NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1039751968|ref|XP_017172652|]
View 

arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 2 isoform X8 [Mus musculus]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
ArfGap_ACAP2 cd08851
ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs ...
219-333 5.35e-85

ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


:

Pssm-ID: 350076 [Multi-domain]  Cd Length: 116  Bit Score: 261.07  E-value: 5.35e-85
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 219 ESALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRV 298
Cdd:cd08851     1 ESALQRVQCIPGNASCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRI 80
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 1039751968 299 YEAKLEKMGVKKPQPG-QRQEKEAYIRAKYVERKFV 333
Cdd:cd08851    81 YEARVEKMGAKKPQPGgQRQEKEAYIRAKYVERKFV 116
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
82-185 2.32e-57

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270070  Cd Length: 98  Bit Score: 188.20  E-value: 2.32e-57
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  82 MEGYLFKRASNAFKTWNRkkpdhirRWFSIQNNQLVYQKKF-KDSPTVVVEDLRLCTVKHCEDIERRFCFEVVSPTKSCM 160
Cdd:cd13250     1 KEGYLFKRSSNAFKTWKR-------RWFSLQNGQLYYQKRDkKDEPTVMVEDLRLCTVKPTEDSDRRFCFEVISPTKSYM 73
                          90       100
                  ....*....|....*....|....*
gi 1039751968 161 LQADSEKLRQAWIKAVQTSIATAYR 185
Cdd:cd13250    74 LQAESEEDRQAWIQAIQSAIASALN 98
COG5347 super family cl34987
GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ...
207-444 8.16e-38

GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion];


The actual alignment was detected with superfamily member COG5347:

Pssm-ID: 227651 [Multi-domain]  Cd Length: 319  Bit Score: 142.61  E-value: 8.16e-38
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 207 SGNESKEKLLKgesALQRvqcIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKL 286
Cdd:COG5347     2 STKSEDRKLLK---LLKS---DSSNKKCADCGAPNPTWASVNLGVFLCIDCAGVHRSLGVHISKVKSLTLDNWTEEELRR 75
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 287 MCELGNDVINRVYEAKLEKMGVKKPQPG-QRQEKEAYIRAKYVERKFVD---KYSALLSPSEQEKRIISKSCEDQRLSHA 362
Cdd:COG5347    76 MEVGGNSNANRFYEKNLLDQLLLPIKAKyDSSVAKKYIRKKYELKKFIDdssSPSDFSSFSASSTRTVDSVDDRLDSESQ 155
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 363 RASVHTPVAAVT--SDEARRESLF-CPDELDSLFSyfDTSSKLRSIKSNDSGIQQCSEDGRESLPSTVSANSLYEPEGER 439
Cdd:COG5347   156 SRSSSASLGNSNrpDDELNVESFQsTGSKPRSLTS--TKSNKDNLLNSELLTLNSLLSSNSEVGSGTKSRSDAQEKSSTK 233

                  ....*
gi 1039751968 440 QESSV 444
Cdd:COG5347   234 ATESV 238
ANKYR COG0666
Ankyrin repeat [Signal transduction mechanisms];
457-588 4.27e-25

Ankyrin repeat [Signal transduction mechanisms];


:

Pssm-ID: 440430 [Multi-domain]  Cd Length: 289  Bit Score: 105.81  E-value: 4.27e-25
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 457 LYRASYEKNLpKMAEAL-AHGADVNWANSDENqaTPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTG 535
Cdd:COG0666   124 LHLAAYNGNL-EIVKLLlEAGADVNAQDNDGN--TPLHLAAANGNLEIVKLLLEAGADVNARDNDGETPLHLAAENGHLE 200
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1039751968 536 QVCLFLKRGANQHATDEEGKDPLSIAVEAANADIVTLLRLARMNEEMRESEGL 588
Cdd:COG0666   201 IVKLLLEAGADVNAKDNDGKTALDLAAENGNLEIVKLLLEAGADLNAKDKDGL 253
BAR_3 super family cl48308
BAR domain of APPL family; BAR_12 is the BAR coiled-coil domain at the N-terminus of APPL or ...
1-47 1.53e-15

BAR domain of APPL family; BAR_12 is the BAR coiled-coil domain at the N-terminus of APPL or adaptor protein containing PH domain, PTB domain, and leucine zipper motif proteins in higher eukaryotes. This BAR domain contains four helices whereas the other classical BAR domains contain only three helices. The first three helices form an antiparallel coiled-coil, while the fourth helix, is unique to APPL1. BAR domains take part in many varied biological processes such as fission of synaptic vesicles, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, apoptosis, secretory vesicle fusion, and tissue differentiation.


The actual alignment was detected with superfamily member pfam16746:

Pssm-ID: 465256  Cd Length: 235  Bit Score: 76.45  E-value: 1.53e-15
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 1039751968   1 MLSFMYAHLAFFHQGYDLFSELGPYMKDLGAQLDRLVVDAAKEKREM 47
Cdd:pfam16746 189 LLSFMHAQFTFFHQGYELFKDLEPFMKDLQAQLQQTREDTREEKEEL 235
 
Name Accession Description Interval E-value
ArfGap_ACAP2 cd08851
ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs ...
219-333 5.35e-85

ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350076 [Multi-domain]  Cd Length: 116  Bit Score: 261.07  E-value: 5.35e-85
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 219 ESALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRV 298
Cdd:cd08851     1 ESALQRVQCIPGNASCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRI 80
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 1039751968 299 YEAKLEKMGVKKPQPG-QRQEKEAYIRAKYVERKFV 333
Cdd:cd08851    81 YEARVEKMGAKKPQPGgQRQEKEAYIRAKYVERKFV 116
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
82-185 2.32e-57

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 188.20  E-value: 2.32e-57
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  82 MEGYLFKRASNAFKTWNRkkpdhirRWFSIQNNQLVYQKKF-KDSPTVVVEDLRLCTVKHCEDIERRFCFEVVSPTKSCM 160
Cdd:cd13250     1 KEGYLFKRSSNAFKTWKR-------RWFSLQNGQLYYQKRDkKDEPTVMVEDLRLCTVKPTEDSDRRFCFEVISPTKSYM 73
                          90       100
                  ....*....|....*....|....*
gi 1039751968 161 LQADSEKLRQAWIKAVQTSIATAYR 185
Cdd:cd13250    74 LQAESEEDRQAWIQAIQSAIASALN 98
ArfGap smart00105
Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with ...
222-338 1.46e-56

Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 214518 [Multi-domain]  Cd Length: 119  Bit Score: 186.78  E-value: 1.46e-56
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  222 LQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYEA 301
Cdd:smart00105   1 LKLLRSIPGNKKCFDCGAPNPTWASVNLGVFLCIECSGIHRSLGVHISKVRSLTLDTWTEEELRLLQKGGNENANSIWES 80
                           90       100       110
                   ....*....|....*....|....*....|....*..
gi 1039751968  302 KLEKMGVKKPQPGQRQEKEAYIRAKYVERKFVDKYSA 338
Cdd:smart00105  81 NLDDFSLKPPDDDDQQKYESFIAAKYEEKLFVPPESA 117
ArfGap pfam01412
Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating ...
219-335 1.83e-55

Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 460200 [Multi-domain]  Cd Length: 117  Bit Score: 183.58  E-value: 1.83e-55
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 219 ESALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRV 298
Cdd:pfam01412   1 KRVLRELLKLPGNKVCADCGAPNPTWASVNLGIFICIDCSGVHRSLGVHISKVRSLTLDTWTDEQLELMKAGGNDRANEF 80
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1039751968 299 YEAKLEKmGVKKPQPGQRQEKEAYIRAKYVERKFVDK 335
Cdd:pfam01412  81 WEANLPP-SYKPPPSSDREKRESFIRAKYVEKKFAKP 116
COG5347 COG5347
GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ...
207-444 8.16e-38

GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion];


Pssm-ID: 227651 [Multi-domain]  Cd Length: 319  Bit Score: 142.61  E-value: 8.16e-38
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 207 SGNESKEKLLKgesALQRvqcIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKL 286
Cdd:COG5347     2 STKSEDRKLLK---LLKS---DSSNKKCADCGAPNPTWASVNLGVFLCIDCAGVHRSLGVHISKVKSLTLDNWTEEELRR 75
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 287 MCELGNDVINRVYEAKLEKMGVKKPQPG-QRQEKEAYIRAKYVERKFVD---KYSALLSPSEQEKRIISKSCEDQRLSHA 362
Cdd:COG5347    76 MEVGGNSNANRFYEKNLLDQLLLPIKAKyDSSVAKKYIRKKYELKKFIDdssSPSDFSSFSASSTRTVDSVDDRLDSESQ 155
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 363 RASVHTPVAAVT--SDEARRESLF-CPDELDSLFSyfDTSSKLRSIKSNDSGIQQCSEDGRESLPSTVSANSLYEPEGER 439
Cdd:COG5347   156 SRSSSASLGNSNrpDDELNVESFQsTGSKPRSLTS--TKSNKDNLLNSELLTLNSLLSSNSEVGSGTKSRSDAQEKSSTK 233

                  ....*
gi 1039751968 440 QESSV 444
Cdd:COG5347   234 ATESV 238
ANKYR COG0666
Ankyrin repeat [Signal transduction mechanisms];
457-588 4.27e-25

Ankyrin repeat [Signal transduction mechanisms];


Pssm-ID: 440430 [Multi-domain]  Cd Length: 289  Bit Score: 105.81  E-value: 4.27e-25
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 457 LYRASYEKNLpKMAEAL-AHGADVNWANSDENqaTPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTG 535
Cdd:COG0666   124 LHLAAYNGNL-EIVKLLlEAGADVNAQDNDGN--TPLHLAAANGNLEIVKLLLEAGADVNARDNDGETPLHLAAENGHLE 200
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1039751968 536 QVCLFLKRGANQHATDEEGKDPLSIAVEAANADIVTLLRLARMNEEMRESEGL 588
Cdd:COG0666   201 IVKLLLEAGADVNAKDNDGKTALDLAAENGNLEIVKLLLEAGADLNAKDKDGL 253
PLN03114 PLN03114
ADP-ribosylation factor GTPase-activating protein AGD10; Provisional
211-293 1.33e-17

ADP-ribosylation factor GTPase-activating protein AGD10; Provisional


Pssm-ID: 178661 [Multi-domain]  Cd Length: 395  Bit Score: 85.29  E-value: 1.33e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 211 SKEKLLKGESALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCEL 290
Cdd:PLN03114    2 ASENLNDKISVFKKLKAKSDNKICFDCNAKNPTWASVTYGIFLCIDCSAVHRSLGVHISFVRSTNLDSWSSEQLKMMIYG 81

                  ...
gi 1039751968 291 GND 293
Cdd:PLN03114   82 GNN 84
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
80-181 5.89e-16

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 73.74  E-value: 5.89e-16
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968   80 IVMEGYLFKRASNAFKTWNRkkpdhirRWFSIQNNQLVYQKKFKDSPTVVVE---DLRLCTVKHCEDI---ERRFCFEVV 153
Cdd:smart00233   1 VIKEGWLYKKSGGGKKSWKK-------RYFVLFNSTLLYYKSKKDKKSYKPKgsiDLSGCTVREAPDPdssKKPHCFEIK 73
                           90       100
                   ....*....|....*....|....*....
gi 1039751968  154 SPTKSCM-LQADSEKLRQAWIKAVQTSIA 181
Cdd:smart00233  74 TSDRKTLlLQAESEEEREKWVEALRKAIA 102
BAR_3 pfam16746
BAR domain of APPL family; BAR_12 is the BAR coiled-coil domain at the N-terminus of APPL or ...
1-47 1.53e-15

BAR domain of APPL family; BAR_12 is the BAR coiled-coil domain at the N-terminus of APPL or adaptor protein containing PH domain, PTB domain, and leucine zipper motif proteins in higher eukaryotes. This BAR domain contains four helices whereas the other classical BAR domains contain only three helices. The first three helices form an antiparallel coiled-coil, while the fourth helix, is unique to APPL1. BAR domains take part in many varied biological processes such as fission of synaptic vesicles, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, apoptosis, secretory vesicle fusion, and tissue differentiation.


Pssm-ID: 465256  Cd Length: 235  Bit Score: 76.45  E-value: 1.53e-15
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 1039751968   1 MLSFMYAHLAFFHQGYDLFSELGPYMKDLGAQLDRLVVDAAKEKREM 47
Cdd:pfam16746 189 LLSFMHAQFTFFHQGYELFKDLEPFMKDLQAQLQQTREDTREEKEEL 235
PH pfam00169
PH domain; PH stands for pleckstrin homology.
80-181 6.96e-13

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 65.28  E-value: 6.96e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  80 IVMEGYLFKRASNAFKTWNRkkpdhirRWFSIQNNQLVYQKK---FKDSPTVVVEDLRLCTVKHCEDIE---RRFCFEVV 153
Cdd:pfam00169   1 VVKEGWLLKKGGGKKKSWKK-------RYFVLFDGSLLYYKDdksGKSKEPKGSISLSGCEVVEVVASDspkRKFCFELR 73
                          90       100       110
                  ....*....|....*....|....*....|..
gi 1039751968 154 SPTKSCM----LQADSEKLRQAWIKAVQTSIA 181
Cdd:pfam00169  74 TGERTGKrtylLQAESEEERKDWIKAIQSAIR 105
PTZ00322 PTZ00322
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase; Provisional
489-573 1.51e-11

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase; Provisional


Pssm-ID: 140343 [Multi-domain]  Cd Length: 664  Bit Score: 67.23  E-value: 1.51e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 489 ATPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTGQVCLFLKRGANQHATDEEGKDPLSIAVEAANAD 568
Cdd:PTZ00322   83 TVELCQLAASGDAVGARILLTGGADPNCRDYDGRTPLHIACANGHVQVVRVLLEFGADPTLLDKDGKTPLELAEENGFRE 162

                  ....*
gi 1039751968 569 IVTLL 573
Cdd:PTZ00322  163 VVQLL 167
Ank_2 pfam12796
Ankyrin repeats (3 copies);
492-573 1.29e-10

Ankyrin repeats (3 copies);


Pssm-ID: 463710 [Multi-domain]  Cd Length: 91  Bit Score: 58.20  E-value: 1.29e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 492 LIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTgQVCLFLKRGANQHATDeEGKDPLSIAVEAANADIVT 571
Cdd:pfam12796   1 LHLAAKNGNLELVKLLLENGADANLQDKNGRTALHLAAKNGHL-EIVKLLLEHADVNLKD-NGRTALHYAARSGHLEIVK 78

                  ..
gi 1039751968 572 LL 573
Cdd:pfam12796  79 LL 80
BAR_ACAP2 cd07638
The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain ...
1-26 4.33e-10

The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 2; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 2), also called centaurin beta-2, is an Arf6-specific GTPase activating protein (GAP) which mediates Arf6 signaling. Arf6 is involved in the regulation of endocytosis, phagocytosis, cell adhesion and migration. ACAP2 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153322  Cd Length: 200  Bit Score: 59.63  E-value: 4.33e-10
                          10        20
                  ....*....|....*....|....*.
gi 1039751968   1 MLSFMYAHLAFFHQGYDLFSELGPYM 26
Cdd:cd07638   175 MLSFMYAHLTFFHQGYDLFSELGPYM 200
 
Name Accession Description Interval E-value
ArfGap_ACAP2 cd08851
ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs ...
219-333 5.35e-85

ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350076 [Multi-domain]  Cd Length: 116  Bit Score: 261.07  E-value: 5.35e-85
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 219 ESALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRV 298
Cdd:cd08851     1 ESALQRVQCIPGNASCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRI 80
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 1039751968 299 YEAKLEKMGVKKPQPG-QRQEKEAYIRAKYVERKFV 333
Cdd:cd08851    81 YEARVEKMGAKKPQPGgQRQEKEAYIRAKYVERKFV 116
ArfGap_ACAP cd08835
ArfGAP domain of ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domains) proteins; ArfGAP ...
219-333 9.01e-79

ArfGAP domain of ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domains) proteins; ArfGAP domain is an essential part of ACAP proteins that play important role in endocytosis, actin remodeling and receptor tyrosine kinase-dependent cell movement. ACAP subfamily of ArfGAPs are composed of coiled coils (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. In addition, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350064 [Multi-domain]  Cd Length: 116  Bit Score: 244.86  E-value: 9.01e-79
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 219 ESALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRV 298
Cdd:cd08835     1 GSALEQVLSVPGNAQCCDCGSPDPRWASINLGVTLCIECSGIHRSLGVHVSKVRSLTLDSWEPELLKVMLELGNDVVNRI 80
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 1039751968 299 YEAKLEKMGVKKPQPG-QRQEKEAYIRAKYVERKFV 333
Cdd:cd08835    81 YEANVPDDGSVKPTPDsSRQEREAWIRAKYVEKKFV 116
ArfGap_ACAP3 cd08850
ArfGAP domain of ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domains 3); ACAP3 belongs ...
219-333 8.25e-71

ArfGAP domain of ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domains 3); ACAP3 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. It has been shown that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) also have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages.


Pssm-ID: 350075 [Multi-domain]  Cd Length: 116  Bit Score: 224.05  E-value: 8.25e-71
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 219 ESALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRV 298
Cdd:cd08850     1 ESILQRVQSIAGNDQCCDCGQPDPRWASINLGILLCIECSGIHRSLGVHCSKVRSLTLDSWEPELLKLMCELGNSTVNQI 80
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 1039751968 299 YEAKLEKMGVKKPQPG-QRQEKEAYIRAKYVERKFV 333
Cdd:cd08850    81 YEAQCEELGLKKPTASsSRQDKEAWIKAKYVEKKFL 116
ArfGap_ACAP1 cd08852
ArfGAP domain of ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domains 1); ACAP1 belongs ...
221-335 4.27e-67

ArfGAP domain of ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domains 1); ACAP1 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350077 [Multi-domain]  Cd Length: 120  Bit Score: 214.44  E-value: 4.27e-67
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 221 ALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYE 300
Cdd:cd08852     3 AVAQVQSVDGNAQCCDCREPAPEWASINLGVTLCIQCSGIHRSLGVHFSKVRSLTLDSWEPELVKLMCELGNVIINQIYE 82
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 1039751968 301 AKLEKMGVKKPQPG-QRQEKEAYIRAKYVERKFVDK 335
Cdd:cd08852    83 ARIEAMAIKKPGPSsSRQEKEAWIRAKYVEKKFITK 118
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
82-185 2.32e-57

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 188.20  E-value: 2.32e-57
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  82 MEGYLFKRASNAFKTWNRkkpdhirRWFSIQNNQLVYQKKF-KDSPTVVVEDLRLCTVKHCEDIERRFCFEVVSPTKSCM 160
Cdd:cd13250     1 KEGYLFKRSSNAFKTWKR-------RWFSLQNGQLYYQKRDkKDEPTVMVEDLRLCTVKPTEDSDRRFCFEVISPTKSYM 73
                          90       100
                  ....*....|....*....|....*
gi 1039751968 161 LQADSEKLRQAWIKAVQTSIATAYR 185
Cdd:cd13250    74 LQAESEEDRQAWIQAIQSAIASALN 98
ArfGap cd08204
GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs); ArfGAPs are a family ...
222-327 2.45e-57

GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs); ArfGAPs are a family of proteins containing an ArfGAP catalytic domain that induces the hydrolysis of GTP bound to the small guanine nucleotide-binding protein Arf, a member of the Ras superfamily of GTPases. Like all GTP-binding proteins, Arf proteins function as molecular switches, cycling between GTP (active-membrane bound) and GDP (inactive-cytosolic) form. Conversion to the GTP-bound form requires a guanine nucleotide exchange factor (GEF), whereas conversion to the GDP-bound form is catalyzed by a GTPase activating protein (GAP). In that sense, ArfGAPs were originally proposed to function as terminators of Arf signaling, which is mediated by regulating Arf family GTP-binding proteins. However, recent studies suggest that ArfGAPs can also function as Arf effectors, independently of their GAP enzymatic activity to transduce signals in cells. The ArfGAP domain contains a C4-type zinc finger motif and a conserved arginine that is required for activity, within a specific spacing (CX2CX16CX2CX4R). ArfGAPs, which have multiple functional domains, regulate the membrane trafficking and actin cytoskeleton remodeling via specific interactions with signaling lipids such as phosphoinositides and trafficking proteins, which consequently affect cellular events such as cell growth, migration, and cancer invasion. The ArfGAP family, which includes 31 human ArfGAP-domain containing proteins, is divided into 10 subfamilies based on domain structure and sequence similarity. The ArfGAP nomenclature is mainly based on the protein domain structure. For example, ASAP1 contains ArfGAP, SH3, ANK repeat and PH domains; ARAPs contain ArfGAP, Rho GAP, ANK repeat and PH domains; ACAPs contain ArfGAP, BAR (coiled coil), ANK repeat and PH domains; and AGAPs contain Arf GAP, GTP-binding protein-like, ANK repeat and PH domains. Furthermore, the ArfGAPs can be classified into two major types of subfamilies, according to the overall domain structure: the ArfGAP1 type includes 6 subfamilies (ArfGAP1, ArfGAP2/3, ADAP, SMAP, AGFG, and GIT), which contain the ArfGAP domain at the N-terminus of the protein; and the AZAP type includes 4 subfamilies (ASAP, ACAP, AGAP, and ARAP), which contain an ArfGAP domain between the PH and ANK repeat domains.


Pssm-ID: 350058 [Multi-domain]  Cd Length: 106  Bit Score: 188.09  E-value: 2.45e-57
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 222 LQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYEA 301
Cdd:cd08204     1 LEELLKLPGNKVCADCGAPDPRWASINLGVFICIRCSGIHRSLGVHISKVRSLTLDSWTPEQVELMKAIGNARANAYYEA 80
                          90       100
                  ....*....|....*....|....*..
gi 1039751968 302 KLEKmGVKKPQPGQ-RQEKEAYIRAKY 327
Cdd:cd08204    81 NLPP-GFKKPTPDSsDEEREQFIRAKY 106
ArfGap smart00105
Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with ...
222-338 1.46e-56

Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 214518 [Multi-domain]  Cd Length: 119  Bit Score: 186.78  E-value: 1.46e-56
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  222 LQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYEA 301
Cdd:smart00105   1 LKLLRSIPGNKKCFDCGAPNPTWASVNLGVFLCIECSGIHRSLGVHISKVRSLTLDTWTEEELRLLQKGGNENANSIWES 80
                           90       100       110
                   ....*....|....*....|....*....|....*..
gi 1039751968  302 KLEKMGVKKPQPGQRQEKEAYIRAKYVERKFVDKYSA 338
Cdd:smart00105  81 NLDDFSLKPPDDDDQQKYESFIAAKYEEKLFVPPESA 117
ArfGap pfam01412
Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating ...
219-335 1.83e-55

Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 460200 [Multi-domain]  Cd Length: 117  Bit Score: 183.58  E-value: 1.83e-55
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 219 ESALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRV 298
Cdd:pfam01412   1 KRVLRELLKLPGNKVCADCGAPNPTWASVNLGIFICIDCSGVHRSLGVHISKVRSLTLDTWTDEQLELMKAGGNDRANEF 80
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1039751968 299 YEAKLEKmGVKKPQPGQRQEKEAYIRAKYVERKFVDK 335
Cdd:pfam01412  81 WEANLPP-SYKPPPSSDREKRESFIRAKYVEKKFAKP 116
ArfGap_AGAP cd08836
ArfGAP with GTPase domain, ANK repeat and PH domains; The AGAP subfamily of ADP-ribosylation ...
221-328 2.63e-49

ArfGAP with GTPase domain, ANK repeat and PH domains; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350065 [Multi-domain]  Cd Length: 108  Bit Score: 167.08  E-value: 2.63e-49
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 221 ALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYE 300
Cdd:cd08836     2 ALQAIRNVRGNDHCVDCGAPNPDWASLNLGALMCIECSGIHRNLGTHISRVRSLDLDDWPVELLKVMSAIGNDLANSVWE 81
                          90       100
                  ....*....|....*....|....*....
gi 1039751968 301 AKLEkmGVKKPQP-GQRQEKEAYIRAKYV 328
Cdd:cd08836    82 GNTQ--GRTKPTPdSSREEKERWIRAKYE 108
ArfGap_ASAP cd08834
ArfGAP domain of ASAP (Arf GAP, SH3, ANK repeat and PH domains) subfamily of ADP-ribosylation ...
220-333 1.65e-45

ArfGAP domain of ASAP (Arf GAP, SH3, ANK repeat and PH domains) subfamily of ADP-ribosylation factor GTPase-activating proteins; The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. Both ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350063 [Multi-domain]  Cd Length: 117  Bit Score: 157.00  E-value: 1.65e-45
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 220 SALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVY 299
Cdd:cd08834     4 SIIAEVKRLPGNDVCCDCGSPDPTWLSTNLGILTCIECSGVHRELGVHVSRIQSLTLDNLGTSELLLARNLGNEGFNEIM 83
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 1039751968 300 EAKLEkmGVKKPQPG-QRQEKEAYIRAKYVERKFV 333
Cdd:cd08834    84 EANLP--PGYKPTPNsDMEERKDFIRAKYVEKKFV 116
ArfGap_SMAP cd08839
Stromal membrane-associated proteins; a subfamily of the ArfGAP family; The SMAP subfamily of ...
229-327 3.50e-39

Stromal membrane-associated proteins; a subfamily of the ArfGAP family; The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not.


Pssm-ID: 350068 [Multi-domain]  Cd Length: 103  Bit Score: 139.33  E-value: 3.50e-39
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 229 PGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYEAKLEKmGV 308
Cdd:cd08839     8 EDNKYCADCGAKGPRWASWNLGVFICIRCAGIHRNLGVHISKVKSVNLDSWTPEQVQSMQEMGNARANAYYEANLPD-GF 86
                          90
                  ....*....|....*....
gi 1039751968 309 KKPQPgqRQEKEAYIRAKY 327
Cdd:cd08839    87 RRPQT--DSALENFIRDKY 103
ArfGap_ADAP cd08832
ArfGap with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) ...
221-327 2.16e-38

ArfGap with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350061 [Multi-domain]  Cd Length: 113  Bit Score: 137.39  E-value: 2.16e-38
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 221 ALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYE 300
Cdd:cd08832     7 RLLELLKLPGNNTCADCGAPDPEWASYNLGVFICLDCSGIHRSLGTHISKVKSLRLDNWDDSQVEFMEENGNEKAKAKYE 86
                          90       100
                  ....*....|....*....|....*...
gi 1039751968 301 AKLEKmGVKKPQPGQRQE-KEAYIRAKY 327
Cdd:cd08832    87 AHVPA-FYRRPTPTDPQVlREQWIRAKY 113
COG5347 COG5347
GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ...
207-444 8.16e-38

GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion];


Pssm-ID: 227651 [Multi-domain]  Cd Length: 319  Bit Score: 142.61  E-value: 8.16e-38
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 207 SGNESKEKLLKgesALQRvqcIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKL 286
Cdd:COG5347     2 STKSEDRKLLK---LLKS---DSSNKKCADCGAPNPTWASVNLGVFLCIDCAGVHRSLGVHISKVKSLTLDNWTEEELRR 75
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 287 MCELGNDVINRVYEAKLEKMGVKKPQPG-QRQEKEAYIRAKYVERKFVD---KYSALLSPSEQEKRIISKSCEDQRLSHA 362
Cdd:COG5347    76 MEVGGNSNANRFYEKNLLDQLLLPIKAKyDSSVAKKYIRKKYELKKFIDdssSPSDFSSFSASSTRTVDSVDDRLDSESQ 155
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 363 RASVHTPVAAVT--SDEARRESLF-CPDELDSLFSyfDTSSKLRSIKSNDSGIQQCSEDGRESLPSTVSANSLYEPEGER 439
Cdd:COG5347   156 SRSSSASLGNSNrpDDELNVESFQsTGSKPRSLTS--TKSNKDNLLNSELLTLNSLLSSNSEVGSGTKSRSDAQEKSSTK 233

                  ....*
gi 1039751968 440 QESSV 444
Cdd:COG5347   234 ATESV 238
ArfGap_AGAP2 cd08853
ArfGAP with GTPase domain, ANK repeat and PH domain 2; The AGAP subfamily of ADP-ribosylation ...
221-327 1.81e-37

ArfGAP with GTPase domain, ANK repeat and PH domain 2; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350078 [Multi-domain]  Cd Length: 109  Bit Score: 134.75  E-value: 1.81e-37
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 221 ALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYE 300
Cdd:cd08853     3 ALQSIRNMRGNSHCVDCETQNPKWASLNLGVLMCIECSGIHRNLGTHLSRVRSLDLDDWPVELRKVMSSIGNELANSIWE 82
                          90       100
                  ....*....|....*....|....*...
gi 1039751968 301 AklEKMGVKKPQ-PGQRQEKEAYIRAKY 327
Cdd:cd08853    83 G--SSQGQTKPSsDSTREEKERWIRAKY 108
ArfGap_AGAP3 cd08855
ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation ...
221-327 2.32e-37

ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion.


Pssm-ID: 350080 [Multi-domain]  Cd Length: 110  Bit Score: 134.41  E-value: 2.32e-37
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 221 ALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYE 300
Cdd:cd08855     4 AIQSIRNVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRNLGTHLSRVRSLDLDDWPVELSMVMTAIGNAMANSVWE 83
                          90       100
                  ....*....|....*....|....*...
gi 1039751968 301 AKLEkmGVKKPQP-GQRQEKEAYIRAKY 327
Cdd:cd08855    84 GALD--GYSKPGPdSTREEKERWIRAKY 109
ArfGap_ASAP3 cd17900
ArfGAP domain of ASAP3 (ArfGAP with ANK repeat and PH domain-containing protein 3); The ...
225-335 6.78e-37

ArfGAP domain of ASAP3 (ArfGAP with ANK repeat and PH domain-containing protein 3); The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP1 and ASAP2, ASAP3 do not have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350087 [Multi-domain]  Cd Length: 124  Bit Score: 133.82  E-value: 6.78e-37
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 225 VQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYEAKLE 304
Cdd:cd17900     9 VKSRPGNSQCCDCGAPDPTWLSTNLGILTCIECSGIHRELGVRYSRIQSLTLDLLSTSELLLAVSMGNTRFNEVMEATLP 88
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 1039751968 305 KMGVKKPQP----GQRQEkeaYIRAKYVERKFVDK 335
Cdd:cd17900    89 AHGGPKPSAesdmGTRKD---YIMAKYVEHRFVRK 120
ArfGap_AGAP1 cd08854
ArfGAP with GTPase domain, ANK repeat and PH domain 1; The AGAP subfamily of ADP-ribosylation ...
221-327 2.22e-35

ArfGAP with GTPase domain, ANK repeat and PH domain 1; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350079 [Multi-domain]  Cd Length: 109  Bit Score: 128.98  E-value: 2.22e-35
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 221 ALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYE 300
Cdd:cd08854     3 AIQAIRNAKGNSLCVDCGAPNPTWASLNLGALICIECSGIHRNLGTHLSRVRSLDLDDWPRELTLVLTAIGNHMANSIWE 82
                          90       100
                  ....*....|....*....|....*...
gi 1039751968 301 AKLEkmGVKKPQP-GQRQEKEAYIRAKY 327
Cdd:cd08854    83 SCTQ--GRTKPAPdSSREERESWIRAKY 108
ArfGap_ASAP2 cd08849
ArfGAP domain of ASAP2 (ArfGAP2 with SH3 domain, ANK repeat and PH domain-containing protein 2) ...
222-335 1.13e-33

ArfGAP domain of ASAP2 (ArfGAP2 with SH3 domain, ANK repeat and PH domain-containing protein 2); The Arf GAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf , thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport.


Pssm-ID: 350074 [Multi-domain]  Cd Length: 123  Bit Score: 124.70  E-value: 1.13e-33
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 222 LQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYEA 301
Cdd:cd08849     6 ISEVQRMTGNDVCCDCGAPDPTWLSTNLGILTCIECSGIHRELGVHYSRMQSLTLDVLGTSELLLAKNIGNAGFNEIMEA 85
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 1039751968 302 KLEKMGVKKPQPGQ-RQEKEAYIRAKYVERKFVDK 335
Cdd:cd08849    86 CLPAEDVVKPNPGSdMNARKDYITAKYIERRYARK 120
ArfGap_GIT cd08833
The GIT subfamily of ADP-ribosylation factor GTPase-activating proteins; The GIT (G-protein ...
234-327 2.95e-32

The GIT subfamily of ADP-ribosylation factor GTPase-activating proteins; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350062 [Multi-domain]  Cd Length: 109  Bit Score: 120.10  E-value: 2.95e-32
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 234 CCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYEAKL---EKMGVKK 310
Cdd:cd08833    11 CADCSAPDPEWASINRGVLICDECCSIHRSLGRHISQVKSLRKDQWPPSLLEMVQTLGNNGANSIWEHSLldpSQSGKRK 90
                          90
                  ....*....|....*....
gi 1039751968 311 PQPGQ--RQEKEAYIRAKY 327
Cdd:cd08833    91 PIPPDpvHPTKEEFIKAKY 109
ArfGap_ASAP1 cd08848
ArfGAP domain of ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain-containing protein 1); ...
219-335 1.06e-31

ArfGAP domain of ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain-containing protein 1); The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350073 [Multi-domain]  Cd Length: 122  Bit Score: 119.37  E-value: 1.06e-31
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 219 ESALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRV 298
Cdd:cd08848     3 KAIIDDVQRLPGNEVCCDCGSPDPTWLSTNLGILTCIECSGIHREMGVHISRIQSLELDKLGTSELLLAKNVGNNSFNDI 82
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1039751968 299 YEAKLEKMGVKKPQPGQRQEKEAYIRAKYVERKFVDK 335
Cdd:cd08848    83 MEGNLPSPSPKPSPSSDMTARKEYITAKYVEHRFSRK 119
ArfGap_ArfGap1 cd08830
Arf1 GTPase-activating protein 1; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
222-327 3.18e-30

Arf1 GTPase-activating protein 1; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350059 [Multi-domain]  Cd Length: 115  Bit Score: 114.52  E-value: 3.18e-30
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 222 LQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVyea 301
Cdd:cd08830     5 LRELQKLPGNNRCFDCGAPNPQWASVSYGIFICLECSGVHRGLGVHISFVRSITMDSWSEKQLKKMELGGNAKLREF--- 81
                          90       100
                  ....*....|....*....|....*.
gi 1039751968 302 kLEKMGVKKPQPgqrqekeayIRAKY 327
Cdd:cd08830    82 -FESYGISPDLP---------IREKY 97
ArfGap_ARAP cd08837
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing proteins; The ARAP subfamily ...
222-332 1.30e-29

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing proteins; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics.


Pssm-ID: 350066 [Multi-domain]  Cd Length: 116  Bit Score: 113.24  E-value: 1.30e-29
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 222 LQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDT--WEPELLKLMCELGNDVINRVY 299
Cdd:cd08837     4 AEKIWSNPANRFCADCGAPDPDWASINLCVVICKQCAGEHRSLGSNISKVRSLKMDTkvWTEELVELFLKLGNDRANRFW 83
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 1039751968 300 EAKLEKMGVKKPQ--PGQRQEkeaYIRAKYVERKF 332
Cdd:cd08837    84 AANLPPSEALHPDadSEQRRE---FITAKYREGKY 115
ArfGap_SMAP2 cd08859
Stromal membrane-associated protein 2; a subfamily of the ArfGAP family; The SMAP subfamily of ...
231-331 5.19e-28

Stromal membrane-associated protein 2; a subfamily of the ArfGAP family; The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not.


Pssm-ID: 350083 [Multi-domain]  Cd Length: 107  Bit Score: 108.15  E-value: 5.19e-28
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 231 NTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYEAKLEKmGVKK 310
Cdd:cd08859    10 NKFCADCQSKGPRWASWNIGVFICIRCAGIHRNLGVHISRVKSVNLDQWTQEQIQCMQEMGNGKANRLYEAFLPE-NFRR 88
                          90       100
                  ....*....|....*....|.
gi 1039751968 311 PQpgQRQEKEAYIRAKYVERK 331
Cdd:cd08859    89 PQ--TDQAVEGFIRDKYEKKK 107
ArfGap_ArfGap1_like cd08959
ARF1 GTPase-activating protein 1-like; ArfGAP (ADP Ribosylation Factor GTPase Activating ...
222-287 5.25e-28

ARF1 GTPase-activating protein 1-like; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350084 [Multi-domain]  Cd Length: 115  Bit Score: 108.37  E-value: 5.25e-28
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1039751968 222 LQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLM 287
Cdd:cd08959     5 FKKLRSKPENKVCFDCGAKNPQWASVTYGIFICLDCSGVHRGLGVHISFVRSTTMDKWTEEQLRKM 70
ArfGap_ArfGap2_3_like cd08831
Arf1 GTPase-activating protein 2/3-like; ArfGAP (ADP Ribosylation Factor GTPase Activating ...
222-293 1.47e-25

Arf1 GTPase-activating protein 2/3-like; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350060 [Multi-domain]  Cd Length: 116  Bit Score: 101.47  E-value: 1.47e-25
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1039751968 222 LQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGND 293
Cdd:cd08831     6 FKKLRSKPENKVCFDCGAKNPTWASVTFGVFLCLDCSGVHRSLGVHISFVRSTNLDSWTPEQLRRMKVGGNA 77
ANKYR COG0666
Ankyrin repeat [Signal transduction mechanisms];
457-588 4.27e-25

Ankyrin repeat [Signal transduction mechanisms];


Pssm-ID: 440430 [Multi-domain]  Cd Length: 289  Bit Score: 105.81  E-value: 4.27e-25
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 457 LYRASYEKNLpKMAEAL-AHGADVNWANSDENqaTPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTG 535
Cdd:COG0666   124 LHLAAYNGNL-EIVKLLlEAGADVNAQDNDGN--TPLHLAAANGNLEIVKLLLEAGADVNARDNDGETPLHLAAENGHLE 200
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1039751968 536 QVCLFLKRGANQHATDEEGKDPLSIAVEAANADIVTLLRLARMNEEMRESEGL 588
Cdd:COG0666   201 IVKLLLEAGADVNAKDNDGKTALDLAAENGNLEIVKLLLEAGADLNAKDKDGL 253
ANKYR COG0666
Ankyrin repeat [Signal transduction mechanisms];
457-573 1.09e-24

Ankyrin repeat [Signal transduction mechanisms];


Pssm-ID: 440430 [Multi-domain]  Cd Length: 289  Bit Score: 104.65  E-value: 1.09e-24
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 457 LYRASYEKNLPKMAEALAHGADVNwaNSDENQATPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTGQ 536
Cdd:COG0666    91 LHAAARNGDLEIVKLLLEAGADVN--ARDKDGETPLHLAAYNGNLEIVKLLLEAGADVNAQDNDGNTPLHLAAANGNLEI 168
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1039751968 537 VCLFLKRGANQHATDEEGKDPLSIAVEAANADIVTLL 573
Cdd:COG0666   169 VKLLLEAGADVNARDNDGETPLHLAAENGHLEIVKLL 205
ArfGap_ADAP1 cd08843
ADAP1 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
222-327 1.59e-24

ADAP1 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350069 [Multi-domain]  Cd Length: 112  Bit Score: 98.54  E-value: 1.59e-24
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 222 LQRvqciPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGvHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYEA 301
Cdd:cd08843    12 LQR----PGNARCADCGAPDPDWASYTLGVFICLSCSGIHRNIP-QVSKVKSVRLDAWEEAQVEFMASHGNDAARARFES 86
                          90       100
                  ....*....|....*....|....*..
gi 1039751968 302 KLEKMgVKKPQPGQRQ-EKEAYIRAKY 327
Cdd:cd08843    87 KVPSF-YYRPTPSDCQlLREQWIRAKY 112
ArfGap_ARAP1 cd17901
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 1; The ARAP subfamily ...
223-332 2.92e-24

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 1; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP1 localizes to the plasma membrane, the Golgi complex, and endosomal compartments. It displays PI(3,4,5)P3-dependent ArfGAP activity that regulates Arf-, RhoA-, and Cdc42-dependent cellular events. For example, ARAP1 inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome.


Pssm-ID: 350088 [Multi-domain]  Cd Length: 116  Bit Score: 97.96  E-value: 2.92e-24
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 223 QRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLD--TWEPELLKLMCELGNDVINRVYE 300
Cdd:cd17901     5 EKIWSVESNRFCADCGSPKPDWASVNLCVVICKRCAGEHRGLGPSVSKVRSLKMDrkVWTEELIELFLLLGNGKANQFWA 84
                          90       100       110
                  ....*....|....*....|....*....|..
gi 1039751968 301 AKLEKMGVKKPQpGQRQEKEAYIRAKYVERKF 332
Cdd:cd17901    85 ANVPPSEALCPS-SSSEERRHFITAKYKEGKY 115
ArfGap_ADAP2 cd08844
ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
229-327 6.16e-23

ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350070 [Multi-domain]  Cd Length: 112  Bit Score: 94.06  E-value: 6.16e-23
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 229 PGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGvHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYEAKLEKMGV 308
Cdd:cd08844    15 PGNSVCADCGAPDPDWASYTLGIFICLNCSGVHRNLP-DISRVKSIRLDFWEDELVEFMKENGNLKAKAKFEAFVPPFYY 93
                          90
                  ....*....|....*....
gi 1039751968 309 KKPQPGQRQEKEAYIRAKY 327
Cdd:cd08844    94 RPQANDCDVLKEQWIRAKY 112
ArfGap_GIT2 cd08847
GIT2 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting ...
234-327 7.94e-23

GIT2 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350072 [Multi-domain]  Cd Length: 111  Bit Score: 93.55  E-value: 7.94e-23
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 234 CCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYEAKLEK-----MGV 308
Cdd:cd08847    11 CADCSTSDPRWASVNRGVLICDECCSVHRSLGRHISQVRHLKHTSWPPTLLQMVQTLYNNGANSIWEHSLLDpasimSGK 90
                          90       100
                  ....*....|....*....|.
gi 1039751968 309 KKPQPGQR--QEKEAYIRAKY 327
Cdd:cd08847    91 RKANPQDKvhPNKAEFIRAKY 111
ArfGap_ARAP2 cd08856
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily ...
231-332 1.63e-22

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP2 localizes to the cell periphery and on focal adhesions composed of paxillin and vinculin, and functions downstream of RhoA to regulate focal adhesion dynamics. ARAP2 is a PI(3,4,5)P3-dependent Arf6 GAP that binds RhoA-GTP, but it lacks the predicted catalytic arginine in the RhoGAP domain and does not have RhoGAP activity. ARAP2 reduces Rac1oGTP levels by reducing Arf6oGTP levels through GAP activity. AGAP2 also binds to and regulates focal adhesion kinase (FAK). Thus, ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology.


Pssm-ID: 350081 [Multi-domain]  Cd Length: 121  Bit Score: 93.05  E-value: 1.63e-22
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 231 NTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDT--WEPELLKLMCELGNDVINRVYEAKLEKmGV 308
Cdd:cd08856    18 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVVGNKPANLFWAANLFS-EE 96
                          90       100
                  ....*....|....*....|....
gi 1039751968 309 KKPQPGQRQEKEAYIRAKYVERKF 332
Cdd:cd08856    97 DLHMDSDVEQRTPFITQKYKEGKF 120
ArfGap_ARAP3 cd17902
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily ...
229-332 5.17e-22

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP3 possesses a unique dual-specificity GAP activity for Arf6 and RhoA regulated by PI(3,4,5)P3 and a small GTPase Rap1-GTP. The RhoGAP activity of ARAP3 is enhanced by direct binding of Rap1-GTP to the Ras-association (RA) domain. ARAP3 is involved in regulation of cell shape and adhesion.


Pssm-ID: 350089 [Multi-domain]  Cd Length: 116  Bit Score: 91.51  E-value: 5.17e-22
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 229 PGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDT--WEPELLKLMCELGNDVINRVYEAKLEKM 306
Cdd:cd17902    11 KANRFCADCHASSPDWASINLCVVICKQCAGQHRSLGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWAARLPAS 90
                          90       100
                  ....*....|....*....|....*...
gi 1039751968 307 GVKKPQ--PGQRQEkeaYIRAKYVERKF 332
Cdd:cd17902    91 EALHPDatPEQRRE---FISRKYREGRF 115
ArfGap_ArfGap2 cd09029
Arf1 GTPase-activating protein 2; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
219-292 2.21e-20

Arf1 GTPase-activating protein 2; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350086 [Multi-domain]  Cd Length: 120  Bit Score: 87.04  E-value: 2.21e-20
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1039751968 219 ESALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDT-WEPELLKLMCELGN 292
Cdd:cd09029     7 QTLFKRLRAIPTNKACFDCGAKNPSWASITYGVFLCIDCSGVHRSLGVHLSFIRSTELDSnWNWFQLRCMQVGGN 81
ANKYR COG0666
Ankyrin repeat [Signal transduction mechanisms];
444-573 3.45e-20

Ankyrin repeat [Signal transduction mechanisms];


Pssm-ID: 440430 [Multi-domain]  Cd Length: 289  Bit Score: 91.17  E-value: 3.45e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 444 VFLDSKHLNPGLQLYRASYEKNLPKMAEALAHGADVNwaNSDENQATPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRG 523
Cdd:COG0666    45 LALALADALGALLLLAAALAGDLLVALLLLAAGADIN--AKDDGGNTLLHAAARNGDLEIVKLLLEAGADVNARDKDGET 122
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|
gi 1039751968 524 PLHHATVLGHTGQVCLFLKRGANQHATDEEGKDPLSIAVEAANADIVTLL 573
Cdd:COG0666   123 PLHLAAYNGNLEIVKLLLEAGADVNAQDNDGNTPLHLAAANGNLEIVKLL 172
ArfGap_AGFG cd08838
ArfGAP domain of the AGFG subfamily (ArfGAP domain and FG repeat-containing proteins); The ...
229-334 6.81e-20

ArfGAP domain of the AGFG subfamily (ArfGAP domain and FG repeat-containing proteins); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350067 [Multi-domain]  Cd Length: 113  Bit Score: 85.32  E-value: 6.81e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 229 PGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGvHfsKVRSLTLDTWEPELLKLMCELGNDVINRVYEAKLEKMGV 308
Cdd:cd08838    11 PENKRCFDCGQRGPTYVNLTFGTFVCTTCSGIHREFN-H--RVKSISMSTFTPEEVEFLQAGGNEVARKIWLAKWDPRTD 87
                          90       100
                  ....*....|....*....|....*.
gi 1039751968 309 KKPQPGQRQEKEAYIRAKYVERKFVD 334
Cdd:cd08838    88 PEPDSGDDQKIREFIRLKYVDKRWYD 113
ArfGap_ArfGap3 cd09028
Arf1 GTPase-activating protein 3; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
222-292 2.38e-19

Arf1 GTPase-activating protein 3; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350085 [Multi-domain]  Cd Length: 120  Bit Score: 83.96  E-value: 2.38e-19
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1039751968 222 LQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDT-WEPELLKLMCELGN 292
Cdd:cd09028    10 FKRLRSVPTNKVCFDCGAKNPSWASITYGVFLCIDCSGIHRSLGVHLSFIRSTELDSnWSWFQLRCMQVGGN 81
ANKYR COG0666
Ankyrin repeat [Signal transduction mechanisms];
457-577 3.18e-18

Ankyrin repeat [Signal transduction mechanisms];


Pssm-ID: 440430 [Multi-domain]  Cd Length: 289  Bit Score: 85.39  E-value: 3.18e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 457 LYRASYEKNLpKMAEAL-AHGADVNwaNSDENQATPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTG 535
Cdd:COG0666   157 LHLAAANGNL-EIVKLLlEAGADVN--ARDNDGETPLHLAAENGHLEIVKLLLEAGADVNAKDNDGKTALDLAAENGNLE 233
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|..
gi 1039751968 536 QVCLFLKRGANQHATDEEGKDPLSIAVEAANADIVTLLRLAR 577
Cdd:COG0666   234 IVKLLLEAGADLNAKDKDGLTALLLAAAAGAALIVKLLLLAL 275
PLN03114 PLN03114
ADP-ribosylation factor GTPase-activating protein AGD10; Provisional
211-293 1.33e-17

ADP-ribosylation factor GTPase-activating protein AGD10; Provisional


Pssm-ID: 178661 [Multi-domain]  Cd Length: 395  Bit Score: 85.29  E-value: 1.33e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 211 SKEKLLKGESALQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCEL 290
Cdd:PLN03114    2 ASENLNDKISVFKKLKAKSDNKICFDCNAKNPTWASVTYGIFLCIDCSAVHRSLGVHISFVRSTNLDSWSSEQLKMMIYG 81

                  ...
gi 1039751968 291 GND 293
Cdd:PLN03114   82 GNN 84
ArfGap_GIT1 cd08846
GIT1 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting ...
228-327 2.35e-17

GIT1 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350071 [Multi-domain]  Cd Length: 111  Bit Score: 78.22  E-value: 2.35e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 228 IPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDTWEPELLKLMCELGNDVINRVYEAKL---- 303
Cdd:cd08846     5 GPRAEVCADCSAPDPGWASINRGVLICDECCSVHRSLGRHISIVKHLRHSAWPPTLLQMVHTLASNGANSIWEHSLldpa 84
                          90       100
                  ....*....|....*....|....*..
gi 1039751968 304 -EKMGVKK--PQPGQRQEKEAYIRAKY 327
Cdd:cd08846    85 qVQSGRRKanPQDKVHPTKSEFIRAKY 111
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
80-181 5.89e-16

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 73.74  E-value: 5.89e-16
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968   80 IVMEGYLFKRASNAFKTWNRkkpdhirRWFSIQNNQLVYQKKFKDSPTVVVE---DLRLCTVKHCEDI---ERRFCFEVV 153
Cdd:smart00233   1 VIKEGWLYKKSGGGKKSWKK-------RYFVLFNSTLLYYKSKKDKKSYKPKgsiDLSGCTVREAPDPdssKKPHCFEIK 73
                           90       100
                   ....*....|....*....|....*....
gi 1039751968  154 SPTKSCM-LQADSEKLRQAWIKAVQTSIA 181
Cdd:smart00233  74 TSDRKTLlLQAESEEEREKWVEALRKAIA 102
BAR_3 pfam16746
BAR domain of APPL family; BAR_12 is the BAR coiled-coil domain at the N-terminus of APPL or ...
1-47 1.53e-15

BAR domain of APPL family; BAR_12 is the BAR coiled-coil domain at the N-terminus of APPL or adaptor protein containing PH domain, PTB domain, and leucine zipper motif proteins in higher eukaryotes. This BAR domain contains four helices whereas the other classical BAR domains contain only three helices. The first three helices form an antiparallel coiled-coil, while the fourth helix, is unique to APPL1. BAR domains take part in many varied biological processes such as fission of synaptic vesicles, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, apoptosis, secretory vesicle fusion, and tissue differentiation.


Pssm-ID: 465256  Cd Length: 235  Bit Score: 76.45  E-value: 1.53e-15
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 1039751968   1 MLSFMYAHLAFFHQGYDLFSELGPYMKDLGAQLDRLVVDAAKEKREM 47
Cdd:pfam16746 189 LLSFMHAQFTFFHQGYELFKDLEPFMKDLQAQLQQTREDTREEKEEL 235
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
82-176 8.50e-15

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 70.26  E-value: 8.50e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  82 MEGYLFKRASNAFKTWnrkkpdhIRRWFSIQNNQLVYQKKFKDSPTVVVEDLRL---CTVKHCEDIERRFCFEVVSPTKS 158
Cdd:cd00821     1 KEGYLLKRGGGGLKSW-------KKRWFVLFEGVLLYYKSKKDSSYKPKGSIPLsgiLEVEEVSPKERPHCFELVTPDGR 73
                          90
                  ....*....|....*....
gi 1039751968 159 CM-LQADSEKLRQAWIKAV 176
Cdd:cd00821    74 TYyLQADSEEERQEWLKAL 92
PH pfam00169
PH domain; PH stands for pleckstrin homology.
80-181 6.96e-13

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 65.28  E-value: 6.96e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  80 IVMEGYLFKRASNAFKTWNRkkpdhirRWFSIQNNQLVYQKK---FKDSPTVVVEDLRLCTVKHCEDIE---RRFCFEVV 153
Cdd:pfam00169   1 VVKEGWLLKKGGGKKKSWKK-------RYFVLFDGSLLYYKDdksGKSKEPKGSISLSGCEVVEVVASDspkRKFCFELR 73
                          90       100       110
                  ....*....|....*....|....*....|..
gi 1039751968 154 SPTKSCM----LQADSEKLRQAWIKAVQTSIA 181
Cdd:pfam00169  74 TGERTGKrtylLQAESEEERKDWIKAIQSAIR 105
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
83-189 1.29e-12

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 64.26  E-value: 1.29e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  83 EGYLFKRaSNAFKTWNRkkpdhirRWFSIQNNQLVYqkkFKDS-------PTVVVeDLRLC-TVKHCED-IERRFCFEVV 153
Cdd:cd13276     2 AGWLEKQ-GEFIKTWRR-------RWFVLKQGKLFW---FKEPdvtpyskPRGVI-DLSKClTVKSAEDaTNKENAFELS 69
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 1039751968 154 SPTKSCMLQADSEKLRQAWIKAVQTSIATAYREKGD 189
Cdd:cd13276    70 TPEETFYFIADNEKEKEEWIGAIGRAIVKHSRSVTD 105
PTZ00322 PTZ00322
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase; Provisional
489-573 1.51e-11

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase; Provisional


Pssm-ID: 140343 [Multi-domain]  Cd Length: 664  Bit Score: 67.23  E-value: 1.51e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 489 ATPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTGQVCLFLKRGANQHATDEEGKDPLSIAVEAANAD 568
Cdd:PTZ00322   83 TVELCQLAASGDAVGARILLTGGADPNCRDYDGRTPLHIACANGHVQVVRVLLEFGADPTLLDKDGKTPLELAEENGFRE 162

                  ....*
gi 1039751968 569 IVTLL 573
Cdd:PTZ00322  163 VVQLL 167
ANKYR COG0666
Ankyrin repeat [Signal transduction mechanisms];
446-573 5.49e-11

Ankyrin repeat [Signal transduction mechanisms];


Pssm-ID: 440430 [Multi-domain]  Cd Length: 289  Bit Score: 63.82  E-value: 5.49e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 446 LDSKHLNPGLQLYRASYEKNLPKMAEALAHGADVNWANSDENQATPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPL 525
Cdd:COG0666    12 LAALLLLLLLALLLLAAALLLLLLLLLLLLLALLALALADALGALLLLAAALAGDLLVALLLLAAGADINAKDDGGNTLL 91
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*...
gi 1039751968 526 HHATVLGHTGQVCLFLKRGANQHATDEEGKDPLSIAVEAANADIVTLL 573
Cdd:COG0666    92 HAAARNGDLEIVKLLLEAGADVNARDKDGETPLHLAAYNGNLEIVKLL 139
Ank_2 pfam12796
Ankyrin repeats (3 copies);
492-573 1.29e-10

Ankyrin repeats (3 copies);


Pssm-ID: 463710 [Multi-domain]  Cd Length: 91  Bit Score: 58.20  E-value: 1.29e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 492 LIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTgQVCLFLKRGANQHATDeEGKDPLSIAVEAANADIVT 571
Cdd:pfam12796   1 LHLAAKNGNLELVKLLLENGADANLQDKNGRTALHLAAKNGHL-EIVKLLLEHADVNLKD-NGRTALHYAARSGHLEIVK 78

                  ..
gi 1039751968 572 LL 573
Cdd:pfam12796  79 LL 80
Ank_2 pfam12796
Ankyrin repeats (3 copies);
457-551 2.24e-10

Ankyrin repeats (3 copies);


Pssm-ID: 463710 [Multi-domain]  Cd Length: 91  Bit Score: 57.43  E-value: 2.24e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 457 LYRASYEKNLPKMAEALAHGADVNWANSDENqaTPLIQAVLGGSLVTCEFLLQNgANVNQRDvQGRGPLHHATVLGHTGQ 536
Cdd:pfam12796   1 LHLAAKNGNLELVKLLLENGADANLQDKNGR--TALHLAAKNGHLEIVKLLLEH-ADVNLKD-NGRTALHYAARSGHLEI 76
                          90
                  ....*....|....*
gi 1039751968 537 VCLFLKRGANQHATD 551
Cdd:pfam12796  77 VKLLLEKGADINVKD 91
PH_GRP1-like cd01252
General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 ...
72-181 2.75e-10

General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 and the related proteins ARNO (ARF nucleotide-binding site opener)/cytohesin-2 and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. The PH domains of all three proteins exhibit relatively high affinity for PtdIns(3,4,5)P3. Within the Grp1 family, diglycine (2G) and triglycine (3G) splice variants, differing only in the number of glycine residues in the PH domain, strongly influence the affinity and specificity for phosphoinositides. The 2G variants selectively bind PtdIns(3,4,5)P3 with high affinity,the 3G variants bind PtdIns(3,4,5)P3 with about 30-fold lower affinity and require the polybasic region for plasma membrane targeting. These ARF-GEFs share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7, a PH domain, and a C-terminal polybasic region. The Sec7 domain is autoinhibited by conserved elements proximal to the PH domain. GRP1 binds to the DNA binding domain of certain nuclear receptors (TRalpha, TRbeta, AR, ER, but not RXR), and can repress thyroid hormone receptor (TR)-mediated transactivation by decreasing TR-complex formation on thyroid hormone response elements. ARNO promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion. Cytohesin acts as a PI 3-kinase effector mediating biological responses including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269954  Cd Length: 119  Bit Score: 58.09  E-value: 2.75e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  72 YNVDaangivMEGYLFKRASNAfKTWNRkkpdhirRWFSIQNNQLVYQKKFKDSPTVVVEDLRLCTVKHCEDIERRFCFE 151
Cdd:cd01252     1 FNPD------REGWLLKLGGRV-KSWKR-------RWFILTDNCLYYFEYTTDKEPRGIIPLENLSVREVEDKKKPFCFE 66
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1039751968 152 VVSPT-----KSCMLQAD----------------SEKLRQAWIKAVQTSIA 181
Cdd:cd01252    67 LYSPSngqviKACKTDSDgkvvegnhtvyrisaaSEEERDEWIKSIKASIS 117
BAR_ACAP2 cd07638
The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain ...
1-26 4.33e-10

The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 2; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 2), also called centaurin beta-2, is an Arf6-specific GTPase activating protein (GAP) which mediates Arf6 signaling. Arf6 is involved in the regulation of endocytosis, phagocytosis, cell adhesion and migration. ACAP2 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153322  Cd Length: 200  Bit Score: 59.63  E-value: 4.33e-10
                          10        20
                  ....*....|....*....|....*.
gi 1039751968   1 MLSFMYAHLAFFHQGYDLFSELGPYM 26
Cdd:cd07638   175 MLSFMYAHLTFFHQGYDLFSELGPYM 200
PH_DAPP1 cd10573
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ...
83-177 6.40e-10

Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269977 [Multi-domain]  Cd Length: 96  Bit Score: 56.18  E-value: 6.40e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  83 EGYLFKRAsNAFKTWNRkkpdhirRWFSIQNNQLVYQKKFKDSPTVVVEDLRLCT-VKHCEDIERRFCFEVVSPTKSCML 161
Cdd:cd10573     6 EGYLTKLG-GIVKNWKT-------RWFVLRRNELKYFKTRGDTKPIRVLDLRECSsVQRDYSQGKVNCFCLVFPERTFYM 77
                          90
                  ....*....|....*.
gi 1039751968 162 QADSEKLRQAWIKAVQ 177
Cdd:cd10573    78 YANTEEEADEWVKLLK 93
PHA03100 PHA03100
ankyrin repeat protein; Provisional
457-582 9.89e-10

ankyrin repeat protein; Provisional


Pssm-ID: 222984 [Multi-domain]  Cd Length: 422  Bit Score: 60.83  E-value: 9.89e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 457 LYRASYEKNLPKMAEAL-AHGADVNWANSD-ENqatpLIQAVLGGSLVT---CEFLLQNGANVNQ--------------- 516
Cdd:PHA03100  111 LYAISKKSNSYSIVEYLlDNGANVNIKNSDgEN----LLHLYLESNKIDlkiLKLLIDKGVDINAknrvnyllsygvpin 186
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1039751968 517 -RDVQGRGPLHHATVLGHTGQVCLFLKRGANQHATDEEGKDPLSIAVEAANADIVTLLRLARMNEEM 582
Cdd:PHA03100  187 iKDVYGFTPLHYAVYNNNPEFVKYLLDLGANPNLVNKYGDTPLHIAILNNNKEIFKLLLNNGPSIKT 253
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
78-176 1.19e-09

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 55.71  E-value: 1.19e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  78 NGIVMEGYLFKRaSNAFKTWNRkkpdhirRWFSIQNNQLVYQKKFKDSPTVVVEDLR-LCTVKHCEDIERRFCFEVVSPT 156
Cdd:cd13298     4 DRVLKSGYLLKR-SRKTKNWKK-------RWVVLRPCQLSYYKDEKEYKLRRVINLSeLLAVAPLKDKKRKNVFGIYTPS 75
                          90       100
                  ....*....|....*....|
gi 1039751968 157 KSCMLQADSEKLRQAWIKAV 176
Cdd:cd13298    76 KNLHFRATSEKDANEWVEAL 95
BAR-PH_GRAF_family cd01249
GTPase Regulator Associated with Focal adhesion and related proteins Pleckstrin homology (PH) ...
81-177 2.89e-09

GTPase Regulator Associated with Focal adhesion and related proteins Pleckstrin homology (PH) domain; This hierarchy contains GRAF family members: OPHN1/oligophrenin1, GRAF1 (also called ARHGAP26/Rho GTPase activating protein 26), GRAF2 (also called ARHGAP10/ARHGAP42), AK057372, and LOC129897, all of which are members of the APPL family. OPHN1 is a RhoGAP involved in X-linked mental retardation, epilepsy, rostral ventricular enlargement, and cerebellar hypoplasia. Affected individuals have morphological abnormalities of their brain with enlargement of the cerebral ventricles and cerebellar hypoplasia. OPHN1 negatively regulates RhoA, Cdc42, and Rac1 in neuronal and non-neuronal cells. GRAF1 sculpts the endocytic membranes of the CLIC/GEEC (clathrin-independent carriers/GPI-enriched early endosomal compartments) endocytic pathway. It strongly interacts with dynamin and inhibition of dynamin abolishes CLIC/GEEC endocytosis. GRAF2, GRAF3 and oligophrenin are likely to play similar roles during clathrin-independent endocytic events. GRAF1 mutations are linked to leukaemia. All members are composed of a N-terminal BAR-PH domain, followed by a RhoGAP domain, a proline rich region, and a C-terminal SH3 domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269953  Cd Length: 105  Bit Score: 54.64  E-value: 2.89e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  81 VMEGYLF---KRASNAfkTWNR-----KKPDhiRRWFSIQNNQlvyQKKFKDSPTVVVEdLRLCTVKHCEDIERRFCFEV 152
Cdd:cd01249     1 TKEGYLYlqeKKPLGS--TWTKhyctyRKES--KMFTMIPYNQ---QSSGKLGTTEVVT-LKSCVRRKTDSIDRRFCFDI 72
                          90       100
                  ....*....|....*....|....*..
gi 1039751968 153 VSPTKSC--MLQADSEKLRQAWIKAVQ 177
Cdd:cd01249    73 EVVDRPTvlTLQALSEEDRKLWLEAMD 99
BAR-PH_APPL cd13247
Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif Bin1/amphiphysin ...
84-176 6.27e-09

Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif Bin1/amphiphysin/Rvs167 (BAR)-Pleckstrin homology (PH) domain; APPL (also called DCC-interacting protein (DIP)-13alpha) interacts with oncoprotein serine/threonine kinase AKT2, tumor suppressor protein DCC (deleted in colorectal cancer), Rab5, GIPC (GAIP-interacting protein, C terminus), human follicle-stimulating hormone receptor (FSHR), and the adiponectin receptors AdipoR1 and AdipoR2. There are two isoforms of human APPL: APPL1 and APPL2, which share about 50% sequence identity. APPL has a BAR and a PH domain near its N terminus, and the two domains are thought to function as a unit (BAR-PH domain). C-terminal to this is a PTB domain. Lipid binding assays show that the BAR, PH, and PTB domains can bind phospholipids. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270067  Cd Length: 125  Bit Score: 54.30  E-value: 6.27e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  84 GYLFKRASNAF--KTWNRKkpdhirrWFSIQNNQLVYQKKfKDSPTVVVEDLRLCTVKHCEDIERRFCFEVVSPT--KSC 159
Cdd:cd13247    31 GYLFIRSKTGLvtNKWDRT-------YFFTQGGNLMSQPR-DEVAGSLVLDLDNCSVQAADCEDRRNVFQITSPDgkKAI 102
                          90
                  ....*....|....*..
gi 1039751968 160 MLQADSEKLRQAWIKAV 176
Cdd:cd13247   103 VLQAESKKDYEEWIATI 119
PH_Ses cd13288
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ...
82-177 8.43e-09

Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270105 [Multi-domain]  Cd Length: 120  Bit Score: 53.78  E-value: 8.43e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  82 MEGYLFKRASN--AFKtwnrkkpdhiRRWFSIQNNQLVYQ-KKFKDSP--TVVVEDlrlCTVKHCEDiERRFCFEVV--- 153
Cdd:cd13288    10 KEGYLWKKGERntSYQ----------KRWFVLKGNLLFYFeKKGDREPlgVIVLEG---CTVELAED-AEPYAFAIRfdg 75
                          90       100
                  ....*....|....*....|....
gi 1039751968 154 SPTKSCMLQADSEKLRQAWIKAVQ 177
Cdd:cd13288    76 PGARSYVLAAENQEDMESWMKALS 99
PH1_Pleckstrin_2 cd13301
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ...
79-180 1.38e-08

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270113  Cd Length: 108  Bit Score: 52.76  E-value: 1.38e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  79 GIVMEGYLFKRASnAFKTWnrkKPdhirRWFSIQNNQLVYQKKFKDSPTVVVEDLRLCTV-KHCEDIERR-FCFEVVSPT 156
Cdd:cd13301     2 GIIKEGYLVKKGH-VVNNW---KA----RWFVLKEDGLEYYKKKTDSSPKGMIPLKGCTItSPCLEYGKRpLVFKLTTAK 73
                          90       100
                  ....*....|....*....|....*
gi 1039751968 157 KS-CMLQADSEKLRQAWIKAVQTSI 180
Cdd:cd13301    74 GQeHFFQACSREERDAWAKDITKAI 98
PHA03095 PHA03095
ankyrin-like protein; Provisional
455-586 1.98e-08

ankyrin-like protein; Provisional


Pssm-ID: 222980 [Multi-domain]  Cd Length: 471  Bit Score: 56.96  E-value: 1.98e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 455 LQLYRASYEKNLPKMAEAL-AHGADVNWAnsDENQATPLIQAVLGGSLV-TCEFLLQNGANVNQRDVQGRGPLH-HATVL 531
Cdd:PHA03095   51 LHLYLHYSSEKVKDIVRLLlEAGADVNAP--ERCGFTPLHLYLYNATTLdVIKLLIKAGADVNAKDKVGRTPLHvYLSGF 128
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1039751968 532 G-HTGQVCLFLKRGANQHATDEEGKDPLSIAVEAANADIVTLLRLARMNEEMRESE 586
Cdd:PHA03095  129 NiNPKVIRLLLRKGADVNALDLYGMTPLAVLLKSRNANVELLRLLIDAGADVYAVD 184
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
83-178 3.06e-08

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 51.53  E-value: 3.06e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  83 EGYLFKrASNAFKTWNRkkpdhirRWFSIQNNQLVYQKKFKDSPTVVVEDLRLCTVKHCEDIERRFCFEVVSPTKSCMLQ 162
Cdd:cd13282     2 AGYLTK-LGGKVKTWKR-------RWFVLKNGELFYYKSPNDVIRKPQGQIALDGSCEIARAEGAQTFEIVTEKRTYYLT 73
                          90
                  ....*....|....*.
gi 1039751968 163 ADSEKLRQAWIKAVQT 178
Cdd:cd13282    74 ADSENDLDEWIRVIQN 89
PHA03095 PHA03095
ankyrin-like protein; Provisional
455-571 3.78e-08

ankyrin-like protein; Provisional


Pssm-ID: 222980 [Multi-domain]  Cd Length: 471  Bit Score: 56.19  E-value: 3.78e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 455 LQLYRASYEKnlpkMAEALAHGADVNWANSDENqaTPLIQAVLGGSlvtC-----EFLLQNGANVNQRDVQGRGPLHHAT 529
Cdd:PHA03095  195 LQSFKPRARI----VRELIRAGCDPAATDMLGN--TPLHSMATGSS---CkrslvLPLLIAGISINARNRYGQTPLHYAA 265
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|..
gi 1039751968 530 VLGHTGQVCLFLKRGANQHATDEEGKDPLSIAVEAANADIVT 571
Cdd:PHA03095  266 VFNNPRACRRLIALGADINAVSSDGNTPLSLMVRNNNGRAVR 307
PH_SIP3 cd13280
Snf1p-interacting protein 3 Pleckstrin homology (PH) domain; SIP3 interacts with SNF1 protein ...
83-179 3.82e-08

Snf1p-interacting protein 3 Pleckstrin homology (PH) domain; SIP3 interacts with SNF1 protein kinase and activates transcription when anchored to DNA. It may function in the SNF1 pathway. SIP3 contain an N-terminal Bin/Amphiphysin/Rvs (BAR) domain followed by a PH domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270098  Cd Length: 105  Bit Score: 51.49  E-value: 3.82e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  83 EGYLFKRASnafkTWNRKKPDHIRRWFSIQNNQLVYqkkFKDSP--TVVVEDLR----LCTVKHCEDIERRFCFEVVSPT 156
Cdd:cd13280     3 SGWLYMKTS----VGKPNRTIWVRRWCFVKNGVFGM---LSLSPskTYVEETDKfgvlLCSVRYAPEEDRRFCFEVKIFK 75
                          90       100
                  ....*....|....*....|....
gi 1039751968 157 K-SCMLQADSEKLRQAWIKAVQTS 179
Cdd:cd13280    76 DiSIILQAETLKELKSWLTVFENA 99
ArfGap_AGFG1 cd08857
ArfGAP domain of AGFG1 (ArfGAP domain and FG repeat-containing protein 1); The ArfGAP domain ...
222-332 7.19e-08

ArfGAP domain of AGFG1 (ArfGAP domain and FG repeat-containing protein 1); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG1 is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG1 plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG1 promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350082 [Multi-domain]  Cd Length: 116  Bit Score: 51.19  E-value: 7.19e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 222 LQRVQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHfSKVRSLTLDTWEPELLKLMCELGNDVINRVYEA 301
Cdd:cd08857     5 LREMTSLPHNRKCFDCDQRGPTYANMTVGSFVCTSCSGILRGLNPP-HRVKSISMTTFTQQEIEFLQKHGNEVCKQIWLG 83
                          90       100       110
                  ....*....|....*....|....*....|.
gi 1039751968 302 KLEKMGVKKPQPGQRQEKEAYIRAKYVERKF 332
Cdd:cd08857    84 LFDDRSSAIPDFRDPQKVKEFLQEKYEKKRW 114
PLN03131 PLN03131
hypothetical protein; Provisional
210-369 1.97e-07

hypothetical protein; Provisional


Pssm-ID: 178677 [Multi-domain]  Cd Length: 705  Bit Score: 54.01  E-value: 1.97e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 210 ESKEKLLKGESALqrvqciPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLgVHfsKVRSLTLDTWEPELLKLMCE 289
Cdd:PLN03131    8 ERNEKIIRGLMKL------PPNRRCINCNSLGPQFVCTNFWTFICMTCSGIHREF-TH--RVKSVSMSKFTSQDVEALQN 78
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 290 LGNDVINRVYEAKLEKMGVKKPQPGQRQEKEAYIRAKYVERKFV-----DKysallsPSEQEKRIISKSCEDQRLSHARA 364
Cdd:PLN03131   79 GGNQRAREIYLKDWDQQRQRLPDNSKVDKIREFIKDIYVDKKYAggkthDK------PPRDLQRIRSHEDETRRACSYHS 152

                  ....*
gi 1039751968 365 SVHTP 369
Cdd:PLN03131  153 YSQSP 157
PHA02875 PHA02875
ankyrin repeat protein; Provisional
457-573 8.86e-07

ankyrin repeat protein; Provisional


Pssm-ID: 165206 [Multi-domain]  Cd Length: 413  Bit Score: 51.53  E-value: 8.86e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 457 LYRASYEKNLPKMAEALAHGADVNWANSDenQATPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTGQ 536
Cdd:PHA02875  106 LHLATILKKLDIMKLLIARGADPDIPNTD--KFSPLHLAVMMGDIKGIELLIDHKACLDIEDCCGCTPLIIAMAKGDIAI 183
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 1039751968 537 VCLFLKRGANqhaTDEEGKDP----LSIAVEAANADIVTLL 573
Cdd:PHA02875  184 CKMLLDSGAN---IDYFGKNGcvaaLCYAIENNKIDIVRLF 221
PLN03119 PLN03119
putative ADP-ribosylation factor GTPase-activating protein AGD14; Provisional
210-369 1.08e-06

putative ADP-ribosylation factor GTPase-activating protein AGD14; Provisional


Pssm-ID: 178666  Cd Length: 648  Bit Score: 51.77  E-value: 1.08e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 210 ESKEKLLKGESALqrvqciPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGvhfSKVRSLTLDTWEPELLKLMCE 289
Cdd:PLN03119    8 ERNEKIIRGLMKL------PPNRRCINCNSLGPQYVCTTFWTFVCMACSGIHREFT---HRVKSVSMSKFTSKEVEVLQN 78
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 290 LGNDVINRVYEAKLEKMGVKKPQPGQRQEKEAYIRAKYVERKFVDKYSALLSPSEQEKRIISKSCEDQRLSHARASVHTP 369
Cdd:PLN03119   79 GGNQRAREIYLKNWDHQRQRLPENSNAERVREFIKNVYVQKKYAGANDADKPSKDSQDHVSSEDMTRRANSYHSYSQSPP 158
PH_SWAP-70 cd13273
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ...
78-181 1.35e-06

Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270092  Cd Length: 110  Bit Score: 47.29  E-value: 1.35e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  78 NGIVMEGYLFKRASnAFKTWNRkkpdhirRWFSIQNNQLVYQKK--FKDSPTVVVEDLRlCTVKHCEDIERRFC-FEVVS 154
Cdd:cd13273     6 LDVIKKGYLWKKGH-LLPTWTE-------RWFVLKPNSLSYYKSedLKEKKGEIALDSN-CCVESLPDREGKKCrFLVKT 76
                          90       100
                  ....*....|....*....|....*..
gi 1039751968 155 PTKSCMLQADSEKLRQAWIKAVQTSIA 181
Cdd:cd13273    77 PDKTYELSASDHKTRQEWIAAIQTAIR 103
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
75-176 1.76e-06

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 47.02  E-value: 1.76e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  75 DAANGIVMEGYLFKRASNAfKTWnrKKpdhirRWFSIQNNQLVYQKKFKDSPT---VVVEDLRLCT---VKHCEdierrF 148
Cdd:cd13255     1 MISEAVLKAGYLEKKGERR-KTW--KK-----RWFVLRPTKLAYYKNDKEYRLlrlIDLTDIHTCTevqLKKHD-----N 67
                          90       100
                  ....*....|....*....|....*...
gi 1039751968 149 CFEVVSPTKSCMLQADSEKLRQAWIKAV 176
Cdd:cd13255    68 TFGIVTPARTFYVQADSKAEMESWISAI 95
BAR_ACAPs cd07603
The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain ...
1-26 1.78e-06

The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain containing proteins; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This subfamily is composed of ACAPs (ArfGAP with Coiled-coil, ANK repeat and PH domain containing proteins), which are Arf GTPase activating proteins (GAPs) containing an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. Vertebrates contain at least three members, ACAP1, ACAP2, and ACAP3. ACAP1 and ACAP2 are Arf6-specific GAPs, involved in the regulation of endocytosis, phagocytosis, cell adhesion and migration, by mediating Arf6 signaling. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153287  Cd Length: 200  Bit Score: 48.84  E-value: 1.78e-06
                          10        20
                  ....*....|....*....|....*.
gi 1039751968   1 MLSFMYAHLAFFHQGYDLFSELGPYM 26
Cdd:cd07603   175 LLSYMHAQFTFFHQGYDLLEDLEPYM 200
ArfGap_AGFG2 cd17903
ArfGAP domain of AGFG2 (ArfGAP domain and FG repeat-containing protein 2); The ArfGAP domain ...
225-332 4.37e-06

ArfGAP domain of AGFG2 (ArfGAP domain and FG repeat-containing protein 2); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG2 is a member of the HIV-1 Rev binding protein (HRB) family and contains one Arf-GAP zinc finger domain, several Phe-Gly (FG) motifs, and four Asn-Pro-Phe (NPF) motifs. AGFG2 interacts with Eps15 homology (EH) domains and plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350090 [Multi-domain]  Cd Length: 116  Bit Score: 46.14  E-value: 4.37e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 225 VQCIPGNTSCCDCGLADPRWASINLGITLCIECSGIHRSLGVHfSKVRSLTLDTW-EPELLKLMCElGNDVINRVYEAKL 303
Cdd:cd17903     8 GGCSAANRHCFECAQRGVTYVDITVGSFVCTTCSGLLRGLNPP-HRVKSISMTTFtEPEVLFLQAR-GNEVCRKIWLGLF 85
                          90       100
                  ....*....|....*....|....*....
gi 1039751968 304 EKMGVKKPQPGQRQEKEAYIRAKYVERKF 332
Cdd:cd17903    86 DARTSLIPDSRDPQKVKEFLQEKYEKKRW 114
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
80-177 6.81e-06

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 45.31  E-value: 6.81e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  80 IVMEGYLFKRAsnafktwnRKKPDHIRRWFSIQNNQLVYqkkFKDS-----PTVVVeDLRLCT----VKHCEdiERRFCF 150
Cdd:cd13215    21 VIKSGYLSKRS--------KRTLRYTRYWFVLKGDTLSW---YNSStdlyfPAGTI-DLRYATsielSKSNG--EATTSF 86
                          90       100
                  ....*....|....*....|....*..
gi 1039751968 151 EVVSPTKSCMLQADSEKLRQAWIKAVQ 177
Cdd:cd13215    87 KIVTNSRTYKFKADSETSADEWVKALK 113
PH_KIFIA_KIFIB cd01233
KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA ...
84-181 7.44e-06

KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269939  Cd Length: 103  Bit Score: 44.89  E-value: 7.44e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  84 GYLFkRASNAFKTWnrkkpdhIRRWFSIQNNQL-VYQKKfKDSPTVVVEDLRLCTVKHCEDIE----RRFCFEVVSPTKS 158
Cdd:cd01233    10 GYLL-FLEDATDGW-------VRRWVVLRRPYLhIYSSE-KDGDERGVINLSTARVEYSPDQEallgRPNVFAVYTPTNS 80
                          90       100
                  ....*....|....*....|...
gi 1039751968 159 CMLQADSEKLRQAWIKAVQTSIA 181
Cdd:cd01233    81 YLLQARSEKEMQDWLYAIDPLLA 103
PHA03100 PHA03100
ankyrin repeat protein; Provisional
445-573 1.23e-05

ankyrin repeat protein; Provisional


Pssm-ID: 222984 [Multi-domain]  Cd Length: 422  Bit Score: 48.12  E-value: 1.23e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 445 FLDSKHLNPGLQLYRA-SYEKnlPKMAEAL-AHGADVNWANSDENQATPL---IQAVLGGSLVTCEFLLQNGANVNQRDV 519
Cdd:PHA03100   27 LNDYSYKKPVLPLYLAkEARN--IDVVKILlDNGADINSSTKNNSTPLHYlsnIKYNLTDVKEIVKLLLEYGANVNAPDN 104
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1039751968 520 QGRGPLHHA--TVLGHTGQVCLFLKRGANQHATDEEGKDPLSIAVEAANAD--IVTLL 573
Cdd:PHA03100  105 NGITPLLYAisKKSNSYSIVEYLLDNGANVNIKNSDGENLLHLYLESNKIDlkILKLL 162
Ank_4 pfam13637
Ankyrin repeats (many copies);
490-541 1.38e-05

Ankyrin repeats (many copies);


Pssm-ID: 372654 [Multi-domain]  Cd Length: 54  Bit Score: 42.65  E-value: 1.38e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1039751968 490 TPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTGQVCLFL 541
Cdd:pfam13637   3 TALHAAAASGHLELLRLLLEKGADINAVDGNGETALHFAASNGNVEVLKLLL 54
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
80-175 1.44e-05

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 44.19  E-value: 1.44e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  80 IVMEGYLFKRASNAFKTWNrkkpdhiRRWFSIQNNQLVYQKKFKDS--------PTVVVedlRLCTVKhcEDIERRFCFE 151
Cdd:cd13248     7 VVMSGWLHKQGGSGLKNWR-------KRWFVLKDNCLYYYKDPEEEkalgsillPSYTI---SPAPPS--DEISRKFAFK 74
                          90       100
                  ....*....|....*....|....*
gi 1039751968 152 VVSP-TKSCMLQADSEKLRQAWIKA 175
Cdd:cd13248    75 AEHAnMRTYYFAADTAEEMEQWMNA 99
PHA02876 PHA02876
ankyrin repeat protein; Provisional
501-579 1.72e-05

ankyrin repeat protein; Provisional


Pssm-ID: 165207 [Multi-domain]  Cd Length: 682  Bit Score: 47.75  E-value: 1.72e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1039751968 501 LVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTGQVCLFLKRGANQHATDEEGKDPLSIAVEAANADIVTLLRLARMN 579
Cdd:PHA02876  158 LLIAEMLLEGGADVNAKDIYCITPIHYAAERGNAKMVNLLLSYGADVNIIALDDLSVLECAVDSKNIDTIKAIIDNRSN 236
BAR_ACAP3 cd07637
The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain ...
1-26 2.89e-05

The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 3; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 3), also called centaurin beta-5, is presumed to be an Arf GTPase activating protein (GAP) based on its similarity to the Arf6-specific GAPs ACAP1 and ACAP2. The specific function of ACAP3 is still unknown. ACAP3 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153321  Cd Length: 200  Bit Score: 45.38  E-value: 2.89e-05
                          10        20
                  ....*....|....*....|....*.
gi 1039751968   1 MLSFMYAHLAFFHQGYDLFSELGPYM 26
Cdd:cd07637   175 MLSFMHAQYTFFQQGYSLLHELDPYM 200
PH_Phafin2-like cd01218
Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; ...
99-173 4.03e-05

Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; Phafin2 is differentially expressed in the liver cancer cell and regulates the structure and function of the endosomes through Rab5-dependent processes. Phafin2 modulates the cell's response to extracellular stimulation by modulating the receptor density on the cell surface. Phafin2 contains a PH domain and a FYVE domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269927 [Multi-domain]  Cd Length: 123  Bit Score: 43.40  E-value: 4.03e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  99 RKKPDhiRRWFSIQNNQLVY------QKKFKDSPTVVVEDLRLCTVkhCEDIERRFCFEVVSPTKSCMLQADSEKLRQAW 172
Cdd:cd01218    41 RKKPK--PRQFFLFNDILVYgsivinKKKYNKQRIIPLEDVKIEDL--EDTGELKNGWQIISPKKSFVVYAATATEKSEW 116

                  .
gi 1039751968 173 I 173
Cdd:cd01218   117 M 117
PH_GAP1_mammal-like cd13371
GAP1(IP4BP) pleckstrin homology (PH) domain; GAP1 (also called IP4BP, RASA3/Ras ...
80-173 5.45e-05

GAP1(IP4BP) pleckstrin homology (PH) domain; GAP1 (also called IP4BP, RASA3/Ras GTPase-activating protein 3, and RAS p21 protein activator (GTPase activating protein) 3/GAPIII/MGC46517/MGC47588)) is a member of the GAP1 family of GTPase-activating proteins, along with RASAL1, GAP1(m), and CAPRI. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. GAP1(IP4BP) contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its C2 domains, like those of GAP1M, do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding. GAP1(IP4BP) is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and PIP2 (phosphatidylinositol 4,5-bisphosphate). It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. GAP1(IP4BP) binds tyrosine-protein kinase, HCK. Members here include humans, chickens, frogs, and fish. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241522  Cd Length: 125  Bit Score: 43.10  E-value: 5.45e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  80 IVMEGYLFKRAS--NAFKTWNRKKpdhirRWFSIQNNQLVYQKKFKDSP--TVVVEDLRLCTVKHCEDIERRFCFEVVSP 155
Cdd:cd13371    16 LLKEGFMIKRAQgrKRFGMKNFKK-----RWFRLTNHEFTYHKSKGDHPlcSIPIENILAVERLEEESFKMKNMFQVIQP 90
                          90
                  ....*....|....*...
gi 1039751968 156 TKSCMLQADSEKLRQAWI 173
Cdd:cd13371    91 ERALYIQANNCVEAKDWI 108
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
79-176 8.39e-05

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 42.37  E-value: 8.39e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  79 GIVMEGYLfKRASNAFKTWNRkkpdhirRWFSIQNNQLVYQKKFKDSP---TVVVEDLRLCTVKHCEDIERRFCFEVVsP 155
Cdd:cd13263     2 RPIKSGWL-KKQGSIVKNWQQ-------RWFVLRGDQLYYYKDEDDTKpqgTIPLPGNKVKEVPFNPEEPGKFLFEII-P 72
                          90       100       110
                  ....*....|....*....|....*....|.
gi 1039751968 156 TK----------SCMLQADSEKLRQAWIKAV 176
Cdd:cd13263    73 GGggdrmtsnhdSYLLMANSQAEMEEWVKVI 103
PHA02874 PHA02874
ankyrin repeat protein; Provisional
457-573 1.80e-04

ankyrin repeat protein; Provisional


Pssm-ID: 165205 [Multi-domain]  Cd Length: 434  Bit Score: 44.18  E-value: 1.80e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 457 LYRASYEKNLPKMAEALAHGADVNWanSDENQATPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTGQ 536
Cdd:PHA02874  128 LHYAIKKGDLESIKMLFEYGADVNI--EDDNGCYPIHIAIKHNFFDIIKLLLEKGAYANVKDNNGESPLHNAAEYGDYAC 205
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1039751968 537 VCLFLKRGANQHATDEEGKDPLSIAVeAANADIVTLL 573
Cdd:PHA02874  206 IKLLIDHGNHIMNKCKNGFTPLHNAI-IHNRSAIELL 241
Ank_5 pfam13857
Ankyrin repeats (many copies);
473-528 1.84e-04

Ankyrin repeats (many copies);


Pssm-ID: 433530 [Multi-domain]  Cd Length: 56  Bit Score: 39.64  E-value: 1.84e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1039751968 473 LAHG-ADVNWanSDENQATPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHA 528
Cdd:pfam13857   2 LEHGpIDLNR--LDGEGYTPLHVAAKYGALEIVRVLLAYGVDLNLKDEEGLTALDLA 56
PH_DGK_type2 cd13274
Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes ...
83-186 2.03e-04

Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing ATP as a source of the phosphate. In non-stimulated cells, DGK activity is low and DAG is used for glycerophospholipid biosynthesis. Upon receptor activation of the phosphoinositide pathway, DGK activity increases which drives the conversion of DAG to PA. DGK acts as a switch by terminating the signalling of one lipid while simultaneously activating signalling by another. There are 9 mammalian DGK isoforms all with conserved catalytic domains and two cysteine rich domains. These are further classified into 5 groups according to the presence of additional functional domains and substrate specificity: Type 1 - DGK-alpha, DGK-beta, DGK-gamma - contain EF-hand motifs and a recoverin homology domain; Type 2 - DGK-delta, DGK-eta, and DGK-kappa- contain a pleckstrin homology domain, two cysteine-rich zinc finger-like structures, and a separated catalytic region; Type 3 - DGK-epsilon - has specificity for arachidonate-containing DAG; Type 4 - DGK-zeta, DGK-iota- contain a MARCKS homology domain, ankyrin repeats, a C-terminal nuclear localization signal, and a PDZ-binding motif; Type 5 - DGK-theta - contains a third cysteine-rich domain, a pleckstrin homology domain and a proline rich region. The type 2 DGKs are present as part of this Metazoan DGK hierarchy. They have a N-terminal PH domain, two cysteine rich domains, followed by bipartite catalytic domains, and a C-terminal SAM domain. Their catalytic domains and perhaps other DGK catalytic domains may function as two independent units in a coordinated fashion. They may also require other motifs for maximal activity because several DGK catalytic domains have very little DAG kinase activity when expressed as isolated subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270093  Cd Length: 97  Bit Score: 40.84  E-value: 2.03e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  83 EGYLFKRaSNAFKTWNRkkpdhirRWFSIQNNQLVYQKkfkDSPTVVVEDLRLCTVKHCEDIERRFC--FEVVSPTKSCM 160
Cdd:cd13274     3 EGPLLKQ-TSSFQRWKR-------RYFKLKGRKLYYAK---DSKSLIFEEIDLSDASVAECSTKNVNnsFTVITPFRKLI 71
                          90       100
                  ....*....|....*....|....*.
gi 1039751968 161 LQADSEKLRQAWIKAVQTSIATAYRE 186
Cdd:cd13274    72 LCAESRKEMEEWISALKTVQQREFYE 97
PHA02878 PHA02878
ankyrin repeat protein; Provisional
457-587 2.59e-04

ankyrin repeat protein; Provisional


Pssm-ID: 222939 [Multi-domain]  Cd Length: 477  Bit Score: 43.72  E-value: 2.59e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 457 LYRASYEKNLPKMAEALAHGADVNWANSDENqaTPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHA-------- 528
Cdd:PHA02878  172 LHYATENKDQRLTELLLSYGANVNIPDKTNN--SPLHHAVKHYNKPIVHILLENGASTDARDKCGNTPLHISvgyckdyd 249
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 529 ----------------TVLGHTG---------QVCLFLKRGANQHATDEEGKDPLSIAV------EAANADIVTLLRLAR 577
Cdd:PHA02878  250 ilklllehgvdvnaksYILGLTAlhssikserKLKLLLEYGADINSLNSYKLTPLSSAVkqylciNIGRILISNICLLKR 329
                         170
                  ....*....|
gi 1039751968 578 MNEEMRESEG 587
Cdd:PHA02878  330 IKPDIKNSEG 339
PLN03192 PLN03192
Voltage-dependent potassium channel; Provisional
477-573 2.72e-04

Voltage-dependent potassium channel; Provisional


Pssm-ID: 215625 [Multi-domain]  Cd Length: 823  Bit Score: 44.09  E-value: 2.72e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 477 ADVNWANSDENQATPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTGQVCLFLKRGANQHATDEEGKD 556
Cdd:PLN03192  514 GDNGGEHDDPNMASNLLTVASTGNAALLEELLKAKLDPDIGDSKGRTPLHIAASKGYEDCVLVLLKHACNVHIRDANGNT 593
                          90
                  ....*....|....*..
gi 1039751968 557 PLSIAVEAANADIVTLL 573
Cdd:PLN03192  594 ALWNAISAKHHKIFRIL 610
PH2_ARAP cd13254
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
122-177 3.12e-04

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 2; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the second PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270074  Cd Length: 90  Bit Score: 40.09  E-value: 3.12e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1039751968 122 FKDSPTVVVEDLRLCTVKhceDIERRfCFEVVSPTKSCMLQADSEKLRQAWIKAVQ 177
Cdd:cd13254    39 FRLGIGITVIEMNGANVK---DVDRR-SFDLTTPYRSFSFTAESEHEKQEWIEAVQ 90
PHA02874 PHA02874
ankyrin repeat protein; Provisional
473-573 4.11e-04

ankyrin repeat protein; Provisional


Pssm-ID: 165205 [Multi-domain]  Cd Length: 434  Bit Score: 43.03  E-value: 4.11e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 473 LAHGADVNWANSDENqaTPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTGQVCLFLKRGANQHATDE 552
Cdd:PHA02874  111 LDCGIDVNIKDAELK--TFLHYAIKKGDLESIKMLFEYGADVNIEDDNGCYPIHIAIKHNFFDIIKLLLEKGAYANVKDN 188
                          90       100
                  ....*....|....*....|.
gi 1039751968 553 EGKDPLSIAVEAANADIVTLL 573
Cdd:PHA02874  189 NGESPLHNAAEYGDYACIKLL 209
PHA02875 PHA02875
ankyrin repeat protein; Provisional
437-573 1.07e-03

ankyrin repeat protein; Provisional


Pssm-ID: 165206 [Multi-domain]  Cd Length: 413  Bit Score: 41.90  E-value: 1.07e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 437 GERQESSVFLDSkHLNPGLQLYR-------ASYEKNLPKMAEALAHGA--DVNWANSDenqaTPLIQAVLGGSLVTCEFL 507
Cdd:PHA02875   13 GELDIARRLLDI-GINPNFEIYDgispiklAMKFRDSEAIKLLMKHGAipDVKYPDIE----SELHDAVEEGDVKAVEEL 87
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1039751968 508 LQNGANVNqrDV---QGRGPLHHATVLGHTGQVCLFLKRGANQHATDEEGKDPLSIAVEAANADIVTLL 573
Cdd:PHA02875   88 LDLGKFAD--DVfykDGMTPLHLATILKKLDIMKLLIARGADPDIPNTDKFSPLHLAVMMGDIKGIELL 154
Ank_5 pfam13857
Ankyrin repeats (many copies);
507-561 1.24e-03

Ankyrin repeats (many copies);


Pssm-ID: 433530 [Multi-domain]  Cd Length: 56  Bit Score: 37.33  E-value: 1.24e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1039751968 507 LLQNG-ANVNQRDVQGRGPLHHATVLGHTGQVCLFLKRGANQHATDEEGKDPLSIA 561
Cdd:pfam13857   1 LLEHGpIDLNRLDGEGYTPLHVAAKYGALEIVRVLLAYGVDLNLKDEEGLTALDLA 56
PH_CpORP2-like cd13293
Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) ...
82-177 1.37e-03

Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) domain; There are 2 types of ORPs found in Cryptosporidium: CpORP1 and CpORP2. Cryptosporium differs from other apicomplexans like Plasmodium, Toxoplasma, and Eimeria which possess only a single long-type ORP consisting of an N-terminal PH domain followed by a C-terminal ligand binding (LB) domain. CpORP2 is like this, but CpORP1 differs and has a truncated N-terminus resulting in only having a LB domain present. The exact functions of these proteins are largely unknown though CpORP1 is thought to be involved in lipid transport across the parasitophorous vacuole membrane. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241447  Cd Length: 88  Bit Score: 38.08  E-value: 1.37e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  82 MEGYLfKRASNAFKTWnrkKPdhirRWFSIQNNQLVYQKKfKDSPTVVVEDLRLCTVKHCEDIERRFcfEVVSPTKSCML 161
Cdd:cd13293     1 MEGYL-KKWTNIFNSW---KP----RYFILYPGILCYSKQ-KGGPKKGTIHLKICDIRLVPDDPLRI--IINTGTNQLHL 69
                          90
                  ....*....|....*.
gi 1039751968 162 QADSEKLRQAWIKAVQ 177
Cdd:cd13293    70 RASSVEEKLKWYNALK 85
BAR_RhoGAP_OPHN1-like cd07602
The Bin/Amphiphysin/Rvs (BAR) domain of Oligophrenin1-like Rho GTPase Activating Proteins; BAR ...
1-26 1.66e-03

The Bin/Amphiphysin/Rvs (BAR) domain of Oligophrenin1-like Rho GTPase Activating Proteins; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This subfamily is composed of Rho and Rac GTPase activating proteins (GAPs) with similarity to oligophrenin1 (OPHN1). Members contain an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, and a Rho GAP domain. Some members contain a C-terminal SH3 domain. Vertebrates harbor at least three Rho GAPs in this subfamily including OPHN1, GTPase Regulator Associated with Focal adhesion kinase (GRAF), GRAF2, and an uncharacterized protein called GAP10-like. OPHN1, GRAF and GRAF2 show GAP activity towards RhoA and Cdc42. In addition, OPHN1 is active towards Rac. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domains of OPHN1 and GRAF directly interact with their Rho GAP domains and inhibit their activity. The autoinhibited proteins are able to bind membranes and tubulate liposomes, showing that the membrane-tubulation and GAP-inhibitory functions of the BAR domains can occur simultaneously.


Pssm-ID: 153286  Cd Length: 207  Bit Score: 40.38  E-value: 1.66e-03
                          10        20
                  ....*....|....*....|....*.
gi 1039751968   1 MLSFMYAHLAFFHQGYDLFSELGPYM 26
Cdd:cd07602   182 LLSFMYGWLTFYHQGHEVAKDFKPYL 207
PHA02876 PHA02876
ankyrin repeat protein; Provisional
473-566 1.88e-03

ankyrin repeat protein; Provisional


Pssm-ID: 165207 [Multi-domain]  Cd Length: 682  Bit Score: 41.20  E-value: 1.88e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 473 LAHGADVNWANSDENqaTPLIQA-VLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTGQVCLFLKRGANQHATD 551
Cdd:PHA02876  328 IMLGADVNAADRLYI--TPLHQAsTLDRNKDIVITLLELGANVNARDYCDKTPIHYAAVRNNVVIINTLLDYGADIEALS 405
                          90
                  ....*....|....*
gi 1039751968 552 EEGKDPLSIAVEAAN 566
Cdd:PHA02876  406 QKIGTALHFALCGTN 420
PHA03095 PHA03095
ankyrin-like protein; Provisional
473-603 2.14e-03

ankyrin-like protein; Provisional


Pssm-ID: 222980 [Multi-domain]  Cd Length: 471  Bit Score: 40.78  E-value: 2.14e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 473 LAHGADVNWANSdeNQATPLIQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTGQVCLFLKRGANQHATDE 552
Cdd:PHA03095  244 LIAGISINARNR--YGQTPLHYAAVFNNPRACRRLIALGADINAVSSDGNTPLSLMVRNNNGRAVRAALAKNPSAETVAA 321
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1039751968 553 EgkdpLSIAVEAANADIVTLLRLARMNEEMRESEGLYGQPGDETYQDIFRD 603
Cdd:PHA03095  322 T----LNTASVAGGDIPSDATRLCVAKVVLRGAFSLLPEPIRAYHADFIRE 368
PH_Btk cd01238
Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of ...
82-181 2.22e-03

Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of cytoplasmic protein tyrosine kinases that includes BMX, IL2-inducible T-cell kinase (Itk) and Tec. Btk plays a role in the maturation of B cells. Tec proteins general have an N-terminal PH domain, followed by a Tek homology (TH) domain, a SH3 domain, a SH2 domain and a kinase domain. The Btk PH domain binds phosphatidylinositol 3,4,5-trisphosphate and responds to signalling via phosphatidylinositol 3-kinase. The PH domain is also involved in membrane anchoring which is confirmed by the discovery of a mutation of a critical arginine residue in the BTK PH domain. This results in severe human immunodeficiency known as X-linked agammaglobulinemia (XLA) in humans and a related disorder is mice.PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269944 [Multi-domain]  Cd Length: 140  Bit Score: 38.75  E-value: 2.22e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  82 MEGYLFKRASNAFKT--WNRKKpdhirRWFSIQNNQLVY-------QKKFKDSptVVVEDLRLC-TVKHCEDIERRFCFE 151
Cdd:cd01238     1 LEGLLVKRSQGKKRFgpVNYKE-----RWFVLTKSSLSYyegdgekRGKEKGS--IDLSKVRCVeEVKDEAFFERKYPFQ 73
                          90       100       110
                  ....*....|....*....|....*....|
gi 1039751968 152 VVSPTKSCMLQADSEKLRQAWIKAVQTSIA 181
Cdd:cd01238    74 VVYDDYTLYVFAPSEEDRDEWIAALRKVCR 103
PH_MELT_VEPH1 cd01264
Melted pleckstrin homology (PH) domain; The melted protein (also called Ventricular zone ...
81-186 2.44e-03

Melted pleckstrin homology (PH) domain; The melted protein (also called Ventricular zone expressed PH domain-containing protein homolog 1) is expressed in the developing central nervous system of vertebrates. It contains a single C-terminal PH domain that is required for membrane targeting. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269965  Cd Length: 105  Bit Score: 37.82  E-value: 2.44e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  81 VMEGYLFKRasnafktwnRKKPDHIRRW----FSIQNNQLVYQ--KKFKDSPTVVVEDLRLCTVKHCEDIERRFCFEVVS 154
Cdd:cd01264     3 VIEGQLKEK---------KGRWKFFKRWrtryFTLSGAQLSYRggKSKPDAPPIELSKIRSVKVVRKKDRSIPKAFEIFT 73
                          90       100       110
                  ....*....|....*....|....*....|..
gi 1039751968 155 PTKSCMLQADSEKLRQAWIKAVQTSIATAYRE 186
Cdd:cd01264    74 DDKTYVLKAKDEKNAEEWLQCLSIAVAQAHAR 105
Ank pfam00023
Ankyrin repeat; Ankyrins are multifunctional adaptors that link specific proteins to the ...
490-518 3.02e-03

Ankyrin repeat; Ankyrins are multifunctional adaptors that link specific proteins to the membrane-associated, spectrin- actin cytoskeleton. This repeat-domain is a 'membrane-binding' domain of up to 24 repeated units, and it mediates most of the protein's binding activities. Repeats 13-24 are especially active, with known sites of interaction for the Na/K ATPase, Cl/HCO(3) anion exchanger, voltage-gated sodium channel, clathrin heavy chain and L1 family cell adhesion molecules. The ANK repeats are found to form a contiguous spiral stack such that ion transporters like the anion exchanger associate in a large central cavity formed by the ANK repeat spiral, while clathrin and cell adhesion molecules associate with specific regions outside this cavity.


Pssm-ID: 459634 [Multi-domain]  Cd Length: 34  Bit Score: 35.73  E-value: 3.02e-03
                          10        20        30
                  ....*....|....*....|....*....|
gi 1039751968 490 TPLIQAVL-GGSLVTCEFLLQNGANVNQRD 518
Cdd:pfam00023   4 TPLHLAAGrRGNLEIVKLLLSKGADVNARD 33
PH2_TAPP1_2 cd13271
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ...
80-182 3.17e-03

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270090  Cd Length: 114  Bit Score: 37.72  E-value: 3.17e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  80 IVMEGYLFKRAsNAFKTWNRkkpdhirRWFSIQNNQLVYQKKFKDSPTVVVEDLR-LCTVKHCEDIE---RRFCFEVVSP 155
Cdd:cd13271     8 VIKSGYCVKQG-AVRKNWKR-------RFFILDDNTISYYKSETDKEPLRTIPLReVLKVHECLVKSllmRDNLFEIITT 79
                          90       100
                  ....*....|....*....|....*..
gi 1039751968 156 TKSCMLQADSEKLRQAWIKAVQTSIAT 182
Cdd:cd13271    80 SRTFYIQADSPEEMHSWIKAISGAIVA 106
PH_PLEKHD1 cd13281
Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH ...
75-198 3.17e-03

Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH domain; Human PLEKHD1 (also called UPF0639, pleckstrin homology domain containing, family D (with M protein repeats) member 1) is a single transcript and contains a single PH domain. PLEKHD1 is conserved in human, chimpanzee, , dog, cow, mouse, chicken, zebrafish, and Caenorhabditis elegans. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270099  Cd Length: 139  Bit Score: 38.46  E-value: 3.17e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  75 DAANGIVMEGYLFKrasnafKTWNRKKPDHIRRWFSIQNNQLVY-----------QKKFKDSPTVVVEdLRLCTVKHCED 143
Cdd:cd13281     7 DITTKVQLHGILWK------KPFGHQSAKWSKRFFIIKEGFLLYysesekkdfekTRHFNIHPKGVIP-LGGCSIEAVED 79
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 144 IERRFCFEVVSP--TKSCMLQADSEKLRQAWIKAVQTSIATAYR--EKGDES-EKLDKKS 198
Cdd:cd13281    80 PGKPYAISISHSdfKGNIILAADSEFEQEKWLDMLRESGKITWKnaQLGETMiEELEAQG 139
PH_ORP_plant cd13294
Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs ...
107-178 3.35e-03

Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs contain a N-terminal PH domain and a C-terminal OSBP-related domain. Not much is known about its specific function in plants to date. Members here include: Arabidopsis, spruce, and petunia. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241448  Cd Length: 100  Bit Score: 37.47  E-value: 3.35e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1039751968 107 RWFSIQNNQLVYQK-----KFKDSPTVvveDLRLCTVKHCEDIERRFcfEVVSPTKSCMLQADSEKLRQAWIKAVQT 178
Cdd:cd13294    18 RWFVLQDGVLSYYKvhgpdKVKPSGEV---HLKVSSIRESRSDDKKF--YIFTGTKTLHLRAESREDRAAWLEALQA 89
PHA02876 PHA02876
ankyrin repeat protein; Provisional
461-573 4.99e-03

ankyrin repeat protein; Provisional


Pssm-ID: 165207 [Multi-domain]  Cd Length: 682  Bit Score: 40.05  E-value: 4.99e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968 461 SYEKNLPKMAEalaHGADVNWANSdeNQATPL-IQAVLGGSLVTCEFLLQNGANVNQRDVQGRGPLHHATVLGHTGQVCL 539
Cdd:PHA02876  285 SLSRLVPKLLE---RGADVNAKNI--KGETPLyLMAKNGYDTENIRTLIMLGADVNAADRLYITPLHQASTLDRNKDIVI 359
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 1039751968 540 -FLKRGANQHATDEEGKDPLSIAVEAANADIVTLL 573
Cdd:PHA02876  360 tLLELGANVNARDYCDKTPIHYAAVRNNVVIINTL 394
PH_OSBP_ORP4 cd13284
Human Oxysterol binding protein and OSBP-related protein 4 Pleckstrin homology (PH) domain; ...
82-185 5.85e-03

Human Oxysterol binding protein and OSBP-related protein 4 Pleckstrin homology (PH) domain; Human OSBP is proposed to function is sterol-dependent regulation of ERK dephosphorylation and sphingomyelin synthesis as well as modulation of insulin signaling and hepatic lipogenesis. It contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBPs and Osh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. ORP4 is proposed to function in Vimentin-dependent sterol transport and/or signaling. Human ORP4 has 2 forms, a long (ORP4L) and a short (ORP4S). ORP4L contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP4S is truncated and contains only an OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270101  Cd Length: 99  Bit Score: 36.59  E-value: 5.85e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  82 MEGYLFKrasnafktWNRKKPDHIRRWFSIQNNQLVYQKkfkdSPTVVVEDLR--LCTVKHCEDIERRFCFeVVSP--TK 157
Cdd:cd13284     1 MKGWLLK--------WTNYIKGYQRRWFVLSNGLLSYYR----NQAEMAHTCRgtINLAGAEIHTEDSCNF-VISNggTQ 67
                          90       100
                  ....*....|....*....|....*...
gi 1039751968 158 SCMLQADSEKLRQAWIKAVQTSIATAYR 185
Cdd:cd13284    68 TFHLKASSEVERQRWVTALELAKAKAIR 95
Ank_4 pfam13637
Ankyrin repeats (many copies);
457-508 7.03e-03

Ankyrin repeats (many copies);


Pssm-ID: 372654 [Multi-domain]  Cd Length: 54  Bit Score: 34.94  E-value: 7.03e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1039751968 457 LYRASYEKNLPKMAEALAHGADVNwaNSDENQATPLIQAVLGGSLVTCEFLL 508
Cdd:pfam13637   5 LHAAAASGHLELLRLLLEKGADIN--AVDGNGETALHFAASNGNVEVLKLLL 54
PH_ASAP cd13251
ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs ...
75-186 9.14e-03

ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs (ASAP1, ASAP2, and ASAP3) function as an Arf-specific GAPs, participates in rhodopsin trafficking, is associated with tumor cell metastasis, modulates phagocytosis, promotes cell proliferation, facilitates vesicle budding, Golgi exocytosis, and regulates vesicle coat assembly via a Bin/Amphiphysin/Rvs domain. ASAPs contain an NH2-terminal BAR domain, a tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 (SH3) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270071  Cd Length: 108  Bit Score: 36.19  E-value: 9.14e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1039751968  75 DAANGIVMEGYLFKRASNAF-KTWNRkkpdhirRWFSIQNNQLVYQKKFKDSPTVVVeDLRLCTVKHCEDIERrfCFEVV 153
Cdd:cd13251     5 NKSHGTEKSGYLLKKSEGKIrKVWQK-------RRCSIKDGFLTISHADENKPPAKL-NLLTCQVKLVPEDKK--CFDLI 74
                          90       100       110
                  ....*....|....*....|....*....|...
gi 1039751968 154 SPTKSCMLQADSEKLRQAWIKAVQTSIATAYRE 186
Cdd:cd13251    75 SHNRTYHFQAEDENDANAWMSVLKNSKEQALNK 107
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH