In Drosophila, the Scribble complex, comprising Scribble, discs large, and lethal giant larvae, plays a role in apico-basal cell polarity, in other forms of polarity, including regulation of the actin cytoskeleton, cell signaling and vesicular trafficking, and in tumor development. Mammalian Scribble is important in many aspects of cancer development. Scribble and its homologs can be downregulated or overexpressed in cancer; they have a role in cancer beyond their function in loss of cell polarity. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Scribble-like family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467186 [Multi-domain] Cd Length: 89 Bit Score: 43.78 E-value: 1.94e-05
|
||||||||
C2_PLC_like | cd00275 | C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in ... |
233-321 | 2.46e-05 | ||||
C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) to d-myo-inositol-1,4,5-trisphosphate (1,4,5-IP3) and sn-1,2-diacylglycerol (DAG). 1,4,5-IP3 and DAG are second messengers in eukaryotic signal transduction cascades. PLC is composed of a N-terminal PH domain followed by a series of EF hands, a catalytic TIM barrel and a C-terminal C2 domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-II topology. Pssm-ID: 175974 [Multi-domain] Cd Length: 128 Bit Score: 44.84 E-value: 2.46e-05
|
||||||||
PDZ2-PTPN13_FRMPD2-like | cd06792 | PDZ domain 2 of tyrosine kinase PTPN13, FERM and PDZ domain-containing protein 2 (FRMPD2), and ... |
90-163 | 2.58e-05 | ||||
PDZ domain 2 of tyrosine kinase PTPN13, FERM and PDZ domain-containing protein 2 (FRMPD2), and similar domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of human PTPN13, and related domains. PTPN13, also known as Fas-associated protein-tyrosine phosphatase 1 (FAP-1), protein-tyrosine phosphatase 1E (PTP-E1), and protein-tyrosine phosphatase (PTPL1), negatively regulates FAS-mediated apoptosis and NGFR-mediated pro-apoptotic signaling, and may also regulate phosphoinositide 3-kinase (PI3K) signaling. It contains 5 PDZ domains; interaction partners of its second PDZ domain (PDZ2) include the Fas receptor (TNFRSF6) and thyroid receptor-interacting protein 6 (TRIP6). The second PDZ (PDZ2) domain, but not PDZ1 or PDZ3, of FRMPD2 binds to GluN2A and GluN2B, two subunits of N-methyl-d-aspartic acid (NMDA) receptors. Other binding partners of the FRMPDZ2 PDZ2 domain include NOD2, and catenin family members, delta catenin (CTNND2), armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF) and p0071 (also known as plakophilin 4; PKP4). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PTPN13-like family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467254 [Multi-domain] Cd Length: 87 Bit Score: 43.35 E-value: 2.58e-05
|
||||||||
PDZ3_DLG5-like | cd06767 | PDZ domain 3 of Discs Large 5 (Dlg5) and related domains; PDZ (PSD-95 (Postsynaptic density ... |
90-150 | 3.46e-05 | ||||
PDZ domain 3 of Discs Large 5 (Dlg5) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of Drosophila and mammalian Dlg5, and related domains. Dlg5 is a scaffold protein with multiple conserved functions that are independent of each other in regulating growth, cell polarity, and cell adhesion. It has a coiled-coil domain, 4 PDZ domains and a MAGUK domain (an SH3 domain next to a non-catalytically active guanylate kinase domain). Deregulation of Dlg5 has been implicated in the malignancy of several cancer types. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Dlg5-like family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467248 [Multi-domain] Cd Length: 82 Bit Score: 43.08 E-value: 3.46e-05
|
||||||||
PDZ1_FRMPD2-like | cd23071 | PDZ domain 1 of FERM and PDZ domain-containing protein 2 (FRMPD2), and related domains; PDZ ... |
79-166 | 3.61e-05 | ||||
PDZ domain 1 of FERM and PDZ domain-containing protein 2 (FRMPD2), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of FRMPD2 (also known as PDZ domain-containing protein 4, and related domains. FRMPD2 is localized in the basolateral membranes of polarized epithelial cells and is associated with tight junction formation and immune response; it contains 3 PDZ domains. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PTPN13 family PDZ1 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467284 [Multi-domain] Cd Length: 92 Bit Score: 43.25 E-value: 3.61e-05
|
||||||||
PDZ3_MUPP1-like | cd06791 | PDZ domain 3 of multi-PDZ-domain protein 1 (MUPP1) and PATJ (protein-associated tight junction) ... |
90-146 | 3.68e-05 | ||||
PDZ domain 3 of multi-PDZ-domain protein 1 (MUPP1) and PATJ (protein-associated tight junction) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of MUPP1 and PATJ, and related domains. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, 9, and 13; consequently, MUPP1 PDZ7 and 8 align with PATJ PDZ6 and 7; and MUPP1 PDZ domains 10-12 align with PATJ PDZ domains 8-10. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467253 [Multi-domain] Cd Length: 89 Bit Score: 42.99 E-value: 3.68e-05
|
||||||||
C2_Smurf-like | cd08382 | C2 domain present in Smad ubiquitination-related factor (Smurf)-like proteins; A single C2 ... |
272-326 | 3.92e-05 | ||||
C2 domain present in Smad ubiquitination-related factor (Smurf)-like proteins; A single C2 domain is found in Smurf proteins, C2-WW-HECT-domain E3s, which play an important role in the downregulation of the TGF-beta signaling pathway. Smurf proteins also regulate cell shape, motility, and polarity by degrading small guanosine triphosphatases (GTPases). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have type-II topology. Pssm-ID: 176028 [Multi-domain] Cd Length: 123 Bit Score: 43.83 E-value: 3.92e-05
|
||||||||
PDZ1_INAD-like | cd23063 | PDZ domain 1 of inactivation-no-after-potential D (INAD), and related domains; PDZ (PSD-95 ... |
81-161 | 4.57e-05 | ||||
PDZ domain 1 of inactivation-no-after-potential D (INAD), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of INAD, and related domains. INAD assembles key enzymes of the Drosophila compound eye photo-transduction pathway into a supramolecular complex, supporting efficient and fast light signaling. It contains 5 PDZ domains arranged in tandem (PDZ1-PDZ5) which independently bind various proteins. INAD PDZ2 binds eye-specific protein kinase C, INAD PDZ3 binds transient receptor potential (TRP) channel, and INAD PDZ4,5 tandem binds NORPA (phospholipase Cbeta, PLCbeta). Mutations of the inaD gene that lead to disruption of each of these interactions impair fly photo signal transduction. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This INAD-like family PDZ1 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467276 [Multi-domain] Cd Length: 87 Bit Score: 42.89 E-value: 4.57e-05
|
||||||||
C2A_Ferlin | cd08373 | C2 domain first repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and ... |
233-308 | 4.60e-05 | ||||
C2 domain first repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. Pssm-ID: 176019 [Multi-domain] Cd Length: 127 Bit Score: 43.78 E-value: 4.60e-05
|
||||||||
C2D_Ferlin | cd04017 | C2 domain fourth repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and ... |
232-345 | 4.79e-05 | ||||
C2 domain fourth repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the fourth C2 repeat, C2D, and has a type-II topology. Pssm-ID: 175984 [Multi-domain] Cd Length: 135 Bit Score: 44.07 E-value: 4.79e-05
|
||||||||
C2D_Tricalbin-like | cd04040 | C2 domain fourth repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are ... |
798-892 | 4.87e-05 | ||||
C2 domain fourth repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are present in Tricalbin, a yeast homolog of Synaptotagmin, which is involved in membrane trafficking and sorting. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the fifth C2 repeat, C2E, and has a type-II topology. Pssm-ID: 176005 [Multi-domain] Cd Length: 115 Bit Score: 43.33 E-value: 4.87e-05
|
||||||||
PDZ2_Scribble-like | cd06703 | PDZ domain 2 of Drosophila Scribble, human Scribble homolog, and related domains; PDZ (PSD-95 ... |
80-165 | 6.85e-05 | ||||
PDZ domain 2 of Drosophila Scribble, human Scribble homolog, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of Drosophila Scribble (also known as LAP4), human Scribble homolog (also known as hScrib, LAP4, CriB1, ScrB1 and Vartul), and related domains. They belong to the LAP family, which describes proteins that contain either one or four PDZ domains and 16 LRRs (leucine-rich repeats) and function in controlling cell shape, size and subcellular protein localization. In Drosophila, the Scribble complex, comprising Scribble, discs large, and lethal giant larvae, plays a role in apico-basal cell polarity, in other forms of polarity, including regulation of the actin cytoskeleton, cell signaling and vesicular trafficking, and in tumor development. Mammalian Scribble is important in many aspects of cancer development. Scribble and its homologs can be downregulated or overexpressed in cancer; they have a role in cancer beyond their function in loss of cell polarity. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Scribble-like family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467187 [Multi-domain] Cd Length: 92 Bit Score: 42.63 E-value: 6.85e-05
|
||||||||
PDZ3_PTPN13_FRMPD2-like | cd06695 | PDZ domain 3 of protein tyrosine phosphatase non-receptor type 13 (PTPN13), FERM and PDZ ... |
81-166 | 7.27e-05 | ||||
PDZ domain 3 of protein tyrosine phosphatase non-receptor type 13 (PTPN13), FERM and PDZ domain-containing protein 2 (FRMPD2), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of PTPN13 [also known as Fas-associated protein-tyrosine phosphatase 1 (FAP-1), protein-tyrosine phosphatase 1E (PTP-E1), and protein-tyrosine phosphatase (PTPL1)], FRMPD2 (also known as PDZ domain-containing protein 4; PDZ domain-containing protein 5C), and related domains. PTPN13 regulates negative apoptotic signaling and mediates phosphoinositide 3-kinase (PI3K) signaling. PTPN13 has five PDZ domains. Proteins known to interact with PTPN13 PDZ domains include: PLEKHA1 and PLEKHA2 via PTPN13-PDZ domain 1, Fas receptor and thyroid receptor-interacting protein 6 via PTPN13-PDZ domain 2, nerve growth factor receptor and protein kinase N2 via PTPN13-PDZ domain 3, PDZ and LIM domain 4 (PDLIM4) via PTPN13-PDZ domains 2 and 4, and brain calpain-2 via PTPN13-PDZ domains 3, 4 and 5. Calpain-2-mediated PTPN13 fragments may be involved in abnormal tau aggregation and increased risk for Alzheimer's disease. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). FRMPD2 is localized in the basolateral membranes of polarized epithelial cells and is associated with tight junction formation and immune response; it contains 3 PDZ domains). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PTPN13 family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467181 [Multi-domain] Cd Length: 90 Bit Score: 42.25 E-value: 7.27e-05
|
||||||||
PDZ_syntrophin-like | cd06801 | PDZ domain of syntrophins, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), ... |
84-163 | 8.21e-05 | ||||
PDZ domain of syntrophins, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of syntrophins (including alpha-1-syntrophin, beta-1-syntrophin, beta-2-syntrophin, gamma-1-syntrophin, and gamma-2-syntrophin), and related domains. Syntrophins play a role in recruiting various signaling molecules into signaling complexes and help provide appropriate spatiotemporal regulation of signaling pathways. They function in cytoskeletal organization and maintenance; as components of the dystrophin-glycoprotein complex (DGC), they help maintain structural integrity of skeletal muscle fibers. They link voltage-gated sodium channels to the actin cytoskeleton and the extracellular matrix, and control the localization and activity of the actin reorganizing proteins such as PI3K, PI(3,4)P2 and TAPP1. Through association with various cytoskeletal proteins within the cells, they are involved in processes such as regulation of focal adhesions, myogenesis, calcium homeostasis, and cell migration. They also have roles in synapse formation and in the organization of utrophin, acetylcholine receptor, and acetylcholinesterase at the neuromuscular synapse. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This syntrophin-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467262 [Multi-domain] Cd Length: 83 Bit Score: 41.79 E-value: 8.21e-05
|
||||||||
PDZ2_Par3-like | cd23058 | PDZ domain 2 of partitioning defective 3 (Par3), and related domains; PDZ (PSD-95 ... |
122-165 | 8.80e-05 | ||||
PDZ domain 2 of partitioning defective 3 (Par3), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of Par3 (or PAR3 or Par-3, also known as Atypical PKC isotype-specific-interacting protein, ASIP, Drosophila Bazooka) and related domains. Par3 is a scaffold protein involved in organizing cell polarity across animals. Par3 binds numerous molecules both for its recruitment to one pole of the cell and for downstream contributions to polarized cell function. It regulates cell polarity by targeting the Par complex proteins Par6 and atypical protein kinase C (aPKC) to specific cortical sites. Physical interactions between Par3 and the Par complex include Par3 PDZ domain 1 binding to the Par6 PDZ domain, Par3 PDZ domain 1 and PDZ domain 3 binding the Par6's PDZ-binding motif, and an interaction with an undefined region of aPKC that requires both Par3 PDZ2 and PDZ3. The PDZ domains of Par3 have also been implicated as potential phosphoinositide signaling integrators, since its second PDZ domain binds to phosphoinositides, and the third PDZ interacts with phosphoinositide phosphatase PTEN. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Par3 family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467271 [Multi-domain] Cd Length: 93 Bit Score: 42.24 E-value: 8.80e-05
|
||||||||
PDZ_Par6-like | cd06718 | PDZ domain of partitioning defective 6 (Par6), Drosophila Rho GTPase-activating protein 100F ... |
106-166 | 9.59e-05 | ||||
PDZ domain of partitioning defective 6 (Par6), Drosophila Rho GTPase-activating protein 100F (RhoGAP100F), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of Par6 (also known as PAR6 or Par-6), RhoGAP100F, and related domains. Par6 is part of a conserved machinery that directs metazoan cell polarity, a process necessary for the function of diverse cell types. Par6 forms a cell polarity-regulatory complex with atypical protein kinase C (aPKC) and Par3. Par6 can also directly associate with PALS1 (proteins associated with Lin7, also known as Stardust) providing a link between the Par3/aPKC/Par6 complex and the PALS1-PATJ (protein-associated TJ) complex. Binding partners of the Par6-PDZ domain include Par3, PALS1/Stardust; leucine-rich repeat-containing protein netrin-G ligand-2 (NGL-2), human crumbs (CRB3) involve in the morphogenesis of the tight junctions in mammalian epithelial cells, and PAR-6 co-operates with the Par6 semi-CRIB domain to bind CDC42. CDC42 regulates the Par6 PDZ domain through an allosteric CRIB-PDZ transition. Drosophila RhoGAP100F, also known as synapse defective protein 1 homolog (syd-1 homolog), is a GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound form. The RhoGAP100F-PDZ domain binds the neurexin C terminus to control synapse formation at the Drosophila neuromuscular junction. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Par6-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467202 [Multi-domain] Cd Length: 84 Bit Score: 41.79 E-value: 9.59e-05
|
||||||||
PDZ_shroom2_3_4-like | cd06750 | PDZ domain of shroom2, shroom3, shroom4, and related domains; PDZ (PSD-95 (Postsynaptic ... |
109-165 | 9.68e-05 | ||||
PDZ domain of shroom2, shroom3, shroom4, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of shroom2, shroom3, shroom4, and related domains. Shroom family proteins shroom2 (also known as apical-like protein; protein APXL), shroom3 (also known as shroom-related protein), and shroom4 (also known as second homolog of apical protein) are essential regulators of cell morphology during animal development; they regulate cell architecture by directing the subcellular distribution and activation of Rho kinase (ROCK), which results in the localized activation of non-muscle myosin. The interaction between shroom and ROCK is mediated by the shroom domain 2 (SD2). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This shroom2,3,4-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged as beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467232 [Multi-domain] Cd Length: 82 Bit Score: 41.55 E-value: 9.68e-05
|
||||||||
C2A_MCTP_PRT_plant | cd04022 | C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
798-887 | 9.84e-05 | ||||
C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset; MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. Pssm-ID: 175989 [Multi-domain] Cd Length: 127 Bit Score: 43.09 E-value: 9.84e-05
|
||||||||
C2B_RasA1_RasA4 | cd04025 | C2 domain second repeat present in RasA1 and RasA4; RasA1 and RasA4 are GAP1s (GTPase ... |
237-347 | 9.93e-05 | ||||
C2 domain second repeat present in RasA1 and RasA4; RasA1 and RasA4 are GAP1s (GTPase activating protein 1s ), Ras-specific GAP members, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. Both proteins contain two C2 domains, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175991 [Multi-domain] Cd Length: 123 Bit Score: 42.86 E-value: 9.93e-05
|
||||||||
PDZ_RapGEF2_RapGEF6-like | cd06755 | PDZ domain of Rap guanine nucleotide exchange factor 2 and Rap guanine nucleotide exchange ... |
90-150 | 1.35e-04 | ||||
PDZ domain of Rap guanine nucleotide exchange factor 2 and Rap guanine nucleotide exchange factor 6, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of Rap guanine nucleotide exchange factor 2 (RapGEF2, also named RA-GEF-1, PDZ-GEF1, CNrasGEF and nRapGEP) and Rap guanine nucleotide exchange factor 6 (RapGEF6, also named RA-GEF-2 and PDZ-GEF2). RapGEF2 and RapGEF6 constitute a subfamily of guanine nucleotide exchange factors (GEFs) for RAP small GTPases that is characterized by the possession of the PDZ and Ras/Rap-associating domains. They activate Rap small GTPases, by catalyzing the release of GDP from the inactive GDP-bound forms, thereby accelerating GTP loading to yield the active GTP-bound forms. The PDZ domain of RapGEF6 (also known as PDZ-GEF2) binds junctional adhesion molecule A (JAM-A). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This RapGEF2 and RapGEF6 family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467237 [Multi-domain] Cd Length: 83 Bit Score: 41.48 E-value: 1.35e-04
|
||||||||
C2B_RasA3 | cd04010 | C2 domain second repeat present in RAS p21 protein activator 3 (RasA3); RasA3 are members of ... |
797-926 | 1.85e-04 | ||||
C2 domain second repeat present in RAS p21 protein activator 3 (RasA3); RasA3 are members of GTPase activating protein 1 (GAP1), a Ras-specific GAP, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. RasA3 contains an N-terminal C2 domain, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175977 [Multi-domain] Cd Length: 148 Bit Score: 42.77 E-value: 1.85e-04
|
||||||||
PDZ4_Scribble-like | cd06701 | PDZ domain 4 of Drosophila Scribble, human Scribble homolog, and related domains; PDZ (PSD-95 ... |
78-156 | 1.98e-04 | ||||
PDZ domain 4 of Drosophila Scribble, human Scribble homolog, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 4 of Drosophila Scribble (also known as LAP4), human Scribble homolog (also known as hScrib, LAP4, CriB1, ScrB1 and Vartul), and related domains. They belong to the LAP family, which describes proteins that contain either one or four PDZ domains and 16 LRRs (leucine-rich repeats) and function in controlling cell shape, size and subcellular protein localization. In Drosophila, the Scribble complex, comprising Scribble, discs large, and lethal giant larvae, plays a role in apico-basal cell polarity, in other forms of polarity, including regulation of the actin cytoskeleton, cell signaling and vesicular trafficking, and in tumor development. Mammalian Scribble is important in many aspects of cancer development. Scribble and its homologs can be downregulated or overexpressed in cancer; they have a role in cancer beyond their function in loss of cell polarity. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Scribble-like family PDZ4 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467185 [Multi-domain] Cd Length: 98 Bit Score: 41.44 E-value: 1.98e-04
|
||||||||
DegQ | COG0265 | Periplasmic serine protease, S1-C subfamily, contain C-terminal PDZ domain [Posttranslational ... |
106-165 | 2.04e-04 | ||||
Periplasmic serine protease, S1-C subfamily, contain C-terminal PDZ domain [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440035 [Multi-domain] Cd Length: 274 Bit Score: 44.37 E-value: 2.04e-04
|
||||||||
C2B_Synaptotagmin-14_16 | cd08408 | C2 domain second repeat present in Synaptotagmins 14 and 16; Synaptotagmin 14 and 16 are ... |
796-855 | 2.37e-04 | ||||
C2 domain second repeat present in Synaptotagmins 14 and 16; Synaptotagmin 14 and 16 are membrane-trafficking proteins in specific tissues outside the brain. Both of these contain C-terminal tandem C2 repeats, but only Synaptotagmin 14 has an N-terminal transmembrane domain and a putative fatty-acylation site. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium and this is indeed the case here. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176053 [Multi-domain] Cd Length: 138 Bit Score: 41.97 E-value: 2.37e-04
|
||||||||
PDZ1_hSTXBP4-PDZ2_GgSTXBP4-like | cd06698 | PDZ1 domain of human syntaxin-binding protein 4 (STXBP4), PDZ2 domain of Gallus gallus ... |
81-161 | 2.62e-04 | ||||
PDZ1 domain of human syntaxin-binding protein 4 (STXBP4), PDZ2 domain of Gallus gallus uncharacterized STXBP4 isoform X1, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of human syntaxin-binding protein 4 (STXBP4), PDZ2 domain of Gallus gallus uncharacterized STXBP4 isoform X1, and related domains. Human STXBP4 (also known as Synip) includes a single PDZ domain, a coiled-coil domain, and a WW domain (named for its two conserved tryptophans); Gallus gallus STXBP4 isoform X1 contains 2 PDZ domains (PDZ1 and PDZ2). Human STXBP4 plays a role in the translocation of transport vesicles from the cytoplasm to the plasma membrane: insulin induces the dissociation of the STXBP4 and STX4 complex liberating STX4 to interact with Vamp2, and to form the SNARE complex thereby promoting vesicle fusion. It may also play a role in the regulation of insulin release by pancreatic beta cells after stimulation by glucose. Human STXBP4 is also known to physically associate with a prominent isoform of TP63 (deltaNp63alpha 9) whose overexpression promotes squamous cell carcinoma development, and in doing so prevents degradation of this isoform by the Cdc20-APC/C complex, Itch, and RACK1. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This STXBP4-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467184 [Multi-domain] Cd Length: 89 Bit Score: 40.75 E-value: 2.62e-04
|
||||||||
PDZ2_harmonin | cd06738 | PDZ domain 2 of harmonin isoforms a, b, and c, and related domains; PDZ (PSD-95 (Postsynaptic ... |
106-163 | 3.82e-04 | ||||
PDZ domain 2 of harmonin isoforms a, b, and c, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of harmonin isoforms a, b, and c, and related domains. Harmonin (also known as Usher Type 1C, PDZ-73 and AIE-75) is a key organizer of the Usher (USH) protein interactome. USH syndrome is the leading cause of hereditary sensory deaf-blindness in humans; three clinically distinct types of USH have been identified, type 1 to 3. The gene encoding harmonin (USH1C) is the causative gene for the USH type 1C phenotype. There are at least 10 alternatively spliced isoforms of harmonin, which are divided into three subclasses (a, b, and c). All isoforms contain the first two PDZ domains and the first coiled-coil domain. The a and b isoforms all have a third PDZ domain. The different PDZ domains are responsible for interactions with all known Usher syndrome type 1 proteins, and most Usher syndrome type 2 proteins. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This harmonin family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467220 [Multi-domain] Cd Length: 82 Bit Score: 40.00 E-value: 3.82e-04
|
||||||||
PDZ2_GRIP1-2-like | cd06681 | PDZ domain 2 of glutamate receptor-interacting protein 1 (GRIP1) and GRIP2, and related ... |
109-156 | 6.14e-04 | ||||
PDZ domain 2 of glutamate receptor-interacting protein 1 (GRIP1) and GRIP2, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) binding proteins GRIP1 (ABP/GRIP2) and GRIP2, and related domains. GRIP1 and GRIP2 each have 7 PDZ domains. The interaction of GRIP1 and GRIP2 with GluA2/3 (AMPAR subunit) regulates AMPAR trafficking and synaptic targeting. GRIP1 has an essential role in regulating AMPAR trafficking during synaptic plasticity and learning and memory. GRIP1 and GRIP2 interact with a variety of other proteins associated with protein trafficking and internalization, for example GRIP1 also interacts with KIF5 (also known as kinesin 1), EphB receptors, scaffold protein liprin-alpha, and the rasGEF GRASP-1. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This GRIP family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467169 [Multi-domain] Cd Length: 89 Bit Score: 39.52 E-value: 6.14e-04
|
||||||||
C2A_C2C_Synaptotagmin_like | cd08391 | C2 domain first and third repeat in Synaptotagmin-like proteins; Synaptotagmin is a ... |
235-342 | 7.23e-04 | ||||
C2 domain first and third repeat in Synaptotagmin-like proteins; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains either the first or third repeat in Synaptotagmin-like proteins with a type-I topology. Pssm-ID: 176037 [Multi-domain] Cd Length: 121 Bit Score: 40.35 E-value: 7.23e-04
|
||||||||
PDZ_NHERF-like | cd06768 | PDZ domains of the Na+/H+ exchange regulatory cofactor (NHERF) family (NHERF1-4), and related ... |
100-156 | 7.73e-04 | ||||
PDZ domains of the Na+/H+ exchange regulatory cofactor (NHERF) family (NHERF1-4), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of the Na+/H+ exchange regulatory cofactor (NHERF) family of multi-PDZ-domain-containing scaffolding proteins (NHERF1-4), and related domains. The NHERF family includes NHERF1 (also known as EBP50), NHERF2 (also known as E3KARP; TKA-1; SIP-1), NHERF3 (also known as CAP70; CLAMP; Napi-Cap-1; PDZD1) and NHERF4 (also known as IKEPP; PDZK2; Napi-Cap-2). NHERF1 and NHERF2 have tandem PDZ domains (PDZ1-2); NHERF3 and NHERF4 have four PDZ domains (PDZ1-4). NHERFs are involved in the regulation of multiple receptors or transporters, such as type II sodium-phosphate cotransporter (Npt2a), purinergic P2Y1 receptor P2Y1R, the beta2-adrenergic receptor (beta2-AR), parathyroid hormone receptor type 1 (PTHR), the lysophosphatidic acid receptors (LPARs), sodium-hydrogen exchanger 3 (NHE3), and cystic fibrosis transmembrane conductance regulator (CFTR). NHERF-PDZ1 domain interaction partners include Npt2a, purinergic P2Y1 receptor, beta2-AR, CFTR, PTHR, NH3, G-protein-coupled receptor kinase 6 (GRK6A), platelet-derived growth factor receptor (PDGFR), B1 subunit of the H+ATPase, cholesterol, receptor for activated C-kinase RACK1, aquaporin 9, among others. The NHERF PDZ2 domain interacts with fewer proteins: NHERF1 PDZ2 binds Npt2a, PTHR, beta-catenin, aquaporin 9, and RACK1; NHERF2 PDZ2 binds LPA2, P2Y1R, and NHE3, cGMP-dependent protein kinase type II (cGKII). NHERF4 PDZ1 and PDZ4 bind the epithelial Ca(2+) channels TRPV5 and TRPV6. NHERF2/NHERF3 heterodimerization is mediated by PDZ domains of NHERF2 and the C-terminal PDZ domain recognition motif of NHERF3. NHERF4 regulates several transporters mediating influx of xenobiotics and nutrients in the small intestine. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This NHERF-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467249 [Multi-domain] Cd Length: 80 Bit Score: 38.96 E-value: 7.73e-04
|
||||||||
PDZ_SYNJ2BP-like | cd06709 | PDZ domain of synaptojanin-2-binding protein (SYNJ2BP), and related domains; PDZ (PSD-95 ... |
90-156 | 8.20e-04 | ||||
PDZ domain of synaptojanin-2-binding protein (SYNJ2BP), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of SYNJ2BP, and related domains. SYNJ2BP (also known as mitochondrial outer membrane protein 25, OMP25) regulates endocytosis of activin type 2 receptor kinases through the Ral/RALBP1-dependent pathway and may be involved in suppression of activin-induced signal transduction. Binding partners of the SYNJ2BP PDZ domain include activin type II receptors (ActR-II), and SYNJ2. SYNJ2BP interacts with the PDZ binding motif of the Notch Delta-like ligand 1 (DLL1) and DLL4, promoting Delta-Notch signaling, and inhibiting sprouting angiogenesis. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This SYNJ2BP-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467193 [Multi-domain] Cd Length: 86 Bit Score: 39.20 E-value: 8.20e-04
|
||||||||
C2_E3_ubiquitin_ligase | cd04021 | C2 domain present in E3 ubiquitin ligase; E3 ubiquitin ligase is part of the ubiquitylation ... |
231-309 | 8.37e-04 | ||||
C2 domain present in E3 ubiquitin ligase; E3 ubiquitin ligase is part of the ubiquitylation mechanism responsible for controlling surface expression of membrane proteins. The sequential action of several enzymes are involved: ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, and ubiquitin-protein ligase E3 which is responsible for substrate recognition and promoting the transfer of ubiquitin to the target protein. E3 ubiquitin ligase is composed of an N-terminal C2 domain, 4 WW domains, and a HECTc domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 175988 [Multi-domain] Cd Length: 125 Bit Score: 40.34 E-value: 8.37e-04
|
||||||||
C2_C21orf25-like | cd08678 | C2 domain found in the Human chromosome 21 open reading frame 25 (C21orf25) protein; The ... |
798-891 | 1.03e-03 | ||||
C2 domain found in the Human chromosome 21 open reading frame 25 (C21orf25) protein; The members in this cd are named after the Human C21orf25 which contains a single C2 domain. Several other members contain a C1 domain downstream of the C2 domain. No other information on this protein is currently known. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176060 [Multi-domain] Cd Length: 126 Bit Score: 40.04 E-value: 1.03e-03
|
||||||||
PDZ_MPP-like | cd06726 | PDZ domain of membrane palmitoylated proteins (MPPs), and related domains; PDZ (PSD-95 ... |
108-154 | 1.05e-03 | ||||
PDZ domain of membrane palmitoylated proteins (MPPs), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of MPP1-7 (also known as MAGUK p55 subfamily members 1-7), and related domains. MPPs comprise a subfamily of a larger group of multidomain proteins, namely, membrane-associated guanylate kinases (MAGUKs). MPPs form diverse protein complexes at the cell membranes, which are involved in a wide range of cellular processes, including establishing proper cell structure, polarity and cell adhesion. MPPs have only one PDZ domain. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MPP1-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467208 [Multi-domain] Cd Length: 80 Bit Score: 38.79 E-value: 1.05e-03
|
||||||||
C2C_MCTP_PRT_plant | cd04019 | C2 domain third repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
235-363 | 1.11e-03 | ||||
C2 domain third repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset; MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. Pssm-ID: 175986 [Multi-domain] Cd Length: 150 Bit Score: 40.34 E-value: 1.11e-03
|
||||||||
C2A_Munc13-like | cd08676 | C2 domain first repeat in Munc13 (mammalian uncoordinated)-like proteins; C2-like domains are ... |
265-341 | 1.18e-03 | ||||
C2 domain first repeat in Munc13 (mammalian uncoordinated)-like proteins; C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 176058 [Multi-domain] Cd Length: 153 Bit Score: 40.43 E-value: 1.18e-03
|
||||||||
PDZ1_FL-whirlin | cd06740 | PDZ domain 1 of the full-length isoform of whirlin and related domains; PDZ (PSD-95 ... |
106-155 | 1.26e-03 | ||||
PDZ domain 1 of the full-length isoform of whirlin and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of the full-length isoform of whirlin and related domains. Whirlin is an essential protein for developmental pathways in photoreceptor cells of the retina and hair cells of the inner ear. The full-length whirlin isoform has two harmonin N-like domains, three PDZ domains, a proline-rich region, and a PDZ-binding motif. Whirlin isoforms may form different complexes at the periciliary membrane complex (PMC) in photoreceptors, and the stereociliary tip and base in inner ear hair cells. It interacts with ADGRV1 and usherin at the PMC; with SANS and RpgrORF15 at the connecting cilium in photoreceptors; with EPS8, MYO15A, p55, and CASK proteins at the stereociliary tip of inner ear hair cells; and with ADGRV1, usherin, and PDZD7 at the stereociliary base in inner ear hair cells. Mutations in the gene encoding whirlin (WHRN; also known as USH2D and DFNB31), have been found to cause either USH2 subtype (USH2D) or autosomal recessive non-syndromic deafness type 31 (DFNB31). Whirlin is the key protein in the USH2 complex (whirlin, usherin and GPR98) which recruits other USH2 causative proteins at the periciliary membrane in photoreceptors and the ankle link of the stereocilia in hair cells. Whirlin's interaction with espin, another stereociliary protein, may be important for the architecture of the USH2 complex. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This whirlin family PDZ1 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467222 [Multi-domain] Cd Length: 82 Bit Score: 38.50 E-value: 1.26e-03
|
||||||||
PDZ5_GRIP1-2-like | cd06682 | PDZ domain 5 of glutamate receptor-interacting protein 1 (GRIP1) and GRIP2, and related ... |
82-150 | 1.44e-03 | ||||
PDZ domain 5 of glutamate receptor-interacting protein 1 (GRIP1) and GRIP2, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) binding proteins GRIP1 (ABP/GRIP2) and GRIP2, and related domains. GRIP1 and GRIP2 each have 7 PDZ domains. The interaction of GRIP1 and GRIP2 with GluA2/3 (AMPAR subunit) regulates AMPAR trafficking and synaptic targeting. GRIP1 has an essential role in regulating AMPAR trafficking during synaptic plasticity and learning and memory. GRIP1 and GRIP2 interact with a variety of other proteins associated with protein trafficking and internalization, for example GRIP1 also interacts with KIF5 (also known as kinesin 1), EphB receptors, scaffold protein liprin-alpha, and the rasGEF GRASP-1. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This GRIP family domain PDZ5 is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467170 [Multi-domain] Cd Length: 85 Bit Score: 38.48 E-value: 1.44e-03
|
||||||||
C2B_MCTP_PRT_plant | cd08378 | C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
798-870 | 1.45e-03 | ||||
C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset; MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 176024 [Multi-domain] Cd Length: 121 Bit Score: 39.60 E-value: 1.45e-03
|
||||||||
PDZ_SHANK1_3-like | cd06746 | PDZ domain of SH3 and multiple ankyrin repeat domains protein 1 (SHANK1), SHANK2, SHANK3, and ... |
108-153 | 1.48e-03 | ||||
PDZ domain of SH3 and multiple ankyrin repeat domains protein 1 (SHANK1), SHANK2, SHANK3, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of SHANK1, SHANK2, SHANK3, and related domains. SHANK family proteins, SHANK1 (also known as somatostatin receptor-interacting protein, SSTR-interacting protein, SSTRIP), SHANK2 (also known as cortactin-binding protein 1, proline-rich synapse-associated protein 1), and SHANK3 (proline-rich synapse-associated protein 2) are synaptic scaffolding proteins which are highly enriched in the post-synaptic densities of excitatory synapses. They have been implicated in synaptic transmission, synapse formation, synaptic plasticity, and cytoskeletal remodeling, and are regulators of Cav1 calcium current and CREB target expression. Many protein ligands have been identified for the Shank PDZ domain, such as GKAP (also known as SAPAP), betaPIX (a guanine nucleotide exchange factor used by Rho GTPase family members Rac1 and Cdc42), alpha-latrotoxin, neuroligin, group I metabotropic glutamate receptors (mGluRs), and L-type calcium channels. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This SHANK-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged as beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta- strand F. Pssm-ID: 467228 [Multi-domain] Cd Length: 101 Bit Score: 38.73 E-value: 1.48e-03
|
||||||||
PDZ_TAX1BP3-like | cd10822 | PDZ domain of tax1-binding protein 3 (TAX1BP3), and related domains; PDZ (PSD-95 (Postsynaptic ... |
90-165 | 1.58e-03 | ||||
PDZ domain of tax1-binding protein 3 (TAX1BP3), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of TAX1BP3, and related domains. TAX1BP3 (also known as glutaminase-interacting protein 3, tax interaction protein 1, TIP-1, tax-interacting protein 1) may regulate a number of protein-protein interactions by competing for PDZ domain binding sites. TAX1BP3 binds beta-catenin and may act as an inhibitor of the Wnt signaling pathway. It competes with LIN7A (also known as Lin-7A or LIN-7A) for inward rectifier potassium channel 4 (KCNJ4) binding, and thereby promotes KCNJ4 internalization. It may play a role in the Rho signaling pathway, and in the activation of CDC42 by the viral protein HPV16 E6. Binding partners of the TAX1BP3 PDZ domain include beta-catenin, KCNJ4, glutaminase liver isoform (GLS2), rho guanine nucleotide exchange factor 16 (ARHGEF16), rhotekin, and CDK5 regulatory subunit-associated protein 3 (also known as LAPZ). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This TAX1BP3-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467265 [Multi-domain] Cd Length: 94 Bit Score: 38.47 E-value: 1.58e-03
|
||||||||
cpPDZ_HtrA-like | cd06785 | circularly permuted PDZ domain of high-temperature requirement factor A (HtrA) family serine ... |
106-165 | 1.58e-03 | ||||
circularly permuted PDZ domain of high-temperature requirement factor A (HtrA) family serine proteases and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of HtrA family serine proteases including human HtrA1, HtrA2 (mitochondrial), HtrA3, and HtrA4, and related domains. These proteases are key enzymes associated with pregnancy. Their diverse biological functions include cell growth proliferation, migration and apoptosis. They are also implicated in disorders including Alzheimer's, Parkinson's, arthritis and cancer. HtrA1 (also known as high-temperature requirement A serine peptidase 1, L56, and serine protease 11) substrates include extracellular matrix proteins, proteoglycans, and insulin-like growth factor (IGF)-binding proteins. HtrA1 also inhibits signaling by members of the transforming growth factor beta (TGF-beta) family. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping of beta-strands. The canonical PDZ domain contains six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2); arranged as A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. This HtrA-like PDZ domain is a circularly permuted PDZ domain which places beta-strand A on the C-terminus. Another permutation exists in the PDZ superfamily which places both beta-strands A and B on the C-terminus. Pssm-ID: 467624 [Multi-domain] Cd Length: 98 Bit Score: 38.63 E-value: 1.58e-03
|
||||||||
C2B_Tricalbin-like | cd04052 | C2 domain second repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are ... |
817-903 | 1.62e-03 | ||||
C2 domain second repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are present in Tricalbin, a yeast homolog of Synaptotagmin, which is involved in membrane trafficking and sorting. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 176017 [Multi-domain] Cd Length: 111 Bit Score: 39.12 E-value: 1.62e-03
|
||||||||
PDZ_ZASP52-like | cd23068 | PDZ domain of Drosophila melanogaster PDZ and LIM domain protein Zasp52 (also known as Zasp), ... |
91-165 | 2.33e-03 | ||||
PDZ domain of Drosophila melanogaster PDZ and LIM domain protein Zasp52 (also known as Zasp), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of Drosophila melanogaster Zasp52 and related domains. Drosophila melanogaster Zasp52 (also known as Z band alternatively spliced PDZ-motif protein or Zasp) colocalizes with integrins at myotendinous junctions and with alpha-actinin at Z-disks and is required for muscle attachment as well as Z-disk assembly and maintenance. The Zasp52 actin-binding site includes the extended PDZ domain and the ZM region. The Zasp52-PDZ domain is required for myofibril assembly. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Zasp52-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467281 [Multi-domain] Cd Length: 82 Bit Score: 37.89 E-value: 2.33e-03
|
||||||||
C2A_MCTP_PRT | cd04042 | C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
232-297 | 2.49e-03 | ||||
C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); MCTPs are involved in Ca2+ signaling at the membrane. MCTP is composed of a variable N-terminal sequence, three C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. Pssm-ID: 176007 [Multi-domain] Cd Length: 121 Bit Score: 38.80 E-value: 2.49e-03
|
||||||||
PDZ_MPP5-like | cd06798 | PDZ domain of membrane palmitoylated protein 5 (MPP5), Drosophila Stardust, and related ... |
109-150 | 3.05e-03 | ||||
PDZ domain of membrane palmitoylated protein 5 (MPP5), Drosophila Stardust, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of MPP5, Drosophila Stardust, and related domains. MPP5 (also known as MAGUK p55 subfamily member 1, protein associated with Lin-7 1 or PALS1) and Drosophila Stardust are membrane-associated guanylate kinase (MAGUK)-like proteins that serve as signaling and scaffolding proteins, linking different proteins critical to the formation and maintenance of tight junctions (TJ) and apical-basal polarity. Apical-basal polarity determinants cluster in complexes; in particular, the Crumbs complex (Crb, MPP5, and PATJ) and the PAR/aPKC-complex (PAR-3, PAR-6, aPKC) determine the apical plasma membrane domain. Within the Crumbs complex, Crb is stabilized in the plasma membrane by MPP5, which in turn recruits PATJ and Lin-7 to the complex. MPP5 also links the Crumbs complex with the PAR/aPKC-complex. The Drosophila homolog of the Crumbs complex is the (CRB)-Stardust (Sdt)-Discs Lost (Dlt) complex. MPP5 also acts as an interaction partner for SARS-CoV envelope protein E, which results in delayed formation of TJs and dysregulation of cell polarity. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MPP5-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467259 [Multi-domain] Cd Length: 79 Bit Score: 37.32 E-value: 3.05e-03
|
||||||||
C2B_Tricalbin-like | cd04052 | C2 domain second repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are ... |
253-333 | 3.55e-03 | ||||
C2 domain second repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are present in Tricalbin, a yeast homolog of Synaptotagmin, which is involved in membrane trafficking and sorting. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 176017 [Multi-domain] Cd Length: 111 Bit Score: 37.97 E-value: 3.55e-03
|
||||||||
C2_Perforin | cd04032 | C2 domain of Perforin; Perforin contains a single copy of a C2 domain in its C-terminus and ... |
232-309 | 3.68e-03 | ||||
C2 domain of Perforin; Perforin contains a single copy of a C2 domain in its C-terminus and plays a role in lymphocyte-mediated cytotoxicity. Mutations in perforin leads to familial hemophagocytic lymphohistiocytosis type 2. The function of perforin is calcium dependent and the C2 domain is thought to confer this binding to target cell membranes. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 175998 [Multi-domain] Cd Length: 127 Bit Score: 38.40 E-value: 3.68e-03
|
||||||||
PDZ2_ZO1-like_ds | cd06728 | PDZ domain 2 of Zonula Occludens-1 (ZO-1), ZO-2 and ZO-3, and related domains; form ... |
104-166 | 3.84e-03 | ||||
PDZ domain 2 of Zonula Occludens-1 (ZO-1), ZO-2 and ZO-3, and related domains; form domain-swapping dimers; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of ZO-1, -2, -3 and related domains. Zonula occludens proteins (ZO-1, ZO-2, ZO-3) are multi-PDZ domain proteins involved in the maintenance and biogenesis of multi-protein networks at the cytoplasmic surface of intercellular contacts in epithelial and endothelial cells. They have three N-terminal PDZ domains, PDZ1-3, followed by a Src homology-3 (SH3) domain and a guanylate kinase (GuK)-like domain. Among protein-protein interactions for all ZO proteins is the binding of the first PDZ domain (PDZ1) to the C-termini of claudins , and the homo- and hetero-dimerization of ZO-proteins via their second PDZ domain (PDZ2), which takes place by symmetrical domain swapping of the first two beta-strands of PDZ2. At the cell level, ZO-1 and ZO-2 are involved in polarity maintenance, gene transcription, cell proliferation, and tumor cell metastasis. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This ZO family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467210 [Multi-domain] Cd Length: 79 Bit Score: 37.20 E-value: 3.84e-03
|
||||||||
CtpA | COG0793 | C-terminal processing protease CtpA/Prc, contains a PDZ domain [Posttranslational modification, ... |
109-166 | 3.87e-03 | ||||
C-terminal processing protease CtpA/Prc, contains a PDZ domain [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440556 [Multi-domain] Cd Length: 341 Bit Score: 40.62 E-value: 3.87e-03
|
||||||||
cpPDZ1_DegP-like | cd10839 | circularly permuted first PDZ domain (PDZ1) of Escherichia coli periplasmic serine ... |
106-138 | 3.91e-03 | ||||
circularly permuted first PDZ domain (PDZ1) of Escherichia coli periplasmic serine endoprotease DegP and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of Escherichia coli DegP (also known as heat shock protein DegP and Protease Do) and related domains. DegP belongs to the HtrA family of housekeeping proteases. It acts as a protease, degrading transiently denatured and unfolded or misfolded proteins which accumulate in the periplasm following heat shock or other stress conditions, and as a molecular chaperone at low temperatures. DegP has two PDZ domains in addition to the protease domain; its PDZ1 domain is responsible for identifying the distinct substrate sequences that affect degradation (degron) of the substrate sequence, and its PDZ2 domain is responsible for combining with other DegP monomers to form a stable oligomer structure. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains and as well as those with circular permutations and domain swapping of beta-strands. The canonical PDZ domain contains six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2); arranged as A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. This DegP family PDZ domain 1 is a circularly permuted PDZ domain which places beta-strand A on the C-terminus. Another permutation exists in the PDZ superfamily which places both beta-strands A and B on the C-terminus. Pssm-ID: 467630 [Multi-domain] Cd Length: 91 Bit Score: 37.46 E-value: 3.91e-03
|
||||||||
C2_Intersectin | cd08375 | C2 domain present in Intersectin; A single instance of the C2 domain is located C terminally ... |
232-321 | 4.31e-03 | ||||
C2 domain present in Intersectin; A single instance of the C2 domain is located C terminally in the intersectin protein. Intersectin functions as a scaffolding protein, providing a link between the actin cytoskeleton and the components of endocytosis and plays a role in signal transduction. In addition to C2, intersectin contains several additional domains including: Eps15 homology domains, SH3 domains, a RhoGEF domain, and a PH domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. The members here have topology I. Pssm-ID: 176021 [Multi-domain] Cd Length: 136 Bit Score: 38.52 E-value: 4.31e-03
|
||||||||
C2B_Synaptotagmin-3-5-6-9-10 | cd08403 | C2 domain second repeat present in Synaptotagmins 3, 5, 6, 9, and 10; Synaptotagmin is a ... |
218-338 | 5.00e-03 | ||||
C2 domain second repeat present in Synaptotagmins 3, 5, 6, 9, and 10; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 3, a member of class 3 synaptotagmins, is located in the brain and localized to the active zone and plasma membrane. It functions as a Ca2+ sensor for fast exocytosis. It, along with synaptotagmins 5,6, and 10, has disulfide bonds at its N-terminus. Synaptotagmin 9, a class 5 synaptotagmins, is located in the brain and localized to the synaptic vesicles. It is thought to be a Ca2+-sensor for dense-core vesicle exocytosis. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176048 [Multi-domain] Cd Length: 134 Bit Score: 38.26 E-value: 5.00e-03
|
||||||||
PDZ4_LNX1_2-like | cd06680 | PDZ domain 4 of human Ligand of Numb protein X 1 (LNX1) and LNX2, and related domains; PDZ ... |
81-162 | 5.27e-03 | ||||
PDZ domain 4 of human Ligand of Numb protein X 1 (LNX1) and LNX2, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 4 of LNX1 (also known as PDZ domain-containing RING finger protein 2, PDZRN2)and LNX2 (also known as PDZ domain-containing RING finger protein 1, PDZRN1), and related domains. LNX1 and LNX2 are Ring (Really Interesting New Gene) finger and PDZ domain-containing E3 ubiquitin ligases that bind to the cell fate determinant protein NUMB and mediate its ubiquitination. LNX1 can ubiquitinate a number of other ligands including PPFIA1, KLHL11, KIF7 and ERC2. LNX1 and LNX2 each have four PDZ domains. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This LNX family PDZ4 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467168 [Multi-domain] Cd Length: 89 Bit Score: 36.94 E-value: 5.27e-03
|
||||||||
PDZ_Radil-like | cd06690 | PDZ domain of Ras-associating and dilute domain-containing protein (Radil) and related domains; ... |
90-165 | 5.52e-03 | ||||
PDZ domain of Ras-associating and dilute domain-containing protein (Radil) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of Radil (also known as protein KIAA1849) and related domains. Radil is required for cell adhesion and migration of neural crest precursors during development. Radil is a component of a Rasip1-Radil-ARHGAP29 complex at endothelial cell-cell junctions. Rap1, via its effectors Radil and Rasip1 and their binding partner ArhGAP29, controls the endothelial barrier by decreasing Rho-mediated radial tension on cell-cell junctions. ArhGAP29 binds the Radil PDZ domain. The Radil PDZ domain also binds kinesin family protein 14 (KIF14); KIF14 negatively regulates Rap1-mediated inside-out integrin activation by tethering Radil on microtubules. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Radil-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467177 [Multi-domain] Cd Length: 88 Bit Score: 36.89 E-value: 5.52e-03
|
||||||||
PHA03307 | PHA03307 | transcriptional regulator ICP4; Provisional |
345-556 | 5.60e-03 | ||||
transcriptional regulator ICP4; Provisional Pssm-ID: 223039 [Multi-domain] Cd Length: 1352 Bit Score: 40.54 E-value: 5.60e-03
|
||||||||
RseP | COG0750 | Membrane-associated protease RseP, regulator of RpoE activity [Posttranslational modification, ... |
109-165 | 5.70e-03 | ||||
Membrane-associated protease RseP, regulator of RpoE activity [Posttranslational modification, protein turnover, chaperones, Transcription]; Pssm-ID: 440513 [Multi-domain] Cd Length: 349 Bit Score: 40.07 E-value: 5.70e-03
|
||||||||
C2_PLC_like | cd00275 | C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in ... |
795-856 | 6.21e-03 | ||||
C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) to d-myo-inositol-1,4,5-trisphosphate (1,4,5-IP3) and sn-1,2-diacylglycerol (DAG). 1,4,5-IP3 and DAG are second messengers in eukaryotic signal transduction cascades. PLC is composed of a N-terminal PH domain followed by a series of EF hands, a catalytic TIM barrel and a C-terminal C2 domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-II topology. Pssm-ID: 175974 [Multi-domain] Cd Length: 128 Bit Score: 37.91 E-value: 6.21e-03
|
||||||||
C2B_Ferlin | cd04011 | C2 domain second repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and ... |
797-860 | 6.52e-03 | ||||
C2 domain second repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 175978 [Multi-domain] Cd Length: 111 Bit Score: 37.17 E-value: 6.52e-03
|
||||||||
C2B_Synaptotagmin-14_16 | cd08408 | C2 domain second repeat present in Synaptotagmins 14 and 16; Synaptotagmin 14 and 16 are ... |
219-338 | 6.53e-03 | ||||
C2 domain second repeat present in Synaptotagmins 14 and 16; Synaptotagmin 14 and 16 are membrane-trafficking proteins in specific tissues outside the brain. Both of these contain C-terminal tandem C2 repeats, but only Synaptotagmin 14 has an N-terminal transmembrane domain and a putative fatty-acylation site. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium and this is indeed the case here. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176053 [Multi-domain] Cd Length: 138 Bit Score: 38.12 E-value: 6.53e-03
|
||||||||
PDZ_PDZD11-like | cd06752 | PDZ domain of PDZ domain-containing protein 11, and related domains; PDZ (PSD-95 (Postsynaptic ... |
84-135 | 6.61e-03 | ||||
PDZ domain of PDZ domain-containing protein 11, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of PDZD11, and related domains. PDZD11 (also known as ATPase-interacting PDZ protein, plasma membrane calcium ATPase-interacting single-PDZ protein, PMCA-interacting single-PDZ protein, PISP) is involved in the dynamic assembly of apical junctions (AJs). It is recruited by PLEKHA7 to AJs to promote the efficient junctional recruitment and stabilization of nectins, and the efficient early phases of assembly of AJs in epithelial cells. The PDZD11 PDZ domain binds nectin-1 and nectin-3. PDZD11 also binds to a PDZ binding motif located in the C-terminal tail of the human sodium-dependent multivitamin transporter, to the cytoplasmic tail of the Menkes copper ATPase ATP7A, and to the cytoplasmic tail of all plasma membrane Ca2+-ATPase b-splice variants. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDZD11-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467234 [Multi-domain] Cd Length: 83 Bit Score: 36.52 E-value: 6.61e-03
|
||||||||
C2B_RasGAP | cd08675 | C2 domain second repeat of Ras GTPase activating proteins (GAPs); RasGAPs suppress Ras ... |
798-928 | 6.98e-03 | ||||
C2 domain second repeat of Ras GTPase activating proteins (GAPs); RasGAPs suppress Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. The proteins here all contain two tandem C2 domains, a Ras-GAP domain, and a pleckstrin homology (PH)-like domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology. Pssm-ID: 176057 [Multi-domain] Cd Length: 137 Bit Score: 37.74 E-value: 6.98e-03
|
||||||||
PDZ5_PTPN13-like | cd06697 | PDZ domain 5 of protein tyrosine phosphatase non-receptor type 13 (PTPN13), and related ... |
90-165 | 8.57e-03 | ||||
PDZ domain 5 of protein tyrosine phosphatase non-receptor type 13 (PTPN13), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 5 of PTPN13 [also known as Fas-associated protein-tyrosine phosphatase 1 (FAP-1), Protein-tyrosine phosphatase 1E (PTP-E1), and Protein-tyrosine phosphatase (PTPL1)] and related domains. PTPN13 regulates negative apoptotic signaling and mediates phosphoinositide 3-kinase (PI3K) signaling. PTPN13 has five PDZ domains. Proteins known to interact with PTPN13 PDZ domains include: PLEKHA1 and PLEKHA2 via PTPN13-PDZ domain 1, Fas receptor and thyroid receptor-interacting protein 6 via PTPN13-PDZ domain 2, nerve growth factor receptor and protein kinase N2 via PTPN13-PDZ domain 3, PDZ and LIM domain 4 (PDLIM4) via PTPN13-PDZ domains 2 and 4, and brain calpain-2 via PTPN13-PDZ domains 3, 4 and 5. Calpain-2-mediated PTPN13 fragments may be involved in abnormal tau aggregation and increased risk for Alzheimer's disease. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PTPN13 family PDZ5 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467183 [Multi-domain] Cd Length: 87 Bit Score: 36.55 E-value: 8.57e-03
|
||||||||
PDZ5_MAGI-1_3-like | cd06735 | PDZ domain 5 of membrane-associated guanylate kinase inverted 1 (MAGI-1), MAGI-2, and MAGI-3, ... |
91-165 | 8.78e-03 | ||||
PDZ domain 5 of membrane-associated guanylate kinase inverted 1 (MAGI-1), MAGI-2, and MAGI-3, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 5 of MAGI1, 2, 3 (MAGI is also known as Membrane-associated guanylate kinase, WW and PDZ domain-containing protein) and related domains. MAGI proteins have been implicated in the control of cell migration and invasion through altering the activity of phosphatase and tensin homolog (PTEN) and modulating Akt signaling. Four MAGI proteins have been identified (MAGI1-3 and MAGIX). MAGI1-3 have 6 PDZ domains and bind to the C-terminus of PTEN via their PDZ2 domain. MAGIX has a single PDZ domain that is related to MAGI1-3 PDZ domain 5, and belongs to this MAGI1,2,3-like family. Other binding partners for MAGI1 include JAM4, C-terminal tail of high risk HPV-18 E6, megalin, TRAF6, Kir4.1 (basolateral K+ channel subunit), and cadherin 23; for MAGI2, include DASM1, dendrin, axin, beta- and delta-catenin, neuroligin, hyperpolarization-activated cation channels, beta1-adrenergic receptors, NMDA receptor, and TARPs; and for MAGI3 includes LPA2. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MAGI family PDZ5 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged as beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467217 [Multi-domain] Cd Length: 84 Bit Score: 36.40 E-value: 8.78e-03
|
||||||||
PDZ_PICK1-like | cd06722 | PDZ domain of PICK1 (protein interacting with C-kinase 1) and similar domains; PDZ (PSD-95 ... |
81-156 | 9.33e-03 | ||||
PDZ domain of PICK1 (protein interacting with C-kinase 1) and similar domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of PICK1, and related domains. PICK1 (also known as PRKCA-binding protein and protein kinase C-alpha-binding protein) plays a key role in regulating trafficking of binding partners by altering either their subcellular targeting and/or surface expression. PICK1 plays a role in synaptic plasticity by regulating the trafficking and internalization of amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors; the PICK1-PDZ domain binds the AMPA receptor subunits. The PICK1 PDZ domain also binds glutamate transporters, Eph receptors, metabotropic glutamate receptors, and ASICs (acid-sensing ion channels), among others. Clustering and synaptic targeting of PICK1 requires direct interaction between the PDZ domain and lipid membranes. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PICK-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged as beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta- strand F. Pssm-ID: 467205 [Multi-domain] Cd Length: 84 Bit Score: 36.24 E-value: 9.33e-03
|
||||||||
PDZ3_INAD-like | cd23064 | PDZ domain 3 of inactivation-no-after-potential D (INAD), and related domains; PDZ (PSD-95 ... |
81-154 | 9.85e-03 | ||||
PDZ domain 3 of inactivation-no-after-potential D (INAD), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of INAD, and related domains. INAD assembles key enzymes of the Drosophila compound eye photo-transduction pathway into a supramolecular complex, supporting efficient and fast light signaling. It contains 5 PDZ domains arranged in tandem (PDZ1-PDZ5) which independently bind various proteins. INAD PDZ2 binds eye-specific protein kinase C, INAD PDZ3 binds transient receptor potential (TRP) channel, and INAD PDZ4,5 tandem binds NORPA (phospholipase Cbeta, PLCbeta). Mutations of the inaD gene that lead to disruption of each of these interactions impair fly photo signal transduction. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This INAD-like family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467277 [Multi-domain] Cd Length: 80 Bit Score: 36.15 E-value: 9.85e-03
|
||||||||
Blast search parameters | ||||
|