NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1483453079|ref|NP_001353179|]
View 

glyoxalase domain-containing protein 4 isoform 4 [Homo sapiens]

Protein Classification

VOC family protein( domain architecture ID 11675439)

vicinal oxygen chelate (VOC) family protein uses a metal center to coordinate a substrate, intermediate, or transition state through vicinal oxygen atoms; similar to Homo sapiens glyoxalase domain-containing protein 4

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
GLOD4_C cd16357
C-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; ...
131-246 1.30e-74

C-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; Uncharacterized subfamily of the vicinal oxygen chelate (VOC) superfamily contains human glyoxalase domain-containing protein 4 and similar proteins. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping.


:

Pssm-ID: 319964  Cd Length: 114  Bit Score: 223.59  E-value: 1.30e-74
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 131 KVTLAVSDLQKSLNYWCNLLGMKIYEKDEekQRALLGYADNQCKLELQGVKGGVDHAAAFGRIAFSCPQKELPDLEDLMK 210
Cdd:cd16357     1 KVSLAVSDLEKSIDYWSDLLGMKVFEKSE--KSALLGYGEDQAKLELVDIPEPVDHGTAFGRIAFSCPADELPPIEEKVK 78
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 1483453079 211 RENQKILTPLVSLDTPGKATVQVVILADPDGHEICF 246
Cdd:cd16357    79 AAGQTILTPLVSLDTPGKATVQVVILADPDGHEICF 114
VOC super family cl14632
vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed ...
39-121 5.80e-56

vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. Glyoxylase I catalyzes the glutathione-dependent inactivation of toxic methylglyoxal, requiring zinc or nickel ions for activity. The antibiotic resistance proteins in this family use a variety of mechanisms to block the function of antibiotics. Bleomycin resistance protein (BLMA) sequesters bleomycin's activity by directly binding to it. Whereas, three types of fosfomycin resistance proteins employ different mechanisms to render fosfomycin inactive by modifying the fosfomycin molecule. Although the proteins in this superfamily are functionally distinct, their structures are similar. The difference among the three dimensional structures of the three types of proteins in this superfamily is interesting from an evolutionary perspective. Both glyoxalase I and BLMA show domain swapping between subunits. However, there is no domain swapping for type 1 extradiol dioxygenases.


The actual alignment was detected with superfamily member cd08358:

Pssm-ID: 472697  Cd Length: 127  Bit Score: 176.78  E-value: 5.80e-56
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079  39 PYDGKWSKTMVGFGPEDDHFVAELTYNYGVGDYKLGNDFMGITLASSQAVSNARKLEWPLTEVAEGVFETEAPGGYKFYL 118
Cdd:cd08358    45 PYDGKWSKTMVGYGPEDDHFVVELTYNYGIGDYELGNDFLGITIHSKQAVSRAKKHNWPVTQVGDGVYEVKAPGGYKFYL 124

                  ...
gi 1483453079 119 QNR 121
Cdd:cd08358   125 IDK 127
 
Name Accession Description Interval E-value
GLOD4_C cd16357
C-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; ...
131-246 1.30e-74

C-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; Uncharacterized subfamily of the vicinal oxygen chelate (VOC) superfamily contains human glyoxalase domain-containing protein 4 and similar proteins. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping.


Pssm-ID: 319964  Cd Length: 114  Bit Score: 223.59  E-value: 1.30e-74
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 131 KVTLAVSDLQKSLNYWCNLLGMKIYEKDEekQRALLGYADNQCKLELQGVKGGVDHAAAFGRIAFSCPQKELPDLEDLMK 210
Cdd:cd16357     1 KVSLAVSDLEKSIDYWSDLLGMKVFEKSE--KSALLGYGEDQAKLELVDIPEPVDHGTAFGRIAFSCPADELPPIEEKVK 78
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 1483453079 211 RENQKILTPLVSLDTPGKATVQVVILADPDGHEICF 246
Cdd:cd16357    79 AAGQTILTPLVSLDTPGKATVQVVILADPDGHEICF 114
GLOD4_N cd08358
N-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; ...
39-121 5.80e-56

N-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; Uncharacterized subfamily of the vicinal oxygen chelate (VOC) superfamily contains human glyoxalase domain-containing protein 4 and similar proteins. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping.


Pssm-ID: 319946  Cd Length: 127  Bit Score: 176.78  E-value: 5.80e-56
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079  39 PYDGKWSKTMVGFGPEDDHFVAELTYNYGVGDYKLGNDFMGITLASSQAVSNARKLEWPLTEVAEGVFETEAPGGYKFYL 118
Cdd:cd08358    45 PYDGKWSKTMVGYGPEDDHFVVELTYNYGIGDYELGNDFLGITIHSKQAVSRAKKHNWPVTQVGDGVYEVKAPGGYKFYL 124

                  ...
gi 1483453079 119 QNR 121
Cdd:cd08358   125 IDK 127
PLN02300 PLN02300
lactoylglutathione lyase
43-255 1.70e-20

lactoylglutathione lyase


Pssm-ID: 215169 [Multi-domain]  Cd Length: 286  Bit Score: 88.68  E-value: 1.70e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079  43 KWSKTMVGFGPEDDHFVAELTYNYGVGDYKLGNDF--MGITLASSQAVSNARKlewpltevAEGVFETEAPG-------- 112
Cdd:PLN02300   60 KYTNAFLGYGPEDSNFVVELTYNYGVDKYDIGTGFghFGIAVEDVAKTVELVK--------AKGGKVTREPGpvkggksv 131
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 113 --------GYKFYLQNRSlPQSDPVLKVTLAVSDLQKSLNYWCNLLGMKIYEKDEEKQR----ALLGYA--DNQCKLELQ 178
Cdd:PLN02300  132 iafvkdpdGYKFELIQRG-PTPEPLCQVMLRVGDLDRSIKFYEKAFGMKLLRKRDNPEYkytiAMMGYGpeDKTTVLELT 210
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 179 ---GVKgGVDHAAAFGRIAFScpQKELPDLEDLMKRENQKILTPLVSLdtPGKATvQVVILADPDGHEICFVGDEAF-RE 254
Cdd:PLN02300  211 ynyGVT-EYTKGNAYAQIAIG--TDDVYKTAEAIKLVGGKITREPGPL--PGINT-KITACLDPDGWKTVFVDNIDFlKE 284

                  .
gi 1483453079 255 L 255
Cdd:PLN02300  285 L 285
glyox_I TIGR00068
lactoylglutathione lyase; Lactoylglutathione lyase is also known as aldoketomutase and ...
41-126 3.19e-09

lactoylglutathione lyase; Lactoylglutathione lyase is also known as aldoketomutase and glyoxalase I. Glyoxylase I is a homodimer in many species. In some eukaryotes, including yeasts and plants, the orthologous protein carries a tandem duplication, is twice as long, and hits this model twice. [Central intermediary metabolism, Amino sugars, Energy metabolism, Other]


Pssm-ID: 272886  Cd Length: 150  Bit Score: 54.43  E-value: 3.19e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079  41 DGKWSKTMVGFGPEDDHFVAELTYNYGVGDYKLGNDFMGITLASSQAVSNARKLE----------WPLTEVAEGVFETEA 110
Cdd:TIGR00068  51 EMKFSLAFLGYGDETSAAVIELTHNWGTEKYDLGNGFGHIAIGVDDVYKACERVRalggnvvrepGPVKGGTTVIAFVED 130
                          90
                  ....*....|....*..
gi 1483453079 111 PGGYKF-YLQNRSLPQS 126
Cdd:TIGR00068 131 PDGYKIeLIQRKSTKDG 147
GloA COG0346
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ...
132-247 8.26e-09

Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism];


Pssm-ID: 440115 [Multi-domain]  Cd Length: 125  Bit Score: 52.69  E-value: 8.26e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 132 VTLAVSDLQKSLNYWCNLLGMKIYEK----DEEKQRALLGYADNQcKLELQGVKGG--VDHAAAFGRIAFSCpqkelPDL 205
Cdd:COG0346     6 VTLRVSDLEASLAFYTDVLGLELVKRtdfgDGGFGHAFLRLGDGT-ELELFEAPGAapAPGGGGLHHLAFRV-----DDL 79
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 1483453079 206 EDLMKR-ENQKIltPLVSLDTPGKATVQVVILADPDGHEICFV 247
Cdd:COG0346    80 DAAYARlRAAGV--EIEGEPRDRAYGYRSAYFRDPDGNLIELV 120
Glyoxalase pfam00903
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily;
132-246 4.98e-08

Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily;


Pssm-ID: 395724 [Multi-domain]  Cd Length: 121  Bit Score: 50.52  E-value: 4.98e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 132 VTLAVSDLQKSLNYWCNLLGMKI---YEKDEEKQRALLGYADNQCKLEL---QGVKGGVDHAAAFGrIAFSCPQKElpDL 205
Cdd:pfam00903   5 VALRVGDLEKSLDFYTDVLGFKLveeTDAGEEGGLRSAFFLAGGRVLELllnETPPPAAAGFGGHH-IAFIAFSVD--DV 81
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....
gi 1483453079 206 E---DLMKRENQKILTPLvsldTPGKATVQVVILADPDGHEICF 246
Cdd:pfam00903  82 DaayDRLKAAGVEIVREP----GRHGWGGRYSYFRDPDGNLIEL 121
PRK10291 PRK10291
glyoxalase I; Provisional
19-118 8.22e-07

glyoxalase I; Provisional


Pssm-ID: 182358  Cd Length: 129  Bit Score: 47.32  E-value: 8.22e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079  19 FLKSPLGSDYTRITEDSfskpyDGKWSKTMVGFGPEDDHFVAELTYNYGVGDYKLGNDFMGITLASSQAVS--------- 89
Cdd:PRK10291   13 FYTNVLGMKLLRTSENP-----EYKYSLAFVGYGPETEEAVIELTYNWGVDKYELGTAYGHIALSVDNAAEacekirqng 87
                          90       100       110
                  ....*....|....*....|....*....|
gi 1483453079  90 -NARKLEWPLTEVAEGVFETEAPGGYKFYL 118
Cdd:PRK10291   88 gNVTREAGPVKGGTTVIAFVEDPDGYKIEL 117
 
Name Accession Description Interval E-value
GLOD4_C cd16357
C-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; ...
131-246 1.30e-74

C-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; Uncharacterized subfamily of the vicinal oxygen chelate (VOC) superfamily contains human glyoxalase domain-containing protein 4 and similar proteins. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping.


Pssm-ID: 319964  Cd Length: 114  Bit Score: 223.59  E-value: 1.30e-74
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 131 KVTLAVSDLQKSLNYWCNLLGMKIYEKDEekQRALLGYADNQCKLELQGVKGGVDHAAAFGRIAFSCPQKELPDLEDLMK 210
Cdd:cd16357     1 KVSLAVSDLEKSIDYWSDLLGMKVFEKSE--KSALLGYGEDQAKLELVDIPEPVDHGTAFGRIAFSCPADELPPIEEKVK 78
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 1483453079 211 RENQKILTPLVSLDTPGKATVQVVILADPDGHEICF 246
Cdd:cd16357    79 AAGQTILTPLVSLDTPGKATVQVVILADPDGHEICF 114
GLOD4_N cd08358
N-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; ...
39-121 5.80e-56

N-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; Uncharacterized subfamily of the vicinal oxygen chelate (VOC) superfamily contains human glyoxalase domain-containing protein 4 and similar proteins. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping.


Pssm-ID: 319946  Cd Length: 127  Bit Score: 176.78  E-value: 5.80e-56
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079  39 PYDGKWSKTMVGFGPEDDHFVAELTYNYGVGDYKLGNDFMGITLASSQAVSNARKLEWPLTEVAEGVFETEAPGGYKFYL 118
Cdd:cd08358    45 PYDGKWSKTMVGYGPEDDHFVVELTYNYGIGDYELGNDFLGITIHSKQAVSRAKKHNWPVTQVGDGVYEVKAPGGYKFYL 124

                  ...
gi 1483453079 119 QNR 121
Cdd:cd08358   125 IDK 127
PLN02300 PLN02300
lactoylglutathione lyase
43-255 1.70e-20

lactoylglutathione lyase


Pssm-ID: 215169 [Multi-domain]  Cd Length: 286  Bit Score: 88.68  E-value: 1.70e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079  43 KWSKTMVGFGPEDDHFVAELTYNYGVGDYKLGNDF--MGITLASSQAVSNARKlewpltevAEGVFETEAPG-------- 112
Cdd:PLN02300   60 KYTNAFLGYGPEDSNFVVELTYNYGVDKYDIGTGFghFGIAVEDVAKTVELVK--------AKGGKVTREPGpvkggksv 131
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 113 --------GYKFYLQNRSlPQSDPVLKVTLAVSDLQKSLNYWCNLLGMKIYEKDEEKQR----ALLGYA--DNQCKLELQ 178
Cdd:PLN02300  132 iafvkdpdGYKFELIQRG-PTPEPLCQVMLRVGDLDRSIKFYEKAFGMKLLRKRDNPEYkytiAMMGYGpeDKTTVLELT 210
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 179 ---GVKgGVDHAAAFGRIAFScpQKELPDLEDLMKRENQKILTPLVSLdtPGKATvQVVILADPDGHEICFVGDEAF-RE 254
Cdd:PLN02300  211 ynyGVT-EYTKGNAYAQIAIG--TDDVYKTAEAIKLVGGKITREPGPL--PGINT-KITACLDPDGWKTVFVDNIDFlKE 284

                  .
gi 1483453079 255 L 255
Cdd:PLN02300  285 L 285
VOC cd06587
vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed ...
132-246 2.30e-13

vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. Glyoxylase I catalyzes the glutathione-dependent inactivation of toxic methylglyoxal, requiring zinc or nickel ions for activity. The antibiotic resistance proteins in this family use a variety of mechanisms to block the function of antibiotics. Bleomycin resistance protein (BLMA) sequesters bleomycin's activity by directly binding to it. Whereas, three types of fosfomycin resistance proteins employ different mechanisms to render fosfomycin inactive by modifying the fosfomycin molecule. Although the proteins in this superfamily are functionally distinct, their structures are similar. The difference among the three dimensional structures of the three types of proteins in this superfamily is interesting from an evolutionary perspective. Both glyoxalase I and BLMA show domain swapping between subunits. However, there is no domain swapping for type 1 extradiol dioxygenases.


Pssm-ID: 319898 [Multi-domain]  Cd Length: 112  Bit Score: 65.24  E-value: 2.30e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 132 VTLAVSDLQKSLNYWCNLLGMKIYEKDEEKQRALLGYADNQCkLELQGVKGGVD-HAAAFGRIAFSCPQKElpdlEDLMK 210
Cdd:cd06587     2 VALRVPDLDASVAFYEEVLGFEVVSRNEGGGFAFLRLGPGLR-LALLEGPEPERpGGGGLFHLAFEVDDVD----EVDER 76
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 1483453079 211 RENQKILTPLVSLDTPGKATVQVVILADPDGHEICF 246
Cdd:cd06587    77 LREAGAEGELVAPPVDDPWGGRSFYFRDPDGNLIEF 112
GlxI_Ni cd16358
Glyoxalase I that uses Ni(++) as cofactor; This family includes Escherichia coil and other ...
41-118 2.87e-11

Glyoxalase I that uses Ni(++) as cofactor; This family includes Escherichia coil and other prokaryotic glyoxalase I that uses nickel as cofactor. Glyoxalase I (also known as lactoylglutathione lyase; EC 4.4.1.5) is part of the glyoxalase system, a two-step system for detoxifying methylglyoxal, a side product of glycolysis. This system is responsible for the conversion of reactive, acyclic alpha-oxoaldehydes into the corresponding alpha-hydroxyacids and involves 2 enzymes, glyoxalase I and II. Glyoxalase I catalyses an intramolecular redox reaction of the hemithioacetal (formed from methylglyoxal and glutathione) to form the thioester, S-D-lactoylglutathione. This reaction involves the transfer of two hydrogen atoms from C1 to C2 of the methylglyoxal, and proceeds via an ene-diol intermediate. Glyoxalase I has a requirement for bound metal ions for catalysis. Eukaryotic glyoxalase I prefers the divalent cation zinc as cofactor, whereas Escherichia coil and other prokaryotic glyoxalase I uses nickel. However, eukaryotic Trypanosomatid parasites also use nickel as a cofactor, which could possibly be explained by acquiring their GLOI gene by horizontal gene transfer. Human glyoxalase I is a two-domain enzyme and it has the structure of a domain-swapped dimer with two active sites located at the dimer interface. In yeast, in various plants, insects and Plasmodia, glyoxalase I is four-domain, possibly the result of a further gene duplication and an additional gene fusing event.


Pssm-ID: 319965 [Multi-domain]  Cd Length: 122  Bit Score: 59.72  E-value: 2.87e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079  41 DGKWSKTMVGFGPEDDHFVAELTYNYGVGDYKLGNDFMGITLASS---QAVSNARKLEWPLTEVAEGVFE-------TEA 110
Cdd:cd16358    34 EGKYTLAFVGYGDEDENTVLELTYNWGVDKYDLGTAYGHIAIGVEdvyETCERIRKKGGKVTREPGPMKGgttviafVED 113

                  ....*...
gi 1483453079 111 PGGYKFYL 118
Cdd:cd16358   114 PDGYKIEL 121
glyox_I TIGR00068
lactoylglutathione lyase; Lactoylglutathione lyase is also known as aldoketomutase and ...
41-126 3.19e-09

lactoylglutathione lyase; Lactoylglutathione lyase is also known as aldoketomutase and glyoxalase I. Glyoxylase I is a homodimer in many species. In some eukaryotes, including yeasts and plants, the orthologous protein carries a tandem duplication, is twice as long, and hits this model twice. [Central intermediary metabolism, Amino sugars, Energy metabolism, Other]


Pssm-ID: 272886  Cd Length: 150  Bit Score: 54.43  E-value: 3.19e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079  41 DGKWSKTMVGFGPEDDHFVAELTYNYGVGDYKLGNDFMGITLASSQAVSNARKLE----------WPLTEVAEGVFETEA 110
Cdd:TIGR00068  51 EMKFSLAFLGYGDETSAAVIELTHNWGTEKYDLGNGFGHIAIGVDDVYKACERVRalggnvvrepGPVKGGTTVIAFVED 130
                          90
                  ....*....|....*..
gi 1483453079 111 PGGYKF-YLQNRSLPQS 126
Cdd:TIGR00068 131 PDGYKIeLIQRKSTKDG 147
GloA COG0346
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ...
132-247 8.26e-09

Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism];


Pssm-ID: 440115 [Multi-domain]  Cd Length: 125  Bit Score: 52.69  E-value: 8.26e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 132 VTLAVSDLQKSLNYWCNLLGMKIYEK----DEEKQRALLGYADNQcKLELQGVKGG--VDHAAAFGRIAFSCpqkelPDL 205
Cdd:COG0346     6 VTLRVSDLEASLAFYTDVLGLELVKRtdfgDGGFGHAFLRLGDGT-ELELFEAPGAapAPGGGGLHHLAFRV-----DDL 79
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 1483453079 206 EDLMKR-ENQKIltPLVSLDTPGKATVQVVILADPDGHEICFV 247
Cdd:COG0346    80 DAAYARlRAAGV--EIEGEPRDRAYGYRSAYFRDPDGNLIELV 120
Glyoxalase pfam00903
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily;
132-246 4.98e-08

Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily;


Pssm-ID: 395724 [Multi-domain]  Cd Length: 121  Bit Score: 50.52  E-value: 4.98e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 132 VTLAVSDLQKSLNYWCNLLGMKI---YEKDEEKQRALLGYADNQCKLEL---QGVKGGVDHAAAFGrIAFSCPQKElpDL 205
Cdd:pfam00903   5 VALRVGDLEKSLDFYTDVLGFKLveeTDAGEEGGLRSAFFLAGGRVLELllnETPPPAAAGFGGHH-IAFIAFSVD--DV 81
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....
gi 1483453079 206 E---DLMKRENQKILTPLvsldTPGKATVQVVILADPDGHEICF 246
Cdd:pfam00903  82 DaayDRLKAAGVEIVREP----GRHGWGGRYSYFRDPDGNLIEL 121
CatE COG2514
Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism];
132-250 8.12e-08

Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism];


Pssm-ID: 442004 [Multi-domain]  Cd Length: 141  Bit Score: 50.34  E-value: 8.12e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 132 VTLAVSDLQKSLNYWCNLLGMKiyEKDEEKQRALLGYADNQCKLELQGVKGGVDHAAAFG--RIAFSCPQKElpDLEDLM 209
Cdd:COG2514     7 VTLRVRDLERSAAFYTDVLGLE--VVEREGGRVYLRADGGEHLLVLEEAPGAPPRPGAAGldHVAFRVPSRA--DLDAAL 82
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|..
gi 1483453079 210 KR-ENQKILTPLVSLDTPGKAtvqvVILADPDGHEICFVGDE 250
Cdd:COG2514    83 ARlAAAGVPVEGAVDHGVGES----LYFRDPDGNLIELYTDR 120
PRK10291 PRK10291
glyoxalase I; Provisional
19-118 8.22e-07

glyoxalase I; Provisional


Pssm-ID: 182358  Cd Length: 129  Bit Score: 47.32  E-value: 8.22e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079  19 FLKSPLGSDYTRITEDSfskpyDGKWSKTMVGFGPEDDHFVAELTYNYGVGDYKLGNDFMGITLASSQAVS--------- 89
Cdd:PRK10291   13 FYTNVLGMKLLRTSENP-----EYKYSLAFVGYGPETEEAVIELTYNWGVDKYELGTAYGHIALSVDNAAEacekirqng 87
                          90       100       110
                  ....*....|....*....|....*....|
gi 1483453079  90 -NARKLEWPLTEVAEGVFETEAPGGYKFYL 118
Cdd:PRK10291   88 gNVTREAGPVKGGTTVIAFVEDPDGYKIEL 117
GlxI_Ni cd16358
Glyoxalase I that uses Ni(++) as cofactor; This family includes Escherichia coil and other ...
129-247 1.43e-06

Glyoxalase I that uses Ni(++) as cofactor; This family includes Escherichia coil and other prokaryotic glyoxalase I that uses nickel as cofactor. Glyoxalase I (also known as lactoylglutathione lyase; EC 4.4.1.5) is part of the glyoxalase system, a two-step system for detoxifying methylglyoxal, a side product of glycolysis. This system is responsible for the conversion of reactive, acyclic alpha-oxoaldehydes into the corresponding alpha-hydroxyacids and involves 2 enzymes, glyoxalase I and II. Glyoxalase I catalyses an intramolecular redox reaction of the hemithioacetal (formed from methylglyoxal and glutathione) to form the thioester, S-D-lactoylglutathione. This reaction involves the transfer of two hydrogen atoms from C1 to C2 of the methylglyoxal, and proceeds via an ene-diol intermediate. Glyoxalase I has a requirement for bound metal ions for catalysis. Eukaryotic glyoxalase I prefers the divalent cation zinc as cofactor, whereas Escherichia coil and other prokaryotic glyoxalase I uses nickel. However, eukaryotic Trypanosomatid parasites also use nickel as a cofactor, which could possibly be explained by acquiring their GLOI gene by horizontal gene transfer. Human glyoxalase I is a two-domain enzyme and it has the structure of a domain-swapped dimer with two active sites located at the dimer interface. In yeast, in various plants, insects and Plasmodia, glyoxalase I is four-domain, possibly the result of a further gene duplication and an additional gene fusing event.


Pssm-ID: 319965 [Multi-domain]  Cd Length: 122  Bit Score: 46.24  E-value: 1.43e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 129 VLKVTLAVSDLQKSLNYWCNLLGMKIYEK----DEEKQRALLGYAD--NQCKLELQ---GVKgGVDHAAAFGRIAFSCPq 199
Cdd:cd16358     1 MLHTMLRVGDLDRSIKFYTEVLGMKLLRKrdypEGKYTLAFVGYGDedENTVLELTynwGVD-KYDLGTAYGHIAIGVE- 78
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*...
gi 1483453079 200 kELPDLEDLMKRENQKILTPLVSLdtPGKATVqVVILADPDGHEICFV 247
Cdd:cd16358    79 -DVYETCERIRKKGGKVTREPGPM--KGGTTV-IAFVEDPDGYKIELI 122
VOC_like cd07264
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ...
132-246 1.68e-04

uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping.


Pssm-ID: 319925 [Multi-domain]  Cd Length: 118  Bit Score: 40.39  E-value: 1.68e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 132 VTLAVSDLQKSLNYWCNLLGMKIYEKDEEKQRALLGyaDNQCKLELQGVK-----GGVDHAAAFGRIAFscpqkELPDLE 206
Cdd:cd07264     4 IVLYVDDFAASLRFYRDVLGLPPRFLHEEGEYAEFD--TGETKLALFSRKemarsGGPDRRGSAFELGF-----EVDDVE 76
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|..
gi 1483453079 207 DLMK--RENQKILTPLVSLDTPGKatvQVVILADPDGHEICF 246
Cdd:cd07264    77 ATVEelVERGAEFVREPANKPWGQ---TVAYVRDPDGNLIEI 115
FosA cd07244
fosfomycin resistant protein subfamily FosA; This subfamily family contains FosA, a fosfomycin ...
132-153 3.90e-04

fosfomycin resistant protein subfamily FosA; This subfamily family contains FosA, a fosfomycin resistant protein. FosA is a Mn(II) and K(+)-dependent glutathione transferase. Fosfomycin inhibits the enzyme UDP-N-acetylglucosamine-3-enolpyruvyltransferase (MurA), which catalyzes the first committed step in bacterial cell wall biosynthesis. FosA, catalyzes the addition of glutathione to the antibiotic fosfomycin, (1R,2S)-epoxypropylphosphonic acid, making it inactive. FosA is a Mn(II) dependent enzyme. It is evolutionarily related to glyoxalase I and type I extradiol dioxygenases.


Pssm-ID: 319908 [Multi-domain]  Cd Length: 121  Bit Score: 39.57  E-value: 3.90e-04
                          10        20
                  ....*....|....*....|..
gi 1483453079 132 VTLAVSDLQKSLNYWCNLLGMK 153
Cdd:cd07244     5 ITLAVSDLERSLAFYVDLLGFK 26
VOC COG3324
Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function ...
132-247 5.86e-04

Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function prediction only];


Pssm-ID: 442553 [Multi-domain]  Cd Length: 119  Bit Score: 38.85  E-value: 5.86e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1483453079 132 VTLAVSDLQKSLNYWCNLLGMKIYEKDEEKQRALLGYADNQCKLELqgVKGGVDHAAAFGRIAFSCPqkelpDLEDLMKR 211
Cdd:COG3324     8 VELPVDDLERAKAFYEEVFGWTFEDDAGPGGDYAEFDTDGGQVGGL--MPGAEEPGGPGWLLYFAVD-----DLDAAVAR 80
                          90       100       110
                  ....*....|....*....|....*....|....*....
gi 1483453079 212 ---ENQKILTPLVSLDTPGKatvqVVILADPDGHEICFV 247
Cdd:COG3324    81 veaAGGTVLRPPTDIPPWGR----FAVFRDPEGNRFGLW 115
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH