kinesin-like protein KIF14 isoform X5 [Homo sapiens]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
KISc_KIF1A_KIF1B | cd01365 | Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A ... |
233-584 | 0e+00 | ||||||
Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A (Unc104) transports synaptic vesicles to the nerve terminal, KIF1B has been implicated in transport of mitochondria. Both proteins are expressed in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. In contrast to the majority of dimeric kinesins, most KIF1A/Unc104 kinesins are monomeric motors. A lysine-rich loop in KIF1A binds to the negatively charged C-terminus of tubulin and compensates for the lack of a second motor domain, allowing KIF1A to move processively. : Pssm-ID: 276816 [Multi-domain] Cd Length: 361 Bit Score: 617.44 E-value: 0e+00
|
||||||||||
FHA_KIF14 | cd22707 | forkhead associated (FHA) domain found in kinesin-like protein KIF14 and similar proteins; ... |
670-777 | 3.41e-71 | ||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF14 and similar proteins; KIF14 is a microtubule motor protein that binds to microtubules with high affinity through each tubulin heterodimer and has an ATPase activity. It plays a role in many processes like cell division, cytokinesis and in cell proliferation and apoptosis. KIF14 is a potential oncogene and is involved in the metastasis of various cancers. Mutations of KIF14 cause primary microcephaly by impairing cytokinesis. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. : Pssm-ID: 438759 [Multi-domain] Cd Length: 108 Bit Score: 232.93 E-value: 3.41e-71
|
||||||||||
Kinesin_assoc super family | cl24686 | Kinesin-associated; |
581-699 | 2.81e-13 | ||||||
Kinesin-associated; The actual alignment was detected with superfamily member pfam16183: Pssm-ID: 465047 [Multi-domain] Cd Length: 177 Bit Score: 69.49 E-value: 2.81e-13
|
||||||||||
Smc super family | cl34174 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
803-953 | 1.07e-08 | ||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; The actual alignment was detected with superfamily member COG1196: Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 59.95 E-value: 1.07e-08
|
||||||||||
Name | Accession | Description | Interval | E-value | |||||||
KISc_KIF1A_KIF1B | cd01365 | Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A ... |
233-584 | 0e+00 | |||||||
Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A (Unc104) transports synaptic vesicles to the nerve terminal, KIF1B has been implicated in transport of mitochondria. Both proteins are expressed in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. In contrast to the majority of dimeric kinesins, most KIF1A/Unc104 kinesins are monomeric motors. A lysine-rich loop in KIF1A binds to the negatively charged C-terminus of tubulin and compensates for the lack of a second motor domain, allowing KIF1A to move processively. Pssm-ID: 276816 [Multi-domain] Cd Length: 361 Bit Score: 617.44 E-value: 0e+00
|
|||||||||||
KISc | smart00129 | Kinesin motor, catalytic domain. ATPase; Microtubule-dependent molecular motors that play ... |
234-584 | 7.33e-151 | |||||||
Kinesin motor, catalytic domain. ATPase; Microtubule-dependent molecular motors that play important roles in intracellular transport of organelles and in cell division. Pssm-ID: 214526 [Multi-domain] Cd Length: 335 Bit Score: 462.43 E-value: 7.33e-151
|
|||||||||||
Kinesin | pfam00225 | Kinesin motor domain; |
240-577 | 2.74e-142 | |||||||
Kinesin motor domain; Pssm-ID: 459720 [Multi-domain] Cd Length: 326 Bit Score: 439.32 E-value: 2.74e-142
|
|||||||||||
KIP1 | COG5059 | Kinesin-like protein [Cytoskeleton]; |
285-664 | 1.94e-78 | |||||||
Kinesin-like protein [Cytoskeleton]; Pssm-ID: 227392 [Multi-domain] Cd Length: 568 Bit Score: 271.23 E-value: 1.94e-78
|
|||||||||||
FHA_KIF14 | cd22707 | forkhead associated (FHA) domain found in kinesin-like protein KIF14 and similar proteins; ... |
670-777 | 3.41e-71 | |||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF14 and similar proteins; KIF14 is a microtubule motor protein that binds to microtubules with high affinity through each tubulin heterodimer and has an ATPase activity. It plays a role in many processes like cell division, cytokinesis and in cell proliferation and apoptosis. KIF14 is a potential oncogene and is involved in the metastasis of various cancers. Mutations of KIF14 cause primary microcephaly by impairing cytokinesis. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438759 [Multi-domain] Cd Length: 108 Bit Score: 232.93 E-value: 3.41e-71
|
|||||||||||
PLN03188 | PLN03188 | kinesin-12 family protein; Provisional |
230-611 | 1.87e-66 | |||||||
kinesin-12 family protein; Provisional Pssm-ID: 215621 [Multi-domain] Cd Length: 1320 Bit Score: 247.93 E-value: 1.87e-66
|
|||||||||||
Kinesin_assoc | pfam16183 | Kinesin-associated; |
581-699 | 2.81e-13 | |||||||
Kinesin-associated; Pssm-ID: 465047 [Multi-domain] Cd Length: 177 Bit Score: 69.49 E-value: 2.81e-13
|
|||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
803-953 | 1.07e-08 | |||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 59.95 E-value: 1.07e-08
|
|||||||||||
FHA | COG1716 | Forkhead associated (FHA) domain, binds pSer, pThr, pTyr [Signal transduction mechanisms]; |
696-774 | 8.54e-08 | |||||||
Forkhead associated (FHA) domain, binds pSer, pThr, pTyr [Signal transduction mechanisms]; Pssm-ID: 441322 [Multi-domain] Cd Length: 96 Bit Score: 51.50 E-value: 8.54e-08
|
|||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
798-949 | 2.59e-07 | |||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 55.83 E-value: 2.59e-07
|
|||||||||||
FHA | pfam00498 | FHA domain; The FHA (Forkhead-associated) domain is a phosphopeptide binding motif. |
701-766 | 3.26e-07 | |||||||
FHA domain; The FHA (Forkhead-associated) domain is a phosphopeptide binding motif. Pssm-ID: 459831 [Multi-domain] Cd Length: 66 Bit Score: 48.73 E-value: 3.26e-07
|
|||||||||||
FHA | smart00240 | Forkhead associated domain; Found in eukaryotic and prokaryotic proteins. Putative nuclear ... |
701-752 | 1.40e-06 | |||||||
Forkhead associated domain; Found in eukaryotic and prokaryotic proteins. Putative nuclear signalling domain. Pssm-ID: 214578 [Multi-domain] Cd Length: 52 Bit Score: 46.40 E-value: 1.40e-06
|
|||||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
808-948 | 3.17e-05 | |||||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 48.63 E-value: 3.17e-05
|
|||||||||||
PRK12704 | PRK12704 | phosphodiesterase; Provisional |
811-942 | 3.81e-05 | |||||||
phosphodiesterase; Provisional Pssm-ID: 237177 [Multi-domain] Cd Length: 520 Bit Score: 48.24 E-value: 3.81e-05
|
|||||||||||
GBP_C | cd16269 | Guanylate-binding protein, C-terminal domain; Guanylate-binding protein (GBP), C-terminal ... |
824-945 | 4.28e-03 | |||||||
Guanylate-binding protein, C-terminal domain; Guanylate-binding protein (GBP), C-terminal domain. Guanylate-binding proteins (GBPs) are synthesized after activation of the cell by interferons. The biochemical properties of GBPs are clearly different from those of Ras-like and heterotrimeric GTP-binding proteins. They bind guanine nucleotides with low affinity (micromolar range), are stable in their absence, and have a high turnover GTPase. In addition to binding GDP/GTP, they have the unique ability to bind GMP with equal affinity and hydrolyze GTP not only to GDP, but also to GMP. This C-terminal domain has been shown to mediate inhibition of endothelial cell proliferation by inflammatory cytokines. Pssm-ID: 293879 [Multi-domain] Cd Length: 291 Bit Score: 41.02 E-value: 4.28e-03
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
KISc_KIF1A_KIF1B | cd01365 | Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A ... |
233-584 | 0e+00 | |||||||
Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A (Unc104) transports synaptic vesicles to the nerve terminal, KIF1B has been implicated in transport of mitochondria. Both proteins are expressed in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. In contrast to the majority of dimeric kinesins, most KIF1A/Unc104 kinesins are monomeric motors. A lysine-rich loop in KIF1A binds to the negatively charged C-terminus of tubulin and compensates for the lack of a second motor domain, allowing KIF1A to move processively. Pssm-ID: 276816 [Multi-domain] Cd Length: 361 Bit Score: 617.44 E-value: 0e+00
|
|||||||||||
KISc | smart00129 | Kinesin motor, catalytic domain. ATPase; Microtubule-dependent molecular motors that play ... |
234-584 | 7.33e-151 | |||||||
Kinesin motor, catalytic domain. ATPase; Microtubule-dependent molecular motors that play important roles in intracellular transport of organelles and in cell division. Pssm-ID: 214526 [Multi-domain] Cd Length: 335 Bit Score: 462.43 E-value: 7.33e-151
|
|||||||||||
Kinesin | pfam00225 | Kinesin motor domain; |
240-577 | 2.74e-142 | |||||||
Kinesin motor domain; Pssm-ID: 459720 [Multi-domain] Cd Length: 326 Bit Score: 439.32 E-value: 2.74e-142
|
|||||||||||
KISc | cd00106 | Kinesin motor domain; Kinesin motor domain. This catalytic (head) domain has ATPase activity ... |
234-575 | 2.66e-122 | |||||||
Kinesin motor domain; Kinesin motor domain. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type), in some its is found in the middle (M-type), or C-terminal (C-type). N-type and M-type kinesins are (+) end-directed motors, while C-type kinesins are (-) end-directed motors, i.e. they transport cargo towards the (-) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276812 [Multi-domain] Cd Length: 326 Bit Score: 385.46 E-value: 2.66e-122
|
|||||||||||
KISc_KIF4 | cd01372 | Kinesin motor domain, KIF4-like subfamily; Kinesin motor domain, KIF4-like subfamily. Members ... |
233-577 | 1.14e-100 | |||||||
Kinesin motor domain, KIF4-like subfamily; Kinesin motor domain, KIF4-like subfamily. Members of this group seem to perform a variety of functions, and have been implicated in neuronal organelle transport and chromosome segregation during mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276823 [Multi-domain] Cd Length: 341 Bit Score: 326.21 E-value: 1.14e-100
|
|||||||||||
KISc_KIF3 | cd01371 | Kinesin motor domain, kinesins II or KIF3_like proteins; Kinesin motor domain, kinesins II or ... |
235-577 | 5.15e-100 | |||||||
Kinesin motor domain, kinesins II or KIF3_like proteins; Kinesin motor domain, kinesins II or KIF3_like proteins. Subgroup of kinesins, which form heterotrimers composed of 2 kinesins and one non-motor accessory subunit. Kinesins II play important roles in ciliary transport, and have been implicated in neuronal transport, melanosome transport, the secretory pathway, and mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this group the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276822 [Multi-domain] Cd Length: 334 Bit Score: 324.03 E-value: 5.15e-100
|
|||||||||||
KISc_CENP_E | cd01374 | Kinesin motor domain, CENP-E/KIP2-like subgroup; Kinesin motor domain, CENP-E/KIP2-like ... |
235-577 | 2.15e-99 | |||||||
Kinesin motor domain, CENP-E/KIP2-like subgroup; Kinesin motor domain, CENP-E/KIP2-like subgroup, involved in chromosome movement and/or spindle elongation during mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276825 [Multi-domain] Cd Length: 321 Bit Score: 321.97 E-value: 2.15e-99
|
|||||||||||
KISc_C_terminal | cd01366 | Kinesin motor domain, KIFC2/KIFC3/ncd-like carboxy-terminal kinesins; Kinesin motor domain, ... |
240-579 | 1.84e-97 | |||||||
Kinesin motor domain, KIFC2/KIFC3/ncd-like carboxy-terminal kinesins; Kinesin motor domain, KIFC2/KIFC3/ncd-like carboxy-terminal kinesins. Ncd is a spindle motor protein necessary for chromosome segregation in meiosis. KIFC2/KIFC3-like kinesins have been implicated in motility of the Golgi apparatus as well as dentritic and axonal transport in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this subgroup the motor domain is found at the C-terminus (C-type). C-type kinesins are (-) end-directed motors, i.e. they transport cargo towards the (-) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276817 [Multi-domain] Cd Length: 329 Bit Score: 316.84 E-value: 1.84e-97
|
|||||||||||
KISc_KIP3_like | cd01370 | Kinesin motor domain, KIP3-like subgroup; Kinesin motor domain, KIP3-like subgroup. The yeast ... |
234-577 | 5.24e-94 | |||||||
Kinesin motor domain, KIP3-like subgroup; Kinesin motor domain, KIP3-like subgroup. The yeast kinesin KIP3 plays a role in positioning the mitotic spindle. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276821 [Multi-domain] Cd Length: 345 Bit Score: 307.73 E-value: 5.24e-94
|
|||||||||||
KISc_BimC_Eg5 | cd01364 | Kinesin motor domain, BimC/Eg5 spindle pole proteins; Kinesin motor domain, BimC/Eg5 spindle ... |
232-586 | 4.80e-92 | |||||||
Kinesin motor domain, BimC/Eg5 spindle pole proteins; Kinesin motor domain, BimC/Eg5 spindle pole proteins, participate in spindle assembly and chromosome segregation during cell division. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type), N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276815 [Multi-domain] Cd Length: 353 Bit Score: 302.32 E-value: 4.80e-92
|
|||||||||||
KISc_KHC_KIF5 | cd01369 | Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup; Kinesin motor domain, ... |
233-577 | 1.11e-85 | |||||||
Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup; Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup. Members of this group have been associated with organelle transport. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276820 [Multi-domain] Cd Length: 325 Bit Score: 283.45 E-value: 1.11e-85
|
|||||||||||
KISc_KLP2_like | cd01373 | Kinesin motor domain, KIF15-like subgroup; Kinesin motor domain, KIF15-like subgroup. Members ... |
235-586 | 4.88e-85 | |||||||
Kinesin motor domain, KIF15-like subgroup; Kinesin motor domain, KIF15-like subgroup. Members of this subgroup seem to play a role in mitosis and meiosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276824 [Multi-domain] Cd Length: 347 Bit Score: 282.47 E-value: 4.88e-85
|
|||||||||||
KIP1 | COG5059 | Kinesin-like protein [Cytoskeleton]; |
285-664 | 1.94e-78 | |||||||
Kinesin-like protein [Cytoskeleton]; Pssm-ID: 227392 [Multi-domain] Cd Length: 568 Bit Score: 271.23 E-value: 1.94e-78
|
|||||||||||
KISc_KIF2_like | cd01367 | Kinesin motor domain, KIF2-like group; Kinesin motor domain, KIF2-like group. KIF2 is a ... |
234-572 | 7.67e-74 | |||||||
Kinesin motor domain, KIF2-like group; Kinesin motor domain, KIF2-like group. KIF2 is a protein expressed in neurons, which has been associated with axonal transport and neuron development; alternative splice forms have been implicated in lysosomal translocation. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this subgroup the motor domain is found in the middle (M-type) of the protein chain. M-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second (KIF2 may be slower). To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276818 [Multi-domain] Cd Length: 328 Bit Score: 249.52 E-value: 7.67e-74
|
|||||||||||
KISc_KIF23_like | cd01368 | Kinesin motor domain, KIF23-like subgroup; Kinesin motor domain, KIF23-like subgroup. Members ... |
234-571 | 7.74e-72 | |||||||
Kinesin motor domain, KIF23-like subgroup; Kinesin motor domain, KIF23-like subgroup. Members of this group may play a role in mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276819 [Multi-domain] Cd Length: 345 Bit Score: 244.23 E-value: 7.74e-72
|
|||||||||||
FHA_KIF14 | cd22707 | forkhead associated (FHA) domain found in kinesin-like protein KIF14 and similar proteins; ... |
670-777 | 3.41e-71 | |||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF14 and similar proteins; KIF14 is a microtubule motor protein that binds to microtubules with high affinity through each tubulin heterodimer and has an ATPase activity. It plays a role in many processes like cell division, cytokinesis and in cell proliferation and apoptosis. KIF14 is a potential oncogene and is involved in the metastasis of various cancers. Mutations of KIF14 cause primary microcephaly by impairing cytokinesis. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438759 [Multi-domain] Cd Length: 108 Bit Score: 232.93 E-value: 3.41e-71
|
|||||||||||
KISc_KID_like | cd01376 | Kinesin motor domain, KIF22/Kid-like subgroup; Kinesin motor domain, KIF22/Kid-like subgroup. ... |
235-575 | 1.14e-69 | |||||||
Kinesin motor domain, KIF22/Kid-like subgroup; Kinesin motor domain, KIF22/Kid-like subgroup. Members of this group might play a role in regulating chromosomal movement along microtubules in mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276827 [Multi-domain] Cd Length: 319 Bit Score: 237.02 E-value: 1.14e-69
|
|||||||||||
KISc_KIF9_like | cd01375 | Kinesin motor domain, KIF9-like subgroup; Kinesin motor domain, KIF9-like subgroup; might play ... |
292-575 | 2.90e-68 | |||||||
Kinesin motor domain, KIF9-like subgroup; Kinesin motor domain, KIF9-like subgroup; might play a role in cell shape remodeling. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276826 [Multi-domain] Cd Length: 334 Bit Score: 233.63 E-value: 2.90e-68
|
|||||||||||
PLN03188 | PLN03188 | kinesin-12 family protein; Provisional |
230-611 | 1.87e-66 | |||||||
kinesin-12 family protein; Provisional Pssm-ID: 215621 [Multi-domain] Cd Length: 1320 Bit Score: 247.93 E-value: 1.87e-66
|
|||||||||||
FHA_KIF1 | cd22705 | forkhead associated (FHA) domain found in the kinesin-like protein KIF1 family; The KIF1 ... |
676-776 | 7.39e-43 | |||||||
forkhead associated (FHA) domain found in the kinesin-like protein KIF1 family; The KIF1 family includes KIF1A, KIF1B, and KIF1C. KIF1A, also called axonal transporter of synaptic vesicles (ATSV), microtubule-based motor KIF1A, Unc-104- and KIF1A-related protein, or Unc-104, is an axonal transporter of synaptic vesicles, which is mutated in hereditary sensory and autonomic neuropathy type 2. It is also required for neuronal dense core vesicle (DCV) transport to dendritic spines and axons. The calcium-dependent interaction with CALM1 increases vesicle motility, and interaction with the scaffolding proteins PPFIA2 and TANC2 recruits DCVs to synaptic sites. KIF1B, also called Klp, is a motor for anterograde transport of mitochondria. It has a microtubule plus end-directed motility. Isoform 1 mediates the transport of synaptic vesicles in neuronal cells, while isoform 2 is required for induction of neuronal apoptosis. KIF1C is a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum. It has a microtubule plus end-directed motility. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438757 [Multi-domain] Cd Length: 101 Bit Score: 151.62 E-value: 7.39e-43
|
|||||||||||
FHA_KIF28P | cd22709 | forkhead associated (FHA) domain found in kinesin-like protein KIF28P and similar proteins; ... |
677-777 | 2.35e-38 | |||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF28P and similar proteins; KIF28P, also called kinesin-like protein 6 (KLP6), is a microtubule-dependent motor protein required for mitochondrion morphology and transport of mitochondria in neuronal cells. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438761 [Multi-domain] Cd Length: 102 Bit Score: 138.89 E-value: 2.35e-38
|
|||||||||||
FHA_KIF1A | cd22726 | forkhead associated (FHA) domain found in kinesin-like protein KIF1A; KIF1A, also called ... |
677-782 | 6.57e-31 | |||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF1A; KIF1A, also called axonal transporter of synaptic vesicles (ATSV), microtubule-based motor KIF1A, Unc-104- and KIF1A-related protein, or Unc-104, is an axonal transporter of synaptic vesicles, which is mutated in hereditary sensory and autonomic neuropathy type 2. It is also required for neuronal dense core vesicle (DCV) transport to dendritic spines and axons. The calcium-dependent interaction with CALM1 increases vesicle motility, and interaction with the scaffolding proteins PPFIA2 and TANC2 recruits DCVs to synaptic sites. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438778 [Multi-domain] Cd Length: 115 Bit Score: 118.11 E-value: 6.57e-31
|
|||||||||||
FHA_KIF1B | cd22727 | forkhead associated (FHA) domain found in kinesin-like protein KIF1B; KIF1B, also called Klp, ... |
677-777 | 7.70e-30 | |||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF1B; KIF1B, also called Klp, is a motor for anterograde transport of mitochondria. It has a microtubule plus end-directed motility. Isoform 1 mediates the transport of synaptic vesicles in neuronal cells, while isoform 2 is required for induction of neuronal apoptosis. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438779 [Multi-domain] Cd Length: 110 Bit Score: 114.75 E-value: 7.70e-30
|
|||||||||||
FHA_KIF13 | cd22706 | forkhead associated (FHA) domain found in the kinesin-like protein KIF13 family; The KIF13 ... |
679-777 | 9.59e-29 | |||||||
forkhead associated (FHA) domain found in the kinesin-like protein KIF13 family; The KIF13 family includes KIF13A and KIF13B. KIF13A, also called kinesin-like protein RBKIN, is a plus end-directed microtubule-dependent motor protein involved in intracellular transport and in regulating various processes such as mannose-6-phosphate receptor (M6PR) transport to the plasma membrane, endosomal sorting during melanosome biogenesis, and cytokinesis. It mediates the transport of M6PR-containing vesicles from trans-Golgi network to the plasma membrane via direct interaction with the AP-1 complex. During melanosome maturation, KIF13A is required for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes by creating peripheral recycling endosomal subdomains in melanocytes. It is also required for the abscission step in cytokinesis: it mediates translocation of ZFYVE26, and possibly TTC19, to the midbody during cytokinesis. KIF13B, also called kinesin-like protein GAKIN, is a novel kinesin-like protein that associates with the human homolog of the Drosophila discs large tumor suppressor in T lymphocytes. It is involved in reorganization of the cortical cytoskeleton. It regulates axon formation by promoting the formation of extra axons. KIF13B may be functionally important for the intracellular trafficking of membrane-associated guanylate kinase homologs (MAGUKs) and associated protein complexes. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438758 [Multi-domain] Cd Length: 101 Bit Score: 111.23 E-value: 9.59e-29
|
|||||||||||
FHA_KIF16 | cd22708 | forkhead associated (FHA) domain found in the kinesin-like protein KIF16 family; The KIF16 ... |
667-777 | 4.56e-26 | |||||||
forkhead associated (FHA) domain found in the kinesin-like protein KIF16 family; The KIF16 family includes StARD9/KIF16A and KIF16B. StARD9, also called START domain-containing protein 9, or kinesin-like protein KIF16A, is a microtubule-dependent motor protein required for spindle pole assembly during mitosis. It is required to stabilize the pericentriolar material (PCM). KIF16B, also called sorting nexin-23, is a plus end-directed microtubule-dependent motor protein involved in endosome transport and receptor recycling and degradation. It regulates the plus end motility of early endosomes and the balance between recycling and degradation of receptors such as EGF receptor (EGFR) and FGF receptor (FGFR). It regulates the Golgi to endosome transport of FGFR-containing vesicles during early development, a key process for developing basement membrane and epiblast and primitive endoderm lineages during early postimplantation development. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438760 [Multi-domain] Cd Length: 109 Bit Score: 103.89 E-value: 4.56e-26
|
|||||||||||
FHA_KIF1C | cd22728 | forkhead associated (FHA) domain found in kinesin-like protein KIF1C; KIF1C is a new ... |
677-776 | 3.92e-25 | |||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF1C; KIF1C is a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum. It has a microtubule plus end-directed motility. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438780 [Multi-domain] Cd Length: 102 Bit Score: 101.10 E-value: 3.92e-25
|
|||||||||||
FHA_KIF16B | cd22732 | forkhead associated (FHA) domain found in kinesin-like protein KIF16B; KIF16B, also called ... |
672-782 | 2.10e-24 | |||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF16B; KIF16B, also called sorting nexin-23, is a plus end-directed microtubule-dependent motor protein involved in endosome transport and receptor recycling and degradation. It regulates the plus end motility of early endosomes and the balance between recycling and degradation of receptors such as EGF receptor (EGFR) and FGF receptor (FGFR). It regulates the Golgi to endosome transport of FGFR-containing vesicles during early development, a key process for developing basement membrane and epiblast and primitive endoderm lineages during early postimplantation development. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438784 [Multi-domain] Cd Length: 117 Bit Score: 99.62 E-value: 2.10e-24
|
|||||||||||
FHA_KIF16A_STARD9 | cd22731 | forkhead associated (FHA) domain found in StAR-related lipid transfer protein 9 (StARD9); ... |
672-779 | 1.38e-22 | |||||||
forkhead associated (FHA) domain found in StAR-related lipid transfer protein 9 (StARD9); StARD9, also called START domain-containing protein 9, or kinesin-like protein KIF16A, is a microtubule-dependent motor protein required for spindle pole assembly during mitosis. It is required to stabilize the pericentriolar material (PCM). The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438783 [Multi-domain] Cd Length: 119 Bit Score: 94.46 E-value: 1.38e-22
|
|||||||||||
Motor_domain | cd01363 | Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the ... |
237-556 | 2.43e-22 | |||||||
Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the P-loop NTPase family and provide the driving force in myosin and kinesin mediated processes. Some of the names do not match with what is given in the sequence list. This is because they are based on the current nomenclature by Kollmar/Sebe-Pedros. Pssm-ID: 276814 [Multi-domain] Cd Length: 170 Bit Score: 95.49 E-value: 2.43e-22
|
|||||||||||
FHA_KIF13B | cd22730 | forkhead associated (FHA) domain found in kinesin-like protein KIF13B; KIF13B, also called ... |
679-777 | 3.74e-20 | |||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF13B; KIF13B, also called kinesin-like protein GAKIN, is a novel kinesin-like protein that associates with the human homolog of the Drosophila discs large tumor suppressor in T lymphocytes. It is involved in reorganization of the cortical cytoskeleton. It regulates axon formation by promoting the formation of extra axons. KIF13B may be functionally important for the intracellular trafficking of membrane-associated guanylate kinase homologs (MAGUKs) and associated protein complexes. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438782 [Multi-domain] Cd Length: 99 Bit Score: 86.89 E-value: 3.74e-20
|
|||||||||||
FHA_KIF13A | cd22729 | forkhead associated (FHA) domain found in kinesin-like protein KIF13A; KIF13A, also called ... |
679-777 | 1.02e-19 | |||||||
forkhead associated (FHA) domain found in kinesin-like protein KIF13A; KIF13A, also called kinesin-like protein RBKIN, is a plus end-directed microtubule-dependent motor protein involved in intracellular transport and in regulating various processes such as mannose-6-phosphate receptor (M6PR) transport to the plasma membrane, endosomal sorting during melanosome biogenesis, and cytokinesis. It mediates the transport of M6PR-containing vesicles from trans-Golgi network to the plasma membrane via direct interaction with the AP-1 complex. During melanosome maturation, KIF13A is required for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes by creating peripheral recycling endosomal subdomains in melanocytes. It is also required for the abscission step in cytokinesis: it mediates translocation of ZFYVE26, and possibly TTC19, to the midbody during cytokinesis. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438781 [Multi-domain] Cd Length: 109 Bit Score: 85.71 E-value: 1.02e-19
|
|||||||||||
FHA_AFDN | cd22711 | forkhead associated (FHA) domain found in afadin and similar proteins; Afadin, also called ... |
676-777 | 1.78e-18 | |||||||
forkhead associated (FHA) domain found in afadin and similar proteins; Afadin, also called ALL1-fused gene from chromosome 6 protein, protein AF-6, Afadin adherens junction formation factor, or MLLT4, is a nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton. It is essential for the organization of adherens junctions. It may play a key role in the organization of epithelial structures of the embryonic ectoderm. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438763 [Multi-domain] Cd Length: 106 Bit Score: 82.37 E-value: 1.78e-18
|
|||||||||||
Microtub_bd | pfam16796 | Microtubule binding; This motor homology domain binds microtubules and lacks an ATP-binding ... |
229-382 | 5.05e-17 | |||||||
Microtubule binding; This motor homology domain binds microtubules and lacks an ATP-binding site. Pssm-ID: 465274 [Multi-domain] Cd Length: 144 Bit Score: 79.19 E-value: 5.05e-17
|
|||||||||||
FHA_PHLB1 | cd22713 | forkhead associated (FHA) domain found in pleckstrin homology-like domain family B member 1 ... |
662-784 | 2.69e-15 | |||||||
forkhead associated (FHA) domain found in pleckstrin homology-like domain family B member 1 (PHLDB1) and similar proteins; PHLDB1, also called protein LL5-alpha (LL5A), acts as an insulin-responsive protein that enhances Akt activation. PHLDB1 contains a pleckstrin homology domain, which binds phosphatidylinositol PI(3,4)P(2), PI(3,5)P(2), and PI(3,4,5)P(3), as well as a Forkhead-associated (FHA) domain and coiled coil regions. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438765 Cd Length: 120 Bit Score: 73.51 E-value: 2.69e-15
|
|||||||||||
Kinesin_assoc | pfam16183 | Kinesin-associated; |
581-699 | 2.81e-13 | |||||||
Kinesin-associated; Pssm-ID: 465047 [Multi-domain] Cd Length: 177 Bit Score: 69.49 E-value: 2.81e-13
|
|||||||||||
FHA | cd00060 | forkhead associated (FHA) domain superfamily; Forkhead-associated (FHA) domains are small ... |
679-774 | 3.93e-13 | |||||||
forkhead associated (FHA) domain superfamily; Forkhead-associated (FHA) domains are small phosphopeptide recognition modules mostly found in eubacteria and eukaryotes. It is about 95-120 residues long that fold into an 11-stranded beta-sandwich. FHA domains can mediate the recognition of phosphorylated and non-phosphorylated substrates, as well as protein oligomerization. They specifically recognize threonine phosphorylation (pThr) accompanying activation of protein serine/threonine kinases. FHA domains show diverse ligand specificity. They may recognize the pTXXD motif, the pTXXI/L motif, and TQ clusters (singly and multiply phosphorylated). In eukaryotes, FHA superfamily members include forkhead-type transcription factors, as well as other signaling proteins, such as many regulatory proteins, kinases, phosphatases, motor proteins called kinesins, and metabolic enzymes. Many of them localize to the nucleus, where they participate in establishing or maintaining cell cycle checkpoints, DNA repair, or transcriptional regulation. FHA domains play important roles in human diseases, particularly in relation to DNA damage responses and cancers. In bacteria, FHA domain-containing proteins may participate in injection of viral proteins into host cells, transmembrane transporters, and cell division. FHA domain-containing proteins rarely include more than one copy of the domain. The only exception in eukaryotes is the checkpoint kinase Rad53 from Saccharomyces cerevisiae, which harbors two FHA domains (FHA1 and FHA2) flanking a central kinase domain. The two FHA domains recognize different phosphorylated targets and function independently from one another. In contrast, Mycobacterium tuberculosis ABC transporter Rv1747 contains two FHA domains but only one of them is essential for protein function. Pssm-ID: 438714 [Multi-domain] Cd Length: 92 Bit Score: 66.53 E-value: 3.93e-13
|
|||||||||||
FHA_Ki67 | cd22673 | forkhead associated (FHA) domain found in proliferation marker protein Ki-67 and similar ... |
696-774 | 5.26e-10 | |||||||
forkhead associated (FHA) domain found in proliferation marker protein Ki-67 and similar proteins; Ki-67, also called antigen identified by monoclonal antibody Ki-67, antigen KI-67, or antigen Ki67, acts as a biological surfactant to disperse mitotic chromosomes. It is required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly. Ki-67 binds DNA with a preference for supercoiled DNA and AT-rich DNA. It may also play a role in chromatin organization. Ki-67 contains an FHA domain at its N-terminus. The FHA domain is a small phosphopeptide recognition module. Pssm-ID: 438725 [Multi-domain] Cd Length: 95 Bit Score: 57.61 E-value: 5.26e-10
|
|||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
803-953 | 1.07e-08 | |||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 59.95 E-value: 1.07e-08
|
|||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
806-954 | 2.75e-08 | |||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 58.79 E-value: 2.75e-08
|
|||||||||||
FHA | COG1716 | Forkhead associated (FHA) domain, binds pSer, pThr, pTyr [Signal transduction mechanisms]; |
696-774 | 8.54e-08 | |||||||
Forkhead associated (FHA) domain, binds pSer, pThr, pTyr [Signal transduction mechanisms]; Pssm-ID: 441322 [Multi-domain] Cd Length: 96 Bit Score: 51.50 E-value: 8.54e-08
|
|||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
804-950 | 1.63e-07 | |||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 56.10 E-value: 1.63e-07
|
|||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
798-949 | 2.59e-07 | |||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 55.83 E-value: 2.59e-07
|
|||||||||||
FHA | pfam00498 | FHA domain; The FHA (Forkhead-associated) domain is a phosphopeptide binding motif. |
701-766 | 3.26e-07 | |||||||
FHA domain; The FHA (Forkhead-associated) domain is a phosphopeptide binding motif. Pssm-ID: 459831 [Multi-domain] Cd Length: 66 Bit Score: 48.73 E-value: 3.26e-07
|
|||||||||||
DR0291 | COG1579 | Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ... |
808-946 | 3.51e-07 | |||||||
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only]; Pssm-ID: 441187 [Multi-domain] Cd Length: 236 Bit Score: 53.00 E-value: 3.51e-07
|
|||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
803-953 | 4.53e-07 | |||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 54.94 E-value: 4.53e-07
|
|||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
803-948 | 6.41e-07 | |||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 54.17 E-value: 6.41e-07
|
|||||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
804-954 | 7.40e-07 | |||||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 54.00 E-value: 7.40e-07
|
|||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
803-953 | 1.01e-06 | |||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 53.79 E-value: 1.01e-06
|
|||||||||||
FHA_RADIL | cd22733 | forkhead associated (FHA) domain found in Ras-associating and dilute domain-containing protein ... |
675-777 | 1.12e-06 | |||||||
forkhead associated (FHA) domain found in Ras-associating and dilute domain-containing protein (Radil); Radil acts as an important small GTPase Rap1 effector required for cell spreading and migration. It regulates neutrophil adhesion and motility through linking Rap1 to beta2-integrin activation. It contains an FHA domain. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438785 Cd Length: 113 Bit Score: 48.64 E-value: 1.12e-06
|
|||||||||||
FHA | smart00240 | Forkhead associated domain; Found in eukaryotic and prokaryotic proteins. Putative nuclear ... |
701-752 | 1.40e-06 | |||||||
Forkhead associated domain; Found in eukaryotic and prokaryotic proteins. Putative nuclear signalling domain. Pssm-ID: 214578 [Multi-domain] Cd Length: 52 Bit Score: 46.40 E-value: 1.40e-06
|
|||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
808-953 | 3.95e-06 | |||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 51.86 E-value: 3.95e-06
|
|||||||||||
FHA_RADIL-like | cd22712 | forkhead associated (FHA) domain found in the Ras-associating and dilute domain-containing ... |
677-777 | 2.11e-05 | |||||||
forkhead associated (FHA) domain found in the Ras-associating and dilute domain-containing protein (Radil)-like family; The Radil-like family includes Radil and Ras-interacting protein 1 (Rain). Radil acts as an important small GTPase Rap1 effector required for cell spreading and migration. It regulates neutrophil adhesion and motility by linking Rap1 to beta2-integrin activation. Rain, also called Rasip1, is an endothelial-specific Ras-interacting protein required for the proper formation of vascular structures that develop via both vasculogenesis and angiogenesis. It acts as a critical and vascular-specific regulator of GTPase signaling, cell architecture, and adhesion, which is essential for endothelial cell morphogenesis and blood vessel tubulogenesis. Rain interacts with Ras in a GTP-dependent manner and may serve as an effector for endomembrane-associated Ras. Both Radil and Rain contain an FHA domain. The FHA domain is a small phosphopeptide recognition module, but this group may lack the conserved residues that are required for binding phosphothreonine. Pssm-ID: 438764 [Multi-domain] Cd Length: 120 Bit Score: 45.37 E-value: 2.11e-05
|
|||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
808-946 | 3.09e-05 | |||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 48.90 E-value: 3.09e-05
|
|||||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
808-948 | 3.17e-05 | |||||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 48.63 E-value: 3.17e-05
|
|||||||||||
PRK12704 | PRK12704 | phosphodiesterase; Provisional |
811-942 | 3.81e-05 | |||||||
phosphodiesterase; Provisional Pssm-ID: 237177 [Multi-domain] Cd Length: 520 Bit Score: 48.24 E-value: 3.81e-05
|
|||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
793-1042 | 7.54e-05 | |||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 47.83 E-value: 7.54e-05
|
|||||||||||
ERM_helical | pfam20492 | Ezrin/radixin/moesin, alpha-helical domain; The ERM family consists of three closely-related ... |
839-946 | 1.38e-04 | |||||||
Ezrin/radixin/moesin, alpha-helical domain; The ERM family consists of three closely-related proteins, ezrin, radixin and moesin. Ezrin was first identified as a constituent of microvilli, radixin as a barbed, end-capping actin-modulating protein from isolated junctional fractions, and moesin as a heparin binding protein. A tumour suppressor molecule responsible for neurofibromatosis type 2 (NF2) is highly similar to ERM proteins and has been designated merlin (moesin-ezrin-radixin-like protein). ERM molecules contain 3 domains, an N-terminal globular domain, an extended alpha-helical domain and a charged C-terminal domain (pfam00769). Ezrin, radixin and merlin also contain a polyproline linker region between the helical and C-terminal domains. The N-terminal domain is highly conserved and is also found in merlin, band 4.1 proteins and members of the band 4.1 superfamily, designated the FERM domain. ERM proteins crosslink actin filaments with plasma membranes. They co-localize with CD44 at actin filament plasma membrane interaction sites, associating with CD44 via their N-terminal domains and with actin filaments via their C-terminal domains. This is the alpha-helical domain, which is involved in intramolecular masking of protein-protein interaction sites, regulating the activity of this proteins. Pssm-ID: 466641 [Multi-domain] Cd Length: 120 Bit Score: 42.98 E-value: 1.38e-04
|
|||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
803-953 | 1.40e-04 | |||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 46.59 E-value: 1.40e-04
|
|||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
803-949 | 1.47e-04 | |||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 46.60 E-value: 1.47e-04
|
|||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
806-950 | 2.44e-04 | |||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 45.14 E-value: 2.44e-04
|
|||||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
800-950 | 3.04e-04 | |||||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 45.68 E-value: 3.04e-04
|
|||||||||||
GumC | COG3206 | Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; |
806-947 | 3.10e-04 | |||||||
Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442439 [Multi-domain] Cd Length: 687 Bit Score: 45.39 E-value: 3.10e-04
|
|||||||||||
DR0291 | COG1579 | Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ... |
810-941 | 4.32e-04 | |||||||
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only]; Pssm-ID: 441187 [Multi-domain] Cd Length: 236 Bit Score: 43.76 E-value: 4.32e-04
|
|||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
810-948 | 4.72e-04 | |||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 44.37 E-value: 4.72e-04
|
|||||||||||
YqiK | COG2268 | Uncharacterized membrane protein YqiK, contains Band7/PHB/SPFH domain [Function unknown]; |
803-940 | 7.45e-04 | |||||||
Uncharacterized membrane protein YqiK, contains Band7/PHB/SPFH domain [Function unknown]; Pssm-ID: 441869 [Multi-domain] Cd Length: 439 Bit Score: 43.71 E-value: 7.45e-04
|
|||||||||||
Borrelia_P83 | pfam05262 | Borrelia P83/100 protein; This family consists of several Borrelia P83/P100 antigen proteins. |
794-940 | 9.19e-04 | |||||||
Borrelia P83/100 protein; This family consists of several Borrelia P83/P100 antigen proteins. Pssm-ID: 114011 [Multi-domain] Cd Length: 489 Bit Score: 43.84 E-value: 9.19e-04
|
|||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
822-952 | 9.59e-04 | |||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 43.90 E-value: 9.59e-04
|
|||||||||||
DUF3584 | pfam12128 | Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. ... |
806-954 | 1.22e-03 | |||||||
Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 943 to 1234 amino acids in length. This family contains a P-loop motif suggesting it is a nucleotide binding protein. It may be involved in replication. Pssm-ID: 432349 [Multi-domain] Cd Length: 1191 Bit Score: 43.67 E-value: 1.22e-03
|
|||||||||||
FHA_EmbR-like | cd22669 | forkhead associated (FHA) domain found in Mycobacterium tuberculosis transcriptional ... |
693-774 | 1.31e-03 | |||||||
forkhead associated (FHA) domain found in Mycobacterium tuberculosis transcriptional regulatory protein EmbR and similar proteins; EmbR is a transcriptional regulator of the embCAB operon encoding cell wall arabinosyltransferases (EmbC, -A, and -B), and is phosphorylated by the cognate mycobacterial serine/threonine protein kinase PknH. It interacts with RNA polymerase and possesses a phosphorylation-dependent ATPase activity. EmbR contains a regulatory C-terminal forkhead-associated (FHA) domain, which mediates binding to a threonine-phosphorylated site in PknH. The FHA domain is a small phosphopeptide recognition module. Pssm-ID: 438721 [Multi-domain] Cd Length: 89 Bit Score: 39.32 E-value: 1.31e-03
|
|||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
837-950 | 1.73e-03 | |||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 42.44 E-value: 1.73e-03
|
|||||||||||
GimC | COG1382 | Prefoldin, chaperonin cofactor [Posttranslational modification, protein turnover, chaperones]; |
806-878 | 2.11e-03 | |||||||
Prefoldin, chaperonin cofactor [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440992 [Multi-domain] Cd Length: 121 Bit Score: 39.49 E-value: 2.11e-03
|
|||||||||||
COG4372 | COG4372 | Uncharacterized protein, contains DUF3084 domain [Function unknown]; |
811-958 | 2.44e-03 | |||||||
Uncharacterized protein, contains DUF3084 domain [Function unknown]; Pssm-ID: 443500 [Multi-domain] Cd Length: 370 Bit Score: 42.20 E-value: 2.44e-03
|
|||||||||||
tolA | PRK09510 | cell envelope integrity inner membrane protein TolA; Provisional |
810-942 | 2.46e-03 | |||||||
cell envelope integrity inner membrane protein TolA; Provisional Pssm-ID: 236545 [Multi-domain] Cd Length: 387 Bit Score: 42.10 E-value: 2.46e-03
|
|||||||||||
FHA_DUN1-like | cd22683 | forkhead associated (FHA) domain found in Saccharomyces cerevisiae DNA damage response protein ... |
674-767 | 2.71e-03 | |||||||
forkhead associated (FHA) domain found in Saccharomyces cerevisiae DNA damage response protein kinase DUN1 and similar proteins; DUN1 is a protein kinase that controls the DNA damage response in yeast. It phosphorylates SML1 on serine residues and cooperates with the PAN deadenylation complex in the regulation of RAD5 mRNA levels and cell survival in response to replicational stress. It contains an FHA domain, which is a small phosphopeptide recognition module. Pssm-ID: 438735 [Multi-domain] Cd Length: 96 Bit Score: 38.63 E-value: 2.71e-03
|
|||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
807-946 | 2.71e-03 | |||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 42.06 E-value: 2.71e-03
|
|||||||||||
SMC_N | pfam02463 | RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The ... |
806-982 | 3.06e-03 | |||||||
RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The SMC (structural maintenance of chromosomes) superfamily proteins have ATP-binding domains at the N- and C-termini, and two extended coiled-coil domains separated by a hinge in the middle. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. This family also includes the RecF and RecN proteins that are involved in DNA metabolism and recombination. Pssm-ID: 426784 [Multi-domain] Cd Length: 1161 Bit Score: 42.27 E-value: 3.06e-03
|
|||||||||||
SCP-1 | pfam05483 | Synaptonemal complex protein 1 (SCP-1); Synaptonemal complex protein 1 (SCP-1) is the major ... |
799-953 | 3.90e-03 | |||||||
Synaptonemal complex protein 1 (SCP-1); Synaptonemal complex protein 1 (SCP-1) is the major component of the transverse filaments of the synaptonemal complex. Synaptonemal complexes are structures that are formed between homologous chromosomes during meiotic prophase. Pssm-ID: 114219 [Multi-domain] Cd Length: 787 Bit Score: 42.02 E-value: 3.90e-03
|
|||||||||||
COG4372 | COG4372 | Uncharacterized protein, contains DUF3084 domain [Function unknown]; |
809-982 | 3.99e-03 | |||||||
Uncharacterized protein, contains DUF3084 domain [Function unknown]; Pssm-ID: 443500 [Multi-domain] Cd Length: 370 Bit Score: 41.43 E-value: 3.99e-03
|
|||||||||||
PRK08476 | PRK08476 | F0F1 ATP synthase subunit B'; Validated |
812-868 | 4.16e-03 | |||||||
F0F1 ATP synthase subunit B'; Validated Pssm-ID: 181442 [Multi-domain] Cd Length: 141 Bit Score: 39.29 E-value: 4.16e-03
|
|||||||||||
GBP_C | cd16269 | Guanylate-binding protein, C-terminal domain; Guanylate-binding protein (GBP), C-terminal ... |
824-945 | 4.28e-03 | |||||||
Guanylate-binding protein, C-terminal domain; Guanylate-binding protein (GBP), C-terminal domain. Guanylate-binding proteins (GBPs) are synthesized after activation of the cell by interferons. The biochemical properties of GBPs are clearly different from those of Ras-like and heterotrimeric GTP-binding proteins. They bind guanine nucleotides with low affinity (micromolar range), are stable in their absence, and have a high turnover GTPase. In addition to binding GDP/GTP, they have the unique ability to bind GMP with equal affinity and hydrolyze GTP not only to GDP, but also to GMP. This C-terminal domain has been shown to mediate inhibition of endothelial cell proliferation by inflammatory cytokines. Pssm-ID: 293879 [Multi-domain] Cd Length: 291 Bit Score: 41.02 E-value: 4.28e-03
|
|||||||||||
GBP_C | pfam02841 | Guanylate-binding protein, C-terminal domain; Transcription of the anti-viral ... |
806-945 | 4.51e-03 | |||||||
Guanylate-binding protein, C-terminal domain; Transcription of the anti-viral guanylate-binding protein (GBP) is induced by interferon-gamma during macrophage induction. This family contains GBP1 and GPB2, both GTPases capable of binding GTP, GDP and GMP. Pssm-ID: 460721 [Multi-domain] Cd Length: 297 Bit Score: 40.73 E-value: 4.51e-03
|
|||||||||||
TPH | pfam13868 | Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of ... |
798-952 | 4.55e-03 | |||||||
Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of eukaryotic proteins. Trichoplein or mitostatin, was first defined as a meiosis-specific nuclear structural protein. It has since been linked with mitochondrial movement. It is associated with the mitochondrial outer membrane, and over-expression leads to reduction in mitochondrial motility whereas lack of it enhances mitochondrial movement. The activity appears to be mediated through binding the mitochondria to the actin intermediate filaments (IFs). The family is in the trichohyalin-plectin-homology domain. Pssm-ID: 464007 [Multi-domain] Cd Length: 341 Bit Score: 41.06 E-value: 4.55e-03
|
|||||||||||
tolA_full | TIGR02794 | TolA protein; TolA couples the inner membrane complex of itself with TolQ and TolR to the ... |
811-917 | 5.82e-03 | |||||||
TolA protein; TolA couples the inner membrane complex of itself with TolQ and TolR to the outer membrane complex of TolB and OprL (also called Pal). Most of the length of the protein consists of low-complexity sequence that may differ in both length and composition from one species to another, complicating efforts to discriminate TolA (the most divergent gene in the tol-pal system) from paralogs such as TonB. Selection of members of the seed alignment and criteria for setting scoring cutoffs are based largely conserved operon struction. //The Tol-Pal complex is required for maintaining outer membrane integrity. Also involved in transport (uptake) of colicins and filamentous DNA, and implicated in pathogenesis. Transport is energized by the proton motive force. TolA is an inner membrane protein that interacts with periplasmic TolB and with outer membrane porins ompC, phoE and lamB. [Transport and binding proteins, Other, Cellular processes, Pathogenesis] Pssm-ID: 274303 [Multi-domain] Cd Length: 346 Bit Score: 40.60 E-value: 5.82e-03
|
|||||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
799-946 | 6.24e-03 | |||||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 41.31 E-value: 6.24e-03
|
|||||||||||
Prefoldin_beta_GimC | cd23162 | Prefoldin beta subunit, archaeal; Archaeal beta subunit of prefoldin (GimC), a hexameric ... |
806-878 | 6.51e-03 | |||||||
Prefoldin beta subunit, archaeal; Archaeal beta subunit of prefoldin (GimC), a hexameric molecular chaperone complex, found in both eukaryotes and archaea. Prefoldin binds and stabilizes newly synthesized polypeptides allowing them to fold correctly. The complex contains two alpha and four beta subunits, the two subunits being evolutionarily related. In archaea, there is usually only one gene for each subunit while in eukaryotes there two or more paralogous genes encoding each subunit adding heterogeneity to the structure of the hexamer. The structure of the complex consists of a double beta barrel assembly with six protruding coiled-coils. Pssm-ID: 467478 [Multi-domain] Cd Length: 102 Bit Score: 37.84 E-value: 6.51e-03
|
|||||||||||
PRK11281 | PRK11281 | mechanosensitive channel MscK; |
803-959 | 6.63e-03 | |||||||
mechanosensitive channel MscK; Pssm-ID: 236892 [Multi-domain] Cd Length: 1113 Bit Score: 41.05 E-value: 6.63e-03
|
|||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
810-946 | 7.81e-03 | |||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 41.08 E-value: 7.81e-03
|
|||||||||||
PRK12704 | PRK12704 | phosphodiesterase; Provisional |
833-953 | 9.32e-03 | |||||||
phosphodiesterase; Provisional Pssm-ID: 237177 [Multi-domain] Cd Length: 520 Bit Score: 40.53 E-value: 9.32e-03
|
|||||||||||
MukB | COG3096 | Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell ... |
806-946 | 9.88e-03 | |||||||
Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 442330 [Multi-domain] Cd Length: 1470 Bit Score: 40.71 E-value: 9.88e-03
|
|||||||||||
Blast search parameters | ||||
|