RRM domain-containing protein [Caenorhabditis elegans]
RNA recognition motif domain-containing protein( domain architecture ID 10088444)
RNA-binding protein containing an RNA recognition motif (RRM)
List of domain hits
Name | Accession | Description | Interval | E-value | ||
RRM_SF | cd00590 | RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ... |
13-79 | 1.58e-07 | ||
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs). : Pssm-ID: 409669 [Multi-domain] Cd Length: 72 Bit Score: 48.82 E-value: 1.58e-07
|
||||||
Name | Accession | Description | Interval | E-value | ||
RRM_SF | cd00590 | RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ... |
13-79 | 1.58e-07 | ||
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs). Pssm-ID: 409669 [Multi-domain] Cd Length: 72 Bit Score: 48.82 E-value: 1.58e-07
|
||||||
RRM | smart00360 | RNA recognition motif; |
11-78 | 3.07e-06 | ||
RNA recognition motif; Pssm-ID: 214636 [Multi-domain] Cd Length: 73 Bit Score: 44.89 E-value: 3.07e-06
|
||||||
Name | Accession | Description | Interval | E-value | ||
RRM_SF | cd00590 | RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ... |
13-79 | 1.58e-07 | ||
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs). Pssm-ID: 409669 [Multi-domain] Cd Length: 72 Bit Score: 48.82 E-value: 1.58e-07
|
||||||
RRM | smart00360 | RNA recognition motif; |
11-78 | 3.07e-06 | ||
RNA recognition motif; Pssm-ID: 214636 [Multi-domain] Cd Length: 73 Bit Score: 44.89 E-value: 3.07e-06
|
||||||
RRM_TUT1 | cd12279 | RNA recognition motif (RRM) found in speckle targeted PIP5K1A-regulated poly(A) polymerase ... |
10-83 | 5.41e-05 | ||
RNA recognition motif (RRM) found in speckle targeted PIP5K1A-regulated poly(A) polymerase (Star-PAP) and similar proteins; This subfamily corresponds to the RRM of Star-PAP, also termed RNA-binding motif protein 21 (RBM21), which is a ubiquitously expressed U6 snRNA-specific terminal uridylyltransferase (U6-TUTase) essential for cell proliferation. Although it belongs to the well-characterized poly(A) polymerase protein superfamily, Star-PAP is highly divergent from both, the poly(A) polymerase (PAP) and the terminal uridylyl transferase (TUTase), identified within the editing complexes of trypanosomes. Star-PAP predominantly localizes at nuclear speckles and catalyzes RNA-modifying nucleotidyl transferase reactions. It functions in mRNA biosynthesis and may be regulated by phosphoinositides. It binds to glutathione S-transferase (GST)-PIPKIalpha. Star-PAP preferentially uses ATP as a nucleotide substrate and possesses PAP activity that is stimulated by PtdIns4,5P2. It contains an N-terminal C2H2-type zinc finger motif followed by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a split PAP domain linked by a proline-rich region, a PAP catalytic and core domain, a PAP-associated domain, an RS repeat, and a nuclear localization signal (NLS). Pssm-ID: 409721 [Multi-domain] Cd Length: 74 Bit Score: 41.63 E-value: 5.41e-05
|
||||||
RRM_RBM7_like | cd12336 | RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This ... |
9-79 | 5.61e-05 | ||
RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This subfamily corresponds to the RRM of RBM7, RBM11 and their eukaryotic homologous. RBM7 is an ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. It interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20, and may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM11 is a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. It is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. Both, RBM7 and RBM11, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization. Pssm-ID: 409773 [Multi-domain] Cd Length: 75 Bit Score: 41.52 E-value: 5.61e-05
|
||||||
Blast search parameters | ||||
|