inactive tyrosine-protein kinase PEAK1 isoform X1 [Homo sapiens]
protein kinase family protein( domain architecture ID 229378)
protein kinase family protein may catalyze the transfer of the gamma-phosphoryl group from ATP to substrates such as serine/threonine and/or tyrosine residues on proteins, or may be a pseudokinase
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
PKc_like super family | cl21453 | Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the ... |
1503-1668 | 3.07e-12 | ||||
Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the catalytic domains of serine/threonine-specific and tyrosine-specific protein kinases. It also includes RIO kinases, which are atypical serine protein kinases, aminoglycoside phosphotransferases, and choline kinases. These proteins catalyze the transfer of the gamma-phosphoryl group from ATP to hydroxyl groups in specific substrates such as serine, threonine, or tyrosine residues of proteins. The actual alignment was detected with superfamily member cd14018: Pssm-ID: 473864 [Multi-domain] Cd Length: 313 Bit Score: 69.45 E-value: 3.07e-12
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
STKc_PINK1 | cd14018 | Catalytic domain of the Serine/Threonine protein kinase, Pten INduced Kinase 1; STKs catalyze ... |
1503-1668 | 3.07e-12 | ||||
Catalytic domain of the Serine/Threonine protein kinase, Pten INduced Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PINK1 contains an N-terminal mitochondrial targeting sequence, a catalytic domain, and a C-terminal regulatory region. It plays an important role in maintaining mitochondrial homeostasis. It protects cells against oxidative stress-induced apoptosis by phosphorylating the chaperone TNFR-associated protein 1 (TRAP1), also called Hsp75. Phosphorylated TRAP1 prevents cytochrome c release and peroxide-induced apoptosis. PINK1 interacts with Omi/HtrA2, a serine protease, and Parkin, an E3 ubiquitin ligase, in different pathways to promote mitochondrial health. The parkin gene is the most commonly mutated gene in autosomal recessive familial parkinsonism. Mutations within the catalytic domain of PINK1 are also associated with Parkinson's disease. The PINK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270920 [Multi-domain] Cd Length: 313 Bit Score: 69.45 E-value: 3.07e-12
|
||||||||
S_TKc | smart00220 | Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ... |
1501-1664 | 5.59e-12 | ||||
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily. Pssm-ID: 214567 [Multi-domain] Cd Length: 254 Bit Score: 67.94 E-value: 5.59e-12
|
||||||||
Pkinase | pfam00069 | Protein kinase domain; |
1577-1660 | 8.12e-09 | ||||
Protein kinase domain; Pssm-ID: 459660 [Multi-domain] Cd Length: 217 Bit Score: 57.64 E-value: 8.12e-09
|
||||||||
PTZ00267 | PTZ00267 | NIMA-related protein kinase; Provisional |
1548-1653 | 3.85e-05 | ||||
NIMA-related protein kinase; Provisional Pssm-ID: 140293 [Multi-domain] Cd Length: 478 Bit Score: 48.47 E-value: 3.85e-05
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
STKc_PINK1 | cd14018 | Catalytic domain of the Serine/Threonine protein kinase, Pten INduced Kinase 1; STKs catalyze ... |
1503-1668 | 3.07e-12 | ||||
Catalytic domain of the Serine/Threonine protein kinase, Pten INduced Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PINK1 contains an N-terminal mitochondrial targeting sequence, a catalytic domain, and a C-terminal regulatory region. It plays an important role in maintaining mitochondrial homeostasis. It protects cells against oxidative stress-induced apoptosis by phosphorylating the chaperone TNFR-associated protein 1 (TRAP1), also called Hsp75. Phosphorylated TRAP1 prevents cytochrome c release and peroxide-induced apoptosis. PINK1 interacts with Omi/HtrA2, a serine protease, and Parkin, an E3 ubiquitin ligase, in different pathways to promote mitochondrial health. The parkin gene is the most commonly mutated gene in autosomal recessive familial parkinsonism. Mutations within the catalytic domain of PINK1 are also associated with Parkinson's disease. The PINK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270920 [Multi-domain] Cd Length: 313 Bit Score: 69.45 E-value: 3.07e-12
|
||||||||
S_TKc | smart00220 | Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ... |
1501-1664 | 5.59e-12 | ||||
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily. Pssm-ID: 214567 [Multi-domain] Cd Length: 254 Bit Score: 67.94 E-value: 5.59e-12
|
||||||||
STKc_GAK_like | cd13985 | Catalytic domain of cyclin G-Associated Kinase-like proteins; STKs catalyze the transfer of ... |
1468-1664 | 5.81e-09 | ||||
Catalytic domain of cyclin G-Associated Kinase-like proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes cyclin G-Associated Kinase (GAK), Drosophila melanogaster Numb-Associated Kinase (NAK)-like proteins, and similar protein kinases. GAK plays regulatory roles in clathrin-mediated membrane trafficking, the maintenance of centrosome integrity and chromosome congression, neural patterning, survival of neurons, and immune responses. NAK plays a role in asymmetric cell division through its association with Numb. It also regulates the localization of Dlg, a protein essential for septate junction formation. The GAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270887 [Multi-domain] Cd Length: 272 Bit Score: 59.27 E-value: 5.81e-09
|
||||||||
Pkinase | pfam00069 | Protein kinase domain; |
1577-1660 | 8.12e-09 | ||||
Protein kinase domain; Pssm-ID: 459660 [Multi-domain] Cd Length: 217 Bit Score: 57.64 E-value: 8.12e-09
|
||||||||
STKc_CAMK | cd05117 | The catalytic domain of CAMK family Serine/Threonine Kinases; STKs catalyze the transfer of ... |
1477-1659 | 5.90e-07 | ||||
The catalytic domain of CAMK family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. CaMKII is a signaling molecule that translates upstream calcium and reactive oxygen species (ROS) signals into downstream responses that play important roles in synaptic function and cardiovascular physiology. CAMKIV is implicated in regulating several transcription factors like CREB, MEF2, and retinoid orphan receptors, as well as in T-cell development and signaling. The CAMK family also consists of other related kinases including the Phosphorylase kinase Gamma subunit (PhKG), the C-terminal kinase domains of Ribosomal S6 kinase (RSK) and Mitogen and stress-activated kinase (MSK), Doublecortin-like kinase (DCKL), and the MAPK-activated protein kinases MK2, MK3, and MK5, among others. The CAMK family is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270687 [Multi-domain] Cd Length: 258 Bit Score: 52.86 E-value: 5.90e-07
|
||||||||
STKc_ATG1_ULK_like | cd14009 | Catalytic domain of the Serine/Threonine kinases, Autophagy-related protein 1 and Unc-51-like ... |
1502-1654 | 6.98e-07 | ||||
Catalytic domain of the Serine/Threonine kinases, Autophagy-related protein 1 and Unc-51-like kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes yeast ATG1 and metazoan homologs including vertebrate ULK1-3. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. It is involved in nutrient sensing and signaling, the assembly of autophagy factors and the execution of autophagy. In metazoans, ATG1 homologs display additional functions. Unc-51 and ULKs have been implicated in neuronal and axonal development. The ATG1/ULK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270911 [Multi-domain] Cd Length: 251 Bit Score: 52.61 E-value: 6.98e-07
|
||||||||
STKc_ULK3 | cd14121 | Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 3; STKs catalyze the ... |
1502-1654 | 1.11e-06 | ||||
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK3 mRNA is up-regulated in fibroblasts after Ras-induced senescence, and its overexpression induces both autophagy and senescence in a fibroblast cell line. ULK3, through its kinase activity, positively regulates Gli proteins, mediators of the Sonic hedgehog (Shh) signaling pathway that is implicated in tissue homeostasis maintenance and neurogenesis. It is inhibited by binding to Suppressor of Fused (Sufu). The ULK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271023 [Multi-domain] Cd Length: 252 Bit Score: 51.91 E-value: 1.11e-06
|
||||||||
STKc_PknB_like | cd14014 | Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs ... |
1476-1653 | 2.94e-06 | ||||
Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270916 [Multi-domain] Cd Length: 260 Bit Score: 50.66 E-value: 2.94e-06
|
||||||||
STKc_AGC | cd05123 | Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
1501-1654 | 3.14e-06 | ||||
Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. AGC kinases regulate many cellular processes including division, growth, survival, metabolism, motility, and differentiation. Many are implicated in the development of various human diseases. Members of this family include cAMP-dependent Protein Kinase (PKA), cGMP-dependent Protein Kinase (PKG), Protein Kinase C (PKC), Protein Kinase B (PKB), G protein-coupled Receptor Kinase (GRK), Serum- and Glucocorticoid-induced Kinase (SGK), and 70 kDa ribosomal Protein S6 Kinase (p70S6K or S6K), among others. AGC kinases share an activation mechanism based on the phosphorylation of up to three sites: the activation loop (A-loop), the hydrophobic motif (HM) and the turn motif. Phosphorylation at the A-loop is required of most AGC kinases, which results in a disorder-to-order transition of the A-loop. The ordered conformation results in the access of substrates and ATP to the active site. A subset of AGC kinases with C-terminal extensions containing the HM also requires phosphorylation at this site. Phosphorylation at the HM allows the C-terminal extension to form an ordered structure that packs into the hydrophobic pocket of the catalytic domain, which then reconfigures the kinase into an active bi-lobed state. In addition, growth factor-activated AGC kinases such as PKB, p70S6K, RSK, MSK, PKC, and SGK, require phosphorylation at the turn motif (also called tail or zipper site), located N-terminal to the HM at the C-terminal extension. The AGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and Phosphoinositide 3-Kinase. Pssm-ID: 270693 [Multi-domain] Cd Length: 250 Bit Score: 50.59 E-value: 3.14e-06
|
||||||||
STKc_CNK2-like | cd08530 | Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii CNK2 and similar ... |
1577-1664 | 3.64e-06 | ||||
Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii CNK2 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chlamydomonas reinhardtii CNK2 has both cilliary and cell cycle functions. It influences flagellar length through promoting flagellar disassembly, and it regulates cell size, through influencing the size threshold at which cells commit to mitosis. This subfamily belongs to the (NIMA)-related kinase (Nek) family, which includes seven different Chlamydomonas Neks (CNKs 1-6 and Fa2). This subfamily includes CNK1, and -2. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270869 [Multi-domain] Cd Length: 256 Bit Score: 50.47 E-value: 3.64e-06
|
||||||||
STKc_DCKL3 | cd14185 | Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 3 (also called ... |
1501-1664 | 5.73e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 3 (also called Doublecortin-like and CAM kinase-like 3); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL3 (or DCAMKL3) belongs to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. DCKL3 contains a single DCX domain (instead of a tandem) and a C-terminal kinase domain with similarity to CAMKs. It has been shown to interact with tubulin and JIP1/2. The DCKL3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271087 [Multi-domain] Cd Length: 258 Bit Score: 49.95 E-value: 5.73e-06
|
||||||||
STKc_MAST_like | cd05579 | Catalytic domain of Microtubule-associated serine/threonine (MAST) kinase-like proteins; STKs ... |
1503-1662 | 9.40e-06 | ||||
Catalytic domain of Microtubule-associated serine/threonine (MAST) kinase-like proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes MAST kinases, MAST-like (MASTL) kinases (also called greatwall kinase or Gwl), and fungal kinases with similarity to Saccharomyces cerevisiae Rim15 and Schizosaccharomyces pombe cek1. MAST kinases contain an N-terminal domain of unknown function, a central catalytic domain, and a C-terminal PDZ domain that mediates protein-protein interactions. MASTL kinases carry only a catalytic domain which contains a long insert relative to other kinases. The fungal kinases in this subfamily harbor other domains in addition to a central catalytic domain, which like in MASTL, also contains an insert relative to MAST kinases. Rim15 contains a C-terminal signal receiver (REC) domain while cek1 contains an N-terminal PAS domain. MAST kinases are cytoskeletal associated kinases of unknown function that are also expressed at neuromuscular junctions and postsynaptic densities. MASTL/Gwl is involved in the regulation of mitotic entry, mRNA stabilization, and DNA checkpoint recovery. The fungal proteins Rim15 and cek1 are involved in the regulation of meiosis and mitosis, respectively. The MAST-like kinase subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270731 [Multi-domain] Cd Length: 272 Bit Score: 49.14 E-value: 9.40e-06
|
||||||||
PKc_STE | cd05122 | Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the ... |
1503-1653 | 1.03e-05 | ||||
Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. This family is composed of STKs, and some dual-specificity PKs that phosphorylate both threonine and tyrosine residues of target proteins. Most members are kinases involved in mitogen-activated protein kinase (MAPK) signaling cascades, acting as MAPK kinases (MAPKKs), MAPKK kinases (MAPKKKs), or MAPKKK kinases (MAP4Ks). The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPKK, which itself is phosphorylated and activated by a MAPKKK. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAPKKK to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Other STE family members include p21-activated kinases (PAKs) and class III myosins, among others. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. Class III myosins are motor proteins containing an N-terminal kinase catalytic domain and a C-terminal actin-binding domain, which can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, as well as autophosphorylate the C-terminal motor domain. They play an important role in maintaining the structural integrity of photoreceptor cell microvilli. The STE family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270692 [Multi-domain] Cd Length: 254 Bit Score: 49.12 E-value: 1.03e-05
|
||||||||
STKc_PKA_like | cd05580 | Catalytic subunit of the Serine/Threonine Kinases, cAMP-dependent protein kinases; STKs ... |
1577-1662 | 2.90e-05 | ||||
Catalytic subunit of the Serine/Threonine Kinases, cAMP-dependent protein kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the cAMP-dependent protein kinases, PKA and PRKX, and similar proteins. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. PRKX is also reulated by the R subunit and is is present in many tissues including fetal and adult brain, kidney, and lung. It is implicated in granulocyte/macrophage lineage differentiation, renal cell epithelial migration, and tubular morphogenesis in the developing kidney. The PKA-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270732 [Multi-domain] Cd Length: 290 Bit Score: 47.96 E-value: 2.90e-05
|
||||||||
STKc_AMPK-like | cd14003 | Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze ... |
1501-1660 | 3.46e-05 | ||||
Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The AMPK-like subfamily is composed of AMPK, MARK, BRSK, NUAK, MELK, SNRK, TSSK, and SIK, among others. LKB1 serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. AMPK, also called SNF1 (sucrose non-fermenting1) in yeasts and SnRK1 (SNF1-related kinase1) in plants, is a heterotrimeric enzyme composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It is a stress-activated kinase that serves as master regulator of glucose and lipid metabolism by monitoring carbon and energy supplies, via sensing the cell's AMP:ATP ratio. MARKs phosphorylate tau and related microtubule-associated proteins (MAPs), and regulates microtubule-based intracellular transport. They are involved in embryogenesis, epithelial cell polarization, cell signaling, and neuronal differentiation. BRSKs play important roles in establishing neuronal polarity. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. The AMPK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270905 [Multi-domain] Cd Length: 252 Bit Score: 47.51 E-value: 3.46e-05
|
||||||||
PTZ00267 | PTZ00267 | NIMA-related protein kinase; Provisional |
1548-1653 | 3.85e-05 | ||||
NIMA-related protein kinase; Provisional Pssm-ID: 140293 [Multi-domain] Cd Length: 478 Bit Score: 48.47 E-value: 3.85e-05
|
||||||||
STKc_Aurora | cd14007 | Catalytic domain of the Serine/Threonine kinase, Aurora kinase; STKs catalyze the transfer of ... |
1501-1660 | 4.58e-05 | ||||
Catalytic domain of the Serine/Threonine kinase, Aurora kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Aurora kinases are key regulators of mitosis and are essential for the accurate and equal division of genomic material from parent to daughter cells. Yeast contains only one Aurora kinase while most higher eukaryotes have two. Vertebrates contain at least 2 Aurora kinases (A and B); mammals contains a third Aurora kinase gene (C). Aurora-A regulates cell cycle events from the late S-phase through the M-phase including centrosome maturation, mitotic entry, centrosome separation, spindle assembly, chromosome alignment, cytokinesis, and mitotic exit. Aurora-A activation depends on its autophosphorylation and binding to the microtubule-associated protein TPX2. Aurora-B is most active at the transition during metaphase to the end of mitosis. It is critical for accurate chromosomal segregation, cytokinesis, protein localization to the centrosome and kinetochore, correct microtubule-kinetochore attachments, and regulation of the mitotic checkpoint. Aurora-C is mainly expressed in meiotically dividing cells; it was originally discovered in mice as a testis-specific STK called Aie1. Both Aurora-B and -C are chromosomal passenger proteins that can form complexes with INCENP and survivin, and they may have redundant cellular functions. The Aurora subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270909 [Multi-domain] Cd Length: 253 Bit Score: 47.08 E-value: 4.58e-05
|
||||||||
STKc_CaMKI_gamma | cd14166 | Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ... |
1502-1653 | 1.23e-04 | ||||
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I gamma; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-gamma subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271068 [Multi-domain] Cd Length: 285 Bit Score: 46.14 E-value: 1.23e-04
|
||||||||
STKc_Nek | cd08215 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase; ... |
1577-1664 | 1.77e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Nek family is composed of 11 different mammalian members (Nek1-11) with similarity to the catalytic domain of Aspergillus nidulans NIMA kinase, the founding member of the Nek family, which was identified in a screen for cell cycle mutants that were prevented from entering mitosis. Neks contain a conserved N-terminal catalytic domain and a more divergent C-terminal regulatory region of various sizes and structures. They are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270855 [Multi-domain] Cd Length: 258 Bit Score: 45.15 E-value: 1.77e-04
|
||||||||
STKc_GAK | cd14036 | Catalytic domain of the Serine/Threonine protein kinase, cyclin G-Associated Kinase; STKs ... |
1473-1658 | 1.90e-04 | ||||
Catalytic domain of the Serine/Threonine protein kinase, cyclin G-Associated Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GAK, also called auxilin-2, contains an N-terminal kinase domain that phosphorylates the mu subunits of adaptor protein (AP) 1 and AP2. In addition, it contains an auxilin-1-like domain structure consisting of PTEN-like, clathrin-binding, and J domains. Like auxilin-1, GAK facilitates Hsc70-mediated dissociation of clathrin from clathrin-coated vesicles. GAK is expressed ubiquitously and is enriched in the Golgi, unlike auxilin-1 which is nerve-specific. GAK also plays regulatory roles outside of clathrin-mediated membrane traffic including the maintenance of centrosome integrity and chromosome congression, neural patterning, survival of neurons, and immune responses through interaction with the interleukin 12 receptor. It also interacts with the androgen receptor, acting as a transcriptional coactivator, and its expression is significantly increased with the progression of prostate cancer. The GAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270938 [Multi-domain] Cd Length: 282 Bit Score: 45.19 E-value: 1.90e-04
|
||||||||
STKc_Nek2 | cd08217 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ... |
1578-1658 | 2.26e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Nek2 subfamily includes Aspergillus nidulans NIMA kinase, the founding member of the Nek family, which was identified in a screen for cell cycle mutants prevented from entering mitosis. NIMA is essential for mitotic entry and progression through mitosis, and its degradation is essential for mitotic exit. NIMA is involved in nuclear membrane fission. Vertebrate Nek2 is a cell cycle-regulated STK, localized in centrosomes and kinetochores, that regulates centrosome splitting at the G2/M phase. It also interacts with other mitotic kinases such as Polo-like kinase 1 and may play a role in spindle checkpoint. An increase in the expression of the human NEK2 gene is strongly associated with the progression of non-Hodgkin lymphoma. Nek2 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. It The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270857 [Multi-domain] Cd Length: 265 Bit Score: 44.84 E-value: 2.26e-04
|
||||||||
STKc_YPK1_like | cd05585 | Catalytic domain of Yeast Protein Kinase 1-like Serine/Threonine Kinases; STKs catalyze the ... |
1504-1662 | 2.36e-04 | ||||
Catalytic domain of Yeast Protein Kinase 1-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of fungal proteins with similarity to the AGC STKs, Saccharomyces cerevisiae YPK1 and Schizosaccharomyces pombe Gad8p. YPK1 is required for cell growth and acts as a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. It also plays a role in efficient endocytosis and in the maintenance of cell wall integrity. Gad8p is a downstream target of Tor1p, the fission yeast homolog of mTOR. It plays a role in cell growth and sexual development. The YPK1-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270737 [Multi-domain] Cd Length: 313 Bit Score: 45.25 E-value: 2.36e-04
|
||||||||
STKc_16 | cd13986 | Catalytic domain of Serine/Threonine Kinase 16; STKs catalyze the transfer of the ... |
1501-1658 | 4.23e-04 | ||||
Catalytic domain of Serine/Threonine Kinase 16; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK16 is associated with many names including Myristylated and Palmitylated Serine/threonine Kinase 1 (MPSK1), Kinase related to cerevisiae and thaliana (Krct), and Protein Kinase expressed in day 12 fetal liver (PKL12). It is widely expressed in mammals with highest levels found in liver, testis, and kidney. It is localized in the Golgi but is translocated to the nucleus upon disorganization of the Golgi. STK16 is constitutively active and is capable of phosphorylating itself and other substrates. It may be involved in regulating stromal-epithelial interactions during mammary gland ductal morphogenesis. It may also function as a transcriptional co-activator of type-C natriuretic peptide and VEGF. The STK16 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270888 [Multi-domain] Cd Length: 282 Bit Score: 44.21 E-value: 4.23e-04
|
||||||||
STKc_RSK1_C | cd14175 | C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 1 (also called ... |
1490-1664 | 4.29e-04 | ||||
C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 1 (also called Ribosomal protein S6 kinase alpha-1 or 90kDa ribosomal protein S6 kinase 1); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSK1 is also called S6K-alpha-1, RPS6KA1, p90RSK1 or MAPK-activated protein kinase 1a (MAPKAPK-1a). It is a component of the insulin transduction pathway, regulating the function of IRS1. It also interacts with PKA and promotes its inactivation. RSK1 is one of four RSK isoforms (RSK1-4) from distinct genes present in vertebrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. The RSK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271077 [Multi-domain] Cd Length: 291 Bit Score: 44.25 E-value: 4.29e-04
|
||||||||
STKc_NAK_like | cd14037 | Catalytic domain of Numb-Associated Kinase (NAK)-like Serine/Threonine kinases; STKs catalyze ... |
1502-1653 | 6.14e-04 | ||||
Catalytic domain of Numb-Associated Kinase (NAK)-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Drosophila melanogaster NAK, human BMP-2-inducible protein kinase (BMP2K or BIKe) and similar vertebrate proteins, as well as the Saccharomyces cerevisiae proteins Prk1, Actin-regulating kinase 1 (Ark1), and Akl1. NAK was the first characterized member of this subfamily. It plays a role in asymmetric cell division through its association with Numb. It also regulates the localization of Dlg, a protein essential for septate junction formation. BMP2K contains a nuclear localization signal and a kinase domain that is capable of phosphorylating itself and myelin basic protein. The expression of the BMP2K gene is increase during BMP-2-induced osteoblast differentiation. It may function to control the rate of differentiation. Prk1, Ark1, and Akl1 comprise a subfamily of yeast proteins that are important regulators of the actin cytoskeleton and endocytosis. They share an N-terminal kinase domain but no significant homology in other regions of their sequences. The NAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270939 [Multi-domain] Cd Length: 277 Bit Score: 43.81 E-value: 6.14e-04
|
||||||||
STKc_PSKH1 | cd14087 | Catalytic domain of the Protein Serine/Threonine kinase H1; STKs catalyze the transfer of the ... |
1503-1659 | 1.04e-03 | ||||
Catalytic domain of the Protein Serine/Threonine kinase H1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PSKH1 is an autophosphorylating STK that is expressed ubiquitously and exhibits multiple intracellular localizations including the centrosome, Golgi apparatus, and splice factor compartments. It contains a catalytic kinase domain and an N-terminal SH4-like motif that is acylated to facilitate membrane attachment. PSKH1 plays a rile in the maintenance of the Golgi apparatus, an important organelle within the secretory pathway. It may also function as a novel splice factor and a regulator of prostate cancer cell growth. The PSKH1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270989 [Multi-domain] Cd Length: 259 Bit Score: 42.91 E-value: 1.04e-03
|
||||||||
STKc_SnRK2-3 | cd14665 | Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein ... |
1502-1660 | 1.31e-03 | ||||
Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein kinase subfamily 2, group 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The SnRKs form three different subfamilies designated SnRK1-3. SnRK2 is represented in this cd. SnRK2s are involved in plant response to abiotic stresses and abscisic acid (ABA)-dependent plant development. The SnRK2s subfamily is in turn classed into three subgroups, all 3 of which are represented in this CD. Group 1 comprises kinases not activated by ABA, group 2 - kinases not activated or activated very weakly by ABA (depending on plant species), and group 3 - kinases strongly activated by ABA. The SnRKs belong to a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271135 [Multi-domain] Cd Length: 257 Bit Score: 42.67 E-value: 1.31e-03
|
||||||||
STKc_Chk1 | cd14069 | Catalytic domain of the Serine/Threonine kinase, Checkpoint kinase 1; STKs catalyze the ... |
1502-1660 | 1.61e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Checkpoint kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chk1 is implicated in many major checkpoints of the cell cycle, providing a link between upstream sensors and the cell cycle engine. It plays an important role in DNA damage response and maintaining genomic stability. Chk1 acts as an effector of the sensor kinase, ATR (ATM and Rad3-related), a member of the PI3K family, which is activated upon DNA replication stress. Chk1 delays mitotic entry in response to replication blocks by inhibiting cyclin dependent kinase (Cdk) activity. In addition, Chk1 contributes to the function of centrosome and spindle-based checkpoints, inhibits firing of origins of DNA replication (Ori), and represses transcription of cell cycle proteins including cyclin B and Cdk1. The Chk1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270971 [Multi-domain] Cd Length: 261 Bit Score: 42.32 E-value: 1.61e-03
|
||||||||
STKc_Rad53_Cds1 | cd14098 | Catalytic domain of the yeast Serine/Threonine Kinases, Rad53 and Cds1; STKs catalyze the ... |
1477-1659 | 2.48e-03 | ||||
Catalytic domain of the yeast Serine/Threonine Kinases, Rad53 and Cds1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Rad53 and Cds1 are the checkpoint kinase 2 (Chk2) homologs found in budding and fission yeast, respectively. They play a central role in the cell's response to DNA lesions to prevent genome rearrangements and maintain genome integrity. They are phosphorylated in response to DNA damage and incomplete replication, and are essential for checkpoint control. They help promote DNA repair by stalling the cell cycle prior to mitosis in the presence of DNA damage. The Rad53/Cds1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271000 [Multi-domain] Cd Length: 265 Bit Score: 41.69 E-value: 2.48e-03
|
||||||||
STKc_aPKC_zeta | cd05617 | Catalytic domain of the Serine/Threonine Kinase, Atypical Protein Kinase C zeta; STKs catalyze ... |
1577-1654 | 2.81e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Atypical Protein Kinase C zeta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-zeta plays a critical role in activating the glucose transport response. It is activated by glucose, insulin, and exercise through diverse pathways. PKC-zeta also plays a central role in maintaining cell polarity in yeast and mammalian cells. In addition, it affects actin remodeling in muscle cells. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. aPKCs only require phosphatidylserine (PS) for activation. The aPKC-zeta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270768 [Multi-domain] Cd Length: 357 Bit Score: 41.93 E-value: 2.81e-03
|
||||||||
STKc_PIM | cd14005 | Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) ... |
1457-1654 | 3.17e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PIM gene locus was discovered as a result of the cloning of retroviral intergration sites in murine Moloney leukemia virus, leading to the identification of PIM kinases. They are constitutively active STKs with a broad range of cellular targets and are overexpressed in many haematopoietic malignancies and solid cancers. Vertebrates contain three distinct PIM kinase genes (PIM1-3); each gene may result in mutliple protein isoforms. There are two PIM1 and three PIM2 isoforms as a result of alternative translation initiation sites, while there is only one PIM3 protein. Compound knockout mice deficient of all three PIM kinases that survive the perinatal period show a profound reduction in body size, indicating that PIMs are important for body growth. The PIM subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270907 [Multi-domain] Cd Length: 255 Bit Score: 41.45 E-value: 3.17e-03
|
||||||||
PTZ00283 | PTZ00283 | serine/threonine protein kinase; Provisional |
1577-1653 | 3.41e-03 | ||||
serine/threonine protein kinase; Provisional Pssm-ID: 240344 [Multi-domain] Cd Length: 496 Bit Score: 42.16 E-value: 3.41e-03
|
||||||||
STKc_TSSK6-like | cd14164 | Catalytic domain of testis-specific serine/threonine kinase 6 and similar proteins; STKs ... |
1502-1653 | 3.44e-03 | ||||
Catalytic domain of testis-specific serine/threonine kinase 6 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK6, also called SSTK, is expressed at the head of elongated sperm. It can phosphorylate histones and associate with heat shock protens HSP90 and HSC70. Male mice deficient in TSSK6 are infertile, showing spermatogenic impairment including reduced sperm counts, impaired DNA condensation, abnormal morphology and decreased motility rates. The TSSK6-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271066 [Multi-domain] Cd Length: 256 Bit Score: 41.38 E-value: 3.44e-03
|
||||||||
STKc_MAPKAPK2 | cd14170 | Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase-activated ... |
1490-1658 | 4.01e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase-activated protein kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK-activated protein kinase 2 (MAPKAP2 or MK2) contains an N-terminal proline-rich region that can bind to SH3 domains, a catalytic kinase domain followed by a C-terminal autoinhibitory region that contains nuclear localization (NLS) and nuclear export (NES) signals with a p38 MAPK docking motif that overlaps the NLS. MK2 is a bonafide substrate for the MAPK p38. It is closely related to MK3 and thus far, MK2/3 show indistinguishable substrate specificity. They are mainly involved in the regulation of gene expression and they participate in diverse cellular processes such as endocytosis, cytokine production, cytoskeletal reorganization, cell migration, cell cycle control and chromatin remodeling. They are implicated in inflammation and cance and their substrates include mRNA-AU-rich-element (ARE)-binding proteins (TTP and hnRNP A0), Hsp proteins (Hsp27 and Hsp25) and RSK, among others. MK2/3 are both expressed ubiquitously but MK2 is expressed at significantly higher levels. The MK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271072 [Multi-domain] Cd Length: 303 Bit Score: 41.17 E-value: 4.01e-03
|
||||||||
STKc_SnRK2 | cd14662 | Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein ... |
1502-1660 | 6.69e-03 | ||||
Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein kinase subfamily 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The SnRKs form three different subfamilies designated SnRK1-3. SnRK2 is represented in this cd. SnRK2s are involved in plant response to abiotic stresses and abscisic acid (ABA)-dependent plant development. The SnRK2s subfamily is in turn classed into three subgroups, all 3 of which are represented in this CD. Group 1 comprises kinases not activated by ABA, group 2 - kinases not activated or activated very weakly by ABA (depending on plant species), and group 3 - kinases strongly activated by ABA. The SnRKs belong to a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271132 [Multi-domain] Cd Length: 257 Bit Score: 40.52 E-value: 6.69e-03
|
||||||||
STKc_CaMK_like | cd14088 | Catalytic domain of an Uncharacterized group of Serine/Threonine kinases with similarity to ... |
1490-1659 | 7.15e-03 | ||||
Catalytic domain of an Uncharacterized group of Serine/Threonine kinases with similarity to Calcium/calmodulin-dependent protein kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of uncharacterized STKs with similarity to CaMKs, which are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). CaMKs contain an N-terminal catalytic domain followed by a regulatory domain that harbors a CaM binding site. This uncharacterized subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270990 [Multi-domain] Cd Length: 265 Bit Score: 40.39 E-value: 7.15e-03
|
||||||||
Blast search parameters | ||||
|