NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|767988827|ref|XP_005255658|]
View 

3 beta-hydroxysteroid dehydrogenase type 7 isoform X1 [Homo sapiens]

Protein Classification

3 beta-hydroxysteroid dehydrogenase family protein( domain architecture ID 10176861)

3 beta-hydroxysteroid dehydrogenase family protein plays a crucial role in the biosynthesis of all classes of hormonal steroids; similar to 3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 1/2 and 3 beta-hydroxysteroid dehydrogenase type 7

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
3b-HSD_HSDB1_like_SDR_e cd09811
human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, ...
11-361 0e+00

human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, extended (e) SDRs; This extended-SDR subgroup includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7], and related proteins. These proteins have the characteristic active site tetrad and NAD(P)-binding motif of extended SDRs. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. C(27) 3beta-HSD is a membrane-bound enzyme of the endoplasmic reticulum, it catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


:

Pssm-ID: 187671 [Multi-domain]  Cd Length: 354  Bit Score: 585.63  E-value: 0e+00
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  11 VYLVTGGCGFLGEHVVRMLLQREPRLGELRVFDQHLGPWLEELK---TGPVRVTAIQGDVTQAHEVAAAVAGAHVVIHTA 87
Cdd:cd09811    1 VCLVTGGGGFLGQHIIRLLLERKEELKEIRVLDKAFGPELIEHFeksQGKTYVTDIEGDIKDLSFLFRACQGVSVVIHTA 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  88 GLVDVFGRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKGHPFYRGNEDTPYEAVHRHPYPCSKALAE 167
Cdd:cd09811   81 AIVDVFGPPNYEELEEVNVNGTQAVLEACVQNNVKRLVYTSSIEVAGPNFKGRPIFNGVEDTPYEDTSTPPYASSKLLAE 160
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 168 WLVLEANGRKVRGGLPLVTCALRPTGIYGEGHQIMRDFYRQGLRLGGWLFRAIPASVEHGRVYVGNVAWMHVLAARELEQ 247
Cdd:cd09811  161 NIVLNANGAPLKQGGYLVTCALRPMYIYGEGSHFLTEIFDFLLTNNGWLFPRIKGSGVNPLVYVGNVAWAHILAAKALQV 240
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 248 RATLMGGQVYFCYDGSPYRSYEDFNMEFLGPCGLRLVGARPLLPYWLLVFLAALNALLQWLLRPLVLYAPLLNPYTLAVA 327
Cdd:cd09811  241 PDKAIRGQFYFISDDTPHNSYSDFNYELLKELGLRLKTSWWYVPLFLLYFLAFLLEIVSFLLRPYVKYRPRYNRHAVALT 320
                        330       340       350
                 ....*....|....*....|....*....|....
gi 767988827 328 NTTFTVSTDKAQRHFGYEPLFSWEDSRTRTILWV 361
Cdd:cd09811  321 NSMFTFSYLKAQRHFGYMPLFSWEESKERTAKWV 354
 
Name Accession Description Interval E-value
3b-HSD_HSDB1_like_SDR_e cd09811
human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, ...
11-361 0e+00

human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, extended (e) SDRs; This extended-SDR subgroup includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7], and related proteins. These proteins have the characteristic active site tetrad and NAD(P)-binding motif of extended SDRs. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. C(27) 3beta-HSD is a membrane-bound enzyme of the endoplasmic reticulum, it catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187671 [Multi-domain]  Cd Length: 354  Bit Score: 585.63  E-value: 0e+00
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  11 VYLVTGGCGFLGEHVVRMLLQREPRLGELRVFDQHLGPWLEELK---TGPVRVTAIQGDVTQAHEVAAAVAGAHVVIHTA 87
Cdd:cd09811    1 VCLVTGGGGFLGQHIIRLLLERKEELKEIRVLDKAFGPELIEHFeksQGKTYVTDIEGDIKDLSFLFRACQGVSVVIHTA 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  88 GLVDVFGRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKGHPFYRGNEDTPYEAVHRHPYPCSKALAE 167
Cdd:cd09811   81 AIVDVFGPPNYEELEEVNVNGTQAVLEACVQNNVKRLVYTSSIEVAGPNFKGRPIFNGVEDTPYEDTSTPPYASSKLLAE 160
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 168 WLVLEANGRKVRGGLPLVTCALRPTGIYGEGHQIMRDFYRQGLRLGGWLFRAIPASVEHGRVYVGNVAWMHVLAARELEQ 247
Cdd:cd09811  161 NIVLNANGAPLKQGGYLVTCALRPMYIYGEGSHFLTEIFDFLLTNNGWLFPRIKGSGVNPLVYVGNVAWAHILAAKALQV 240
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 248 RATLMGGQVYFCYDGSPYRSYEDFNMEFLGPCGLRLVGARPLLPYWLLVFLAALNALLQWLLRPLVLYAPLLNPYTLAVA 327
Cdd:cd09811  241 PDKAIRGQFYFISDDTPHNSYSDFNYELLKELGLRLKTSWWYVPLFLLYFLAFLLEIVSFLLRPYVKYRPRYNRHAVALT 320
                        330       340       350
                 ....*....|....*....|....*....|....
gi 767988827 328 NTTFTVSTDKAQRHFGYEPLFSWEDSRTRTILWV 361
Cdd:cd09811  321 NSMFTFSYLKAQRHFGYMPLFSWEESKERTAKWV 354
3Beta_HSD pfam01073
3-beta hydroxysteroid dehydrogenase/isomerase family; The enzyme 3 beta-hydroxysteroid ...
13-283 1.83e-107

3-beta hydroxysteroid dehydrogenase/isomerase family; The enzyme 3 beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3 beta-HSD) catalyzes the oxidation and isomerization of 5-ene-3 beta-hydroxypregnene and 5-ene-hydroxyandrostene steroid precursors into the corresponding 4-ene-ketosteroids necessary for the formation of all classes of steroid hormones.


Pssm-ID: 366449 [Multi-domain]  Cd Length: 279  Bit Score: 316.23  E-value: 1.83e-107
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   13 LVTGGCGFLGEHVVRMLLQREPrLGELRVFDQHLGPWLEELKTGPVRVTAIQGDVTQAHEVAAAVAGAHVVIHTAGLVDV 92
Cdd:pfam01073   1 VVTGGGGFLGRHIIKLLVREGE-LKEVRVFDLRESPELLEDFSKSNVIKYIQGDVTDKDDLDNALEGVDVVIHTASAVDV 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   93 FGRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKGHPFYRGNEDTPYEAVHRHPYPCSKALAEWLVLE 172
Cdd:pfam01073  80 FGKYTFDEIMKVNVKGTQNVLEACVKAGVRVLVYTSSAEVVGPNSYGQPILNGDEETPYESTHQDAYPRSKAIAEKLVLK 159
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  173 ANGRKVRGGLPLVTCALRPTGIYGEGHQIMRDFYRQGLRLGGWLFRAIPASVEHGRVYVGNVAWMHVLAARELE--QRAT 250
Cdd:pfam01073 160 ANGRPLKNGGRLYTCALRPAGIYGEGDRLLVPFIVNLAKLGLAKFKTGDDNNLSDRVYVGNVAWAHILAARALQdpKKMS 239
                         250       260       270
                  ....*....|....*....|....*....|...
gi 767988827  251 LMGGQVYFCYDGSPYRSYEDFNMEFLGPCGLRL 283
Cdd:pfam01073 240 SIAGNAYFIYDDTPVQSYDDFNRTLLKSLGYDL 272
WcaG COG0451
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis];
13-363 2.25e-36

Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis];


Pssm-ID: 440220 [Multi-domain]  Cd Length: 295  Bit Score: 133.57  E-value: 2.25e-36
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQReprlG-ELRVFDqHLGPWLEELKTGPvRVTAIQGDVTQAHEVAAAVAGAHVVIHTAGLVD 91
Cdd:COG0451    3 LVTGGAGFIGSHLARRLLAR----GhEVVGLD-RSPPGAANLAALP-GVEFVRGDLRDPEALAAALAGVDAVVHLAAPAG 76
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  92 VfGRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNtkGHPFyrgNEDTPYEAvhRHPYPCSKALAEWLVL 171
Cdd:COG0451   77 V-GEEDPDETLEVNVEGTLNLLEAARAAGVKRFVYASSSSVYGDG--EGPI---DEDTPLRP--VSPYGASKLAAELLAR 148
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 172 EANGrkvRGGLPlvTCALRPTGIYGEG-HQIMRDFYRQGLRlGGWLFRAIPASVEHGRVYVGNVAWMHVLAARELEQrat 250
Cdd:COG0451  149 AYAR---RYGLP--VTILRPGNVYGPGdRGVLPRLIRRALA-GEPVPVFGDGDQRRDFIHVDDVARAIVLALEAPAA--- 219
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 251 lmGGQVYFCYDGSPYRsyedfnmeflgpcglrlvgarpllpywllvflaaLNALLQWLLRPLVLYAPLLNPYTLAVANTT 330
Cdd:COG0451  220 --PGGVYNVGGGEPVT----------------------------------LRELAEAIAEALGRPPEIVYPARPGDVRPR 263
                        330       340       350
                 ....*....|....*....|....*....|...
gi 767988827 331 FtVSTDKAQRHFGYEPLFSWEDSRTRTILWVQA 363
Cdd:COG0451  264 R-ADNSKARRELGWRPRTSLEEGLRETVAWYRA 295
Thioester-redct TIGR01746
thioester reductase domain; This model includes the terminal domain from the fungal alpha ...
13-191 2.53e-12

thioester reductase domain; This model includes the terminal domain from the fungal alpha aminoadipate reductase enzyme (also known as aminoadipate semialdehyde dehydrogenase) which is involved in the biosynthesis of lysine, as well as the reductase-containing component of the myxochelin biosynthetic gene cluster, MxcG. The mechanism of reduction involves activation of the substrate by adenylation and transfer to a covalently-linked pantetheine cofactor as a thioester. This thioester is then reduced to give an aldehyde (thus releasing the product) and a regenerated pantetheine thiol. (In myxochelin biosynthesis this aldehyde is further reduced to an alcohol or converted to an amine by an aminotransferase.) This is a fundamentally different reaction than beta-ketoreductase domains of polyketide synthases which act at a carbonyl two carbons removed from the thioester and forms an alcohol as a product. This domain is invariably found at the C-terminus of the proteins which contain it (presumably because it results in the release of the product). The majority of hits to this model are non-ribosomal peptide synthetases in which this domain is similarly located proximal to a thiolation domain (pfam00550). In some cases this domain is found at the end of a polyketide synthetase enzyme, but is unlike ketoreductase domains which are found before the thiolase domains. Exceptions to this observed relationship with the thiolase domain include three proteins which consist of stand-alone reductase domains (GP|466833 from M. leprae, GP|435954 from Anabaena and OMNI|NTL02SC1199 from Strep. coelicolor) and one protein (OMNI|NTL01NS2636 from Nostoc) which contains N-terminal homology with a small group of hypothetical proteins but no evidence of a thiolation domain next to the putative reductase domain. Below the noise cutoff to this model are proteins containing more distantly related ketoreductase and dehydratase/epimerase domains. It has been suggested that a NADP-binding motif can be found in the N-terminal portion of this domain that may form a Rossman-type fold.


Pssm-ID: 273787 [Multi-domain]  Cd Length: 367  Bit Score: 67.44  E-value: 2.53e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   13 LVTGGCGFLGEHVVRMLLQREPRLG---------------ELR-VFDQHLgpwLEELKTGPVRVTAIQGDVTQAHEVAAA 76
Cdd:TIGR01746   3 LLTGATGFLGAYLLEELLRRSTRAKviclvradseehameRLReALRSYR---LWHENLAMERIEVVAGDLSKPRLGLSD 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   77 VAGAH------VVIHTAGLVDVFGRASpkTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMeVVGPNTKGHPFYRGNED-- 148
Cdd:TIGR01746  80 AEWERlaenvdTIVHNGALVNHVYPYS--ELRGANVLGTVEVLRLAASGRAKPLHYVSTI-SVGAAIDLSTGVTEDDAtv 156
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|...
gi 767988827  149 TPYEAVHrHPYPCSKALAEWLVLEANGRkvrgGLPLVTcaLRP 191
Cdd:TIGR01746 157 TPYPGLA-GGYTQSKWVAELLVREASDR----GLPVTI--VRP 192
PRK07201 PRK07201
SDR family oxidoreductase;
12-179 3.77e-11

SDR family oxidoreductase;


Pssm-ID: 235962 [Multi-domain]  Cd Length: 657  Bit Score: 64.59  E-value: 3.77e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQREP--------RLGELRVFDQHLGPWleelktGPVRVTAIQGDVTQAHEVAAAVAGAHVV 83
Cdd:PRK07201   3 YFVTGGTGFIGRRLVSRLLDRRReatvhvlvRRQSLSRLEALAAYW------GADRVVPLVGDLTEPGLGLSEADIAELG 76
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  84 -----IHTAGLVDVfgRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGpntkghpFYRG--NEDTPYEAVH- 155
Cdd:PRK07201  77 didhvVHLAAIYDL--TADEEAQRAANVDGTRNVVELAERLQAATFHHVSSIAVAG-------DYEGvfREDDFDEGQGl 147
                        170       180
                 ....*....|....*....|....
gi 767988827 156 RHPYPCSKALAEWLVLEANGRKVR 179
Cdd:PRK07201 148 PTPYHRTKFEAEKLVREECGLPWR 171
PKS_KR smart00822
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step ...
11-130 6.79e-06

This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.


Pssm-ID: 214833 [Multi-domain]  Cd Length: 180  Bit Score: 45.94  E-value: 6.79e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827    11 VYLVTGGCGFLGEHVVRMLLQREPRlgelRVF--------DQHLGPWLEELKTGPVRVTAIQGDVTQAHEVAAAVAGAHV 82
Cdd:smart00822   2 TYLITGGLGGLGRALARWLAERGAR----RLVllsrsgpdAPGAAALLAELEAAGARVTVVACDVADRDALAAVLAAIPA 77
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827    83 V-------IHTAGLVD--VFGRASPKTIHEVN---VQGTRNVIEACVQTGTRFLVYTSSM 130
Cdd:smart00822  78 VegpltgvIHAAGVLDdgVLASLTPERFAAVLapkAAGAWNLHELTADLPLDFFVLFSSI 137
 
Name Accession Description Interval E-value
3b-HSD_HSDB1_like_SDR_e cd09811
human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, ...
11-361 0e+00

human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, extended (e) SDRs; This extended-SDR subgroup includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7], and related proteins. These proteins have the characteristic active site tetrad and NAD(P)-binding motif of extended SDRs. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. C(27) 3beta-HSD is a membrane-bound enzyme of the endoplasmic reticulum, it catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187671 [Multi-domain]  Cd Length: 354  Bit Score: 585.63  E-value: 0e+00
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  11 VYLVTGGCGFLGEHVVRMLLQREPRLGELRVFDQHLGPWLEELK---TGPVRVTAIQGDVTQAHEVAAAVAGAHVVIHTA 87
Cdd:cd09811    1 VCLVTGGGGFLGQHIIRLLLERKEELKEIRVLDKAFGPELIEHFeksQGKTYVTDIEGDIKDLSFLFRACQGVSVVIHTA 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  88 GLVDVFGRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKGHPFYRGNEDTPYEAVHRHPYPCSKALAE 167
Cdd:cd09811   81 AIVDVFGPPNYEELEEVNVNGTQAVLEACVQNNVKRLVYTSSIEVAGPNFKGRPIFNGVEDTPYEDTSTPPYASSKLLAE 160
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 168 WLVLEANGRKVRGGLPLVTCALRPTGIYGEGHQIMRDFYRQGLRLGGWLFRAIPASVEHGRVYVGNVAWMHVLAARELEQ 247
Cdd:cd09811  161 NIVLNANGAPLKQGGYLVTCALRPMYIYGEGSHFLTEIFDFLLTNNGWLFPRIKGSGVNPLVYVGNVAWAHILAAKALQV 240
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 248 RATLMGGQVYFCYDGSPYRSYEDFNMEFLGPCGLRLVGARPLLPYWLLVFLAALNALLQWLLRPLVLYAPLLNPYTLAVA 327
Cdd:cd09811  241 PDKAIRGQFYFISDDTPHNSYSDFNYELLKELGLRLKTSWWYVPLFLLYFLAFLLEIVSFLLRPYVKYRPRYNRHAVALT 320
                        330       340       350
                 ....*....|....*....|....*....|....
gi 767988827 328 NTTFTVSTDKAQRHFGYEPLFSWEDSRTRTILWV 361
Cdd:cd09811  321 NSMFTFSYLKAQRHFGYMPLFSWEESKERTAKWV 354
3Beta_HSD pfam01073
3-beta hydroxysteroid dehydrogenase/isomerase family; The enzyme 3 beta-hydroxysteroid ...
13-283 1.83e-107

3-beta hydroxysteroid dehydrogenase/isomerase family; The enzyme 3 beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3 beta-HSD) catalyzes the oxidation and isomerization of 5-ene-3 beta-hydroxypregnene and 5-ene-hydroxyandrostene steroid precursors into the corresponding 4-ene-ketosteroids necessary for the formation of all classes of steroid hormones.


Pssm-ID: 366449 [Multi-domain]  Cd Length: 279  Bit Score: 316.23  E-value: 1.83e-107
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   13 LVTGGCGFLGEHVVRMLLQREPrLGELRVFDQHLGPWLEELKTGPVRVTAIQGDVTQAHEVAAAVAGAHVVIHTAGLVDV 92
Cdd:pfam01073   1 VVTGGGGFLGRHIIKLLVREGE-LKEVRVFDLRESPELLEDFSKSNVIKYIQGDVTDKDDLDNALEGVDVVIHTASAVDV 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   93 FGRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKGHPFYRGNEDTPYEAVHRHPYPCSKALAEWLVLE 172
Cdd:pfam01073  80 FGKYTFDEIMKVNVKGTQNVLEACVKAGVRVLVYTSSAEVVGPNSYGQPILNGDEETPYESTHQDAYPRSKAIAEKLVLK 159
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  173 ANGRKVRGGLPLVTCALRPTGIYGEGHQIMRDFYRQGLRLGGWLFRAIPASVEHGRVYVGNVAWMHVLAARELE--QRAT 250
Cdd:pfam01073 160 ANGRPLKNGGRLYTCALRPAGIYGEGDRLLVPFIVNLAKLGLAKFKTGDDNNLSDRVYVGNVAWAHILAARALQdpKKMS 239
                         250       260       270
                  ....*....|....*....|....*....|...
gi 767988827  251 LMGGQVYFCYDGSPYRSYEDFNMEFLGPCGLRL 283
Cdd:pfam01073 240 SIAGNAYFIYDDTPVQSYDDFNRTLLKSLGYDL 272
3b-HSD-like_SDR_e cd05241
3beta-hydroxysteroid dehydrogenases (3b-HSD)-like, extended (e) SDRs; Extended SDR family ...
13-360 7.96e-71

3beta-hydroxysteroid dehydrogenases (3b-HSD)-like, extended (e) SDRs; Extended SDR family domains belonging to this subgroup have the characteristic active site tetrad and a fairly well-conserved NAD(P)-binding motif. 3b-HSD catalyzes the NAD-dependent conversion of various steroids, such as pregnenolone to progesterone, or androstenediol to testosterone. This subgroup includes an unusual bifunctional 3b-HSD/C-4 decarboxylase from Arabidopsis thaliana, and Saccharomyces cerevisiae ERG26, a 3b-HSD/C-4 decarboxylase, involved in the synthesis of ergosterol, the major sterol of yeast. It also includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7]. C(27) 3beta-HSD/HSD3B7 is a membrane-bound enzyme of the endoplasmic reticulum, that catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human NSDHL (NAD(P)H steroid dehydrogenase-like protein) cause CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked dominant, male-lethal trait. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187552 [Multi-domain]  Cd Length: 331  Bit Score: 224.62  E-value: 7.96e-71
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQREprLGELRVFDqhLGPWLEEL-KTGPVRVTAIQGDVTQAHEVAAAVAGAHVVIHTAGLVD 91
Cdd:cd05241    3 LVTGGSGFFGERLVKQLLERG--GTYVRSFD--IAPPGEALsAWQHPNIEFLKGDITDRNDVEQALSGADCVFHTAAIVP 78
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  92 VFGrasPKTIH-EVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPntkGHPFYRGNEDTPYEAVHRHPYPCSKALAEWLV 170
Cdd:cd05241   79 LAG---PRDLYwEVNVGGTQNVLDACQRCGVQKFVYTSSSSVIFG---GQNIHNGDETLPYPPLDSDMYAETKAIAEIIV 152
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 171 LEANGRKVrgglpLVTCALRPTGIYGEGHQIMRDFYRQGLRLGGWLFRAIPASVEHGRVYVGNVAWMHVLAARELEQRAT 250
Cdd:cd05241  153 LEANGRDD-----LLTCALRPAGIFGPGDQGLVPILFEWAEKGLVKFVFGRGNNLVDFTYVHNLAHAHILAAAALVKGKT 227
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 251 LMgGQVYFCYDGSPYRSYEDFNMeFLGPCGLrlvGARP--LLPYWLLVFLAALNALLQWLLRPLVLYAPLLNPYTLavan 328
Cdd:cd05241  228 IS-GQTYFITDAEPHNMFELLRP-VWKALGF---GSRPkiRLSGPLAYCAALLSELVSFMLGPYFVFSPFYVRALV---- 298
                        330       340       350
                 ....*....|....*....|....*....|..
gi 767988827 329 TTFTVSTDKAQRHFGYEPLFSWEDSRTRTILW 360
Cdd:cd05241  299 TPMYFSIAKAQKDLGYAPRYSNEEGLIETLNW 330
3b-HSD-NSDHL-like_SDR_e cd09813
human NSDHL (NAD(P)H steroid dehydrogenase-like protein)-like, extended (e) SDRs; This ...
12-360 6.60e-61

human NSDHL (NAD(P)H steroid dehydrogenase-like protein)-like, extended (e) SDRs; This subgroup includes human NSDHL and related proteins. These proteins have the characteristic active site tetrad of extended SDRs, and also have a close match to their NAD(P)-binding motif. Human NSDHL is a 3beta-hydroxysteroid dehydrogenase (3 beta-HSD) which functions in the cholesterol biosynthetic pathway. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. Mutations in the gene encoding NSDHL cause CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked dominant, male-lethal trait. This subgroup also includes an unusual bifunctional [3beta-hydroxysteroid dehydrogenase (3b-HSD)/C-4 decarboxylase from Arabidopsis thaliana, and Saccharomyces cerevisiae ERG26, a 3b-HSD/C-4 decarboxylase, involved in the synthesis of ergosterol, the major sterol of yeast. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187673 [Multi-domain]  Cd Length: 335  Bit Score: 199.12  E-value: 6.60e-61
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQREPRlgELRVFDqhLGPWLEELKTGPVRVTAIQGDVT--QAHEVAAAVAGAHVVIHTAGL 89
Cdd:cd09813    2 CLVVGGSGFLGRHLVEQLLRRGNP--TVHVFD--IRPTFELDPSSSGRVQFHTGDLTdpQDLEKAFNEKGPNVVFHTASP 77
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  90 VDVFGRAspkTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVgpnTKGHPFYRGNEDTPYEAVHRHPYPCSKALAEWL 169
Cdd:cd09813   78 DHGSNDD---LYYKVNVQGTRNVIEACRKCGVKKLVYTSSASVV---FNGQDIINGDESLPYPDKHQDAYNETKALAEKL 151
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 170 VLEANGRKVRgglpLVTCALRPTGIYGEGHQIMRDFYRQGLRLGgwlfraiPASVEHGR-------VYVGNVAWMHVLAA 242
Cdd:cd09813  152 VLKANDPESG----LLTCALRPAGIFGPGDRQLVPGLLKAAKNG-------KTKFQIGDgnnlfdfTYVENVAHAHILAA 220
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 243 REL--EQRATLMGGQVYFCYDGSPYRsYEDFNMEFLGPCGlRLVGARPLLPYWLLVFLAALNALLQWLLRPlvlyAPLLN 320
Cdd:cd09813  221 DALlsSSHAETVAGEAFFITNDEPIY-FWDFARAIWEGLG-YERPPSIKLPRPVALYLASLLEWTCKVLGK----EPTFT 294
                        330       340       350       360
                 ....*....|....*....|....*....|....*....|
gi 767988827 321 PYTLAVANTTFTVSTDKAQRHFGYEPLFSWEDSRTRTILW 360
Cdd:cd09813  295 PFRVALLCSTRYFNIEKAKKRLGYTPVVTLEEGIERTLQW 334
3b-HSD_like_1_SDR_e cd09812
3beta-hydroxysteroid dehydrogenase (3b-HSD)-like, subgroup1, extended (e) SDRs; An ...
13-352 1.89e-38

3beta-hydroxysteroid dehydrogenase (3b-HSD)-like, subgroup1, extended (e) SDRs; An uncharacterized subgroup of the 3b-HSD-like extended-SDR family. Proteins in this subgroup have the characteristic active site tetrad and NAD(P)-binding motif of extended-SDRs. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187672 [Multi-domain]  Cd Length: 339  Bit Score: 140.33  E-value: 1.89e-38
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQREPR--LGELRVFDQHLgpwleelktgPVRVTAIQGDVTQAHEVAAAVAGAHVVIHTAGLv 90
Cdd:cd09812    3 LITGGGGYFGFRLGCALAKSGVHviLFDIRRPQQEL----------PEGIKFIQADVRDLSQLEKAVAGVDCVFHIASY- 71
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  91 DVFGRA--SPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVgpnTKGHPFYRGNEDTPYEAVHRHP--YPCSKALA 166
Cdd:cd09812   72 GMSGREqlNRELIEEINVRGTENIIQVCVRRRVPRLIYTSTFNVI---FGGQPIRNGDESLPYLPLDLHVdhYSRTKSIA 148
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 167 EWLVLEANGRKV-RGGLPLVTCALRPTGIYGEGHQimRDFYRQGLRLGGWLFRAI----PASVEHgrVYVGNVAWMHVLA 241
Cdd:cd09812  149 EQLVLKANNMPLpNNGGVLRTCALRPAGIYGPGEQ--RHLPRIVSYIEKGLFMFVygdpKSLVEF--VHVDNLVQAHILA 224
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 242 AREL-EQRATLMGGQVYFCYDGSPYRsyedfNMEFLGPCGLRLVGARPLL--PYWLLVFLAALNALLQWLLRPLVLYAPL 318
Cdd:cd09812  225 AEALtTAKGYIASGQAYFISDGRPVN-----NFEFFRPLVEGLGYSFPSLrlPLSLVYFFAFLTEMVHFALGPICNFQPL 299
                        330       340       350
                 ....*....|....*....|....*....|....*
gi 767988827 319 LNPYTLAVANTTFTVSTDKAQRHFGYEP-LFSWED 352
Cdd:cd09812  300 LTRTEVYKTGVTHYFSIEKARAELGYEPqPFDLQD 334
AR_FR_like_1_SDR_e cd05228
uncharacterized subgroup of aldehyde reductase and flavonoid reductase related proteins, ...
13-360 7.47e-38

uncharacterized subgroup of aldehyde reductase and flavonoid reductase related proteins, extended (e) SDRs; This subgroup contains proteins of unknown function related to aldehyde reductase and flavonoid reductase of the extended SDR-type. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it has an NADP-binding motif consensus that is slightly different from the canonical SDR form and lacks the Asn of the extended SDR active site tetrad. Aldehyde reductase I catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. The related flavonoid reductases act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187539 [Multi-domain]  Cd Length: 318  Bit Score: 138.19  E-value: 7.47e-38
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQReprlGE-LRVFDQHLGPwLEELKTGPVRVtaIQGDVTQAHEVAAAVAGAHVVIHTAGLVD 91
Cdd:cd05228    2 LVTGATGFLGSNLVRALLAQ----GYrVRALVRSGSD-AVLLDGLPVEV--VEGDLTDAASLAAAMKGCDRVFHLAAFTS 74
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  92 VFGRaSPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKGhpfyRGNEDTPYEAVHRH-PYPCSKALAEWLV 170
Cdd:cd05228   75 LWAK-DRKELYRTNVEGTRNVLDAALEAGVRRVVHTSSIAALGGPPDG----RIDETTPWNERPFPnDYYRSKLLAELEV 149
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 171 LEAngrkVRGGLPLVTcaLRPTGIYGEGH-------QIMRDFYRQGLR--LGGWLfraipasvehGRVYVGNVAWMHVLA 241
Cdd:cd05228  150 LEA----AAEGLDVVI--VNPSAVFGPGDegptstgLDVLDYLNGKLPayPPGGT----------SFVDVRDVAEGHIAA 213
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 242 ARELEQratlmgGQVYFCydGSPYRSYEDFnMEFLGpcglRLVGARPL---LPYWLLVFLAALNALLQWLLRPlvlyAPL 318
Cdd:cd05228  214 MEKGRR------GERYIL--GGENLSFKQL-FETLA----EITGVKPPrrtIPPWLLKAVAALSELKARLTGK----PPL 276
                        330       340       350       360
                 ....*....|....*....|....*....|....*....|..
gi 767988827 319 LNPYTLAVANTTFTVSTDKAQRHFGYEPLfSWEDSRTRTILW 360
Cdd:cd05228  277 LTPRTARVLRRNYLYSSDKARRELGYSPR-PLEEALRDTLAW 317
WcaG COG0451
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis];
13-363 2.25e-36

Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis];


Pssm-ID: 440220 [Multi-domain]  Cd Length: 295  Bit Score: 133.57  E-value: 2.25e-36
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQReprlG-ELRVFDqHLGPWLEELKTGPvRVTAIQGDVTQAHEVAAAVAGAHVVIHTAGLVD 91
Cdd:COG0451    3 LVTGGAGFIGSHLARRLLAR----GhEVVGLD-RSPPGAANLAALP-GVEFVRGDLRDPEALAAALAGVDAVVHLAAPAG 76
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  92 VfGRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNtkGHPFyrgNEDTPYEAvhRHPYPCSKALAEWLVL 171
Cdd:COG0451   77 V-GEEDPDETLEVNVEGTLNLLEAARAAGVKRFVYASSSSVYGDG--EGPI---DEDTPLRP--VSPYGASKLAAELLAR 148
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 172 EANGrkvRGGLPlvTCALRPTGIYGEG-HQIMRDFYRQGLRlGGWLFRAIPASVEHGRVYVGNVAWMHVLAARELEQrat 250
Cdd:COG0451  149 AYAR---RYGLP--VTILRPGNVYGPGdRGVLPRLIRRALA-GEPVPVFGDGDQRRDFIHVDDVARAIVLALEAPAA--- 219
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 251 lmGGQVYFCYDGSPYRsyedfnmeflgpcglrlvgarpllpywllvflaaLNALLQWLLRPLVLYAPLLNPYTLAVANTT 330
Cdd:COG0451  220 --PGGVYNVGGGEPVT----------------------------------LRELAEAIAEALGRPPEIVYPARPGDVRPR 263
                        330       340       350
                 ....*....|....*....|....*....|...
gi 767988827 331 FtVSTDKAQRHFGYEPLFSWEDSRTRTILWVQA 363
Cdd:COG0451  264 R-ADNSKARRELGWRPRTSLEEGLRETVAWYRA 295
SDR_e cd08946
extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann ...
12-233 1.70e-22

extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 212494 [Multi-domain]  Cd Length: 200  Bit Score: 93.52  E-value: 1.70e-22
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQREPrlgELRVFDqhlgpwleelktgpvRVTAIqgdvtqahevaaavagahvvIHTAGLVD 91
Cdd:cd08946    1 ILVTGGAGFIGSHLVRRLLERGH---EVVVID---------------RLDVV--------------------VHLAALVG 42
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  92 V-FGRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKghpfyrGNEDTPYEAVHRHPYPCSKALAEWLV 170
Cdd:cd08946   43 VpASWDNPDEDFETNVVGTLNLLEAARKAGVKRFVYASSASVYGSPEG------LPEEEETPPRPLSPYGVSKLAAEHLL 116
                        170       180       190       200       210       220
                 ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 767988827 171 LEANgrkVRGGLPLVTcaLRPTGIYGeghqimrdfYRQGLRLGGWLFRAIPASVEHGRVYVGN 233
Cdd:cd08946  117 RSYG---ESYGLPVVI--LRLANVYG---------PGQRPRLDGVVNDFIRRALEGKPLTVFG 165
UDP_AE_SDR_e cd05256
UDP-N-acetylglucosamine 4-epimerase, extended (e) SDRs; This subgroup contains ...
12-243 2.33e-20

UDP-N-acetylglucosamine 4-epimerase, extended (e) SDRs; This subgroup contains UDP-N-acetylglucosamine 4-epimerase of Pseudomonas aeruginosa, WbpP, an extended SDR, that catalyzes the NAD+ dependent conversion of UDP-GlcNAc and UDPGalNA to UDP-Glc and UDP-Gal. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187566 [Multi-domain]  Cd Length: 304  Bit Score: 89.97  E-value: 2.33e-20
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQREprlGELRVFDQHLGPWLEELKTGPVRVTAIQGDVTQAHEVAAAVAGAHVVIHTAGLVD 91
Cdd:cd05256    2 VLVTGGAGFIGSHLVERLLERG---HEVIVLDNLSTGKKENLPEVKPNVKFIEGDIRDDELVEFAFEGVDYVFHQAAQAS 78
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  92 VfgRAS---PKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGpntkGHPFYRGNEDTPYEAVhrHPYPCSKALAEW 168
Cdd:cd05256   79 V--PRSiedPIKDHEVNVLGTLNLLEAARKAGVKRFVYASSSSVYG----DPPYLPKDEDHPPNPL--SPYAVSKYAGEL 150
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 169 LVleangrKVRGGL-PLVTCALR----------PTG--------------------IYGEGHQImRDFyrqglrlggwlf 217
Cdd:cd05256  151 YC------QVFARLyGLPTVSLRyfnvygprqdPNGgyaavipifieralkgepptIYGDGEQT-RDF------------ 211
                        250       260
                 ....*....|....*....|....*.
gi 767988827 218 raipasvehgrVYVGNVAWMHVLAAR 243
Cdd:cd05256  212 -----------TYVEDVVEANLLAAT 226
MupV_like_SDR_e cd05263
Pseudomonas fluorescens MupV-like, extended (e) SDRs; This subgroup of extended SDR family ...
12-266 3.59e-18

Pseudomonas fluorescens MupV-like, extended (e) SDRs; This subgroup of extended SDR family domains have the characteristic active site tetrad and a well-conserved NAD(P)-binding motif. This subgroup is not well characterized, its members are annotated as having a variety of putative functions. One characterized member is Pseudomonas fluorescens MupV a protein involved in the biosynthesis of Mupirocin, a polyketide-derived antibiotic. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187573 [Multi-domain]  Cd Length: 293  Bit Score: 83.57  E-value: 3.59e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQREprlGELRVF-----DQHLGPWLEELKTGPVRVTAIQGDVTQ------AHEVAAAVAGA 80
Cdd:cd05263    1 VFVTGGTGFLGRHLVKRLLENG---FKVLVLvrsesLGEAHERIEEAGLEADRVRVLEGDLTQpnlglsAAASRELAGKV 77
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  81 HVVIHTAGLVDVfgRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTkGHpfYRGNEDTPYEAVHrHPYP 160
Cdd:cd05263   78 DHVIHCAASYDF--QAPNEDAWRTNIDGTEHVLELAARLDIQRFHYVSTAYVAGNRE-GN--IRETELNPGQNFK-NPYE 151
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 161 CSKALAEWLVLEANGRkvrggLPLVTcaLRPTGIYGE---GHqiMRDFYrqGL--------RLGGWLfrAIPASvEHGR- 228
Cdd:cd05263  152 QSKAEAEQLVRAAATQ-----IPLTV--YRPSIVVGDsktGR--IEKID--GLyellnllaKLGRWL--PMPGN-KGARl 217
                        250       260       270       280
                 ....*....|....*....|....*....|....*....|
gi 767988827 229 --VYVGNVAWMHVLAARELEQratlmGGQVYFCYDGSPYR 266
Cdd:cd05263  218 nlVPVDYVADAIVYLSKKPEA-----NGQIFHLTDPTPQT 252
RfbB COG1088
dTDP-D-glucose 4,6-dehydratase [Cell wall/membrane/envelope biogenesis];
12-229 1.80e-17

dTDP-D-glucose 4,6-dehydratase [Cell wall/membrane/envelope biogenesis];


Pssm-ID: 440705 [Multi-domain]  Cd Length: 333  Bit Score: 82.44  E-value: 1.80e-17
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQREPRLgELRVFDQ-----HLGpWLEELKTGPvRVTAIQGDVTQAHEVAAAVAGAH--VVI 84
Cdd:COG1088    4 ILVTGGAGFIGSNFVRYLLAKYPGA-EVVVLDKltyagNLE-NLADLEDDP-RYRFVKGDIRDRELVDELFAEHGpdAVV 80
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  85 HTAGL--VDvfgR--ASPKTIHEVNVQGTRNVIEACVQTGT---RFlVYTSSMEVVGPNTKGHPFyrgNEDTPYEAvhRH 157
Cdd:COG1088   81 HFAAEshVD---RsiDDPAAFVETNVVGTFNLLEAARKYWVegfRF-HHVSTDEVYGSLGEDGPF---TETTPLDP--SS 151
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 158 PYPCSKALAEWLV--------LEAN-------------GRKVrggLPL-VTCAL--RPTGIYGEGHQImRDfyrqglrlg 213
Cdd:COG1088  152 PYSASKAASDHLVrayhrtygLPVVitrcsnnygpyqfPEKL---IPLfITNALegKPLPVYGDGKQV-RD--------- 218
                        250       260
                 ....*....|....*....|.
gi 767988827 214 gWLF-----RAIPASVEHGRV 229
Cdd:COG1088  219 -WLYvedhcRAIDLVLEKGRP 238
UDP_G4E_4_SDR_e cd05232
UDP-glucose 4 epimerase, subgroup 4, extended (e) SDRs; UDP-glucose 4 epimerase (aka ...
13-353 1.35e-16

UDP-glucose 4 epimerase, subgroup 4, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup is comprised of bacterial proteins, and includes the Staphylococcus aureus capsular polysaccharide Cap5N, which may have a role in the synthesis of UDP-N-acetyl-d-fucosamine. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187543 [Multi-domain]  Cd Length: 303  Bit Score: 79.32  E-value: 1.35e-16
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQR--EPRLGELRVFDQHLGPWLEELKTgPVRVTAIQGDVTqahevaaavagahVVIHTAGLV 90
Cdd:cd05232    3 LVTGANGFIGRALVDKLLSRgeEVRIAVRNAENAEPSVVLAELPD-IDSFTDLFLGVD-------------AVVHLAARV 68
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  91 DVFGRASPKTI---HEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKGHPFyrgNEDTPyeAVHRHPYPCSKALAE 167
Cdd:cd05232   69 HVMNDQGADPLsdyRKVNTELTRRLARAAARQGVKRFVFLSSVKVNGEGTVGAPF---DETDP--PAPQDAYGRSKLEAE 143
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 168 WLVLEA---NGRKVrgglplvtCALRPTGIYGEGhqiMRDFYRQGLRLGGWlFRAIPASVEHGR---VYVGNVAWMHVLA 241
Cdd:cd05232  144 RALLELgasDGMEV--------VILRPPMVYGPG---VRGNFARLMRLIDR-GLPLPPGAVKNRrslVSLDNLVDAIYLC 211
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 242 AreLEQRATlmgGQVYFCYDGSPYRSYEDFNmeflgpcGLRLVGARPLL----PYWLLVFLAALNALLQWLLRplvLYAP 317
Cdd:cd05232  212 I--SLPKAA---NGTFLVSDGPPVSTAELVD-------EIRRALGKPTRllpvPAGLLRFAAKLLGKRAVIQR---LFGS 276
                        330       340       350
                 ....*....|....*....|....*....|....*.
gi 767988827 318 LlnpytlavanttfTVSTDKAQRHFGYEPLFSWEDS 353
Cdd:cd05232  277 L-------------QYDPEKTQNELGWRPPISLEEG 299
Arna_like_SDR_e cd05257
Arna decarboxylase_like, extended (e) SDRs; Decarboxylase domain of ArnA. ArnA, is an enzyme ...
13-198 1.73e-16

Arna decarboxylase_like, extended (e) SDRs; Decarboxylase domain of ArnA. ArnA, is an enzyme involved in the modification of outer membrane protein lipid A of gram-negative bacteria. It is a bifunctional enzyme that catalyzes the NAD-dependent decarboxylation of UDP-glucuronic acid and N-10-formyltetrahydrofolate-dependent formylation of UDP-4-amino-4-deoxy-l-arabinose; its NAD-dependent decaboxylating activity is in the C-terminal 360 residues. This subgroup belongs to the extended SDR family, however the NAD binding motif is not a perfect match and the upstream Asn of the canonical active site tetrad is not conserved. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187567 [Multi-domain]  Cd Length: 316  Bit Score: 79.27  E-value: 1.73e-16
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLqrepRLG-ELRVFDQH--LGPWLEELKTGPVRVTAIQGDVTQAHEVAAAVAGAHVVIHTAGL 89
Cdd:cd05257    3 LVTGADGFIGSHLTERLL----REGhEVRALDIYnsFNSWGLLDNAVHDRFHFISGDVRDASEVEYLVKKCDVVFHLAAL 78
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  90 VDV-FGRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGpntKGHPFYRGnEDTP--YEAVHRHPYPCSKALA 166
Cdd:cd05257   79 IAIpYSYTAPLSYVETNVFGTLNVLEAACVLYRKRVVHTSTSEVYG---TAQDVPID-EDHPllYINKPRSPYSASKQGA 154
                        170       180       190
                 ....*....|....*....|....*....|..
gi 767988827 167 EWLVlEANGRKVrgGLPLVTcaLRPTGIYGEG 198
Cdd:cd05257  155 DRLA-YSYGRSF--GLPVTI--IRPFNTYGPR 181
Epimerase pfam01370
NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. ...
13-198 5.83e-16

NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions.


Pssm-ID: 396097 [Multi-domain]  Cd Length: 238  Bit Score: 76.57  E-value: 5.83e-16
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   13 LVTGGCGFLGEHVVRMLLQREPrlgELRVFDqHLGPWLEELKTGPVRVtaIQGDVTQAHEVAAAVAGAH--VVIHTAGLV 90
Cdd:pfam01370   2 LVTGATGFIGSHLVRRLLEKGY---EVIGLD-RLTSASNTARLADLRF--VEGDLTDRDALEKLLADVRpdAVIHLAAVG 75
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   91 DVFGRAS-PKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKGhpfyRGNEDTPYEAVHRH-PYPCSKALAEW 168
Cdd:pfam01370  76 GVGASIEdPEDFIEANVLGTLNLLEAARKAGVKRFLFASSSEVYGDGAEI----PQEETTLTGPLAPNsPYAAAKLAGEW 151
                         170       180       190
                  ....*....|....*....|....*....|
gi 767988827  169 LVLEANGrkvRGGLPlvTCALRPTGIYGEG 198
Cdd:pfam01370 152 LVLAYAA---AYGLR--AVILRLFNVYGPG 176
CDP_TE_SDR_e cd05258
CDP-tyvelose 2-epimerase, extended (e) SDRs; CDP-tyvelose 2-epimerase is a tetrameric SDR that ...
11-199 7.35e-15

CDP-tyvelose 2-epimerase, extended (e) SDRs; CDP-tyvelose 2-epimerase is a tetrameric SDR that catalyzes the conversion of CDP-D-paratose to CDP-D-tyvelose, the last step in tyvelose biosynthesis. This subgroup is a member of the extended SDR subfamily, with a characteristic active site tetrad and NAD-binding motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187568 [Multi-domain]  Cd Length: 337  Bit Score: 74.63  E-value: 7.35e-15
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  11 VYLVTGGCGFLGEHVVRMLLQREprlGELRVFDQHL-------GPWLEELKTGPvRVTAIQGDVTQAHEVAAAVAGAHVV 83
Cdd:cd05258    2 RVLITGGAGFIGSNLARFFLKQG---WEVIGFDNLMrrgsfgnLAWLKANREDG-GVRFVHGDIRNRNDLEDLFEDIDLI 77
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  84 IHTAGLVDV-FGRASPKTIHEVNVQGTRNVIEACVQTGTR-FLVYTSSMEVVGPNTKGHPFYRG------NEDTPYEA-- 153
Cdd:cd05258   78 IHTAAQPSVtTSASSPRLDFETNALGTLNVLEAARQHAPNaPFIFTSTNKVYGDLPNYLPLEELetryelAPEGWSPAgi 157
                        170       180       190       200       210
                 ....*....|....*....|....*....|....*....|....*....|...
gi 767988827 154 -------VHRHPYPCSKALAEWLVLEAnGRKVrgGLPLVTcaLRPTGIYGEGH 199
Cdd:cd05258  158 sesfpldFSHSLYGASKGAADQYVQEY-GRIF--GLKTVV--FRCGCLTGPRQ 205
Lys2b COG3320
Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary ...
11-184 2.85e-14

Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary metabolites biosynthesis, transport and catabolism]; Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs is part of the Pathway/BioSystem: Lysine biosynthesis


Pssm-ID: 442549 [Multi-domain]  Cd Length: 265  Bit Score: 72.16  E-value: 2.85e-14
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  11 VYLVTGGCGFLGEHVVRMLLQREP-----------RLGELRVFDQHLGPWLEELKTGPVRVTAIQGDVTQ------AHEV 73
Cdd:COG3320    2 TVLLTGATGFLGAHLLRELLRRTDarvyclvrasdEAAARERLEALLERYGLWLELDASRVVVVAGDLTQprlglsEAEF 81
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  74 AAAVAGAHVVIHTAGLVDVFgrASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTkgHPFYRGNEDTPYEA 153
Cdd:COG3320   82 QELAEEVDAIVHLAALVNLV--APYSELRAVNVLGTREVLRLAATGRLKPFHYVSTIAVAGPAD--RSGVFEEDDLDEGQ 157
                        170       180       190
                 ....*....|....*....|....*....|.
gi 767988827 154 VHRHPYPCSKALAEWLVLEANGRkvrgGLPL 184
Cdd:COG3320  158 GFANGYEQSKWVAEKLVREARER----GLPV 184
UDP_G4E_3_SDR_e cd05240
UDP-glucose 4 epimerase (G4E), subgroup 3, extended (e) SDRs; Members of this bacterial ...
13-349 1.04e-13

UDP-glucose 4 epimerase (G4E), subgroup 3, extended (e) SDRs; Members of this bacterial subgroup are identified as possible sugar epimerases, such as UDP-glucose 4 epimerase. However, while the NAD(P)-binding motif is fairly well conserved, not all members retain the canonical active site tetrad of the extended SDRs. UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187551 [Multi-domain]  Cd Length: 306  Bit Score: 70.86  E-value: 1.04e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQrEPRLGELRVFDQHLGPWleelktGPVRVTAIQGDVTQAHEVAAAVAGAH-VVIHTAGLVD 91
Cdd:cd05240    2 LVTGAAGGLGRLLARRLAA-SPRVIGVDGLDRRRPPG------SPPKVEYVRLDIRDPAAADVFREREAdAVVHLAFILD 74
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  92 vfGRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKGHPFYRgnEDTPYEAVHRHPYPCSKALAEWLVL 171
Cdd:cd05240   75 --PPRDGAERHRINVDGTQNVLDACAAAGVPRVVVTSSVAVYGAHPDNPAPLT--EDAPLRGSPEFAYSRDKAEVEQLLA 150
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 172 EANGRKVrgglPLVTCALRPTGIYG-EGHQIMRDFyRQGLRLGGWLFRAIPASVEHgrvyVGNVAWMHVLAARElEQRAT 250
Cdd:cd05240  151 EFRRRHP----ELNVTVLRPATILGpGTRNTTRDF-LSPRRLPVPGGFDPPFQFLH----EDDVARALVLAVRA-GATGI 220
                        250       260       270       280       290       300       310       320
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 251 lmggqvyfcydgspyrsyedFNMEFLGPCGLRLVGARPLLPYWLLvfLAALNALLQWLLRplvLYAPLLNPYTLAVANTT 330
Cdd:cd05240  221 --------------------FNVAGDGPVPLSLVLALLGRRPVPL--PSPLPAALAAARR---LGLRPLPPEQLDFLQYP 275
                        330
                 ....*....|....*....
gi 767988827 331 FTVSTDKAQRHFGYEPLFS 349
Cdd:cd05240  276 PVMDTTRARVELGWQPKHT 294
dTDP_GD_SDR_e cd05246
dTDP-D-glucose 4,6-dehydratase, extended (e) SDRs; This subgroup contains dTDP-D-glucose 4, ...
12-229 2.81e-13

dTDP-D-glucose 4,6-dehydratase, extended (e) SDRs; This subgroup contains dTDP-D-glucose 4,6-dehydratase and related proteins, members of the extended-SDR family, with the characteristic Rossmann fold core region, active site tetrad and NAD(P)-binding motif. dTDP-D-glucose 4,6-dehydratase is closely related to other sugar epimerases of the SDR family. dTDP-D-dlucose 4,6,-dehydratase catalyzes the second of four steps in the dTDP-L-rhamnose pathway (the dehydration of dTDP-D-glucose to dTDP-4-keto-6-deoxy-D-glucose) in the synthesis of L-rhamnose, a cell wall component of some pathogenic bacteria. In many gram negative bacteria, L-rhamnose is an important constituent of lipopoylsaccharide O-antigen. The larger N-terminal portion of dTDP-D-Glucose 4,6-dehydratase forms a Rossmann fold NAD-binding domain, while the C-terminus binds the sugar substrate. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187557 [Multi-domain]  Cd Length: 315  Bit Score: 69.89  E-value: 2.81e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQREPRlGELRVFD--------QHlgpwLEELKTGPvRVTAIQGDVTQAHEVAAAVAGAH-- 81
Cdd:cd05246    3 ILVTGGAGFIGSNFVRYLLNKYPD-YKIINLDkltyagnlEN----LEDVSSSP-RYRFVKGDICDAELVDRLFEEEKid 76
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  82 VVIHTAGL--VD-VFGRASPKTihEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKGHPFyrgNEDTPYEAvhRHP 158
Cdd:cd05246   77 AVIHFAAEshVDrSISDPEPFI--RTNVLGTYTLLEAARKYGVKRFVHISTDEVYGDLLDDGEF---TETSPLAP--TSP 149
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 159 YPCSKALAEWLVLeANGRkvRGGLPLV----------------------TCAL--RPTGIYGEGHQImRDfyrqglrlgg 214
Cdd:cd05246  150 YSASKAAADLLVR-AYHR--TYGLPVVitrcsnnygpyqfpekliplfiLNALdgKPLPIYGDGLNV-RD---------- 215
                        250       260
                 ....*....|....*....|
gi 767988827 215 WLF-----RAIPASVEHGRV 229
Cdd:cd05246  216 WLYvedhaRAIELVLEKGRV 235
SDR_e1 cd05235
extended (e) SDRs, subgroup 1; This family consists of an SDR module of multidomain proteins ...
13-223 8.51e-13

extended (e) SDRs, subgroup 1; This family consists of an SDR module of multidomain proteins identified as putative polyketide sythases fatty acid synthases (FAS), and nonribosomal peptide synthases, among others. However, unlike the usual ketoreductase modules of FAS and polyketide synthase, these domains are related to the extended SDRs, and have canonical NAD(P)-binding motifs and an active site tetrad. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187546 [Multi-domain]  Cd Length: 290  Bit Score: 68.06  E-value: 8.51e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQREP------------------RLgeLRVFDQHLGPWLEELKTGpvRVTAIQGDVTQ----- 69
Cdd:cd05235    3 LLTGATGFLGAYLLRELLKRKNvskiyclvrakdeeaaleRL--IDNLKEYGLNLWDELELS--RIKVVVGDLSKpnlgl 78
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  70 -AHEVAAAVAGAHVVIHTAGLVDVFGRASpkTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKGHPFYRGNED 148
Cdd:cd05235   79 sDDDYQELAEEVDVIIHNGANVNWVYPYE--ELKPANVLGTKELLKLAATGKLKPLHFVSTLSVFSAEEYNALDDEESDD 156
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 149 TPYEAV-HRHPYPCSKALAEWLVLEANGRkvrgGLPlvTCALRPTGIYG---EGHQIMRDF-YRQ---GLRLGGWLFRAI 220
Cdd:cd05235  157 MLESQNgLPNGYIQSKWVAEKLLREAANR----GLP--VAIIRPGNIFGdseTGIGNTDDFfWRLlkgCLQLGIYPISGA 230

                 ...
gi 767988827 221 PAS 223
Cdd:cd05235  231 PLD 233
Thioester-redct TIGR01746
thioester reductase domain; This model includes the terminal domain from the fungal alpha ...
13-191 2.53e-12

thioester reductase domain; This model includes the terminal domain from the fungal alpha aminoadipate reductase enzyme (also known as aminoadipate semialdehyde dehydrogenase) which is involved in the biosynthesis of lysine, as well as the reductase-containing component of the myxochelin biosynthetic gene cluster, MxcG. The mechanism of reduction involves activation of the substrate by adenylation and transfer to a covalently-linked pantetheine cofactor as a thioester. This thioester is then reduced to give an aldehyde (thus releasing the product) and a regenerated pantetheine thiol. (In myxochelin biosynthesis this aldehyde is further reduced to an alcohol or converted to an amine by an aminotransferase.) This is a fundamentally different reaction than beta-ketoreductase domains of polyketide synthases which act at a carbonyl two carbons removed from the thioester and forms an alcohol as a product. This domain is invariably found at the C-terminus of the proteins which contain it (presumably because it results in the release of the product). The majority of hits to this model are non-ribosomal peptide synthetases in which this domain is similarly located proximal to a thiolation domain (pfam00550). In some cases this domain is found at the end of a polyketide synthetase enzyme, but is unlike ketoreductase domains which are found before the thiolase domains. Exceptions to this observed relationship with the thiolase domain include three proteins which consist of stand-alone reductase domains (GP|466833 from M. leprae, GP|435954 from Anabaena and OMNI|NTL02SC1199 from Strep. coelicolor) and one protein (OMNI|NTL01NS2636 from Nostoc) which contains N-terminal homology with a small group of hypothetical proteins but no evidence of a thiolation domain next to the putative reductase domain. Below the noise cutoff to this model are proteins containing more distantly related ketoreductase and dehydratase/epimerase domains. It has been suggested that a NADP-binding motif can be found in the N-terminal portion of this domain that may form a Rossman-type fold.


Pssm-ID: 273787 [Multi-domain]  Cd Length: 367  Bit Score: 67.44  E-value: 2.53e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   13 LVTGGCGFLGEHVVRMLLQREPRLG---------------ELR-VFDQHLgpwLEELKTGPVRVTAIQGDVTQAHEVAAA 76
Cdd:TIGR01746   3 LLTGATGFLGAYLLEELLRRSTRAKviclvradseehameRLReALRSYR---LWHENLAMERIEVVAGDLSKPRLGLSD 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   77 VAGAH------VVIHTAGLVDVFGRASpkTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMeVVGPNTKGHPFYRGNED-- 148
Cdd:TIGR01746  80 AEWERlaenvdTIVHNGALVNHVYPYS--ELRGANVLGTVEVLRLAASGRAKPLHYVSTI-SVGAAIDLSTGVTEDDAtv 156
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|...
gi 767988827  149 TPYEAVHrHPYPCSKALAEWLVLEANGRkvrgGLPLVTcaLRP 191
Cdd:TIGR01746 157 TPYPGLA-GGYTQSKWVAELLVREASDR----GLPVTI--VRP 192
UDP_G4E_2_SDR_e cd05234
UDP-glucose 4 epimerase, subgroup 2, extended (e) SDRs; UDP-glucose 4 epimerase (aka ...
12-208 3.02e-12

UDP-glucose 4 epimerase, subgroup 2, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup is comprised of archaeal and bacterial proteins, and has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187545 [Multi-domain]  Cd Length: 305  Bit Score: 66.55  E-value: 3.02e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQREprlGELRVFD-----QHLGPWLEE-----------LKTGPVRVTAIQGDVTqahevaa 75
Cdd:cd05234    2 ILVTGGAGFIGSHLVDRLLEEG---NEVVVVDnlssgRRENIEPEFenkafrfvkrdLLDTADKVAKKDGDTV------- 71
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  76 avagahvvIHTAGLVDV-FGRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVG-PNTKGHPfyrgnEDTPYea 153
Cdd:cd05234   72 --------FHLAANPDVrLGATDPDIDLEENVLATYNVLEAMRANGVKRIVFASSSTVYGeAKVIPTP-----EDYPP-- 136
                        170       180       190       200       210       220
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 154 vhrHP---YPCSKALAEWLvLEANGRKvrggLPLVTCALRPTGIYGEG--HQIMRDFYRQ 208
Cdd:cd05234  137 ---LPisvYGASKLAAEAL-ISAYAHL----FGFQAWIFRFANIVGPRstHGVIYDFINK 188
AR_like_SDR_e cd05193
aldehyde reductase, flavonoid reductase, and related proteins, extended (e) SDRs; This ...
13-183 6.02e-12

aldehyde reductase, flavonoid reductase, and related proteins, extended (e) SDRs; This subgroup contains aldehyde reductase and flavonoid reductase of the extended SDR-type and related proteins. Proteins in this subgroup have a complete SDR-type active site tetrad and a close match to the canonical extended SDR NADP-binding motif. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. The related flavonoid reductases act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187536 [Multi-domain]  Cd Length: 295  Bit Score: 65.72  E-value: 6.02e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQR----------------EPRLGELRVFDQHLGPWLEELKTGPVRVTAIQGdvtqahevaaa 76
Cdd:cd05193    2 LVTGASGFVASHVVEQLLERgykvratvrdpskvkkVNHLLDLDAKPGRLELAVADLTDEQSFDEVIKG----------- 70
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  77 vagAHVVIHTAGLVDvFGRASPKTIHEVNVQGTRNVIEACVQTGT-RFLVYTSSMEVVGPNTKGHPFYRGNE----DTPY 151
Cdd:cd05193   71 ---CAGVFHVATPVS-FSSKDPNEVIKPAIGGTLNALKAAAAAKSvKRFVLTSSAGSVLIPKPNVEGIVLDEkswnLEEF 146
                        170       180       190
                 ....*....|....*....|....*....|....*...
gi 767988827 152 EAVHRHP---YPCSKALAE---WLVLEANGRKVRGGLP 183
Cdd:cd05193  147 DSDPKKSawvYAASKTLAEkaaWKFADENNIDLITVIP 184
PRK07201 PRK07201
SDR family oxidoreductase;
12-179 3.77e-11

SDR family oxidoreductase;


Pssm-ID: 235962 [Multi-domain]  Cd Length: 657  Bit Score: 64.59  E-value: 3.77e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQREP--------RLGELRVFDQHLGPWleelktGPVRVTAIQGDVTQAHEVAAAVAGAHVV 83
Cdd:PRK07201   3 YFVTGGTGFIGRRLVSRLLDRRReatvhvlvRRQSLSRLEALAAYW------GADRVVPLVGDLTEPGLGLSEADIAELG 76
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  84 -----IHTAGLVDVfgRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGpntkghpFYRG--NEDTPYEAVH- 155
Cdd:PRK07201  77 didhvVHLAAIYDL--TADEEAQRAANVDGTRNVVELAERLQAATFHHVSSIAVAG-------DYEGvfREDDFDEGQGl 147
                        170       180
                 ....*....|....*....|....
gi 767988827 156 RHPYPCSKALAEWLVLEANGRKVR 179
Cdd:PRK07201 148 PTPYHRTKFEAEKLVREECGLPWR 171
AR_SDR_e cd05227
aldehyde reductase, extended (e) SDRs; This subgroup contains aldehyde reductase of the ...
13-273 5.42e-11

aldehyde reductase, extended (e) SDRs; This subgroup contains aldehyde reductase of the extended SDR-type and related proteins. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it has an NADP-binding motif consensus that is slightly different from the canonical SDR form and lacks the Asn of the extended SDR active site tetrad. Aldehyde reductase I catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187538 [Multi-domain]  Cd Length: 301  Bit Score: 62.67  E-value: 5.42e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQR----------EPRLGELR-VFDQHLGPwlEELKTgpvrvtAIQGDVTQAHEVAAAVAGAH 81
Cdd:cd05227    3 LVTGATGFIASHIVEQLLKAgykvrgtvrsLSKSAKLKaLLKAAGYN--DRLEF------VIVDDLTAPNAWDEALKGVD 74
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  82 VVIHTAGLVDVFGRASPKTIHEVNVQGTRNVIEACVQTGT-RFLVYTSSMEVVG---PNTKGHPFYRG--NEDTPYEAVH 155
Cdd:cd05227   75 YVIHVASPFPFTGPDAEDDVIDPAVEGTLNVLEAAKAAGSvKRVVLTSSVAAVGdptAEDPGKVFTEEdwNDLTISKSNG 154
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 156 RHPYPCSKALAE---WLVLEANGRKvrggLPLVTcaLRPTGIYGEghQIMRDFYRQGLRLGGWLF----RAIPASVEHGR 228
Cdd:cd05227  155 LDAYIASKTLAEkaaWEFVKENKPK----FELIT--INPGYVLGP--SLLADELNSSNELINKLLdgklPAIPPNLPFGY 226
                        250       260       270       280
                 ....*....|....*....|....*....|....*....|....*
gi 767988827 229 VYVGNVAWMHVLAareLEQRATlmGGQVYFCyDGSPYRSYEDFNM 273
Cdd:cd05227  227 VDVRDVADAHVRA---LESPEA--AGQRFIV-SAGPFSFQEIADL 265
NAD_binding_4 pfam07993
Male sterility protein; This family represents the C-terminal region of the male sterility ...
14-197 7.02e-11

Male sterility protein; This family represents the C-terminal region of the male sterility protein in a number of arabidopsis and drosophila. A sequence-related jojoba acyl CoA reductase is also included.


Pssm-ID: 462334 [Multi-domain]  Cd Length: 257  Bit Score: 61.86  E-value: 7.02e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   14 VTGGCGFLGEHVVRMLLQREPRLGEL--------------RVFD--QHLGPWLEELKTGPVRVTAIQGDVTQA------H 71
Cdd:pfam07993   1 LTGATGFLGKVLLEKLLRSTPDVKKIyllvrakdgesaleRLRQelEKYPLFDALLKEALERIVPVAGDLSEPnlglseE 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   72 EVAAAVAGAHVVIHTAGLVDVFGRAspKTIHEVNVQGTRNVIEACVQT-GTRFLVYTSSmEVVGPNTKGH---PFYRG-- 145
Cdd:pfam07993  81 DFQELAEEVDVIIHSAATVNFVEPY--DDARAVNVLGTREVLRLAKQGkQLKPFHHVST-AYVNGERGGLveeKPYPEge 157
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 767988827  146 -----NEDTPYEAV-HRHPYPCSKALAEWLVLEANgrkvRGGLPLVTcaLRPTGIYGE 197
Cdd:pfam07993 158 ddmllDEDEPALLGgLPNGYTQTKWLAEQLVREAA----RRGLPVVI--YRPSIITGE 209
FR_SDR_e cd08958
flavonoid reductase (FR), extended (e) SDRs; This subgroup contains FRs of the extended ...
12-186 4.17e-10

flavonoid reductase (FR), extended (e) SDRs; This subgroup contains FRs of the extended SDR-type and related proteins. These FRs act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites; they have the characteristic active site triad of the SDRs (though not the upstream active site Asn) and a NADP-binding motif that is very similar to the typical extended SDR motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187661 [Multi-domain]  Cd Length: 293  Bit Score: 59.90  E-value: 4.17e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQR-------------EPRLGELRVfdqhlgpwLEELKTgpvRVTAIQGDVTQAHEVAAAVA 78
Cdd:cd08958    1 VCVTGASGFIGSWLVKRLLQRgytvratvrdpgdEKKVAHLLE--------LEGAKE---RLKLFKADLLDYGSFDAAID 69
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  79 GAHVVIHTAGLVDVFGRASPKTIHEVNVQGTRNVIEACVQTGT-RFLVYTSSMEVVGPNTKGHP-------------FYR 144
Cdd:cd08958   70 GCDGVFHVASPVDFDSEDPEEEMIEPAVKGTLNVLEACAKAKSvKRVVFTSSVAAVVWNPNRGEgkvvdescwsdldFCK 149
                        170       180       190       200
                 ....*....|....*....|....*....|....*....|..
gi 767988827 145 GNEDTpyeavhrhpYPCSKALAEWLVLEANGRKvrgGLPLVT 186
Cdd:cd08958  150 KTKLW---------YALSKTLAEKAAWEFAEEN---GLDLVT 179
GalE COG1087
UDP-glucose 4-epimerase [Cell wall/membrane/envelope biogenesis];
13-201 6.28e-10

UDP-glucose 4-epimerase [Cell wall/membrane/envelope biogenesis];


Pssm-ID: 440704 [Multi-domain]  Cd Length: 328  Bit Score: 59.65  E-value: 6.28e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQReprlG-ELRVFDqhlgpwleELKTG-----PVRVTAIQGDVTQahevaaavagahvvihT 86
Cdd:COG1087    4 LVTGGAGYIGSHTVVALLEA----GhEVVVLD--------NLSNGhreavPKGVPFVEGDLRD----------------R 55
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  87 AGLVDVFGRASPKT-IH------------------EVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGpNTKGHPFyrgNE 147
Cdd:COG1087   56 AALDRVFAEHDIDAvIHfaalkavgesvekplkyyRNNVVGTLNLLEAMREAGVKRFVFSSSAAVYG-EPESVPI---TE 131
                        170       180       190       200       210       220
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 767988827 148 DTPYEAVhrHPYPCSKALAEWlVLE----ANGRKVrgglplvtCALR--------PTGIYGEGHQI 201
Cdd:COG1087  132 DAPTNPT--NPYGRSKLMVEQ-ILRdlarAYGLRY--------VALRyfnpagahPSGRIGEDHGP 186
Gne_like_SDR_e cd05238
Escherichia coli Gne (a nucleoside-diphosphate-sugar 4-epimerase)-like, extended (e) SDRs; ...
13-191 7.19e-10

Escherichia coli Gne (a nucleoside-diphosphate-sugar 4-epimerase)-like, extended (e) SDRs; Nucleoside-diphosphate-sugar 4-epimerase has the characteristic active site tetrad and NAD-binding motif of the extended SDR, and is related to more specifically defined epimerases such as UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), which catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup includes Escherichia coli 055:H7 Gne, a UDP-GlcNAc 4-epimerase, essential for O55 antigen synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187549 [Multi-domain]  Cd Length: 305  Bit Score: 59.32  E-value: 7.19e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQREPRLgELRVFD--QHLGPwleelkTGPVRVTAIQGDVTQAHEV-AAAVAGAHVVIHTAGL 89
Cdd:cd05238    4 LITGASGFVGQRLAERLLSDVPNE-RLILIDvvSPKAP------SGAPRVTQIAGDLAVPALIeALANGRPDVVFHLAAI 76
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  90 VDVFGRASPKTIHEVNVQGTRNVIEACVQTG--TRFlVYTSSMEVVGPntkghPFYRGNEDTPyeavHRHP---YPCSKA 164
Cdd:cd05238   77 VSGGAEADFDLGYRVNVDGTRNLLEALRKNGpkPRF-VFTSSLAVYGL-----PLPNPVTDHT----ALDPassYGAQKA 146
                        170       180
                 ....*....|....*....|....*....
gi 767988827 165 LAEWLVLEANGR-KVRG-GLPLVTCALRP 191
Cdd:cd05238  147 MCELLLNDYSRRgFVDGrTLRLPTVCVRP 175
UDP_G4E_5_SDR_e cd05264
UDP-glucose 4-epimerase (G4E), subgroup 5, extended (e) SDRs; This subgroup partially ...
12-210 1.06e-09

UDP-glucose 4-epimerase (G4E), subgroup 5, extended (e) SDRs; This subgroup partially conserves the characteristic active site tetrad and NAD-binding motif of the extended SDRs, and has been identified as possible UDP-glucose 4-epimerase (aka UDP-galactose 4-epimerase), a homodimeric member of the extended SDR family. UDP-glucose 4-epimerase catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187574 [Multi-domain]  Cd Length: 300  Bit Score: 58.87  E-value: 1.06e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQREPRlgeLRVFDQHLGPwlEELKTGPVRVtaIQGDVTQAHEVAAAVAGAHVVIHTAGlvD 91
Cdd:cd05264    2 VLIVGGNGFIGSHLVDALLEEGPQ---VRVFDRSIPP--YELPLGGVDY--IKGDYENRADLESALVGIDTVIHLAS--T 72
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  92 VFGRASPKTIH---EVNVQGTRNVIEACVQTGTRFLVYTSSmevvGPNTKGHPfyrgnEDTPYEAVHR----HPYPCSKA 164
Cdd:cd05264   73 TNPATSNKNPIldiQTNVAPTVQLLEACAAAGIGKIIFASS----GGTVYGVP-----EQLPISESDPtlpiSSYGISKL 143
                        170       180       190       200
                 ....*....|....*....|....*....|....*....|....*..
gi 767988827 165 LAE-WLVLEangrKVRGGLPLVTcaLRPTGIYGEGHQIMRdfyRQGL 210
Cdd:cd05264  144 AIEkYLRLY----QYLYGLDYTV--LRISNPYGPGQRPDG---KQGV 181
SDR_e_a cd05226
Extended (e) and atypical (a) SDRs; Extended or atypical short-chain dehydrogenases/reductases ...
13-197 1.48e-08

Extended (e) and atypical (a) SDRs; Extended or atypical short-chain dehydrogenases/reductases (SDRs, aka tyrosine-dependent oxidoreductases) are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187537 [Multi-domain]  Cd Length: 176  Bit Score: 53.95  E-value: 1.48e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQReprlG-ELRVFDQH-LGPWLEELKtgpvRVTAIQGDVTQAHEVAAAVAGAHVVIHTAGLv 90
Cdd:cd05226    2 LILGATGFIGRALARELLEQ----GhEVTLLVRNtKRLSKEDQE----PVAVVEGDLRDLDSLSDAVQGVDVVIHLAGA- 72
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  91 DVFGRAspktIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTkghpfyrgnEDTPYEAvhRHPYPCSKALAEWLV 170
Cdd:cd05226   73 PRDTRD----FCEVDVEGTRNVLEAAKEAGVKHFIFISSLGAYGDLH---------EETEPSP--SSPYLAVKAKTEAVL 137
                        170       180
                 ....*....|....*....|....*..
gi 767988827 171 LEANGRKVrgglplvtcALRPTGIYGE 197
Cdd:cd05226  138 REASLPYT---------IVRPGVIYGD 155
GDP_Man_Dehyd pfam16363
GDP-mannose 4,6 dehydratase;
13-205 6.08e-08

GDP-mannose 4,6 dehydratase;


Pssm-ID: 465104 [Multi-domain]  Cd Length: 327  Bit Score: 53.71  E-value: 6.08e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   13 LVTGGCGFLGEHVVRMLLQREPRLGELRVFDQHLGPW-LEELKTGPV--RVTAIQGDVTqahevaaavagahvviHTAGL 89
Cdd:pfam16363   1 LITGITGQDGSYLAELLLEKGYEVHGIVRRSSSFNTGrLEHLYDDHLngNLVLHYGDLT----------------DSSNL 64
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   90 VDVFGRASPKTI-------H------------EVNVQGTRNVIEACVQTG----TRFLVyTSSMEVVGpNTKGHPFyrgN 146
Cdd:pfam16363  65 VRLLAEVQPDEIynlaaqsHvdvsfeqpeytaDTNVLGTLRLLEAIRSLGlekkVRFYQ-ASTSEVYG-KVQEVPQ---T 139
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  147 EDTPYEAvhRHPYPCSKALAEWLVL---EA------NG----------------RKVRGGLPLVTCALRPTGIYGEGHQI 201
Cdd:pfam16363 140 ETTPFYP--RSPYAAAKLYADWIVVnyrESyglfacNGilfnhesprrgerfvtRKITRGVARIKLGKQEKLYLGNLDAK 217

                  ....
gi 767988827  202 mRDF 205
Cdd:pfam16363 218 -RDW 220
YbjT COG0702
Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General ...
12-257 8.01e-08

Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General function prediction only];


Pssm-ID: 440466 [Multi-domain]  Cd Length: 215  Bit Score: 52.16  E-value: 8.01e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQREprlGELRVFDQHLGPWLEELKTGpvrVTAIQGDVTQAhevaaavagahvvihtAGLVD 91
Cdd:COG0702    2 ILVTGATGFIGRRVVRALLARG---HPVRALVRDPEKAAALAAAG---VEVVQGDLDDP----------------ESLAA 59
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  92 VFGRA---------SPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMevvgpntkghpfyrGNEDTPYEAVHRhpypcS 162
Cdd:COG0702   60 ALAGVdavfllvpsGPGGDFAVDVEGARNLADAAKAAGVKRIVYLSAL--------------GADRDSPSPYLR-----A 120
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 163 KALAEWLVLEAngrkvrgGLPLVtcALRPTGIYGEghqiMRDFYRQGLRLGgwlfrAIPASVEHGR---VYVGNVAWMhv 239
Cdd:COG0702  121 KAAVEEALRAS-------GLPYT--ILRPGWFMGN----LLGFFERLRERG-----VLPLPAGDGRvqpIAVRDVAEA-- 180
                        250
                 ....*....|....*...
gi 767988827 240 lAARELEQRATlmGGQVY 257
Cdd:COG0702  181 -AAAALTDPGH--AGRTY 195
UDP_G4E_1_SDR_e cd05247
UDP-glucose 4 epimerase, subgroup 1, extended (e) SDRs; UDP-glucose 4 epimerase (aka ...
12-169 3.29e-07

UDP-glucose 4 epimerase, subgroup 1, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187558 [Multi-domain]  Cd Length: 323  Bit Score: 51.38  E-value: 3.29e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQReprlG-ELRVFD-------QHLgPWLEelktgPVRVTAIQGDV--TQAHEVAAAVAGAH 81
Cdd:cd05247    2 VLVTGGAGYIGSHTVVELLEA----GyDVVVLDnlsnghrEAL-PRIE-----KIRIEFYEGDIrdRAALDKVFAEHKID 71
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  82 VVIHTAGLVDVfGR--ASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKGhPFYrgnEDTPYEAVhrHPY 159
Cdd:cd05247   72 AVIHFAALKAV-GEsvQKPLKYYDNNVVGTLNLLEAMRAHGVKNFVFSSSAAVYGEPETV-PIT---EEAPLNPT--NPY 144
                        170
                 ....*....|
gi 767988827 160 PCSKALAEWL 169
Cdd:cd05247  145 GRTKLMVEQI 154
FAR-N_SDR_e cd05236
fatty acyl CoA reductases (FARs), extended (e) SDRs; SDRs are Rossmann-fold NAD(P)H-binding ...
12-196 6.03e-07

fatty acyl CoA reductases (FARs), extended (e) SDRs; SDRs are Rossmann-fold NAD(P)H-binding proteins, many of which may function as fatty acyl CoA reductases (FAR), acting on medium and long chain fatty acids, and have been reported to be involved in diverse processes such as biosynthesis of insect pheromones, plant cuticular wax production, and mammalian wax biosynthesis. In Arabidopsis thaliana, proteins with this particular architecture have also been identified as the MALE STERILITY 2 (MS2) gene product, which is implicated in male gametogenesis. Mutations in MS2 inhibit the synthesis of exine (sporopollenin), rendering plants unable to reduce pollen wall fatty acids to corresponding alcohols. This N-terminal domain shares the catalytic triad (but not the upstream Asn) and characteristic NADP-binding motif of the extended SDR family. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187547 [Multi-domain]  Cd Length: 320  Bit Score: 50.76  E-value: 6.03e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQREPRLGELRVF----DQHLG-PWLEELKTGPV-------------RVTAIQGDVTQ---- 69
Cdd:cd05236    3 VLITGATGFLGKVLLEKLLRSCPDIGKIYLLirgkSGQSAeERLRELLKDKLfdrgrnlnplfesKIVPIEGDLSEpnlg 82
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  70 --AHEVAAAVAGAHVVIHTAGLVDvFGRASPKTIhEVNVQGTRNVIEACVQ-TGTRFLVYTSS----------MEVVGP- 135
Cdd:cd05236   83 lsDEDLQTLIEEVNIIIHCAATVT-FDERLDEAL-SINVLGTLRLLELAKRcKKLKAFVHVSTayvngdrqliEEKVYPp 160
                        170       180       190       200       210       220       230
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 767988827 136 --NTKGHPFYR------GNEDTPYEAVHRHP--YPCSKALAEWLVleangRKVRGGLPLVTcaLRPTGIYG 196
Cdd:cd05236  161 paDPEKLIDILelmddlELERATPKLLGGHPntYTFTKALAERLV-----LKERGNLPLVI--VRPSIVGA 224
KR_2_SDR_x cd08953
ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain ...
11-130 7.13e-07

ketoreductase (KR), subgroup 2, complex (x) SDRs; Ketoreductase, a module of the multidomain polyketide synthase (PKS), has 2 subdomains, each corresponding to a SDR family monomer. The C-terminal subdomain catalyzes the NADPH-dependent reduction of the beta-carbonyl of a polyketide to a hydroxyl group, a step in the biosynthesis of polyketides, such as erythromycin. The N-terminal subdomain, an interdomain linker, is a truncated Rossmann fold which acts to stabilizes the catalytic subdomain. Unlike typical SDRs, the isolated domain does not oligomerize but is composed of 2 subdomains, each resembling an SDR monomer. The active site resembles that of typical SDRs, except that the usual positions of the catalytic Asn and Tyr are swapped, so that the canonical YXXXK motif changes to YXXXN. Modular PKSs are multifunctional structures in which the makeup recapitulates that found in (and may have evolved from) FAS. Polyketide synthesis also proceeds via the addition of 2-carbon units as in fatty acid synthesis. The complex SDR NADP-binding motif, GGXGXXG, is often present, but is not strictly conserved in each instance of the module. This subfamily includes both KR domains of the Bacillus subtilis Pks J,-L, and PksM, and all three KR domains of PksN, components of the megacomplex bacillaene synthase, which synthesizes the antibiotic bacillaene. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human prostaglandin dehydrogenase (PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, PGDH numbering) and/or an Asn (Asn-107, PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type KRs have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.


Pssm-ID: 187656 [Multi-domain]  Cd Length: 436  Bit Score: 50.83  E-value: 7.13e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  11 VYLVTGGCGFLGEHVVRMLLQREPRlgelRVF----------DQHLGPWLEELKTGPVRVTAIQGDVTQAHEVAAAVAGA 80
Cdd:cd08953  207 VYLVTGGAGGIGRALARALARRYGA----RLVllgrsplppeEEWKAQTLAALEALGARVLYISADVTDAAAVRRLLEKV 282
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 767988827  81 HVV-------IHTAGLVDV--FGRASPKTIHEV---NVQGTRNVIEACVQTGTRFLVYTSSM 130
Cdd:cd08953  283 RERygaidgvIHAAGVLRDalLAQKTAEDFEAVlapKVDGLLNLAQALADEPLDFFVLFSSV 344
RfbD COG1091
dTDP-4-dehydrorhamnose reductase [Cell wall/membrane/envelope biogenesis];
13-213 8.52e-07

dTDP-4-dehydrorhamnose reductase [Cell wall/membrane/envelope biogenesis];


Pssm-ID: 440708 [Multi-domain]  Cd Length: 279  Bit Score: 49.74  E-value: 8.52e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQREPRL-----GELRVFDqhlgpwLEELKTgpvRVTAIQGDVTqahevaaavagahvvIHTA 87
Cdd:COG1091    3 LVTGANGQLGRALVRLLAERGYEVvaldrSELDITD------PEAVAA---LLEEVRPDVV---------------INAA 58
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  88 GLVDVFGRAS-PKTIHEVNVQGTRNVIEACVQTGTRfLVYTSSMEVvgpntkghpfYRGNEDTPY-EAVHRHP---YPCS 162
Cdd:COG1091   59 AYTAVDKAESePELAYAVNATGPANLAEACAELGAR-LIHISTDYV----------FDGTKGTPYtEDDPPNPlnvYGRS 127
                        170       180       190       200       210
                 ....*....|....*....|....*....|....*....|....*....|.
gi 767988827 163 KALAEWLVLEANGRkvrgglplvTCALRPTGIYGEGHqimRDFYRQGLRLG 213
Cdd:COG1091  128 KLAGEQAVRAAGPR---------HLILRTSWVYGPHG---KNFVKTMLRLL 166
dTDP_HR_like_SDR_e cd05254
dTDP-6-deoxy-L-lyxo-4-hexulose reductase and related proteins, extended (e) SDRs; ...
13-210 1.03e-06

dTDP-6-deoxy-L-lyxo-4-hexulose reductase and related proteins, extended (e) SDRs; dTDP-6-deoxy-L-lyxo-4-hexulose reductase, an extended SDR, synthesizes dTDP-L-rhamnose from alpha-D-glucose-1-phosphate, providing the precursor of L-rhamnose, an essential cell wall component of many pathogenic bacteria. This subgroup has the characteristic active site tetrad and NADP-binding motif. This subgroup also contains human MAT2B, the regulatory subunit of methionine adenosyltransferase (MAT); MAT catalyzes S-adenosylmethionine synthesis. The human gene encoding MAT2B encodes two major splicing variants which are induced in human cell liver cancer and regulate HuR, an mRNA-binding protein which stabilizes the mRNA of several cyclins, to affect cell proliferation. Both MAT2B variants include this extended SDR domain. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187564 [Multi-domain]  Cd Length: 280  Bit Score: 49.55  E-value: 1.03e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQR------------EPRLGELRVFDQhlgpwLEELktgpvrVTAIQGDVtqahevaaavaga 80
Cdd:cd05254    3 LITGATGMLGRALVRLLKERgyevigtgrsraSLFKLDLTDPDA-----VEEA------IRDYKPDV------------- 58
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  81 hvVIHTAGLVDVFGRAS-PKTIHEVNVQGTRNVIEACVQTGTRfLVYTSSmEVVGPNTKghPFYRgNEDTPyeavhrHP- 158
Cdd:cd05254   59 --IINCAAYTRVDKCESdPELAYRVNVLAPENLARAAKEVGAR-LIHIST-DYVFDGKK--GPYK-EEDAP------NPl 125
                        170       180       190       200       210
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 767988827 159 --YPCSKALAEWLVLEANGRkvrgglplvTCALRPTGIYGE---GHQIMRDFYRQGL 210
Cdd:cd05254  126 nvYGKSKLLGEVAVLNANPR---------YLILRTSWLYGElknGENFVEWMLRLAA 173
PKS_KR smart00822
This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step ...
11-130 6.79e-06

This enzymatic domain is part of bacterial polyketide synthases; It catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.


Pssm-ID: 214833 [Multi-domain]  Cd Length: 180  Bit Score: 45.94  E-value: 6.79e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827    11 VYLVTGGCGFLGEHVVRMLLQREPRlgelRVF--------DQHLGPWLEELKTGPVRVTAIQGDVTQAHEVAAAVAGAHV 82
Cdd:smart00822   2 TYLITGGLGGLGRALARWLAERGAR----RLVllsrsgpdAPGAAALLAELEAAGARVTVVACDVADRDALAAVLAAIPA 77
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827    83 V-------IHTAGLVD--VFGRASPKTIHEVN---VQGTRNVIEACVQTGTRFLVYTSSM 130
Cdd:smart00822  78 VegpltgvIHAAGVLDdgVLASLTPERFAAVLapkAAGAWNLHELTADLPLDFFVLFSSI 137
GDP_MD_SDR_e cd05260
GDP-mannose 4,6 dehydratase, extended (e) SDRs; GDP-mannose 4,6 dehydratase, a homodimeric SDR, ...
103-178 1.51e-05

GDP-mannose 4,6 dehydratase, extended (e) SDRs; GDP-mannose 4,6 dehydratase, a homodimeric SDR, catalyzes the NADP(H)-dependent conversion of GDP-(D)-mannose to GDP-4-keto, 6-deoxy-(D)-mannose in the fucose biosynthesis pathway. These proteins have the canonical active site triad and NAD-binding pattern, however the active site Asn is often missing and may be substituted with Asp. A Glu residue has been identified as an important active site base. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187570 [Multi-domain]  Cd Length: 316  Bit Score: 46.44  E-value: 1.51e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 103 EVNVQGTRNVIEACVQTG--TRFLVYTSSmEVVGPNTKgHPFyrgNEDTPYEAvhRHPYPCSKALAEWLVL---EANGRK 177
Cdd:cd05260   97 EVNAVGTLNLLEAIRILGldARFYQASSS-EEYGKVQE-LPQ---SETTPFRP--RSPYAVSKLYADWITRnyrEAYGLF 169

                 .
gi 767988827 178 V 178
Cdd:cd05260  170 A 170
UGD_SDR_e cd05230
UDP-glucuronate decarboxylase (UGD) and related proteins, extended (e) SDRs; UGD catalyzes the ...
13-233 2.14e-05

UDP-glucuronate decarboxylase (UGD) and related proteins, extended (e) SDRs; UGD catalyzes the formation of UDP-xylose from UDP-glucuronate; it is an extended-SDR, and has the characteristic glycine-rich NAD-binding pattern, TGXXGXXG, and active site tetrad. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187541 [Multi-domain]  Cd Length: 305  Bit Score: 45.71  E-value: 2.14e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLqrepRLG-ELRVFDQHL-GPW--LEELKTGPvRVTAIQGDVTqahevAAAVAGAHVVIHTAg 88
Cdd:cd05230    4 LITGGAGFLGSHLCDRLL----EDGhEVICVDNFFtGRKrnIEHLIGHP-NFEFIRHDVT-----EPLYLEVDQIYHLA- 72
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  89 lvdvfGRASP--------KTIhEVNVQGTRNVIEACVQTGTRFLvYTSSMEVVGpNTKGHP---FYRGNEDT--Pyeavh 155
Cdd:cd05230   73 -----CPASPvhyqynpiKTL-KTNVLGTLNMLGLAKRVGARVL-LASTSEVYG-DPEVHPqpeSYWGNVNPigP----- 139
                        170       180       190       200       210       220       230       240
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827 156 RHPYPCSKALAEWLVLE---ANGRKVRGGLPLVTC------------------ALR--PTGIYGEGHQiMRDF-YRQGLR 211
Cdd:cd05230  140 RSCYDEGKRVAETLCMAyhrQHGVDVRIARIFNTYgprmhpndgrvvsnfivqALRgePITVYGDGTQ-TRSFqYVSDLV 218
                        250       260
                 ....*....|....*....|..
gi 767988827 212 LGgwLFRAIPASVEHGRVYVGN 233
Cdd:cd05230  219 EG--LIRLMNSDYFGGPVNLGN 238
UDP_GE_SDE_e cd05253
UDP glucuronic acid epimerase, extended (e) SDRs; This subgroup contains UDP-D-glucuronic acid ...
12-142 2.24e-05

UDP glucuronic acid epimerase, extended (e) SDRs; This subgroup contains UDP-D-glucuronic acid 4-epimerase, an extended SDR, which catalyzes the conversion of UDP-alpha-D-glucuronic acid to UDP-alpha-D-galacturonic acid. This group has the SDR's canonical catalytic tetrad and the TGxxGxxG NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187563 [Multi-domain]  Cd Length: 332  Bit Score: 45.79  E-value: 2.24e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  12 YLVTGGCGFLGEHVVRMLLQR--------------EPRLGELRvfdqhlgpwLEELKTgPVRVTAIQGDVT--QAHEVAA 75
Cdd:cd05253    3 ILVTGAAGFIGFHVAKRLLERgdevvgidnlndyyDVRLKEAR---------LELLGK-SGGFKFVKGDLEdrEALRRLF 72
                         90       100       110       120       130       140       150
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  76 AVAGAHVVIHTAGLVDVfgRAS---PKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGPNTKgHPF 142
Cdd:cd05253   73 KDHEFDAVIHLAAQAGV--RYSlenPHAYVDSNIVGFLNLLELCRHFGVKHLVYASSSSVYGLNTK-MPF 139
KR pfam08659
KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the ...
11-130 4.64e-05

KR domain; This enzymatic domain is part of bacterial polyketide synthases and catalyzes the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group.


Pssm-ID: 430138 [Multi-domain]  Cd Length: 180  Bit Score: 43.70  E-value: 4.64e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   11 VYLVTGGCGFLGEHVVRMLLQREPRlgELRVFDQHLGP------WLEELKTGPVRVTAIQGDVTQAHEVAAAVAGAHVV- 83
Cdd:pfam08659   2 TYLITGGLGGLGRELARWLAERGAR--HLVLLSRSAAPrpdaqaLIAELEARGVEVVVVACDVSDPDAVAALLAEIKAEg 79
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 767988827   84 ------IHTAGLVD--VFGRASPKTIHEVN---VQGTRNVIEACVQTGTRFLVYTSSM 130
Cdd:pfam08659  80 ppirgvIHAAGVLRdaLLENMTDEDWRRVLapkVTGTWNLHEATPDEPLDFFVLFSSI 137
PLN02686 PLN02686
cinnamoyl-CoA reductase
2-130 5.48e-05

cinnamoyl-CoA reductase


Pssm-ID: 215370  Cd Length: 367  Bit Score: 44.77  E-value: 5.48e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   2 ADSAQAQKLVyLVTGGCGFLGEHVVRMLLQR-------------EPRLGELRVFDqhlgpwleELKTGPVRVTAIQGDVT 68
Cdd:PLN02686  47 AGADAEARLV-CVTGGVSFLGLAIVDRLLRHgysvriavdtqedKEKLREMEMFG--------EMGRSNDGIWTVMANLT 117
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 767988827  69 QAHEVAAAVAGAHVVIHTAGLVDVFGRAS-PKTIHEVNVQGTRNVIEACVQTGT-RFLVYTSSM 130
Cdd:PLN02686 118 EPESLHEAFDGCAGVFHTSAFVDPAGLSGyTKSMAELEAKASENVIEACVRTESvRKCVFTSSL 181
UDP_invert_4-6DH_SDR_e cd05237
UDP-Glcnac (UDP-linked N-acetylglucosamine) inverting 4,6-dehydratase, extended (e) SDRs; ...
13-177 3.59e-04

UDP-Glcnac (UDP-linked N-acetylglucosamine) inverting 4,6-dehydratase, extended (e) SDRs; UDP-Glcnac inverting 4,6-dehydratase was identified in Helicobacter pylori as the hexameric flaA1 gene product (FlaA1). FlaA1 is hexameric, possesses UDP-GlcNAc-inverting 4,6-dehydratase activity, and catalyzes the first step in the creation of a pseudaminic acid derivative in protein glycosylation. Although this subgroup has the NADP-binding motif characteristic of extended SDRs, its members tend to have a Met substituted for the active site Tyr found in most SDR families. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187548 [Multi-domain]  Cd Length: 287  Bit Score: 41.84  E-value: 3.59e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQREPRlgELRVFD-----QH-LGPWLEELKTGPVRVTAIqGDV--TQAHEVAAAVAGAHVVI 84
Cdd:cd05237    6 LVTGGAGSIGSELVRQILKFGPK--KLIVFDrdenkLHeLVRELRSRFPHDKLRFII-GDVrdKERLRRAFKERGPDIVF 82
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  85 HTAGLVDVfgRA---SPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVVGP-NTKGhpfyrgnedtpyeavhrhpyp 160
Cdd:cd05237   83 HAAALKHV--PSmedNPEEAIKTNVLGTKNVIDAAIENGVEKFVCISTDKAVNPvNVMG--------------------- 139
                        170
                 ....*....|....*..
gi 767988827 161 CSKALAEWLVLEANGRK 177
Cdd:cd05237  140 ATKRVAEKLLLAKNEYS 156
NDUFA9_like_SDR_a cd05271
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, subunit 9, 39 kDa, (NDUFA9) -like, ...
13-235 8.22e-04

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, subunit 9, 39 kDa, (NDUFA9) -like, atypical (a) SDRs; This subgroup of extended SDR-like proteins are atypical SDRs. They have a glycine-rich NAD(P)-binding motif similar to the typical SDRs, GXXGXXG, and have the YXXXK active site motif (though not the other residues of the SDR tetrad). Members identified include NDUFA9 (mitochondrial) and putative nucleoside-diphosphate-sugar epimerase. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187579 [Multi-domain]  Cd Length: 273  Bit Score: 40.69  E-value: 8.22e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQReprlG-ELRVFDQHLGPWLEELKTGP-VRVTAIQGDVTQahevaaAVAGAHVVIHTAGLV 90
Cdd:cd05271    4 TVFGATGFIGRYVVNRLAKR----GsQVIVPYRCEAYARRLLVMGDlGQVLFVEFDLRD------DESIRKALEGSDVVI 73
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  91 DVFGRASPK---TIHEVNVQGTRNVIEACVQTGTRFLVYTSSMevvGPNTKGhpfyrgneDTPYEAvhrhpypcSKALAE 167
Cdd:cd05271   74 NLVGRLYETknfSFEDVHVEGPERLAKAAKEAGVERLIHISAL---GADANS--------PSKYLR--------SKAEGE 134
                        170       180       190       200       210       220
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 767988827 168 WLVLEAngrkvrggLPLVTcALRPTGIYGEGHQIMRDFyRQGLRLGGWLFRAIPASVEHGRVYVGNVA 235
Cdd:cd05271  135 EAVREA--------FPEAT-IVRPSVVFGREDRFLNRF-AKLLAFLPFPPLIGGGQTKFQPVYVGDVA 192
WbmH_like_SDR_e cd08957
Bordetella bronchiseptica enzymes WbmH and WbmG-like, extended (e) SDRs; Bordetella ...
13-126 1.84e-03

Bordetella bronchiseptica enzymes WbmH and WbmG-like, extended (e) SDRs; Bordetella bronchiseptica enzymes WbmH and WbmG, and related proteins. This subgroup exhibits the active site tetrad and NAD-binding motif of the extended SDR family. It has been proposed that the active site in Bordetella WbmG and WbmH cannot function as an epimerase, and that it plays a role in O-antigen synthesis pathway from UDP-2,3-diacetamido-2,3-dideoxy-l-galacturonic acid. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187660 [Multi-domain]  Cd Length: 307  Bit Score: 39.79  E-value: 1.84e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLqrePRLGELRVFDQHLGPWLEELKTGPvRVTAIQGDVTQahevaaavagahvvihtAGLVD- 91
Cdd:cd08957    4 LITGGAGQIGSHLIEHLL---ERGHQVVVIDNFATGRREHLPDHP-NLTVVEGSIAD-----------------KALVDk 62
                         90       100       110       120       130
                 ....*....|....*....|....*....|....*....|....*....|.
gi 767988827  92 VFGRASP-KTIH---------------EVNVQGTRNVIEACVQTGTRFLVY 126
Cdd:cd08957   63 LFGDFKPdAVVHtaaaykdpddwyedtLTNVVGGANVVQAAKKAGVKRLIY 113
PLN02260 PLN02260
probable rhamnose biosynthetic enzyme
13-196 1.90e-03

probable rhamnose biosynthetic enzyme


Pssm-ID: 215146 [Multi-domain]  Cd Length: 668  Bit Score: 40.11  E-value: 1.90e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQREPRLgELRVFDQHlgPWLEELKT-GPVRVTA----IQGDVTQAHEVAAAVAGAH--VVIH 85
Cdd:PLN02260  10 LITGAAGFIASHVANRLIRNYPDY-KIVVLDKL--DYCSNLKNlNPSKSSPnfkfVKGDIASADLVNYLLITEGidTIMH 86
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  86 TAGLVDV---FGRASPKTihEVNVQGTRNVIEACVQTGT--RFLvYTSSMEVVGpntkghpfyrgneDTPYEAV---HR- 156
Cdd:PLN02260  87 FAAQTHVdnsFGNSFEFT--KNNIYGTHVLLEACKVTGQirRFI-HVSTDEVYG-------------ETDEDADvgnHEa 150
                        170       180       190       200
                 ....*....|....*....|....*....|....*....|....*.
gi 767988827 157 ------HPYPCSKALAEWLVLeANGRKVrgGLPLVTCalRPTGIYG 196
Cdd:PLN02260 151 sqllptNPYSATKAGAEMLVM-AYGRSY--GLPVITT--RGNNVYG 191
PLN02166 PLN02166
dTDP-glucose 4,6-dehydratase
8-172 2.78e-03

dTDP-glucose 4,6-dehydratase


Pssm-ID: 165812 [Multi-domain]  Cd Length: 436  Bit Score: 39.61  E-value: 2.78e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827   8 QKLVYLVTGGCGFLGEHVVRMLLQREprlGELRVFDQHLGPWLEELKT--GPVRVTAIQGDVTQahevaaavagaHVVIH 85
Cdd:PLN02166 119 KRLRIVVTGGAGFVGSHLVDKLIGRG---DEVIVIDNFFTGRKENLVHlfGNPRFELIRHDVVE-----------PILLE 184
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  86 TAGLVDVFGRASP--------KTIhEVNVQGTRNVIEACVQTGTRFLVyTSSMEVVGPNTKgHP---FYRGNEDTPYEav 154
Cdd:PLN02166 185 VDQIYHLACPASPvhykynpvKTI-KTNVMGTLNMLGLAKRVGARFLL-TSTSEVYGDPLE-HPqkeTYWGNVNPIGE-- 259
                        170
                 ....*....|....*...
gi 767988827 155 hRHPYPCSKALAEWLVLE 172
Cdd:PLN02166 260 -RSCYDEGKRTAETLAMD 276
TDH_SDR_e cd05272
L-threonine dehydrogenase, extended (e) SDRs; This subgroup contains members identified as ...
84-169 5.22e-03

L-threonine dehydrogenase, extended (e) SDRs; This subgroup contains members identified as L-threonine dehydrogenase (TDH). TDH catalyzes the zinc-dependent formation of 2-amino-3-ketobutyrate from L-threonine via NAD(H)-dependent oxidation. This group is distinct from TDHs that are members of the medium chain dehydrogenase/reductase family. This group has the NAD-binding motif and active site tetrad of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187580 [Multi-domain]  Cd Length: 308  Bit Score: 38.45  E-value: 5.22e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  84 IHTAGLVDVFGRASPKTIHEVNVQGTRNVIEACVQTGTRFLVyTSSMEVVGPNTkghpfyrGNEDTPYEAVHRhP---YP 160
Cdd:cd05272   70 IHLAALLSAVGEKNPPLAWDVNMNGLHNVLELAREHNLRIFV-PSTIGAFGPTT-------PRNNTPDDTIQR-PrtiYG 140

                 ....*....
gi 767988827 161 CSKALAEWL 169
Cdd:cd05272  141 VSKVAAELL 149
SDR_a5 cd05243
atypical (a) SDRs, subgroup 5; This subgroup contains atypical SDRs, some of which are ...
13-193 5.53e-03

atypical (a) SDRs, subgroup 5; This subgroup contains atypical SDRs, some of which are identified as putative NAD(P)-dependent epimerases, one as a putative NAD-dependent epimerase/dehydratase. Atypical SDRs are distinct from classical SDRs. Members of this subgroup have a glycine-rich NAD(P)-binding motif that is very similar to the extended SDRs, GXXGXXG, and binds NADP. Generally, this subgroup has poor conservation of the active site tetrad; however, individual sequences do contain matches to the YXXXK active site motif, the upstream Ser, and there is a highly conserved Asp in place of the usual active site Asn throughout the subgroup. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.


Pssm-ID: 187554 [Multi-domain]  Cd Length: 203  Bit Score: 37.60  E-value: 5.53e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  13 LVTGGCGFLGEHVVRMLLQR--EPRLGeLRVFDQhlgpwLEELKtgPVRVTAIQGDVTQAHEVAAAVAGAHVVIHTAGLv 90
Cdd:cd05243    3 LVVGATGKVGRHVVRELLDRgyQVRAL-VRDPSQ-----AEKLE--AAGAEVVVGDLTDAESLAAALEGIDAVISAAGS- 73
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  91 dvfGRASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMevvgpntkghpfyrGNEDTPYEAVHRHPYPCSKALAEWLV 170
Cdd:cd05243   74 ---GGKGGPRTEAVDYDGNINLIDAAKKAGVKRFVLVSSI--------------GADKPSHPLEALGPYLDAKRKAEDYL 136
                        170       180
                 ....*....|....*....|...
gi 767988827 171 LEAngrkvrgGLPLVTcaLRPTG 193
Cdd:cd05243  137 RAS-------GLDYTI--VRPGG 150
PLN02214 PLN02214
cinnamoyl-CoA reductase
14-133 9.69e-03

cinnamoyl-CoA reductase


Pssm-ID: 177862 [Multi-domain]  Cd Length: 342  Bit Score: 37.81  E-value: 9.69e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767988827  14 VTGGCGFLGEHVVRMLLQREPRL-GELRVFDQHLGPWLEELKTGPVRVTAIQGDVTQAHEVAAAVAGAHVVIHTAGLVDv 92
Cdd:PLN02214  15 VTGAGGYIASWIVKILLERGYTVkGTVRNPDDPKNTHLRELEGGKERLILCKADLQDYEALKAAIDGCDGVFHTASPVT- 93
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|.
gi 767988827  93 fgrASPKTIHEVNVQGTRNVIEACVQTGTRFLVYTSSMEVV 133
Cdd:PLN02214  94 ---DDPEQMVEPAVNGAKFVINAAAEAKVKRVVITSSIGAV 131
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH