NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|578802800|ref|XP_006712039|]
View 

fos-related antigen 2 isoform X1 [Homo sapiens]

Protein Classification

bZIP transcription factor( domain architecture ID 10200404)

basic leucine zipper (bZIP) transcription factor binds to the promoter regions of genes to control their expression

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
bZIP_Fos cd14721
Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos): a DNA-binding and dimerization ...
134-204 1.31e-18

Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos): a DNA-binding and dimerization domain; Fos proteins are members of the activator protein-1 (AP-1) complex, which is mainly composed of Basic leucine zipper (bZIP) dimers of the Jun and Fos families, and to a lesser extent, the activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. There are four Fos proteins: c-Fos, FosB, Fos-related antigen 1 (Fra-1), and Fra-2. In addition, FosB also exists as smaller splice variants FosB2 and deltaFosB2. They all contain an N-terminal region and a bZIP domain. c-Fos and FosB also contain a C-terminal transactivation domain which is absent in Fra-1/2 and the smaller FosB variants. Fos proteins can only heterodimerize with Jun and other AP-1 proteins, but cannot homodimerize. Fos:Jun heterodimers are more stable and can bind DNA with more affinity that Jun:Jun homodimers. Fos proteins can enhance the trans-activating and transforming properties of Jun proteins. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


:

Pssm-ID: 269869 [Multi-domain]  Cd Length: 62  Bit Score: 78.56  E-value: 1.31e-18
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 578802800 134 NKLAAAKCRNRRRELTEKLQAigpwqvavphiplfpwqETEELEEEKSGLQKEIAELQKEKEKLEFMLVAH 204
Cdd:cd14721    9 NKLAAAKCRQRRVDLTNTLQA-----------------ETEQLEDEKSSLQNEIANLQKQKEQLEFLLAAH 62
 
Name Accession Description Interval E-value
bZIP_Fos cd14721
Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos): a DNA-binding and dimerization ...
134-204 1.31e-18

Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos): a DNA-binding and dimerization domain; Fos proteins are members of the activator protein-1 (AP-1) complex, which is mainly composed of Basic leucine zipper (bZIP) dimers of the Jun and Fos families, and to a lesser extent, the activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. There are four Fos proteins: c-Fos, FosB, Fos-related antigen 1 (Fra-1), and Fra-2. In addition, FosB also exists as smaller splice variants FosB2 and deltaFosB2. They all contain an N-terminal region and a bZIP domain. c-Fos and FosB also contain a C-terminal transactivation domain which is absent in Fra-1/2 and the smaller FosB variants. Fos proteins can only heterodimerize with Jun and other AP-1 proteins, but cannot homodimerize. Fos:Jun heterodimers are more stable and can bind DNA with more affinity that Jun:Jun homodimers. Fos proteins can enhance the trans-activating and transforming properties of Jun proteins. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269869 [Multi-domain]  Cd Length: 62  Bit Score: 78.56  E-value: 1.31e-18
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 578802800 134 NKLAAAKCRNRRRELTEKLQAigpwqvavphiplfpwqETEELEEEKSGLQKEIAELQKEKEKLEFMLVAH 204
Cdd:cd14721    9 NKLAAAKCRQRRVDLTNTLQA-----------------ETEQLEDEKSSLQNEIANLQKQKEQLEFLLAAH 62
BRLZ smart00338
basic region leucin zipper;
130-201 3.92e-03

basic region leucin zipper;


Pssm-ID: 197664 [Multi-domain]  Cd Length: 65  Bit Score: 35.23  E-value: 3.92e-03
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 578802800   130 RRERNKLAAAKCRNRRRELTEKLQAigpwQVAvphiplfpwqeteELEEEKSGLQKEIAELQKEKEKLEFML 201
Cdd:smart00338   9 RRERNREAARRSRERKKAEIEELER----KVE-------------QLEAENERLKKEIERLRRELEKLKSEL 63
 
Name Accession Description Interval E-value
bZIP_Fos cd14721
Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos): a DNA-binding and dimerization ...
134-204 1.31e-18

Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos): a DNA-binding and dimerization domain; Fos proteins are members of the activator protein-1 (AP-1) complex, which is mainly composed of Basic leucine zipper (bZIP) dimers of the Jun and Fos families, and to a lesser extent, the activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. There are four Fos proteins: c-Fos, FosB, Fos-related antigen 1 (Fra-1), and Fra-2. In addition, FosB also exists as smaller splice variants FosB2 and deltaFosB2. They all contain an N-terminal region and a bZIP domain. c-Fos and FosB also contain a C-terminal transactivation domain which is absent in Fra-1/2 and the smaller FosB variants. Fos proteins can only heterodimerize with Jun and other AP-1 proteins, but cannot homodimerize. Fos:Jun heterodimers are more stable and can bind DNA with more affinity that Jun:Jun homodimers. Fos proteins can enhance the trans-activating and transforming properties of Jun proteins. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269869 [Multi-domain]  Cd Length: 62  Bit Score: 78.56  E-value: 1.31e-18
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 578802800 134 NKLAAAKCRNRRRELTEKLQAigpwqvavphiplfpwqETEELEEEKSGLQKEIAELQKEKEKLEFMLVAH 204
Cdd:cd14721    9 NKLAAAKCRQRRVDLTNTLQA-----------------ETEQLEDEKSSLQNEIANLQKQKEQLEFLLAAH 62
bZIP_Fos_like cd14699
Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos)-like transcription factors: a ...
134-201 1.67e-11

Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos)-like transcription factors: a DNA-binding and dimerization domain; This subfamily is composed of Fos proteins (c-Fos, FosB, Fos-related antigen 1 (Fra-1), and Fra-2), Activating Transcription Factor-3 (ATF-3), and similar proteins. Fos proteins are members of the activator protein-1 (AP-1) complex, which is mainly composed of bZIP dimers of the Jun and Fos families, and to a lesser extent, ATF and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. ATF3 is induced by various stress signals such as cytokines, genotoxic agents, or physiological stresses. It is implicated in cancer and host defense against pathogens. It negatively regulates the transcription of pro-inflammatory cytokines and is critical in preventing acute inflammatory syndromes. ATF3 dimerizes with Jun and other ATF proteins; the heterodimers function either as activators or repressors depending on the promoter context. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269847 [Multi-domain]  Cd Length: 59  Bit Score: 58.81  E-value: 1.67e-11
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 578802800 134 NKLAAAKCRNRRRELTEKLQAigpwQVAvphiplfpwqeteELEEEKSGLQKEIAELQKEKEKLEFML 201
Cdd:cd14699    9 NKVAAAKCRQRRRELMEELQA----EVE-------------QLEDENEKLQSEIANLRSEKEQLEELL 59
bZIP_ATF3 cd14722
Basic leucine zipper (bZIP) domain of Activating Transcription Factor-3 (ATF-3) and similar ...
112-204 1.06e-08

Basic leucine zipper (bZIP) domain of Activating Transcription Factor-3 (ATF-3) and similar proteins: a DNA-binding and dimerization domain; ATF-3 is a Basic leucine zipper (bZIP) transcription factor that is induced by various stress signals such as cytokines, genetoxic agents, or physiological stresses. It is implicated in cancer and host defense against pathogens. It negatively regulates the transcription of pro-inflammatory cytokines and is critical in preventing acute inflammatory syndromes. Mice deficient with ATF3 display increased susceptibility to endotoxic shock induced death. ATF3 dimerizes with Jun and other ATF proteins; the heterodimers function either as activators or repressors depending on the promoter context. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269870  Cd Length: 62  Bit Score: 50.92  E-value: 1.06e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 578802800 112 RRRRDEQlspeeeekrrirrerNKLAAAKCRNRRRELTEKLQaigpwqvavphiplfpwQETEELEEEKSGLQKEIAELQ 191
Cdd:cd14722    2 RRRRRER---------------NKVAAAKCRNKKKERTDCLQ-----------------KESEKLETQNAELKRQIEELK 49
                         90
                 ....*....|...
gi 578802800 192 KEKEKLEFMLVAH 204
Cdd:cd14722   50 NEKQHLIDMLNLH 62
bZIP cd14686
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ...
134-198 1.97e-03

Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269834 [Multi-domain]  Cd Length: 52  Bit Score: 35.98  E-value: 1.97e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 578802800 134 NKLAAAKCRNRRRELTEKLQAigpwQVAVphiplfpwqeteeleeeksgLQKEIAELQKEKEKLE 198
Cdd:cd14686    8 NREAARRSRERKKERIEELEE----EVEE--------------------LEEENEELKAELEELR 48
BRLZ smart00338
basic region leucin zipper;
130-201 3.92e-03

basic region leucin zipper;


Pssm-ID: 197664 [Multi-domain]  Cd Length: 65  Bit Score: 35.23  E-value: 3.92e-03
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 578802800   130 RRERNKLAAAKCRNRRRELTEKLQAigpwQVAvphiplfpwqeteELEEEKSGLQKEIAELQKEKEKLEFML 201
Cdd:smart00338   9 RRERNREAARRSRERKKAEIEELER----KVE-------------QLEAENERLKKEIERLRRELEKLKSEL 63
bZIP_ATF2 cd14687
Basic leucine zipper (bZIP) domain of Activating Transcription Factor-2 (ATF-2) and similar ...
134-153 4.77e-03

Basic leucine zipper (bZIP) domain of Activating Transcription Factor-2 (ATF-2) and similar proteins: a DNA-binding and dimerization domain; ATF-2 is a sequence-specific DNA-binding protein that belongs to the Basic leucine zipper (bZIP) family of transcription factors. In response to stress, it activates a variety of genes including cyclin A, cyclin D, and c-Jun. ATF-2 also plays a role in the DNA damage response that is independent of its transcriptional activity. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269835 [Multi-domain]  Cd Length: 61  Bit Score: 35.20  E-value: 4.77e-03
                         10        20
                 ....*....|....*....|
gi 578802800 134 NKLAAAKCRNRRRELTEKLQ 153
Cdd:cd14687    9 NRIAASKCRQRKKQWVQQLE 28
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH