rho GTPase-activating protein 15 isoform X3 [Homo sapiens]
Rho GTPase-activating protein( domain architecture ID 10192495)
Rho GTPase-activating protein for Rho/Rac/Cdc42-like small GTPases that act as molecular switches, active in their GTP-bound form but inactive when bound to GDP; contains a Pleckstrin homology (PH) domain
List of domain hits
Name | Accession | Description | Interval | E-value | |||
RhoGAP super family | cl02570 | RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like ... |
279-414 | 2.00e-92 | |||
RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like small GTPases. Small GTPases (G proteins) cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when bound to GDP. The Rho family of small G proteins, which includes Cdc42Hs, activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. The RhoGAPs are one of the major classes of regulators of Rho G proteins. The actual alignment was detected with superfamily member cd04403: Pssm-ID: 470621 [Multi-domain] Cd Length: 187 Bit Score: 276.19 E-value: 2.00e-92
|
|||||||
PH_ARHGAP9-like | cd13233 | Beta-spectrin pleckstrin homology (PH) domain; ARHGAP family genes encode Rho/Rac/Cdc42-like ... |
81-190 | 3.39e-61 | |||
Beta-spectrin pleckstrin homology (PH) domain; ARHGAP family genes encode Rho/Rac/Cdc42-like GTPase activating proteins with RhoGAP domain. The ARHGAP members here all have a PH domain upstream of their C-terminal RhoGAP domain. Some have additional N-terminal SH3 and WW domains. The members here include: ARHGAP9, ARHGAP12, ARHGAP15, and ARHGAP27. ARHGAP27 and ARHGAP12 shared the common-domain structure, consisting of SH3, WW, PH, and RhoGAP domains. The PH domain of ArhGAP9 employs a non-canonical phosphoinositide binding mechanism, a variation of the spectrin- Ins(4,5)P2-binding mode, that gives rise to a unique PI binding profile, namely a preference for both PI(4,5)P2 and the PI 3-kinase products PI(3,4,5)P3 and PI(3,4)P2. This lipid binding mechanism is also employed by the PH domain of Tiam1 and Slm1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. : Pssm-ID: 270053 Cd Length: 110 Bit Score: 193.65 E-value: 3.39e-61
|
|||||||
Name | Accession | Description | Interval | E-value | |||
RhoGAP_ARHGAP27_15_12_9 | cd04403 | RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ... |
279-414 | 2.00e-92 | |||
RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP27 (also called CAMGAP1), ARHGAP15, 12 and 9-like proteins; This subgroup of ARHGAPs are multidomain proteins that contain RhoGAP, PH, SH3 and WW domains. Most members that are studied show GAP activity towards Rac1, some additionally show activity towards Cdc42. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239868 [Multi-domain] Cd Length: 187 Bit Score: 276.19 E-value: 2.00e-92
|
|||||||
PH_ARHGAP9-like | cd13233 | Beta-spectrin pleckstrin homology (PH) domain; ARHGAP family genes encode Rho/Rac/Cdc42-like ... |
81-190 | 3.39e-61 | |||
Beta-spectrin pleckstrin homology (PH) domain; ARHGAP family genes encode Rho/Rac/Cdc42-like GTPase activating proteins with RhoGAP domain. The ARHGAP members here all have a PH domain upstream of their C-terminal RhoGAP domain. Some have additional N-terminal SH3 and WW domains. The members here include: ARHGAP9, ARHGAP12, ARHGAP15, and ARHGAP27. ARHGAP27 and ARHGAP12 shared the common-domain structure, consisting of SH3, WW, PH, and RhoGAP domains. The PH domain of ArhGAP9 employs a non-canonical phosphoinositide binding mechanism, a variation of the spectrin- Ins(4,5)P2-binding mode, that gives rise to a unique PI binding profile, namely a preference for both PI(4,5)P2 and the PI 3-kinase products PI(3,4,5)P3 and PI(3,4)P2. This lipid binding mechanism is also employed by the PH domain of Tiam1 and Slm1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270053 Cd Length: 110 Bit Score: 193.65 E-value: 3.39e-61
|
|||||||
RhoGAP | pfam00620 | RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. |
295-413 | 1.30e-46 | |||
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. Pssm-ID: 459875 Cd Length: 148 Bit Score: 156.94 E-value: 1.30e-46
|
|||||||
RhoGAP | smart00324 | GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ... |
292-413 | 1.39e-42 | |||
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers. Pssm-ID: 214618 Cd Length: 174 Bit Score: 147.41 E-value: 1.39e-42
|
|||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
80-189 | 8.60e-10 | |||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 55.63 E-value: 8.60e-10
|
|||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
80-188 | 9.99e-08 | |||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 49.87 E-value: 9.99e-08
|
|||||||
Name | Accession | Description | Interval | E-value | |||
RhoGAP_ARHGAP27_15_12_9 | cd04403 | RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ... |
279-414 | 2.00e-92 | |||
RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP27 (also called CAMGAP1), ARHGAP15, 12 and 9-like proteins; This subgroup of ARHGAPs are multidomain proteins that contain RhoGAP, PH, SH3 and WW domains. Most members that are studied show GAP activity towards Rac1, some additionally show activity towards Cdc42. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239868 [Multi-domain] Cd Length: 187 Bit Score: 276.19 E-value: 2.00e-92
|
|||||||
PH_ARHGAP9-like | cd13233 | Beta-spectrin pleckstrin homology (PH) domain; ARHGAP family genes encode Rho/Rac/Cdc42-like ... |
81-190 | 3.39e-61 | |||
Beta-spectrin pleckstrin homology (PH) domain; ARHGAP family genes encode Rho/Rac/Cdc42-like GTPase activating proteins with RhoGAP domain. The ARHGAP members here all have a PH domain upstream of their C-terminal RhoGAP domain. Some have additional N-terminal SH3 and WW domains. The members here include: ARHGAP9, ARHGAP12, ARHGAP15, and ARHGAP27. ARHGAP27 and ARHGAP12 shared the common-domain structure, consisting of SH3, WW, PH, and RhoGAP domains. The PH domain of ArhGAP9 employs a non-canonical phosphoinositide binding mechanism, a variation of the spectrin- Ins(4,5)P2-binding mode, that gives rise to a unique PI binding profile, namely a preference for both PI(4,5)P2 and the PI 3-kinase products PI(3,4,5)P3 and PI(3,4)P2. This lipid binding mechanism is also employed by the PH domain of Tiam1 and Slm1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270053 Cd Length: 110 Bit Score: 193.65 E-value: 3.39e-61
|
|||||||
RhoGAP | pfam00620 | RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. |
295-413 | 1.30e-46 | |||
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. Pssm-ID: 459875 Cd Length: 148 Bit Score: 156.94 E-value: 1.30e-46
|
|||||||
RhoGAP | smart00324 | GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ... |
292-413 | 1.39e-42 | |||
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers. Pssm-ID: 214618 Cd Length: 174 Bit Score: 147.41 E-value: 1.39e-42
|
|||||||
RhoGAP | cd00159 | RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like ... |
295-413 | 4.54e-41 | |||
RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like small GTPases. Small GTPases (G proteins) cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when bound to GDP. The Rho family of small G proteins, which includes Cdc42Hs, activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. The RhoGAPs are one of the major classes of regulators of Rho G proteins. Pssm-ID: 238090 [Multi-domain] Cd Length: 169 Bit Score: 143.21 E-value: 4.54e-41
|
|||||||
RhoGAP_fRGD1 | cd04398 | RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
279-413 | 1.81e-37 | |||
RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal RGD1-like proteins. Yeast Rgd1 is a GAP protein for Rho3 and Rho4 and plays a role in low-pH response. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239863 Cd Length: 192 Bit Score: 134.45 E-value: 1.81e-37
|
|||||||
RhoGAP_ARHGAP21 | cd04395 | RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
290-413 | 2.61e-35 | |||
RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP21-like proteins. ArhGAP21 is a multi-domain protein, containing RhoGAP, PH and PDZ domains, and is believed to play a role in the organization of the cell-cell junction complex. It has been shown to function as a GAP of Cdc42 and RhoA, and to interact with alpha-catenin and Arf6. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239860 Cd Length: 196 Bit Score: 129.06 E-value: 2.61e-35
|
|||||||
RhoGAP_Graf | cd04374 | RhoGAP_Graf: GTPase-activator protein (GAP) domain for Rho-like GTPases found in GRAF (GTPase ... |
297-415 | 7.60e-31 | |||
RhoGAP_Graf: GTPase-activator protein (GAP) domain for Rho-like GTPases found in GRAF (GTPase regulator associated with focal adhesion kinase); Graf is a multi-domain protein, containing SH3 and PH domains, that binds focal adhesion kinase and influences cytoskeletal changes mediated by Rho proteins. Graf exhibits GAP activity toward RhoA and Cdc42, but only weakly activates Rac1. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239839 Cd Length: 203 Bit Score: 117.11 E-value: 7.60e-31
|
|||||||
RhoGAP_p190 | cd04373 | RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
292-414 | 8.10e-31 | |||
RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p190-like proteins. p190, also named RhoGAP5, plays a role in neuritogenesis and axon branch stability. p190 shows a preference for Rho, over Rac and Cdc42, and consists of an N-terminal GTPase domain and a C-terminal GAP domain. The central portion of p190 contains important regulatory phosphorylation sites. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239838 Cd Length: 185 Bit Score: 116.79 E-value: 8.10e-31
|
|||||||
RhoGAP_CdGAP | cd04384 | RhoGAP_CdGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
278-414 | 1.41e-30 | |||
RhoGAP_CdGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of CdGAP-like proteins; CdGAP contains an N-terminal RhoGAP domain and a C-terminal proline-rich region, and it is active on both Cdc42 and Rac1 but not RhoA. CdGAP is recruited to focal adhesions via the interaction with the scaffold protein actopaxin (alpha-parvin). Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239849 [Multi-domain] Cd Length: 195 Bit Score: 116.45 E-value: 1.41e-30
|
|||||||
RhoGAP_Bcr | cd04387 | RhoGAP_Bcr: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Bcr ... |
279-413 | 3.81e-30 | |||
RhoGAP_Bcr: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Bcr (breakpoint cluster region protein)-like proteins. Bcr is a multidomain protein with a variety of enzymatic functions. It contains a RhoGAP and a Rho GEF domain, a Ser/Thr kinase domain, an N-terminal oligomerization domain, and a C-terminal PDZ binding domain, in addition to PH and C2 domains. Bcr is a negative regulator of: i) RacGTPase, via the Rho GAP domain, ii) the Ras-Raf-MEK-ERK pathway, via phosphorylation of the Ras binding protein AF-6, and iii) the Wnt signaling pathway through binding beta-catenin. Bcr can form a complex with beta-catenin and Tcf1. The Wnt signaling pathway is involved in cell proliferation, differentiation, and cell renewal. Bcr was discovered as a fusion partner of Abl. The Bcr-Abl fusion is characteristic for a large majority of chronic myelogenous leukemias (CML). Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239852 [Multi-domain] Cd Length: 196 Bit Score: 115.03 E-value: 3.81e-30
|
|||||||
RhoGAP_chimaerin | cd04372 | RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
279-413 | 1.02e-27 | |||
RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of chimaerins. Chimaerins are a family of phorbolester- and diacylglycerol-responsive GAPs specific for the Rho-like GTPase Rac. Chimaerins exist in two alternative splice forms that each contain a C-terminal GAP domain, and a central C1 domain which binds phorbol esters, inducing a conformational change that activates the protein; one splice form is lacking the N-terminal Src homology-2 (SH2) domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239837 [Multi-domain] Cd Length: 194 Bit Score: 108.37 E-value: 1.02e-27
|
|||||||
RhoGAP_myosin_IX | cd04377 | RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
290-413 | 1.17e-27 | |||
RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in class IX myosins. Class IX myosins contain a characteristic head domain, a neck domain, a tail domain which contains a C6H2-zinc binding motif and a RhoGAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239842 Cd Length: 186 Bit Score: 108.29 E-value: 1.17e-27
|
|||||||
RhoGAP_MgcRacGAP | cd04382 | RhoGAP_MgcRacGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
294-413 | 4.44e-26 | |||
RhoGAP_MgcRacGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in MgcRacGAP proteins. MgcRacGAP plays an important dual role in cytokinesis: i) it is part of centralspindlin-complex, together with the mitotic kinesin MKLP1, which is critical for the structure of the central spindle by promoting microtuble bundling. ii) after phosphorylation by aurora B MgcRacGAP becomes an effective regulator of RhoA and plays an important role in the assembly of the contractile ring and the initiation of cytokinesis. MgcRacGAP-like proteins contain a N-terminal C1-like domain, and a C-terminal RhoGAP domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239847 Cd Length: 193 Bit Score: 103.91 E-value: 4.44e-26
|
|||||||
RhoGAP-p50rhoGAP | cd04404 | RhoGAP-p50rhoGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
277-414 | 9.33e-25 | |||
RhoGAP-p50rhoGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p50RhoGAP-like proteins; p50RhoGAP, also known as RhoGAP-1, contains a C-terminal RhoGAP domain and an N-terminal Sec14 domain which binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). It is ubiquitously expressed and preferentially active on Cdc42. This subgroup also contains closely related ARHGAP8. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239869 [Multi-domain] Cd Length: 195 Bit Score: 100.49 E-value: 9.33e-25
|
|||||||
RhoGAP_nadrin | cd04386 | RhoGAP_nadrin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
277-409 | 1.26e-23 | |||
RhoGAP_nadrin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Nadrin-like proteins. Nadrin, also named Rich-1, has been shown to be involved in the regulation of Ca2+-dependent exocytosis in neurons and recently has been implicated in tight junction maintenance in mammalian epithelium. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239851 Cd Length: 203 Bit Score: 97.53 E-value: 1.26e-23
|
|||||||
RhoGAP_GMIP_PARG1 | cd04378 | RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
279-413 | 3.67e-23 | |||
RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein) and PARG1 (PTPL1-associated RhoGAP1). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239843 Cd Length: 203 Bit Score: 96.34 E-value: 3.67e-23
|
|||||||
RhoGAP_ARAP | cd04385 | RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ... |
294-415 | 4.25e-22 | |||
RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in ARAPs. ARAPs (also known as centaurin deltas) contain, besides the RhoGAP domain, an Arf GAP, ankyrin repeat ras-associating, and PH domains. Since their ArfGAP activity is PIP3-dependent, ARAPs are considered integration points for phosphoinositide, Arf and Rho signaling. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239850 Cd Length: 184 Bit Score: 92.76 E-value: 4.25e-22
|
|||||||
RhoGap_RalBP1 | cd04381 | RhoGap_RalBP1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
279-415 | 7.85e-21 | |||
RhoGap_RalBP1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in RalBP1 proteins, also known as RLIP, RLIP76 or cytocentrin. RalBP1 plays an important role in endocytosis during interphase. During mitosis, RalBP1 transiently associates with the centromere and has been shown to play an essential role in the proper assembly of the mitotic apparatus. RalBP1 is an effector of the Ral GTPase which itself is an effector of Ras. RalBP1 contains a RhoGAP domain, which shows weak activity towards Rac1 and Cdc42, but not towards Ral, and a Ral effector domain binding motif. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239846 [Multi-domain] Cd Length: 182 Bit Score: 89.03 E-value: 7.85e-21
|
|||||||
RhoGAP_SYD1 | cd04379 | RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ... |
279-415 | 8.98e-21 | |||
RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in SYD-1_like proteins. Syd-1, first identified and best studied in C.elegans, has been shown to play an important role in neuronal development by specifying axonal properties. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239844 Cd Length: 207 Bit Score: 89.83 E-value: 8.98e-21
|
|||||||
RhoGAP_fBEM3 | cd04400 | RhoGAP_fBEM3: RhoGAP (GTPase-activator [GAP] protein for Rho-like small GTPases) domain of ... |
278-413 | 1.41e-19 | |||
RhoGAP_fBEM3: RhoGAP (GTPase-activator [GAP] protein for Rho-like small GTPases) domain of fungal BEM3-like proteins. Bem3 is a GAP protein of Cdc42, and is specifically involved in the control of the initial assembly of the septin ring in yeast bud formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239865 [Multi-domain] Cd Length: 190 Bit Score: 85.87 E-value: 1.41e-19
|
|||||||
RhoGAP_ARHGAP18 | cd04391 | RhoGAP_ARHGAP18: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
278-409 | 4.94e-19 | |||
RhoGAP_ARHGAP18: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP18-like proteins. The function of ArhGAP18 is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239856 Cd Length: 216 Bit Score: 85.09 E-value: 4.94e-19
|
|||||||
RhoGAP_ARHGAP6 | cd04376 | RhoGAP_ARHGAP6: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
294-413 | 1.37e-18 | |||
RhoGAP_ARHGAP6: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP6-like proteins. ArhGAP6 shows GAP activity towards RhoA, but not towards Cdc42 and Rac1. ArhGAP6 is often deleted in microphthalmia with linear skin defects syndrome (MLS); MLS is a severe X-linked developmental disorder. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239841 Cd Length: 206 Bit Score: 83.64 E-value: 1.37e-18
|
|||||||
RhoGAP_srGAP | cd04383 | RhoGAP_srGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
277-413 | 1.54e-18 | |||
RhoGAP_srGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in srGAPs. srGAPs are components of the intracellular part of Slit-Robo signalling pathway that is important for axon guidance and cell migration. srGAPs contain an N-terminal FCH domain, a central RhoGAP domain and a C-terminal SH3 domain; this SH3 domain interacts with the intracellular proline-rich-tail of the Roundabout receptor (Robo). This interaction with Robo then activates the rhoGAP domain which in turn inhibits Cdc42 activity. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239848 Cd Length: 188 Bit Score: 82.85 E-value: 1.54e-18
|
|||||||
RhoGAP_GMIP | cd04408 | RhoGAP_GMIP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP ... |
294-413 | 1.71e-18 | |||
RhoGAP_GMIP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239873 Cd Length: 200 Bit Score: 83.33 E-value: 1.71e-18
|
|||||||
RhoGAP_myosin_IXB | cd04407 | RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
290-413 | 4.28e-18 | |||
RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXB. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239872 [Multi-domain] Cd Length: 186 Bit Score: 81.58 E-value: 4.28e-18
|
|||||||
RhoGAP_PARG1 | cd04409 | RhoGAP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
279-413 | 5.88e-17 | |||
RhoGAP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of PARG1 (PTPL1-associated RhoGAP1). PARG1 was originally cloned as an interaction partner of PTPL1, an intracellular protein-tyrosine phosphatase. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239874 Cd Length: 211 Bit Score: 79.08 E-value: 5.88e-17
|
|||||||
RhoGAP_ARHGAP20 | cd04402 | RhoGAP_ARHGAP20: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
278-413 | 2.70e-16 | |||
RhoGAP_ARHGAP20: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP20-like proteins. ArhGAP20, also known as KIAA1391 and RA-RhoGAP, contains a RhoGAP, a RA, and a PH domain, and ANXL repeats. ArhGAP20 is activated by Rap1 and induces inactivation of Rho, which in turn leads to neurite outgrowth. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239867 Cd Length: 192 Bit Score: 76.57 E-value: 2.70e-16
|
|||||||
RhoGAP_myosin_IXA | cd04406 | RhoGAP_myosin_IXA: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
279-413 | 1.24e-15 | |||
RhoGAP_myosin_IXA: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXA. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239871 Cd Length: 186 Bit Score: 74.65 E-value: 1.24e-15
|
|||||||
RhoGAP_DLC1 | cd04375 | RhoGAP_DLC1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
278-414 | 3.71e-15 | |||
RhoGAP_DLC1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of DLC1-like proteins. DLC1 shows in vitro GAP activity towards RhoA and CDC42. Beside its C-terminal GAP domain, DLC1 also contains a SAM (sterile alpha motif) and a START (StAR-related lipid transfer action) domain. DLC1 has tumor suppressor activity in cell culture. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239840 Cd Length: 220 Bit Score: 73.99 E-value: 3.71e-15
|
|||||||
PH_ARHGAP21-like | cd01253 | ARHGAP21 and related proteins pleckstrin homology (PH) domain; ARHGAP family genes encode Rho ... |
81-186 | 9.00e-15 | |||
ARHGAP21 and related proteins pleckstrin homology (PH) domain; ARHGAP family genes encode Rho/Rac/Cdc42-like GTPase activating proteins with a RhoGAP domain. These proteins functions as a GTPase-activating protein (GAP) for RHOA and CDC42. ARHGAP21 controls the Arp2/3 complex and F-actin dynamics at the Golgi complex by regulating the activity of the small GTPase Cdc42. It is recruited to the Golgi by to GTPase, ARF1, through its PH domain and its helical motif. It is also required for CTNNA1 recruitment to adherens junctions. ARHGAP21 and it related proteins all contains a PH domain and a RhoGAP domain. Some of the members have additional N-terminal domains including PDZ, SH3, and SPEC. The ARHGAP21 PH domain interacts with the GTPbound forms of both ARF1 and ARF6 ARF-binding domain/ArfBD. The members here include: ARHGAP15, ARHGAP21, and ARHGAP23. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269955 Cd Length: 113 Bit Score: 70.09 E-value: 9.00e-15
|
|||||||
RhoGAP_KIAA1688 | cd04389 | RhoGAP_KIAA1688: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ... |
279-403 | 9.75e-15 | |||
RhoGAP_KIAA1688: GTPase-activator protein (GAP) domain for Rho-like GTPases found in KIAA1688-like proteins; KIAA1688 is a protein of unknown function that contains a RhoGAP domain and a myosin tail homology 4 (MyTH4) domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239854 Cd Length: 187 Bit Score: 72.04 E-value: 9.75e-15
|
|||||||
RhoGAP_FAM13A1a | cd04393 | RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
264-415 | 1.01e-14 | |||
RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of FAM13A1, isoform a-like proteins. The function of FAM13A1a is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by up several orders of magnitude. Pssm-ID: 239858 [Multi-domain] Cd Length: 189 Bit Score: 72.11 E-value: 1.01e-14
|
|||||||
RhoGAP_fLRG1 | cd04397 | RhoGAP_fLRG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
279-413 | 1.99e-14 | |||
RhoGAP_fLRG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal LRG1-like proteins. Yeast Lrg1p is required for efficient cell fusion, and mother-daughter cell separation, possibly through acting as a RhoGAP specifically regulating 1,3-beta-glucan synthesis. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239862 Cd Length: 213 Bit Score: 72.01 E-value: 1.99e-14
|
|||||||
RhoGAP_ARHGAP22_24_25 | cd04390 | RhoGAP_ARHGAP22_24_25: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ... |
278-376 | 2.32e-13 | |||
RhoGAP_ARHGAP22_24_25: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP22, 24 and 25-like proteins; longer isoforms of these proteins contain an additional N-terminal pleckstrin homology (PH) domain. ARHGAP25 (KIA0053) has been identified as a GAP for Rac1 and Cdc42. Short isoforms (without the PH domain) of ARHGAP24, called RC-GAP72 and p73RhoGAP, and of ARHGAP22, called p68RacGAP, has been shown to be involved in angiogenesis and endothelial cell capillary formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239855 [Multi-domain] Cd Length: 199 Bit Score: 68.62 E-value: 2.32e-13
|
|||||||
PH_beta_spectrin | cd10571 | Beta-spectrin pleckstrin homology (PH) domain; Beta spectrin binds actin and functions as a ... |
83-187 | 8.40e-13 | |||
Beta-spectrin pleckstrin homology (PH) domain; Beta spectrin binds actin and functions as a major component of the cytoskeleton underlying cellular membranes. Beta spectrin consists of multiple spectrin repeats followed by a PH domain, which binds to inositol-1,4,5-trisphosphate. The PH domain of beta-spectrin is thought to play a role in the association of spectrin with the plasma membrane of cells. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269975 Cd Length: 106 Bit Score: 64.17 E-value: 8.40e-13
|
|||||||
RhoGAP-ARHGAP11A | cd04394 | RhoGAP-ARHGAP11A: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
278-415 | 1.44e-11 | |||
RhoGAP-ARHGAP11A: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP11A-like proteins. The mouse homolog of human ArhGAP11A has been detected as a gene exclusively expressed in immature ganglion cells, potentially playing a role in retinal development. The exact function of ArhGAP11A is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239859 [Multi-domain] Cd Length: 202 Bit Score: 63.26 E-value: 1.44e-11
|
|||||||
RhoGAP_ARHGAP19 | cd04392 | RhoGAP_ARHGAP19: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
298-409 | 2.49e-11 | |||
RhoGAP_ARHGAP19: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP19-like proteins. The function of ArhGAP19 is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239857 Cd Length: 208 Bit Score: 62.86 E-value: 2.49e-11
|
|||||||
RhoGAP_fSAC7_BAG7 | cd04396 | RhoGAP_fSAC7_BAG7: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
294-403 | 2.66e-10 | |||
RhoGAP_fSAC7_BAG7: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal SAC7 and BAG7-like proteins. Both proteins are GTPase activating proteins of Rho1, but differ functionally in vivo: SAC7, but not BAG7, is involved in the control of Rho1-mediated activation of the PKC-MPK1 pathway. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239861 Cd Length: 225 Bit Score: 60.12 E-value: 2.66e-10
|
|||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
80-189 | 8.60e-10 | |||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 55.63 E-value: 8.60e-10
|
|||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
80-188 | 9.99e-08 | |||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 49.87 E-value: 9.99e-08
|
|||||||
RhoGAP_p85 | cd04388 | RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ... |
295-413 | 2.69e-06 | |||
RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in the p85 isoforms of the regulatory subunit of the class IA PI3K (phosphatidylinositol 3'-kinase). This domain is also called Bcr (breakpoint cluster region protein) homology (BH) domain. Class IA PI3Ks are heterodimers, containing a regulatory subunit (p85) and a catalytic subunit (p110) and are activated by growth factor receptor tyrosine kinases (RTKs); this activation is mediated by the p85 subunit. p85 isoforms, alpha and beta, contain a C-terminal p110-binding domain flanked by two SH2 domains, an N-terminal SH3 domain, and a RhoGAP domain flanked by two proline-rich regions. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239853 Cd Length: 200 Bit Score: 47.95 E-value: 2.69e-06
|
|||||||
PH | cd00821 | Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ... |
82-184 | 5.67e-06 | |||
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 44.46 E-value: 5.67e-06
|
|||||||
PH1_Pleckstrin_2 | cd13301 | Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ... |
79-188 | 9.69e-06 | |||
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270113 Cd Length: 108 Bit Score: 44.29 E-value: 9.69e-06
|
|||||||
RhoGAP_fRGD2 | cd04399 | RhoGAP_fRGD2: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
279-414 | 4.40e-05 | |||
RhoGAP_fRGD2: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal RGD2-like proteins. Yeast Rgd2 is a GAP protein for Cdc42 and Rho5. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239864 Cd Length: 212 Bit Score: 44.25 E-value: 4.40e-05
|
|||||||
PH_TAAP2-like | cd13255 | Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ... |
80-196 | 8.71e-04 | |||
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270075 Cd Length: 110 Bit Score: 38.55 E-value: 8.71e-04
|
|||||||
PH_ACAP | cd13250 | ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ... |
82-191 | 1.14e-03 | |||
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270070 Cd Length: 98 Bit Score: 37.97 E-value: 1.14e-03
|
|||||||
PH1_PLEKHH1_PLEKHH2 | cd13282 | Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ... |
82-190 | 4.74e-03 | |||
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241436 Cd Length: 96 Bit Score: 36.12 E-value: 4.74e-03
|
|||||||
PH_GAP1-like | cd01244 | RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; ... |
82-162 | 6.55e-03 | |||
RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; RASAL1, GAP1(m), GAP1(IP4BP), and CAPRI are all members of the GAP1 family of GTPase-activating proteins. They contain N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. They act as a suppressor of RAS enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. PH domains share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269950 Cd Length: 107 Bit Score: 36.11 E-value: 6.55e-03
|
|||||||
Blast search parameters | ||||
|