glycodelin isoform X4 [Homo sapiens]
lipocalin/fatty-acid binding family protein( domain architecture ID 14443748)
lipocalin/fatty-acid binding family protein such as lipocalins, which are transporters for small hydrophobic molecules, including lipids, steroid hormones, bilins, and retinoids
List of domain hits
Name | Accession | Description | Interval | E-value | |||
lipocalin_beta-LG-like | cd19416 | beta-lactoglobulin and similar proteins; Beta-Lactoglobulin (beta-LG) is the major whey ... |
21-157 | 4.43e-75 | |||
beta-lactoglobulin and similar proteins; Beta-Lactoglobulin (beta-LG) is the major whey protein of ruminant species and present in the milk of many other species, with a notable exception of human. It is the major allergen of bovine milk. Beta-LG has been shown to bind hydrophobic ligands such as curcumin, vitamin E or fatty acids, or hydrophilic such as vitamin B9. This group also includes human glycodelin (also known as placental protein 14, pregnancy-associated endometrial alpha-2 globulin, and progestagen-associated endometrial protein) which is involved in crucial biological processes such as reproduction and immune reaction. Four glycoforms of glycodelin have been identified in reproductive tissue that differ in glycosylation and biological activity. This group belongs to the lipocalin/cytosolic fatty-acid binding protein family which have a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. : Pssm-ID: 381191 Cd Length: 160 Bit Score: 221.25 E-value: 4.43e-75
|
|||||||
Name | Accession | Description | Interval | E-value | |||
lipocalin_beta-LG-like | cd19416 | beta-lactoglobulin and similar proteins; Beta-Lactoglobulin (beta-LG) is the major whey ... |
21-157 | 4.43e-75 | |||
beta-lactoglobulin and similar proteins; Beta-Lactoglobulin (beta-LG) is the major whey protein of ruminant species and present in the milk of many other species, with a notable exception of human. It is the major allergen of bovine milk. Beta-LG has been shown to bind hydrophobic ligands such as curcumin, vitamin E or fatty acids, or hydrophilic such as vitamin B9. This group also includes human glycodelin (also known as placental protein 14, pregnancy-associated endometrial alpha-2 globulin, and progestagen-associated endometrial protein) which is involved in crucial biological processes such as reproduction and immune reaction. Four glycoforms of glycodelin have been identified in reproductive tissue that differ in glycosylation and biological activity. This group belongs to the lipocalin/cytosolic fatty-acid binding protein family which have a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381191 Cd Length: 160 Bit Score: 221.25 E-value: 4.43e-75
|
|||||||
Lipocalin | pfam00061 | Lipocalin / cytosolic fatty-acid binding protein family; Lipocalins are transporters for small ... |
32-153 | 1.02e-24 | |||
Lipocalin / cytosolic fatty-acid binding protein family; Lipocalins are transporters for small hydrophobic molecules, such as lipids, steroid hormones, bilins, and retinoids. The family also encompasses the enzyme prostaglandin D synthase (EC:5.3.99.2). Alignment subsumes both the lipocalin and fatty acid binding protein signatures from PROSITE. This is supported on structural and functional grounds. The structure is an eight-stranded beta barrel. Pssm-ID: 395015 Cd Length: 143 Bit Score: 92.50 E-value: 1.02e-24
|
|||||||
Name | Accession | Description | Interval | E-value | |||
lipocalin_beta-LG-like | cd19416 | beta-lactoglobulin and similar proteins; Beta-Lactoglobulin (beta-LG) is the major whey ... |
21-157 | 4.43e-75 | |||
beta-lactoglobulin and similar proteins; Beta-Lactoglobulin (beta-LG) is the major whey protein of ruminant species and present in the milk of many other species, with a notable exception of human. It is the major allergen of bovine milk. Beta-LG has been shown to bind hydrophobic ligands such as curcumin, vitamin E or fatty acids, or hydrophilic such as vitamin B9. This group also includes human glycodelin (also known as placental protein 14, pregnancy-associated endometrial alpha-2 globulin, and progestagen-associated endometrial protein) which is involved in crucial biological processes such as reproduction and immune reaction. Four glycoforms of glycodelin have been identified in reproductive tissue that differ in glycosylation and biological activity. This group belongs to the lipocalin/cytosolic fatty-acid binding protein family which have a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381191 Cd Length: 160 Bit Score: 221.25 E-value: 4.43e-75
|
|||||||
Lipocalin | pfam00061 | Lipocalin / cytosolic fatty-acid binding protein family; Lipocalins are transporters for small ... |
32-153 | 1.02e-24 | |||
Lipocalin / cytosolic fatty-acid binding protein family; Lipocalins are transporters for small hydrophobic molecules, such as lipids, steroid hormones, bilins, and retinoids. The family also encompasses the enzyme prostaglandin D synthase (EC:5.3.99.2). Alignment subsumes both the lipocalin and fatty acid binding protein signatures from PROSITE. This is supported on structural and functional grounds. The structure is an eight-stranded beta barrel. Pssm-ID: 395015 Cd Length: 143 Bit Score: 92.50 E-value: 1.02e-24
|
|||||||
lipocalin_FABP | cd00301 | lipocalin/cytosolic fatty acid-binding protein family; Lipocalins are diverse, mainly low ... |
35-120 | 1.08e-07 | |||
lipocalin/cytosolic fatty acid-binding protein family; Lipocalins are diverse, mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules as well as membrane bound-receptors. They have a large beta-barrel ligand-binding cavity. Members include retinol-binding protein, retinoic acid-binding protein, complement protein C8 gamma, Can f 2, apolipoprotein D, extracellular fatty acid-binding protein, beta-lactoglobulin, oderant-binding protein, and bacterial lipocalin Blc. Lipocalins are involved in many important processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty acid-binding proteins also bind hydrophobic ligands in a non-covalent, reversible manner, and are involved in protection and shuttling of fatty acids within the cell, and in acquisition and removal of fatty acids from intracellular sites. Pssm-ID: 381182 Cd Length: 109 Bit Score: 47.54 E-value: 1.08e-07
|
|||||||
lipocalin_9 | cd19429 | lipocalin 9; Lipocalin 9 (LCN9) is specifically expressed in the epididymis. It belongs to the ... |
35-137 | 2.32e-07 | |||
lipocalin 9; Lipocalin 9 (LCN9) is specifically expressed in the epididymis. It belongs to the lipocalin/cytosolic fatty-acid binding protein family. Lipocalins are typically small extracellular proteins that bind small hydrophobic molecules, such as lipids, steroid hormones, bilins, and retinoids and form covalent or non-covalent complexes with soluble macromolecules as well as membrane bound-receptors. They are involved in many important functions, like ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Pssm-ID: 381204 Cd Length: 156 Bit Score: 47.53 E-value: 2.32e-07
|
|||||||
lipocalin_L-PGDS | cd19419 | lipocalin-type prostaglandin D synthase; Lipocalin-type prostaglandin D synthase (L-PGDS; EC:5. ... |
32-136 | 4.37e-06 | |||
lipocalin-type prostaglandin D synthase; Lipocalin-type prostaglandin D synthase (L-PGDS; EC:5.3.99.2) is a secreted enzyme and the second most abundant protein in human cerebrospinal fluid. L-PGDS acts as both, an enzyme and as a lipid transporter, converting prostaglandin H2 to prostaglandin D2 and serving as a carrier for hydrophobic ligands including retinoids, hemoglobin metabolites, thyroid hormones, gangliosides, and fatty acids. L-PGDS belongs to the lipocalin/cytosolic fatty-acid binding protein family which has a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381194 Cd Length: 158 Bit Score: 44.27 E-value: 4.37e-06
|
|||||||
lipocalin_MUP-like | cd19428 | major urinary proteins (MUPs) and similar proteins; Mouse urine contains major urinary ... |
47-105 | 7.93e-04 | |||
major urinary proteins (MUPs) and similar proteins; Mouse urine contains major urinary proteins (MUPs) which bind low molecular weight hydrophobic organic compounds such as urinary volatile pheromones such as the male-specific 2-sec-butyl-4,5-dihydrothiazole (SB2HT) which hastens puberty in female mice. The association between MUPs and these volatiles slows the release of the volatiles into the air from urine marks. MUPs may also act as pheromones themselves. MUPs, expressed in the nasal and vomeronasal mucosa, may be important for delivering urinary volatiles to receptors in the vomeronasal organ. This group includes MUPs encoded by central genes in the MUP cluster, as well as those encoded by peripheral genes such as Darcin/Mup20 which binds most of the male pheromone SB2HT in urine and was the first MUP shown to have male pheromonal activity in its own right. This group includes rat MUPs (also called alpha-2U globulins) and other lipocalins such as major horse allergen Equ c 1 and boar salivary lipocalin, a pheromone-binding protein specifically expressed in the submaxillary glands of the boar. It belongs to the lipocalin/cytosolic fatty-acid binding protein family which have a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381203 Cd Length: 158 Bit Score: 37.81 E-value: 7.93e-04
|
|||||||
Blast search parameters | ||||
|