NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|2020930303|ref|NP_001381055|]
View 

RNA-binding protein 41 isoform 16 [Homo sapiens]

Protein Classification

RNA-binding protein( domain architecture ID 10187912)

RNA-binding protein recognizes RNA via an RNA recognition motif (RRM)

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM2_RBM40_like cd12239
RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
211-286 1.55e-35

RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM2 of RBM40 and the RRM of RBM41. RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein). It serves as a bridging factor between the U11 and U12 snRNPs. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions. RBM41 contains only one RRM. Its biological function remains unclear.


:

Pssm-ID: 409685 [Multi-domain]  Cd Length: 82  Bit Score: 123.11  E-value: 1.55e-35
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFQEKK---GPPIQFRMMT-GRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFG 286
Cdd:cd12239     3 RLYVKNLSKRVSEKDLKYIFGRFVDSSseeKNMFDIRLMTeGRMKGQAFITFPSEELAEKALNLTNGYVLHGKPMVVQFA 82
 
Name Accession Description Interval E-value
RRM2_RBM40_like cd12239
RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
211-286 1.55e-35

RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM2 of RBM40 and the RRM of RBM41. RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein). It serves as a bridging factor between the U11 and U12 snRNPs. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions. RBM41 contains only one RRM. Its biological function remains unclear.


Pssm-ID: 409685 [Multi-domain]  Cd Length: 82  Bit Score: 123.11  E-value: 1.55e-35
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFQEKK---GPPIQFRMMT-GRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFG 286
Cdd:cd12239     3 RLYVKNLSKRVSEKDLKYIFGRFVDSSseeKNMFDIRLMTeGRMKGQAFITFPSEELAEKALNLTNGYVLHGKPMVVQFA 82
RRM smart00360
RNA recognition motif;
211-283 1.59e-14

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 67.23  E-value: 1.59e-14
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2020930303  211 VLYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVI 283
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKF----GKVESVRLVrdkeTGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
212-281 1.86e-11

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 58.78  E-value: 1.86e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM---TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKIL 281
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKF----GPIKSIRLVrdeTGRSKGFAFVEFEDEEDAEKAIEALNGKELGGREL 69
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
210-293 3.43e-11

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 58.57  E-value: 3.43e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 210 MVLYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:COG0724     2 MKIYVGNLPYSVTEEDLRELFSEY----GEVTSVKLItdreTGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVNE 77

                  ....*...
gi 2020930303 286 GKNKKQRS 293
Cdd:COG0724    78 ARPREERP 85
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
169-297 2.30e-08

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 54.81  E-value: 2.30e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 169 KALYYQAYHKKTSADKYMTSMKRKIKLGTKGKYLEVGLlghmvlYLKNLSPRVTERDLVSLFARFQEKKGPPIqfrMM-- 246
Cdd:TIGR01628 251 KKLYVGRAQKRAEREAELRRKFEELQQERKMKAQGVNL------YVKNLDDTVTDEKLRELFSECGEITSAKV---MLde 321
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|..
gi 2020930303 247 TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGKNKKQR-SNLQA 297
Cdd:TIGR01628 322 KGVSRGFGFVCFSNPEEANRAVTEMHGRMLGGKPLYVALAQRKEQRrAHLQD 373
 
Name Accession Description Interval E-value
RRM2_RBM40_like cd12239
RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
211-286 1.55e-35

RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM2 of RBM40 and the RRM of RBM41. RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein). It serves as a bridging factor between the U11 and U12 snRNPs. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions. RBM41 contains only one RRM. Its biological function remains unclear.


Pssm-ID: 409685 [Multi-domain]  Cd Length: 82  Bit Score: 123.11  E-value: 1.55e-35
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFQEKK---GPPIQFRMMT-GRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFG 286
Cdd:cd12239     3 RLYVKNLSKRVSEKDLKYIFGRFVDSSseeKNMFDIRLMTeGRMKGQAFITFPSEELAEKALNLTNGYVLHGKPMVVQFA 82
RRM smart00360
RNA recognition motif;
211-283 1.59e-14

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 67.23  E-value: 1.59e-14
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2020930303  211 VLYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVI 283
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKF----GKVESVRLVrdkeTGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
212-284 1.06e-13

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 65.00  E-value: 1.06e-13
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMMT---GRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKF----GEVVSVRIVRdrdGKSKGFAFVEFESPEDAEKALEALNGTELGGRPLKVS 72
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
212-281 1.86e-11

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 58.78  E-value: 1.86e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM---TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKIL 281
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKF----GPIKSIRLVrdeTGRSKGFAFVEFEDEEDAEKAIEALNGKELGGREL 69
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
210-293 3.43e-11

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 58.57  E-value: 3.43e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 210 MVLYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:COG0724     2 MKIYVGNLPYSVTEEDLRELFSEY----GEVTSVKLItdreTGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVNE 77

                  ....*...
gi 2020930303 286 GKNKKQRS 293
Cdd:COG0724    78 ARPREERP 85
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
212-287 6.39e-11

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 57.54  E-value: 6.39e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2020930303 212 LYLKNLSPRVTERDL-VSLFARFQeKKGPPIQFRMM-TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGK 287
Cdd:cd12246     2 LYINNLNEKIKKDELkRSLYALFS-QFGPVLDIVASkSLKMRGQAFVVFKDVESATNALRALQGFPFYGKPMRIQYAK 78
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
212-283 4.05e-10

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 55.25  E-value: 4.05e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVI 283
Cdd:cd21608     2 LYVGNLSWDTTEDDLRDLFSEFGEVESAKVITDRETGRSRGFGFVTFSTAEAAEAAIDALNGKELDGRSIVV 73
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
216-285 9.15e-10

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 54.05  E-value: 9.15e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2020930303 216 NLSPRVTERDLVSLFARFQekkgpPIQfRMM------TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12408     6 NLSEDATEEDLRELFRPFG-----PIS-RVYlakdkeTGQSKGFAFVTFETREDAERAIEKLNGFGYDNLILSVEW 75
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
212-283 2.16e-09

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 53.46  E-value: 2.16e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQE---------KKGPpiqfrmMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILV 282
Cdd:cd12355     2 LWIGNLDPRLTEYHLLKLLSKYGKikkfdflfhKTGP------LKGQPRGYCFVTFETKEEAEKAIECLNGKLALGKKLV 75

                  .
gi 2020930303 283 I 283
Cdd:cd12355    76 V 76
RRM1_VICKZ cd12358
RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds ...
212-290 9.46e-09

RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds to the RRM1 of IGF2BPs (or IMPs) found in the VICKZ family that have been implicated in the post-transcriptional regulation of several different RNAs and in subcytoplasmic localization of mRNAs during embryogenesis. IGF2BPs are composed of two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and four hnRNP K homology (KH) domains.


Pssm-ID: 240804 [Multi-domain]  Cd Length: 73  Bit Score: 51.22  E-value: 9.46e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2020930303 212 LYLKNLSPRVTERDLVSLFarfQEKKGPPIQFRMMTGrmrGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGKNKK 290
Cdd:cd12358     1 LYIGNLSSDVNESDLRQLF---EEHKIPVSSVLVKKG---GYAFVDCPDQSWADKAIEKLNGKILQGKVIEVEHSVPKK 73
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
216-285 1.60e-08

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 50.69  E-value: 1.60e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 216 NLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12363     8 GLSLYTTERDLREVFSRYGPIEKVQVVYDQQTGRSRGFGFVYFESVEDAKEAKERLNGQEIDGRRIRVDY 77
RRM1_IGF2BP2 cd12626
RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding ...
212-290 1.82e-08

RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2); This subgroup corresponds to the RRM1 of IGF2BP2 (IGF2 mRNA-binding protein 2 or IMP-2), also termed hepatocellular carcinoma autoantigen p62, or VICKZ family member 2, which is a ubiquitously expressed RNA-binding protein involved in the stimulation of insulin action. It is predominantly nuclear. SNPs in IGF2BP2 gene are implicated in susceptibility to type 2 diabetes. IGF2BP2 plays an important role in cellular motility; it regulates the expression of PINCH-2, an important mediator of cell adhesion and motility, and MURF-3, a microtubule-stabilizing protein, through direct binding to their mRNAs. IGF2BP2 may be involved in the regulation of mRNA stability through the interaction with the AU-rich element-binding factor AUF1. IGF2BP2 binds initially to nascent beta-actin transcripts and facilitates the subsequent binding of the shuttling IGF2BP1. IGF2BP2 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain.


Pssm-ID: 241070 [Multi-domain]  Cd Length: 77  Bit Score: 50.77  E-value: 1.82e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFArfqEKKGPpiqfrmMTGRM---RGQAFITFPNKEIAWQALHLVNG-YKLHGKILVIEFGK 287
Cdd:cd12626     4 LYIGNLSPAVTAEDLRQLFG---DRKLP------LTGQVllkSGYAFVDYPDQNWAIRAIETLSGkVELHGKVMEVDYSV 74

                  ...
gi 2020930303 288 NKK 290
Cdd:cd12626    75 PKK 77
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
169-297 2.30e-08

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 54.81  E-value: 2.30e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 169 KALYYQAYHKKTSADKYMTSMKRKIKLGTKGKYLEVGLlghmvlYLKNLSPRVTERDLVSLFARFQEKKGPPIqfrMM-- 246
Cdd:TIGR01628 251 KKLYVGRAQKRAEREAELRRKFEELQQERKMKAQGVNL------YVKNLDDTVTDEKLRELFSECGEITSAKV---MLde 321
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|..
gi 2020930303 247 TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGKNKKQR-SNLQA 297
Cdd:TIGR01628 322 KGVSRGFGFVCFSNPEEANRAVTEMHGRMLGGKPLYVALAQRKEQRrAHLQD 373
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
211-285 5.52e-08

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 49.05  E-value: 5.52e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFarfqEKKGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12398     2 SVFVGNIPYDATEEQLKEIF----SEVGPVVSFRLVtdreTGKPKGYGFCEFRDAETALSAVRNLNGYELNGRPLRVDF 76
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
211-284 5.67e-08

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 49.11  E-value: 5.67e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM---TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:cd12418     2 RVRVSNLHPDVTEEDLRELFGRV----GPVKSVKINydrSGRSTGTAYVVFERPEDAEKAIKQFDGVLLDGQPMKVE 74
RRM3_Hu cd12377
RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to ...
212-285 1.47e-07

RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to the RRM3 of the Hu proteins family which represent a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 409811 [Multi-domain]  Cd Length: 76  Bit Score: 48.09  E-value: 1.47e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12377     2 IFVYNLAPDADESLLWQLFGPFGAVQNVKIIRDFTTNKCKGYGFVTMTNYDEAAVAIASLNGYRLGGRVLQVSF 75
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
212-287 1.66e-07

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 47.84  E-value: 1.66e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGK 287
Cdd:cd12674     3 LFVRNLPFDVTLESLTDFFSDIGPVKHAVVVTDPETKKSRGYGFVSFSTHDDAEEALAKLKNRKLSGHILKLDFAK 78
RRM_SRSF10_SRSF12 cd12312
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and ...
212-285 2.80e-07

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and similar proteins; This subfamily corresponds to the RRM of SRSF10 and SRSF12. SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). It is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19), is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. Both, SRSF10 and SRSF12, contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 240758 [Multi-domain]  Cd Length: 84  Bit Score: 47.37  E-value: 2.80e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGP------PIQFRmmTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12312     3 LFVRNVADDTRPDDLRREFGRY----GPivdvyiPLDFY--TRRPRGFAYIQFEDVRDAEDALYYLDRTRFLGREIEIQF 76
RRM1_SF3B4 cd12334
RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
212-281 6.12e-07

RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM1 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409771 [Multi-domain]  Cd Length: 74  Bit Score: 46.06  E-value: 6.12e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 212 LYLKNLSPRVTERDLVSLFArfqeKKGPPIQFRM----MTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKIL 281
Cdd:cd12334     1 VYVGNLDEKVTEELLWELFI----QAGPVVNVHMpkdrVTQQHQGYGFVEFLSEEDADYAIKIMNMIKLYGKPI 70
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
212-279 2.01e-06

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 44.92  E-value: 2.01e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGK 279
Cdd:cd12284     1 LYVGSLHFNITEDMLRGIFEPFGKIEFVQLQKDPETGRSKGYGFIQFRDAEDAKKALEQLNGFELAGR 68
RRM_SR140 cd12223
RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This ...
212-288 2.21e-06

RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain).


Pssm-ID: 409670 [Multi-domain]  Cd Length: 84  Bit Score: 44.98  E-value: 2.21e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM-------TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:cd12223     4 LYVGNLPPSVTEEVLLREFGRF----GPLASVKIMwprteeeRRRNRNCGFVAFMSRADAERAMRELNGKDVMGYELKLG 79

                  ....
gi 2020930303 285 FGKN 288
Cdd:cd12223    80 WGKA 83
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
212-278 3.27e-06

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 44.08  E-value: 3.27e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARF---QEKKGPpiqfRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHG 278
Cdd:cd12414     2 LIVRNLPFKCTEDDLKKLFSKFgkvLEVTIP----KKPDGKLRGFAFVQFTNVADAAKAIKGMNGKKIKG 67
RRM1_hnRNPR cd12482
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein R ...
219-276 3.57e-06

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R); This subgroup corresponds to the RRM1 of hnRNP R, which is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. It is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, and in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; it binds RNA through its RRM domains.


Pssm-ID: 409909 [Multi-domain]  Cd Length: 79  Bit Score: 44.19  E-value: 3.57e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 219 PR-VTERDLVSLFarfqEKKGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKL 276
Cdd:cd12482    10 PRdLYEDELVPLF----EKAGPIWDLRLMmdplSGQNRGYAFITFCNKEAAQEAVKLCDNYEI 68
RRM1_RBM40_like cd12238
RNA recognition motif 1 (RRM1) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
212-285 3.60e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM1 of RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein), It serves as a bridging factor between the U11 and U12 snRNPs. It contains two repeats of RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions.


Pssm-ID: 409684 [Multi-domain]  Cd Length: 73  Bit Score: 44.16  E-value: 3.60e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRmmtGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12238     2 LLVRHLPPELSEDDKEDLLKHFGATSVRVMKRR---GKLKHTAFATFDNEQAASKALSRLHQLKILGKRLVVEY 72
RRM_TRA2A cd12642
RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and ...
217-289 4.24e-06

RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and similar proteins; This subgroup corresponds to the RRM of TRA2-alpha or TRA-2-alpha, also termed transformer-2 protein homolog A, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein (SRp40) that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-alpha contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 410047 [Multi-domain]  Cd Length: 84  Bit Score: 44.21  E-value: 4.24e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 217 LSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGKNK 289
Cdd:cd12642    12 LSLYTTERDLREVFSRYGPLAGVNVVYDQRTGRSRGFAFVYFERIDDSKEAMERANGMELDGRRIRVDYSITK 84
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
219-281 4.28e-06

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 48.07  E-value: 4.28e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2020930303 219 PR-VTERDLVSLFarfqEKKGPPIQFRMM---TGRMRGQAFITFPNKEIAWQALHLVNGYKLH-GKIL 281
Cdd:TIGR01648  67 PRdLYEDELVPLF----EKAGPIYELRLMmdfSGQNRGYAFVTFCGKEEAKEAVKLLNNYEIRpGRLL 130
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
212-269 4.83e-06

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 44.72  E-value: 4.83e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALH 269
Cdd:cd12676     4 LFVRNLPFDATEDELYSHFSQFGPLKYARVVKDPATGRSKGTAFVKFKNKEDADNCLS 61
RRM_SF3B14 cd12241
RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar ...
211-283 5.69e-06

RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar proteins; This subfamily corresponds to the RRM of SF3B14 (also termed p14), a 14 kDa protein subunit of SF3B which is a multiprotein complex that is an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA and has been involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B14 associates directly with another SF3B subunit called SF3B155. It is also present in both U2- and U12-dependent spliceosomes and may contribute to branch site positioning in both the major and minor spliceosome. Moreover, SF3B14 interacts directly with the pre-mRNA branch adenosine early in spliceosome assembly and within the fully assembled spliceosome. SF3B14 contains one well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409687 [Multi-domain]  Cd Length: 77  Bit Score: 43.77  E-value: 5.69e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFqekkGPPIQFRM-MTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVI 283
Cdd:cd12241     4 ILYVRNLPYKISSEELYDLFGKY----GAIRQIRIgNTKETRGTAFVVYEDIFDAKNACDHLSGFNVCNRYLVV 73
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
212-287 5.92e-06

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 43.59  E-value: 5.92e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMMT----GRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGK 287
Cdd:cd12397     1 LFVGNLSFETTEEDLRKHFAPA----GKIRKVRMATfedsGKCKGFAFVDFKEIESATNAVKGPINHSLNGRDLRVEYGE 76
RRM2_TIA1 cd12618
RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
209-279 8.33e-06

RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM2 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1), and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410030 [Multi-domain]  Cd Length: 78  Bit Score: 43.07  E-value: 8.33e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2020930303 209 HMVLYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGK 279
Cdd:cd12618     2 HFHVFVGDLSPEITTEDIKAAFAPFGRISDARVVKDMATGKSKGYGFVSFFNKWDAENAIQQMGGQWLGGR 72
RRM2_PUB1 cd12619
RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated ...
209-279 1.08e-05

RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM2 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA). However, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410031 [Multi-domain]  Cd Length: 80  Bit Score: 42.87  E-value: 1.08e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2020930303 209 HMVLYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGK 279
Cdd:cd12619     1 HFNIFVGDLSPEVTDAALFNAFSDFPSCSDARVMWDQKTGRSRGYGFVSFRSQQDAQNAINSMNGKWLGSR 71
RRM_RBM7_like cd12336
RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This ...
212-284 1.09e-05

RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This subfamily corresponds to the RRM of RBM7, RBM11 and their eukaryotic homologous. RBM7 is an ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. It interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20, and may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM11 is a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. It is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. Both, RBM7 and RBM11, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 409773 [Multi-domain]  Cd Length: 75  Bit Score: 42.67  E-value: 1.09e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2020930303 212 LYLKNLSPRVTERDLVSLFArfqeKKGPPIQFRMMT---GRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:cd12336     4 LFVGNLDPRVTEEILYELFL----QAGPLEGVKIPKdpnGKPKNFAFVTFKHEVSVPYAIQLLNGIRLFGREIRIK 75
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
216-279 1.11e-05

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 42.76  E-value: 1.11e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 216 NLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGK 279
Cdd:cd12353     6 DLSPEIETEDLKEAFAPFGEISDARVVKDTQTGKSKGYGFVSFVKKEDAENAIQGMNGQWLGGR 69
RRM1_hnRNPR_like cd12249
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
212-276 1.26e-05

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM1 in hnRNP R, hnRNP Q, APOBEC-1 complementation factor (ACF), and dead end protein homolog 1 (DND1). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. It has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. DND1 is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members in this family, except for DND1, contain three conserved RNA recognition motifs (RRMs); DND1 harbors only two RRMs.


Pssm-ID: 409695 [Multi-domain]  Cd Length: 78  Bit Score: 42.58  E-value: 1.26e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2020930303 212 LYLKNLsPR-VTERDLVSLFarfqEKKGPPIQFRMM---TGRMRGQAFITFPNKEIAWQALHLVNGYKL 276
Cdd:cd12249     4 VFVGKI-PRdVFEDELVPLF----EKCGKIYELRLMmdfSGLNRGYAFVTYTNKEAAQRAVKTLNNYEI 67
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
205-293 1.41e-05

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 46.45  E-value: 1.41e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 205 GLLGHMVLYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:TIGR01622 210 NSIPFHRLYVGNLHFNITEQDLRQIFEPFGEIEFVQLQKDPETGRSKGYGFIQFRDAEQAKEALEKMNGFELAGRPIKVG 289

                  ....*....
gi 2020930303 285 FGKNKKQRS 293
Cdd:TIGR01622 290 LGNDFTPES 298
RRM3_HuD cd12656
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen D (HuD); This subgroup ...
212-292 1.60e-05

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM3 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells. And it also regulates the neurite elongation and morphological differentiation. HuD specifically bound poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241100 [Multi-domain]  Cd Length: 86  Bit Score: 42.77  E-value: 1.60e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGKNKKQ 291
Cdd:cd12656     6 IFVYNLSPDSDESVLWQLFGPFGAVNNVKVIRDFNTNKCKGFGFVTMTNYDEAAMAIASLNGYRLGDRVLQVSFKTNKTH 85

                  .
gi 2020930303 292 R 292
Cdd:cd12656    86 K 86
RRM2_HuR cd12773
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup ...
212-291 1.86e-05

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM2 of HuR, also termed ELAV-like protein 1 (ELAV-1), the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410166 [Multi-domain]  Cd Length: 84  Bit Score: 42.21  E-value: 1.86e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKI--LVIEF 285
Cdd:cd12773     3 LYISGLPRTMTQKDVEDMFSRF----GRIINSRVLvdqaTGLSRGVAFIRFDKRSEAEEAITNFNGHKPPGSSepITVKF 78

                  ....*.
gi 2020930303 286 GKNKKQ 291
Cdd:cd12773    79 AANPNQ 84
RRM_RBM7 cd12592
RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily ...
212-284 2.00e-05

RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily corresponds to the RRM of RBM7, a ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. RBM7 interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20. It may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM7 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus.


Pssm-ID: 410005 [Multi-domain]  Cd Length: 75  Bit Score: 42.12  E-value: 2.00e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2020930303 212 LYLKNLSPRVTERDLVSLFArfqeKKGPPIQFRM---MTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:cd12592     4 LFVGNLDTKVTEELLFELFL----QAGPVIKVKIpkdKDGKPKQFAFVNFKHEVSVPYAMNLLNGIKLYGRPLKIQ 75
RRM_hnRNPH_ESRPs_RBM12_like cd12254
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein ...
211-268 2.05e-05

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, epithelial splicing regulatory proteins (ESRPs), Drosophila RNA-binding protein Fusilli, RNA-binding protein 12 (RBM12) and similar proteins; The family includes RRM domains in the hnRNP H protein family, G-rich sequence factor 1 (GRSF-1), ESRPs (also termed RBM35), Drosophila Fusilli, RBM12 (also termed SWAN), RBM12B, RBM19 (also termed RBD-1) and similar proteins. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. GRSF-1 is a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. Fusilli shows high sequence homology to ESRPs. It can regulate endogenous FGFR2 splicing and functions as a splicing factor. The biological roles of both, RBM12 and RBM12B, remain unclear. RBM19 is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. Members in this family contain 2~6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409699 [Multi-domain]  Cd Length: 73  Bit Score: 41.78  E-value: 2.05e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFQEKKGPpIQFRM-MTGRMRGQAFITFPNKEIAWQAL 268
Cdd:cd12254     1 VVRLRGLPFSATEEDIRDFFSGLDIPPDG-IHIVYdDDGRPTGEAYVEFASEEDAQRAL 58
RRM1_PHIP1 cd12271
RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting ...
222-284 2.45e-05

RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; This subfamily corresponds to the RRM1 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409714 [Multi-domain]  Cd Length: 72  Bit Score: 41.54  E-value: 2.45e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2020930303 222 TERDLVSLFARFqekkGPPIQFRMMT----GRMRGQAFITFPNKEIAWQALHLvNGYKLHGKILVIE 284
Cdd:cd12271    11 TEAEIRSYFSSC----GEVRSVDLMRfpdsGNFRGIAFITFKTEEAAKRALAL-DGEMLGNRFLKVE 72
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
212-292 2.99e-05

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 44.93  E-value: 2.99e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGKNKKQ 291
Cdd:TIGR01661 272 IFVYNLSPDTDETVLWQLFGPFGAVQNVKIIRDLTTNQCKGYGFVSMTNYDEAAMAILSLNGYTLGNRVLQVSFKTNKAY 351

                  .
gi 2020930303 292 R 292
Cdd:TIGR01661 352 R 352
RRM2_TIAR cd12617
RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup ...
209-279 3.34e-05

RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM2 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal, highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410029 [Multi-domain]  Cd Length: 80  Bit Score: 41.52  E-value: 3.34e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2020930303 209 HMVLYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGK 279
Cdd:cd12617     1 HFHVFVGDLSPEITTEDIKSAFAPFGKISDARVVKDMATGKSKGYGFVSFYNKLDAENAIVHMGGQWLGGR 71
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
212-283 3.36e-05

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 41.36  E-value: 3.36e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQ--EKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVI 283
Cdd:cd21619     4 IYVGNIDMTINEDALEKIFSRYGqvESVRRPPIHTDKADRTTGFGFIKYTDAESAERAMQQADGILLGRRRLVV 77
RRM_TRA2B cd12641
RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and ...
217-289 3.45e-05

RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and similar proteins; This subgroup corresponds to the RRM of TRA2-beta or TRA-2-beta, also termed splicing factor, arginine/serine-rich 10 (SFRS10), or transformer-2 protein homolog B, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. It contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions. TRA2-beta specifically binds to two types of RNA sequences, the CAA and (GAA)2 sequences, through the RRMs in different RNA binding modes.


Pssm-ID: 410046 [Multi-domain]  Cd Length: 87  Bit Score: 41.53  E-value: 3.45e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 217 LSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGKNK 289
Cdd:cd12641    15 LSLYTTERDLREVFSKYGPIADVSIVYDQQSRRSRGFAFVYFENVDDAKEAKERANGMELDGRRIRVDFSITK 87
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
212-284 3.79e-05

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 41.35  E-value: 3.79e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2020930303 212 LYLKNLSPRVTERDLVSLFArfqeKKGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:cd12671     9 VFVGNIPYEATEEQLKDIFS----EVGPVVSFRLVydreTGKPKGYGFCEYQDQETALSAMRNLNGYELNGRALRVD 81
RRM_FET cd12280
RNA recognition motif (RRM) found in the FET family of RNA-binding proteins; This subfamily ...
212-285 4.23e-05

RNA recognition motif (RRM) found in the FET family of RNA-binding proteins; This subfamily corresponds to the RRM of FET (previously TET) (FUS/TLS, EWS, TAF15) family of RNA-binding proteins. This ubiquitously expressed family of similarly structured proteins predominantly localizing to the nuclear, includes FUS (also known as TLS or Pigpen or hnRNP P2), EWS (also known as EWSR1), TAF15 (also known as hTAFII68 or TAF2N or RPB56), and Drosophila Cabeza (also known as SARFH). The corresponding coding genes of these proteins are involved in deleterious genomic rearrangements with transcription factor genes in a variety of human sarcomas and acute leukemias. All FET proteins interact with each other and are therefore likely to be part of the very same protein complexes, which suggests a general bridging role for FET proteins coupling RNA transcription, processing, transport, and DNA repair. The FET proteins contain multiple copies of a degenerate hexapeptide repeat motif at the N-terminus. The C-terminal region consists of a conserved nuclear import and retention signal (C-NLS), a putative zinc-finger domain, and a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is flanked by 3 arginine-glycine-glycine (RGG) boxes. FUS and EWS might have similar sequence specificity; both bind preferentially to GGUG-containing RNAs. FUS has also been shown to bind strongly to human telomeric RNA and to small low-copy-number RNAs tethered to the promoter of cyclin D1. To date, nothing is known about the RNA binding specificity of TAF15.


Pssm-ID: 409722 [Multi-domain]  Cd Length: 82  Bit Score: 41.24  E-value: 4.23e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLF------ARFQEKKGPPIQFRM--MTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVI 283
Cdd:cd12280     1 IFVSGLPPDVTIDELADLFgqigiiKRYKDTWPPKIKIYTdkETGKPKGEATLTYEDPSAAKAAIEWFNGKEFRGNKIKV 80

                  ..
gi 2020930303 284 EF 285
Cdd:cd12280    81 SL 82
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
212-281 4.77e-05

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 40.85  E-value: 4.77e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMMT--GRMRGQAFITFPNKEIAWQALHLVNGYKLHGKIL 281
Cdd:cd12352     1 LYVGNLDRQVTEDLILQLFSQI----GPCKSCKMITehGGNDPYCFVEFYEHNHAAAALQAMNGRKILGKEV 68
RRM1_PTBPH1_PTBPH2 cd12686
RNA recognition motif 1 (RRM1) found in plant polypyrimidine tract-binding protein homolog 1 ...
211-274 4.87e-05

RNA recognition motif 1 (RRM1) found in plant polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2); This subfamily corresponds to the RRM1 of PTBPH1 and PTBPH2. Although their biological roles remain unclear, PTBPH1 and PTBPH2 show significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Both, PTBPH1 and PTBPH2, contain three RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410087 [Multi-domain]  Cd Length: 81  Bit Score: 40.95  E-value: 4.87e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMMTGRMRGQAFITFPNKEiawQALHLVNGY 274
Cdd:cd12686     4 VLHLRNLPWECTEEELIELCKPF----GTVVNTKCNVGANKNQAFVEFADLN---QAISMVSYY 60
RRM1_IGF2BP3 cd12627
RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding ...
212-290 4.92e-05

RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3); This subgroup corresponds to the RRM1 of IGF2BP3 (IGF2 mRNA-binding protein 3 or IMP-3), also termed KH domain-containing protein overexpressed in cancer (KOC), or VICKZ family member 3, an RNA-binding protein that plays an important role in the differentiation process during early embryogenesis. It is known to bind to and repress the translation of IGF2 leader 3 mRNA. IGF2BP3 also acts as a Glioblastoma-specific proproliferative and proinvasive marker acting through IGF2 resulting in the activation of oncogenic phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways. IGF2BP3 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain.


Pssm-ID: 410036 [Multi-domain]  Cd Length: 77  Bit Score: 41.11  E-value: 4.92e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLfarFQEKKGP-PIQFRMMTgrmrGQAFITFPNKEIAWQALHLVNG-YKLHGKILVIEFGKNK 289
Cdd:cd12627     4 LYIGNLSENASPLDLESI---FKDWKIPfSGPFLVKT----GYAFVDCPDESWAMKAIDTLSGkVELHGKVIEVEHSVPK 76

                  .
gi 2020930303 290 K 290
Cdd:cd12627    77 R 77
RRM3_NCL cd12405
RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to ...
211-285 4.92e-05

RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to the RRM3 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409839 [Multi-domain]  Cd Length: 72  Bit Score: 41.01  E-value: 4.92e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFarfqeKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12405     3 TLVVNNLSYSATEESLQSVF-----EKATSIRIPQNNGRPKGYAFVEFESVEDAKEALESCNNTEIEGRSIRLEF 72
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
210-287 4.95e-05

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 40.69  E-value: 4.95e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 210 MVLYLKNLSPRVTERDLVSLFARFQE----KKgppiqfrmmtgrMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12251     2 KVLYVRNLMLSTTEEKLRELFSEYGKvervKK------------IKDYAFVHFEERDDAVKAMEEMNGKELEGSEIEVSL 69

                  ..
gi 2020930303 286 GK 287
Cdd:cd12251    70 AK 71
RRM1_IGF2BP1 cd12625
RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding ...
212-290 5.20e-05

RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1); This subgroup corresponds to the RRM1 of IGF2BP1 (IGF2 mRNA-binding protein 1 or IMP-1), also termed coding region determinant-binding protein (CRD-BP), or VICKZ family member 1, or zipcode-binding protein 1 (ZBP-1). IGF2BP1 is a multi-functional regulator of RNA metabolism that has been implicated in the control of aspects of localization, stability, and translation for many mRNAs. It is predominantly located in cytoplasm and was initially identified as a trans-acting factor that interacts with the zipcode in the 3'- untranslated region (UTR) of the beta-actin mRNA, which is important for its localization and translational regulation. It inhibits IGF-II mRNA translation through binding to the 5'-UTR of the transcript. IGF2BP1 also acts as human immunodeficiency virus type 1 (HIV-1) Gag-binding factor that interacts with HIV-1 Gag protein and blocks the formation of infectious HIV-1 particles. IGF2BP1 promotes mRNA stabilization; it functions as a coding region determinant (CRD)-binding protein that binds to the coding region of betaTrCP1 mRNA and prevents miR-183-mediated degradation of betaTrCP1 mRNA. It also promotes c-myc mRNA stability by associating with the CRD and stabilizes CD44 mRNA via interaction with the 3'-UTR of the transcript. In addition, IGF2BP1 specifically interacts with both Hepatitis C virus (HCV) 5'-UTR and 3'-UTR, further recruiting eIF3 and enhancing HCV internal ribosome entry site (IRES)-mediated translation initiation via the 3'-UTR. IGF2BP1 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain. It also contains two putative nuclear export signals (NESs) and a putative nuclear localization signal (NLS).


Pssm-ID: 241069 [Multi-domain]  Cd Length: 77  Bit Score: 40.79  E-value: 5.20e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFArfQEKKGPPIQFRMMTgrmrGQAFITFPNKEIAWQALHLVNG-YKLHGKILVIEFGKNKK 290
Cdd:cd12625     4 LYIGNLNESVTPADLEKVFE--DHKISYSGQFLVKS----GYAFVDCPDEQWAMKAIETFSGkVELHGKRLEIEHSVPKK 77
RRM3_HuC cd12655
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen C (HuC); This subgroup ...
212-293 5.57e-05

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM3 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410057 [Multi-domain]  Cd Length: 85  Bit Score: 41.20  E-value: 5.57e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGKNKKQ 291
Cdd:cd12655     4 IFVYNLSPEADESVLWQLFGPFGAVTNVKVIRDFTTNKCKGFGFVTMTNYDEAAMAIASLNGYRLGDRVLQVSFKTSKQH 83

                  ..
gi 2020930303 292 RS 293
Cdd:cd12655    84 KA 85
RRM_SAFB_like cd12417
RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This ...
212-284 5.81e-05

RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This subfamily corresponds to the RRM domain of the SAFB family, including scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), SAFB-like transcriptional modulator (SLTM), and similar proteins, which are ubiquitously expressed. SAFB1, SAFB2 and SLTM have been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. They share high sequence similarities and all contain a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. SAFB1 is a nuclear protein with a distribution similar to that of SLTM, but unlike that of SAFB2, which is also found in the cytoplasm. To a large extent, SAFB1 and SLTM might share similar functions, such as the inhibition of an oestrogen reporter gene. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1 and SLTM.


Pssm-ID: 409851 [Multi-domain]  Cd Length: 74  Bit Score: 40.70  E-value: 5.81e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:cd12417     2 LWISGLSDTTKAADLKKIFSKYGKVVSAKVVTSARTPGSRCYGYVTMASVEEADLCIKSLNKTELHGRVITVE 74
RRM3_PUB1 cd12622
RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated ...
213-287 6.16e-05

RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subfamily corresponds to the RRM3 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410033 [Multi-domain]  Cd Length: 74  Bit Score: 40.51  E-value: 6.16e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2020930303 213 YLKNLSPRVTERDLVSLFARFqekkGPPIQFRMMtgRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGK 287
Cdd:cd12622     4 YVGNLPPEVTQADLIPLFQNF----GVIEEVRVQ--RDKGFGFVKYDTHEEAALAIQQLNGQPFLGRPIKCSWGK 72
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
213-281 6.99e-05

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 40.34  E-value: 6.99e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2020930303 213 YLKNLSPRVTERDLVSLFARFqekkGPPIQFRMMtgRMRGQAFITFPNKEIAWQALHLVNGYKLHGKIL 281
Cdd:cd12354     4 YVGNITKGLTEALLQQTFSPF----GQILEVRVF--PDKGYAFIRFDSHEAATHAIVSVNGTIINGQAV 66
RRM2_NGR1_NAM8_like cd12613
RNA recognition motif 2 (RRM2) found in yeast negative growth regulatory protein NGR1, yeast ...
212-283 7.06e-05

RNA recognition motif 2 (RRM2) found in yeast negative growth regulatory protein NGR1, yeast protein NAM8 and similar proteins; This subgroup corresponds to the RRM2 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both, RNA and single-stranded DNA (ssDNA), in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 410025 [Multi-domain]  Cd Length: 80  Bit Score: 40.57  E-value: 7.06e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 212 LYLKNLSPRVTERDLVSLF-ARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVI 283
Cdd:cd12613     4 IFVGDLSPTTNESDLVSLFqSRFPSCKSAKIMTDPVTGVSRGYGFVRFSDENDQQRALIEMQGKYCQGRPLRI 76
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
212-281 7.53e-05

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 40.28  E-value: 7.53e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKIL 281
Cdd:cd12347     1 LYVGGLAEEVDEKVLHAAFIPFGDIVDIQIPLDYETEKHRGFAFVEFEEAEDAAAAIDNMNESELFGRTI 70
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
212-281 7.70e-05

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 40.62  E-value: 7.70e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMMT---GRMRGQAFITFPNKEIAWQALHLVNGYKLHGKIL 281
Cdd:cd12380     4 VYVKNFGEDVDDDELKELFEKY----GKITSAKVMKddsGKSKGFGFVNFENHEAAQKAVEELNGKELNGKKL 72
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
212-281 1.03e-04

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 39.95  E-value: 1.03e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMMT---GRMRGQAFITFPNKEIAWQALHLVNGYKLHGKIL 281
Cdd:cd12381     4 LYVKNLDDTIDDEKLREEFSPF----GTITSAKVMTdegGRSKGFGFVCFSSPEEATKAVTEMNGRIIGGKPL 72
RRM3_Prp24 cd12298
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
212-281 1.35e-04

RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409739 [Multi-domain]  Cd Length: 78  Bit Score: 39.55  E-value: 1.35e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQ--EKKGPPIQFRMMTGRM-RGQAFITFPNKEIAWQALHLvNGYKLHGKIL 281
Cdd:cd12298     3 IRVRNLDFELDEEALRGIFEKFGeiESINIPKKQKNRKGRHnNGFAFVTFEDADSAESALQL-NGTLLDNRKI 74
RRM1_RBM39_like cd12283
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar ...
216-283 1.54e-04

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar proteins; This subfamily corresponds to the RRM1 of RNA-binding protein 39 (RBM39), RNA-binding protein 23 (RBM23) and similar proteins. RBM39 (also termed HCC1) is a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409725 [Multi-domain]  Cd Length: 73  Bit Score: 39.52  E-value: 1.54e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2020930303 216 NLSPRVTERDLVSLFarfqEKKGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLvNGYKLHGKILVI 283
Cdd:cd12283     6 QLSLKARERDLYEFF----SKAGKVRDVRLImdrnSRRSKGVAYVEFYDVESVPLALAL-TGQRLLGQPIMV 72
RRM2_Hu_like cd12376
RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
212-278 1.75e-04

RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM2 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. Also included in this subfamily is the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 240822 [Multi-domain]  Cd Length: 79  Bit Score: 39.53  E-value: 1.75e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHG 278
Cdd:cd12376     3 LYVSGLPKTMTQKELEQLFSQY----GRIITSRILrdqlTGVSRGVGFIRFDKRIEAEEAIKGLNGQKPEG 69
RRM3_HuR cd12653
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen R (HuR); This subgroup ...
212-292 1.89e-04

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM3 of HuR, also termed ELAV-like protein 1 (ELAV-1), the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410056 [Multi-domain]  Cd Length: 85  Bit Score: 39.66  E-value: 1.89e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGKNKKQ 291
Cdd:cd12653     5 IFIYNLGQDADEGILWQMFGPFGAVTNVKVIRDFNTNKCKGFGFVTMTNYEEAAMAIASLNGYRLGDKILQVSFKTNKSH 84

                  .
gi 2020930303 292 R 292
Cdd:cd12653    85 K 85
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
212-283 2.03e-04

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 39.25  E-value: 2.03e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVI 283
Cdd:cd12316     2 LFVRNLPFTATEDELRELFEAFGKISEVHIPLDKQTKRSKGFAFVLFVIPEDAVKAYQELDGSIFQGRLLHV 73
RRM1_PTBP1_hnRNPL_like cd12421
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
211-287 2.31e-04

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM1 of the majority of family members that include polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. The family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs. In addition, this family also includes RNA-binding motif protein 20 (RBM20) that is an alternative splicing regulator associated with dilated cardiomyopathy (DCM) and contains only one RRM.


Pssm-ID: 409855 [Multi-domain]  Cd Length: 74  Bit Score: 39.09  E-value: 2.31e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFqekkgPPIQFRMMTgRMRGQAFITFPNKEiawQALHLVNGYK-----LHGKILVIEF 285
Cdd:cd12421     1 VVHIRNLPPDATEADLVALGLPF-----GKVTNVLLL-KGKNQALVEMEDVE---SASSMVNYYTtvpplIRGRPVYVQY 71

                  ..
gi 2020930303 286 GK 287
Cdd:cd12421    72 SN 73
RRM_THOC4 cd12680
RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This ...
212-285 2.39e-04

RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This subgroup corresponds to the RRM of THOC4, also termed transcriptional coactivator Aly/REF, or ally of AML-1 and LEF-1, or bZIP-enhancing factor BEF, an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus. THOC4 was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid. It might be a novel transcription cofactor for erythroid-specific genes.


Pssm-ID: 410081 [Multi-domain]  Cd Length: 75  Bit Score: 38.75  E-value: 2.39e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMmTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12680     3 LLVSNLDFGVSDADIKELFAEFGTLKKAAVHYDR-SGRSLGTAEVVFERRADALKAMKQYNGVPLDGRPMKIQL 75
RRM1_hnRNPQ cd12483
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
219-276 2.55e-04

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM1 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP, a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 409910 [Multi-domain]  Cd Length: 84  Bit Score: 39.18  E-value: 2.55e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 219 PR-VTERDLVSLFarfqEKKGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKL 276
Cdd:cd12483    14 PRdLFEDELVPLF----EKAGPIWDLRLMmdplTGLNRGYAFVTFCTKEAAQEAVKLCNNHEI 72
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
212-292 2.85e-04

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 42.10  E-value: 2.85e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQfRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKL----HGKILVIEFGK 287
Cdd:TIGR01628 181 LYVKNLDPSVNEDKLRELFAKFGEITSAAVM-KDGSGRSRGFAFVNFEKHEDAAKAVEEMNGKKIglakEGKKLYVGRAQ 259

                  ....*
gi 2020930303 288 NKKQR 292
Cdd:TIGR01628 260 KRAER 264
RRM3_HuB cd12654
RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen B (HuB); This subgroup ...
212-292 3.01e-04

RNA recognition motif 3 (RRM3) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM3 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241098 [Multi-domain]  Cd Length: 86  Bit Score: 38.92  E-value: 3.01e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGKNKKQ 291
Cdd:cd12654     6 IFVYNLAPDADESILWQMFGPFGAVTNVKVIRDFNTNKCKGFGFVTMTNYDEAAMAIASLNGYRLGDRVLQVSFKTNKTH 85

                  .
gi 2020930303 292 R 292
Cdd:cd12654    86 K 86
RRM2_SXL cd12651
RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
212-279 3.23e-04

RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM2 of the sex-lethal protein (SXL) which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 410054 [Multi-domain]  Cd Length: 81  Bit Score: 38.72  E-value: 3.23e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2020930303 212 LYLKNLSPRVTERDLVSLFarfqEKKGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGK 279
Cdd:cd12651     5 LYVTNLPRTITEDELDTIF----GAYGNIVQKNLLrdklTGRPRGVAFVRYDKREEAQAAISALNGTIPEGG 72
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
212-279 3.46e-04

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 38.54  E-value: 3.46e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRM----MTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGK 279
Cdd:cd12448     1 LFVGNLPFSATQDALYEAFSQH----GSIVSVRLptdrETGQPKGFGYVDFSTIDSAEAAIDALGGEYIDGR 68
RRM1_SNF cd12476
RNA recognition motif 1 (RRM1) found in Drosophila melanogaster sex determination protein SNF ...
212-287 3.72e-04

RNA recognition motif 1 (RRM1) found in Drosophila melanogaster sex determination protein SNF and similar proteins; This subgroup corresponds to the RRM1 of SNF (Sans fille), also termed U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A), an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila. It is essential in Drosophila sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). SNF contains two RNA recognition motifs (RRMs); it can self-associate through RRM1, and each RRM can recognize poly(U) RNA binding independently.


Pssm-ID: 409905 [Multi-domain]  Cd Length: 85  Bit Score: 38.75  E-value: 3.72e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2020930303 212 LYLKNLSPRVTERDLV-SLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGK 287
Cdd:cd12476     9 IYINNLNEKVKKEELKkSLYAIFSQFGQILDIVALKTLKMRGQAFVIFKDISSATNALRSMQGFPFYDKPMRIAYSK 85
RRM_Nop15p cd12552
RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; ...
211-281 3.81e-04

RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; This subgroup corresponds to the RRM of Nop15p, also termed nucleolar protein 15, which is encoded by YNL110C from Saccharomyces cerevisiae, and localizes to the nucleoplasm and nucleolus. Nop15p has been identified as a component of a pre-60S particle. It interacts with RNA components of the early pre-60S particles. Furthermore, Nop15p binds directly to a pre-rRNA transcript in vitro and is required for pre-rRNA processing. It functions as a ribosome synthesis factor required for the 5' to 3' exonuclease digestion that generates the 5' end of the major, short form of the 5.8S rRNA as well as for processing of 27SB to 7S pre-rRNA. Nop15p also play a specific role in cell cycle progression. Nop15p contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409968 [Multi-domain]  Cd Length: 77  Bit Score: 38.31  E-value: 3.81e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKIL 281
Cdd:cd12552     1 IIYVSHLPHGFHEKELKKYFAQFGDLKNVRLARSKKTGNSKHYGFLEFVNPEDAMIAQKSMNNYLLMGKLL 71
RRM2_NCL cd12404
RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to ...
212-285 4.00e-04

RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to the RRM2 of ubiquitously expressed protein nucleolin, also termed protein C23, a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.RRM2, together with RRM1, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


Pssm-ID: 409838 [Multi-domain]  Cd Length: 77  Bit Score: 38.57  E-value: 4.00e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQfrmmTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12404     6 LFVKNLPYSTTQDELKEVFEDAVDIRIPMGR----DGRSKGIAYIEFKSEAEAEKALEEKQGTEVDGRSIVVDY 75
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
212-285 4.22e-04

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 38.37  E-value: 4.22e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKgppiQFRM---MTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12320     3 LIVKNVPFEATRKEIRELFSPFGQLK----SVRLpkkFDGSHRGFAFVEFVTKQEAQNAMEALKSTHLYGRHLVLEY 75
RRM1_RBM46 cd12484
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 46 (RBM46); This ...
219-276 5.72e-04

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 46 (RBM46); This subgroup corresponds to the RRM1 of RBM46, also termed cancer/testis antigen 68 (CT68), a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM46 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409911 [Multi-domain]  Cd Length: 78  Bit Score: 37.95  E-value: 5.72e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2020930303 219 PR-VTERDLVSLFARfqekKGPPIQFRMM---TGRMRGQAFITFPNKEIAWQALHLVNGYKL 276
Cdd:cd12484    10 PRdMYEDELVPVFER----AGKIYEFRLMmefSGENRGYAFVMYTTKEEAQLAIKMLNNYEI 67
RRM2_SECp43_like cd12345
RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
212-279 6.18e-04

RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM2 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409781 [Multi-domain]  Cd Length: 80  Bit Score: 38.02  E-value: 6.18e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2020930303 212 LYLKNLSPRVTERDLVSLF-ARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGK 279
Cdd:cd12345     4 LFVGDLAPDVTDYQLYETFsARYPSVRGAKVVMDPVTGRSKGYGFVRFGDESEQDRALTEMQGVYLGSR 72
RRM_NIFK_like cd12307
RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) ...
211-284 6.74e-04

RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) and similar proteins; This subgroup corresponds to the RRM of NIFK and Nop15p. NIFK, also termed MKI67 FHA domain-interacting nucleolar phosphoprotein, or nucleolar phosphoprotein Nopp34, is a putative RNA-binding protein interacting with the forkhead associated (FHA) domain of pKi-67 antigen in a mitosis-specific and phosphorylation-dependent manner. It is nucleolar in interphase but associates with condensed mitotic chromosomes. This family also includes Saccharomyces cerevisiae YNL110C gene encoding ribosome biogenesis protein 15 (Nop15p), also termed nucleolar protein 15. Both, NIFK and Nop15p, contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409748 [Multi-domain]  Cd Length: 74  Bit Score: 37.55  E-value: 6.74e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:cd12307     1 VVYIGHLPHGFYEPELRKYFSQF----GTVTRLRLSrskkTGKSKGYAFVEFEDPEVAKIVAETMNNYLLFERLLKCK 74
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
212-284 6.91e-04

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 37.60  E-value: 6.91e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:cd12362     1 LFVYHLPNEFTDQDLYQLFAPF----GNVVSAKVFvdknTGRSKGFGFVSYDNPLSAQAAIKAMNGFQVGGKRLKVQ 73
RRM3_RBM19 cd12567
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
212-281 7.22e-04

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM3 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409983 [Multi-domain]  Cd Length: 79  Bit Score: 37.76  E-value: 7.22e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGP------PIQfrMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKIL 281
Cdd:cd12567     5 LFVRNLPYTCTEEDLEKLFSKY----GPlsevhfPID--SLTKKPKGFAFVTYMIPEHAVKAYAELDGTVFQGRLL 74
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
212-289 8.46e-04

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 37.57  E-value: 8.46e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQ--------EKKGppiqfrmmTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVI 283
Cdd:cd12413     2 LFVRNLPYDTTDEQLEELFSDVGpvkrcfvvKDKG--------KDKCRGFGYVTFALAEDAQRALEEVKGKKFGGRKIKV 73

                  ....*.
gi 2020930303 284 EFGKNK 289
Cdd:cd12413    74 ELAKKK 79
RRM4_MRD1 cd12319
RNA recognition motif 4 (RRM4) found in yeast multiple RNA-binding domain-containing protein 1 ...
212-285 9.22e-04

RNA recognition motif 4 (RRM4) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subfamily corresponds to the RRM4 of MRD1which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409758 [Multi-domain]  Cd Length: 84  Bit Score: 37.46  E-value: 9.22e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLF--------ARFQEKKGP--PIQFRMMtgrmrGQAFITFPNKEIAWQALHLVNGYKLHGKIL 281
Cdd:cd12319     3 LFVKNLNFSTTNQHLTDVFkhldgfvfARVKTKPDPkrPGKTLSM-----GFGFVGFKTKEQAQAALKAMDGFVLDGHKL 77

                  ....
gi 2020930303 282 VIEF 285
Cdd:cd12319    78 EVKF 81
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
212-283 1.01e-03

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 37.40  E-value: 1.01e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVI 283
Cdd:cd12566     5 LFLRNLPYSTKEDDLQKLFSKFGEVSEVHVPIDKKTKKSKGFAYVLFLDPEDAVQAYNELDGKVFQGRLIHI 76
RRM4_RBM28_like cd12416
RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
216-285 1.31e-03

RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM4 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409850 [Multi-domain]  Cd Length: 98  Bit Score: 37.58  E-value: 1.31e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 216 NLSPRVTERDLVSLF-----ARFQEKKGPPIQFRMM----------TGRMRGQAFITFPNKEIAWQAL-HLVNGYKLHGK 279
Cdd:cd12416     7 NLPKSVDDKKLKKLFlkavkERAKKKGVKIKEVKVMrdkkrlnsdgKGRSKGYGFVEFTEHEHALKALrALNNNPEIFGP 86

                  ....*...
gi 2020930303 280 I--LVIEF 285
Cdd:cd12416    87 DkrPIVEF 94
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
210-285 1.68e-03

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 36.62  E-value: 1.68e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 210 MVLYLKNlspRVTERDLVSLFARFqekkGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12375     3 IVNYLPQ---SMTQEELRSLFGAI----GPIESCKLVrdkiTGQSLGYGFVNYRDPNDARKAINTLNGLDLENKRLKVSY 75
RRM1_MRD1 cd12565
RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 ...
212-285 1.72e-03

RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM1 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409981 [Multi-domain]  Cd Length: 76  Bit Score: 36.39  E-value: 1.72e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2020930303 212 LYLKNLSPRVTERDLVSLFarfqEKKGPPIQFRMM---TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12565     3 IIVKNLPKYVTEKRLKEHF----SKKGEITDVKVMrtkDGKSRRFGFIGFKSEEEAQKAVKYFNKTFIDTSKISVEF 75
RRM1_ACF cd12486
RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
212-281 1.84e-03

RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM1 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. It contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409912 [Multi-domain]  Cd Length: 78  Bit Score: 36.49  E-value: 1.84e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 212 LYLKNLSPRVTERDLVSLFarfqEKKGPPIQFRMM---TGRMRGQAFITFPNKEIAWQALHLVNGYKL-HGKIL 281
Cdd:cd12486     4 IFIGKLPRDLFEDELVPLC----EKIGKIYEMRMMmdfNGNNRGYAFVTFSNKQEARNAIKQLNNYEIrNGRLL 73
RRM1_U2B cd12478
RNA recognition motif 1 in U2 small nuclear ribonucleoprotein B" (U2B") and similar proteins; ...
212-287 1.94e-03

RNA recognition motif 1 in U2 small nuclear ribonucleoprotein B" (U2B") and similar proteins; This subgroup corresponds to the RRM1 of U2B" (also termed U2 snRNP B") a unique protein that comprises the U2 snRNP. It was initially identified as binding to stem-loop IV (SLIV) at the 3' end of U2 snRNA. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA. In addition, the nuclear transport of U2B" is independent of U2 snRNA binding. U2B" contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It also contains a nuclear localization signal (NLS) in the central domain. However, nuclear import of U2B'' does not depend on this NLS. The N-terminal RRM is sufficient to direct U2B" to the nucleus.


Pssm-ID: 409907 [Multi-domain]  Cd Length: 91  Bit Score: 36.84  E-value: 1.94e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2020930303 212 LYLKNLSPRVTERDLV-SLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGK 287
Cdd:cd12478     4 IYINNINDKIKKEELKrSLYALFSQFGHVVDIVALKTMKMRGQAFVIFKELSSATNALRQLQGFPFYGKPMRIQYAK 80
RRM2_SF3B4 cd12335
RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
212-289 1.99e-03

RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM2 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 is a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409772 [Multi-domain]  Cd Length: 83  Bit Score: 36.57  E-value: 1.99e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARF-QEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGKNK 289
Cdd:cd12335     4 LFIGNLDPEVDEKLLYDTFSAFgVILQTPKIMRDPDTGNSKGFGFVSFDSFEASDAAIEAMNGQYLCNRPITVSYAFKK 82
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
212-298 2.26e-03

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 39.40  E-value: 2.26e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMMT---GRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGKN 288
Cdd:TIGR01628  91 IFVKNLDKSVDNKALFDTFSKF----GNILSCKVATdenGKSRGYGFVHFEKEESAKAAIQKVNGMLLNDKEVYVGRFIK 166
                          90
                  ....*....|
gi 2020930303 289 KKQRSNLQAT 298
Cdd:TIGR01628 167 KHEREAAPLK 176
RRM1_SF2_plant_like cd12599
RNA recognition motif 1 (RRM1) found in plant pre-mRNA-splicing factor SF2 and similar ...
212-284 2.36e-03

RNA recognition motif 1 (RRM1) found in plant pre-mRNA-splicing factor SF2 and similar proteins; This subgroup corresponds to the RRM1 of SF2, also termed SR1 protein, a plant serine/arginine (SR)-rich phosphoprotein similar to the mammalian splicing factor SF2/ASF. It promotes splice site switching in mammalian nuclear extracts. SF2 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal domain rich in proline, serine and lysine residues (PSK domain), a composition reminiscent of histones. This PSK domain harbors a putative phosphorylation site for the mitotic kinase cyclin/p34cdc2.


Pssm-ID: 410011 [Multi-domain]  Cd Length: 72  Bit Score: 36.26  E-value: 2.36e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMMTG-RMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:cd12599     2 VYVGNLPMDIREREVEDLFSKY----GPVVSIDLKIPpRPPAYAFVEFEDARDAEDAIRGRDGYDFDGHRLRVE 71
RRM_SCAF4_SCAF8 cd12227
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), ...
212-289 2.89e-03

RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subfamily corresponds to the RRM in a new class of SCAFs (SR-like CTD-associated factors), including SCAF4, SCAF8 and similar proteins. The biological role of SCAF4 remains unclear, but it shows high sequence similarity to SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8). SCAF8 is a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. In addition, SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8 and SCAF4 both contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain), and serine/arginine-rich motifs.


Pssm-ID: 409674 [Multi-domain]  Cd Length: 77  Bit Score: 35.87  E-value: 2.89e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKG----PPiqfrmmtgrmRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGK 287
Cdd:cd12227     5 LWVGHLSKKVTQEELKNLFEEYGEIQSidmiPP----------RGCAYVCMKTRQDAHRALQKLKNHKLRGKSIKIAWAP 74

                  ..
gi 2020930303 288 NK 289
Cdd:cd12227    75 NK 76
RRM2_Spen cd12309
RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily ...
212-287 3.25e-03

RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily corresponds to the RRM2 domain in the Spen (split end) protein family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B), and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possess mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also termed one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong to the Spen (split end) protein family, which share a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 240755 [Multi-domain]  Cd Length: 79  Bit Score: 35.84  E-value: 3.25e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQfRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGK 287
Cdd:cd12309     5 LFVGNLEITITEEELRRAFERYGVVEDVDIK-RPPRGQGNAYAFVKFLNLDMAHRAKVAMSGQYIGRNQIKIGYGK 79
RRM2_U1A_like cd12247
RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily ...
211-283 3.59e-03

RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM2 of U1A/U2B"/SNF protein family, containing Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs) connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent on U2 snRNA binding.


Pssm-ID: 409693 [Multi-domain]  Cd Length: 72  Bit Score: 35.62  E-value: 3.59e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFQEKKgppiQFRMMTGrmRGQAFITFPNKEIAWQALHLVNGYKL-HGKILVI 283
Cdd:cd12247     4 ILFLQNLPEETTKEMLEMLFNQFPGFK----EVRLVPR--RGIAFVEFETEEQATVALQALQGFKItPGHAMKI 71
RRM3_hnRNPQ cd12495
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
211-287 3.90e-03

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM3 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP that is a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 409918 [Multi-domain]  Cd Length: 72  Bit Score: 35.35  E-value: 3.90e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFQEKKgppiqfrmMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGK 287
Cdd:cd12495     3 VLFVRNLANTVTEEILEKAFSQFGKLE--------RVKKLKDYAFIHFDERDGAVKAMDEMNGKDLEGENIEIVFAK 71
RRM_AtNSRA_like cd21618
RNA recognition motif (RRM) found in Arabidopsis thaliana nuclear speckle RNA-binding protein ...
211-287 3.93e-03

RNA recognition motif (RRM) found in Arabidopsis thaliana nuclear speckle RNA-binding protein A (AtNSRA) and similar protein; AtNSRA is an alternative splicing (AS) regulator that binds to specific mRNAs and modulates auxin effects on the transcriptome. It can be displaced from its targets upon binding to AS competitor long non-coding RNA (ASCO-RNA). Members in this family contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410197 [Multi-domain]  Cd Length: 87  Bit Score: 35.70  E-value: 3.93e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFaR----FQE----KKGPPIQFRMMtgrmrgQAFITFPNKEIAWQALHLVNGYKL-----H 277
Cdd:cd21618     5 TLYVEGLPLDATEREVAHIF-RpfpgFKSvrlvPKEGKRGRKLV------LCFVDFADAQQAAAALETLQGYRLdeddsD 77
                          90
                  ....*....|
gi 2020930303 278 GKILVIEFGK 287
Cdd:cd21618    78 SKGLRISFAR 87
RRM2_hnRNPA0 cd12579
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) ...
212-279 4.06e-03

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A0, a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409993 [Multi-domain]  Cd Length: 80  Bit Score: 35.58  E-value: 4.06e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQA----LHLVNGYKLHGK 279
Cdd:cd12579     2 LFVGGLKGDVGEGDLVEHFSQFGTVEKVEVIADKDTGKKRGFGFVYFEDHDSADKAavvkFHSINGHRVEVK 73
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
212-287 4.85e-03

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 35.53  E-value: 4.85e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGK-ILVIEFG 286
Cdd:cd12449     3 LFVGGLSFDTNEQSLEEVFSKY----GQISEVVVVkdreTQRSRGFGFVTFENPDDAKDAMMAMNGKSLDGRqIRVDQAG 78

                  .
gi 2020930303 287 K 287
Cdd:cd12449    79 K 79
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
212-285 4.90e-03

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 35.19  E-value: 4.90e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12399     1 LYVGNLPYSASEEQLKSLFGQFGAVFDVKLPMDRETKRPRGFGFVELQEEESAEKAIAKLDGTDFMGRTIRVNE 74
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
216-279 5.00e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 35.32  E-value: 5.00e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 216 NLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGK 279
Cdd:cd12311     5 NLTYRTTPDDLRRVFEKYGEVGDVYIPRDRYTRESRGFAFVRFYDKRDAEDAIDAMDGAELDGR 68
RRM1_SRSF4_like cd12337
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and ...
212-287 5.18e-03

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins; This subfamily corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 409774 [Multi-domain]  Cd Length: 70  Bit Score: 34.99  E-value: 5.18e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkgppiqfrmmtGRMR------GQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12337     2 VYIGRLPYRARERDVERFFRGY--------------GRIRdinlknGFGFVEFEDPRDADDAVYELNGKELCGERVIVEH 67

                  ..
gi 2020930303 286 GK 287
Cdd:cd12337    68 AR 69
RRM1_Mug28 cd21620
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe meiotically up-regulated ...
212-284 5.51e-03

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410199 [Multi-domain]  Cd Length: 84  Bit Score: 35.56  E-value: 5.51e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMMTGRMRGQ---------AFITFPNKEIAWQALHLVNGYKLHGKILV 282
Cdd:cd21620     4 LYVGNLPQTCQSEDLIILFEPY----GNVCGAHIASRKKVKVswvkpsklfAFVEFETKEAATTAIVLLNGITYMGCQLK 79

                  ..
gi 2020930303 283 IE 284
Cdd:cd21620    80 VE 81
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
211-289 5.80e-03

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 35.07  E-value: 5.80e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLvNGYKLHGKILVIEFGKNK 289
Cdd:cd12450     1 TLFVGNLSWSATQDDLENFFSDCGEVVDVRIAMDRDDGRSKGFGHVEFASAESAQKALEK-SGQDLGGREIRLDLANER 78
RRM1_hnRPDL cd12758
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP ...
212-281 6.25e-03

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP D-like or hnRNP DL) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP DL (or hnRNP D-like), also termed AU-rich element RNA-binding factor, or JKT41-binding protein (protein laAUF1 or JKTBP), which is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. hnRNP DL binds single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) in a non-sequencespecific manner, and interacts with poly(G) and poly(A) tenaciously. It contains two putative two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 410152 [Multi-domain]  Cd Length: 76  Bit Score: 34.95  E-value: 6.25e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLvNGYKLHGKIL 281
Cdd:cd12758     2 MFIGGLSWDTSKKDLTEYLSRFGEVVDCTIKTDPVTGRSRGFGFVLFKDAASVDKVLEL-KEHKLDGKLI 70
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
212-285 6.52e-03

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 35.09  E-value: 6.52e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd21609     2 LYVGNIPRNVTSEELAKIFEEAGTVEIAEVMYDRYTGRSRGFGFVTMGSVEDAKAAIEKLNGTEVGGREIKVNI 75
RRM2_MEI2_EAR1_like cd12276
RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; ...
212-284 6.55e-03

RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; This subfamily corresponds to the RRM2 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding proteins family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins.


Pssm-ID: 409718 [Multi-domain]  Cd Length: 71  Bit Score: 34.92  E-value: 6.55e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKgppiQFRMmTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:cd12276     4 LLVFNLDAPVSNDELKSLFSKFGEIK----EIRP-TPDKPSQKFVEFYDVRDAEAALDGLNGRELLGGKLKVA 71
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
212-281 6.62e-03

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 35.00  E-value: 6.62e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 212 LYLKNLSPRVTERDLVSLFarfqEKKGPPIQFRMMT---GRMRGQAFITFPNKEIAWQALHLVNGYKLHGKIL 281
Cdd:cd12392     5 LFVKGLPFSCTKEELEELF----KQHGTVKDVRLVTyrnGKPKGLAYVEYENEADASQAVLKTDGTEIKDHTI 73
RRM_RBMX_like cd12382
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y ...
212-284 7.20e-03

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y chromosome RNA recognition motif 1 (hRBMY), testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) and similar proteins; This subfamily corresponds to the RRM domain of hnRNP G, also termed glycoprotein p43 or RBMX, an RNA-binding motif protein located on the X chromosome. It is expressed ubiquitously and has been implicated in the splicing control of several pre-mRNAs. Moreover, hnRNP G may function as a regulator of transcription for SREBP-1c and GnRH1. Research has shown that hnRNP G may also act as a tumor-suppressor since it upregulates the Txnip gene and promotes the fidelity of DNA end-joining activity. In addition, hnRNP G appears to play a critical role in proper neural development of zebrafish and frog embryos. The family also includes several paralogs of hnRNP G, such as hRBMY and hnRNP G-T (also termed RNA-binding motif protein, X-linked-like-2). Both, hRBMY and hnRNP G-T, are exclusively expressed in testis and critical for male fertility. Like hnRNP G, hRBMY and hnRNP G-T interact with factors implicated in the regulation of pre-mRNA splicing, such as hTra2-beta1 and T-STAR. Although members in this family share a high conserved N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), they appear to recognize different RNA targets. For instance, hRBMY interacts specifically with a stem-loop structure in which the loop is formed by the sequence CA/UCAA. In contrast, hnRNP G associates with single stranded RNA sequences containing a CCA/C motif. In addition to the RRM, hnRNP G contains a nascent transcripts targeting domain (NTD) in the middle region and a novel auxiliary RNA-binding domain (RBD) in its C-terminal region. The C-terminal RBD exhibits distinct RNA binding specificity, and would play a critical role in the regulation of alternative splicing by hnRNP G.


Pssm-ID: 409816 [Multi-domain]  Cd Length: 80  Bit Score: 35.07  E-value: 7.20e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:cd12382     4 LFIGGLNTETNEKALEAVFGKY----GRIVEVLLMkdreTNKSRGFAFVTFESPADAKDAARDMNGKELDGKAIKVE 76
RRM4_SHARP cd12351
RNA recognition motif 4 (RRM4) found in SMART/HDAC1-associated repressor protein (SHARP) and ...
210-285 7.32e-03

RNA recognition motif 4 (RRM4) found in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins; This subfamily corresponds to the RRM of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, is an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins.


Pssm-ID: 409787 [Multi-domain]  Cd Length: 77  Bit Score: 34.66  E-value: 7.32e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2020930303 210 MVLYLKNLSPRVTERDLVSLFARFqekkGPPIqfRMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12351     8 NCVWLDGLSENVTEQYLTRHFCRY----GPVV--KVVIDRQKGMALVLYDEVECAQAAVKETKGRKIGGRKIQVDF 77
RRM1_CoAA cd12608
RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator ...
210-284 8.01e-03

RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM1 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410020 [Multi-domain]  Cd Length: 69  Bit Score: 34.39  E-value: 8.01e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2020930303 210 MVLYLKNLSPRVTERDLVSLFARFQEKkgppiqfrMMTGRMRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIE 284
Cdd:cd12608     1 MKIFVGNVDEDTSQEELSALFEPYGAV--------LSCAVMKQFAFVHMRGEAAADRAIRELNGRELHGRALVVE 67
RRM_NCBP2 cd12240
RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar ...
212-285 8.10e-03

RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar proteins; This subfamily corresponds to the RRM of CBP20, also termed nuclear cap-binding protein subunit 2 (NCBP2), or cell proliferation-inducing gene 55 protein, or NCBP-interacting protein 1 (NIP1). CBP20 is the small subunit of the nuclear cap binding complex (CBC), which is a conserved eukaryotic heterodimeric protein complex binding to 5'-capped polymerase II transcripts and plays a central role in the maturation of pre-mRNA and uracil-rich small nuclear RNA (U snRNA). CBP20 is most likely responsible for the binding of capped RNA. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and interacts with the second and third domains of CBP80, the large subunit of CBC.


Pssm-ID: 409686 [Multi-domain]  Cd Length: 78  Bit Score: 34.86  E-value: 8.10e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQEKKgppiqfRMMTGRMR------GQAFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12240     1 LYVGNLSFYTTEEQIYELFSKCGDIK------RIIMGLDKfkktpcGFCFVEYYSREDAENAVKYLNGTKLDDRIIRVDW 74
RRM2_Hrp1p cd12330
RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
217-279 8.21e-03

RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway; it binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409767 [Multi-domain]  Cd Length: 78  Bit Score: 34.61  E-value: 8.21e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2020930303 217 LSPRVTERDLVSLFARFQEKKGPPIQFRMMTGRMRGQAFITFPNKEIAWQALHlVNGYKLHGK 279
Cdd:cd12330     7 LAPDVTEEEFKEYFEQFGTVVDAVVMLDHDTGRSRGFGFVTFDSESAVEKVLS-KGFHELGGK 68
RRM_Srp1p_AtRSp31_like cd12233
RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis ...
212-287 8.32e-03

RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins; This subfamily corresponds to the RRM of Srp1p and RRM2 of plant SR splicing factors. Srp1p is encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but is not essential for growth. Srp1p is closely related to the SR protein family found in Metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. The family also includes a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RRMs at their N-terminus and an RS domain at their C-terminus.


Pssm-ID: 240679 [Multi-domain]  Cd Length: 70  Bit Score: 34.34  E-value: 8.32e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2020930303 212 LYLKNLSPRVT-ERDLVSLFARFqekkGPPIQFRMMtgrmRGQAFITFPNKEIAWQALHLVNGYKLHGKILVIEFGK 287
Cdd:cd12233     2 LFVVGFDPGTTrEEDIEKLFEPF----GPLVRCDIR----KTFAFVEFEDSEDATKALEALHGSRIDGSVLTVEFVK 70
RRM1_SRSF1_like cd12338
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and ...
212-285 9.11e-03

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and similar proteins; This subgroup corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C), and plant pre-mRNA-splicing factor SF2 (SR1). SRSF1 is a shuttling SR protein involved in constitutive and alternative splicing, nonsense-mediated mRNA decay (NMD), mRNA export and translation. It also functions as a splicing-factor oncoprotein that regulates apoptosis and proliferation to promote mammary epithelial cell transformation. SRSF9 has been implicated in the activity of many elements that control splice site selection, the alternative splicing of the glucocorticoid receptor beta in neutrophils and in the gonadotropin-releasing hormone pre-mRNA. It can also interact with other proteins implicated in alternative splicing, including YB-1, rSLM-1, rSLM-2, E4-ORF4, Nop30, and p32. Both, SRSF1 and SRSF9, contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RS domains rich in serine-arginine dipeptides. In contrast, SF2 contains two N-terminal RRMs and a C-terminal PSK domain rich in proline, serine and lysine residues.


Pssm-ID: 409775 [Multi-domain]  Cd Length: 72  Bit Score: 34.26  E-value: 9.11e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFQekkgpPIQFRMMTGRMRGQ--AFITFPNKEIAWQALHLVNGYKLHGKILVIEF 285
Cdd:cd12338     2 IYVGNLPGDIRERDIEDLFYKYG-----PILAIDLKNRRRGPpfAFVEFEDPRDAEDAIRGRDGYDFDGYRLRVEF 72
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
212-278 9.25e-03

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 34.61  E-value: 9.25e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2020930303 212 LYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMM----TGRMRGQAFITFPNKEIAWQALHLVNGYKLHG 278
Cdd:cd12652     3 LYVSGLPKTMTQKELEQLFSQF----GRIITSRILcdnvTGLSRGVGFIRFDKRVEAERAIKALNGTIPPG 69
RRM_NOL8 cd12226
RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This ...
211-287 9.43e-03

RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This model corresponds to the RRM of NOL8 (also termed Nop132) encoded by a novel NOL8 gene that is up-regulated in the majority of diffuse-type, but not intestinal-type, gastric cancers. Thus, NOL8 may be a good molecular target for treatment of diffuse-type gastric cancer. Also, NOL8 is a phosphorylated protein that contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), suggesting NOL8 is likely to function as a novel RNA-binding protein. It may be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells.


Pssm-ID: 409673 [Multi-domain]  Cd Length: 77  Bit Score: 34.47  E-value: 9.43e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2020930303 211 VLYLKNLSPRVTERDLVSLFARFqekkGPPIQFRMMT---GRMRGQAFITFPNKEIAWQ-ALHLVNGYKLHGKILVIEFG 286
Cdd:cd12226     1 RLFVGGLSPSITEDDLERRFSRF----GTVSDVEIIRkkdAPDRGFAYIDLRTSEAALQkCLSTLNGVKWKGSRLKIQLA 76

                  .
gi 2020930303 287 K 287
Cdd:cd12226    77 K 77
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH