sorting nexin-11 isoform X3 [Homo sapiens]
PX domain-containing protein( domain architecture ID 572)
PX (Phox Homology) domain-containing protein may bind phosphoinositides and may function in targeting proteins to membranes
List of domain hits
Name | Accession | Description | Interval | E-value | ||
PX_domain super family | cl02563 | The Phox Homology domain, a phosphoinositide binding module; The PX domain is a ... |
2-56 | 3.58e-18 | ||
The Phox Homology domain, a phosphoinositide binding module; The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to membranes. Proteins containing PX domains interact with PIs and have been implicated in highly diverse functions such as cell signaling, vesicular trafficking, protein sorting, lipid modification, cell polarity and division, activation of T and B cells, and cell survival. Many members of this superfamily bind phosphatidylinositol-3-phosphate (PI3P) but in some cases, other PIs such as PI4P or PI(3,4)P2, among others, are the preferred substrates. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction, as in the cases of p40phox, p47phox, and some sorting nexins (SNXs). The PX domain is conserved from yeast to humans and is found in more than 100 proteins. The majority of PX domain-containing proteins are SNXs, which play important roles in endosomal sorting. The actual alignment was detected with superfamily member cd06898: Pssm-ID: 470617 Cd Length: 113 Bit Score: 76.22 E-value: 3.58e-18
|
||||||
Name | Accession | Description | Interval | E-value | |||
PX_SNX10 | cd06898 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 10; The PX domain is a ... |
2-56 | 3.58e-18 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 10; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX10 may be involved in the regulation of endosome homeostasis. Its expression induces the formation of giant vacuoles in mammalian cells. Pssm-ID: 132808 Cd Length: 113 Bit Score: 76.22 E-value: 3.58e-18
|
|||||||
PX | pfam00787 | PX domain; PX domains bind to phosphoinositides. |
4-56 | 1.19e-14 | |||
PX domain; PX domains bind to phosphoinositides. Pssm-ID: 459940 Cd Length: 84 Bit Score: 66.11 E-value: 1.19e-14
|
|||||||
PX | smart00312 | PhoX homologous domain, present in p47phox and p40phox; Eukaryotic domain of unknown function ... |
4-54 | 5.19e-08 | |||
PhoX homologous domain, present in p47phox and p40phox; Eukaryotic domain of unknown function present in phox proteins, PLD isoforms, a PI3K isoform. Pssm-ID: 214610 Cd Length: 105 Bit Score: 48.88 E-value: 5.19e-08
|
|||||||
COG5391 | COG5391 | Phox homology (PX) domain protein [Intracellular trafficking and secretion / General function ... |
5-101 | 1.20e-03 | |||
Phox homology (PX) domain protein [Intracellular trafficking and secretion / General function prediction only]; Pssm-ID: 227680 [Multi-domain] Cd Length: 524 Bit Score: 39.01 E-value: 1.20e-03
|
|||||||
Name | Accession | Description | Interval | E-value | |||
PX_SNX10 | cd06898 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 10; The PX domain is a ... |
2-56 | 3.58e-18 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 10; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX10 may be involved in the regulation of endosome homeostasis. Its expression induces the formation of giant vacuoles in mammalian cells. Pssm-ID: 132808 Cd Length: 113 Bit Score: 76.22 E-value: 3.58e-18
|
|||||||
PX | pfam00787 | PX domain; PX domains bind to phosphoinositides. |
4-56 | 1.19e-14 | |||
PX domain; PX domains bind to phosphoinositides. Pssm-ID: 459940 Cd Length: 84 Bit Score: 66.11 E-value: 1.19e-14
|
|||||||
PX_domain | cd06093 | The Phox Homology domain, a phosphoinositide binding module; The PX domain is a ... |
6-55 | 2.28e-11 | |||
The Phox Homology domain, a phosphoinositide binding module; The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to membranes. Proteins containing PX domains interact with PIs and have been implicated in highly diverse functions such as cell signaling, vesicular trafficking, protein sorting, lipid modification, cell polarity and division, activation of T and B cells, and cell survival. Many members of this superfamily bind phosphatidylinositol-3-phosphate (PI3P) but in some cases, other PIs such as PI4P or PI(3,4)P2, among others, are the preferred substrates. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction, as in the cases of p40phox, p47phox, and some sorting nexins (SNXs). The PX domain is conserved from yeast to humans and is found in more than 100 proteins. The majority of PX domain-containing proteins are SNXs, which play important roles in endosomal sorting. Pssm-ID: 132768 [Multi-domain] Cd Length: 106 Bit Score: 58.14 E-value: 2.28e-11
|
|||||||
PX_SNX1_2_like | cd06859 | The phosphoinositide binding Phox Homology domain of Sorting Nexins 1 and 2; The PX domain is ... |
6-56 | 2.24e-09 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexins 1 and 2; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily consists of SNX1, SNX2, and similar proteins. They harbor a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. Both domains have been shown to determine the specific membrane-targeting of SNX1. SNX1 and SNX2 are components of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi. The retromer consists of a cargo-recognition subcomplex and a subcomplex formed by a dimer of sorting nexins (SNX1 and/or SNX2), which ensures effcient cargo sorting by facilitating proper membrane localization of the cargo-recognition subcomplex. Pssm-ID: 132769 [Multi-domain] Cd Length: 114 Bit Score: 52.97 E-value: 2.24e-09
|
|||||||
PX | smart00312 | PhoX homologous domain, present in p47phox and p40phox; Eukaryotic domain of unknown function ... |
4-54 | 5.19e-08 | |||
PhoX homologous domain, present in p47phox and p40phox; Eukaryotic domain of unknown function present in phox proteins, PLD isoforms, a PI3K isoform. Pssm-ID: 214610 Cd Length: 105 Bit Score: 48.88 E-value: 5.19e-08
|
|||||||
PX_SNX7_30_like | cd06860 | The phosphoinositide binding Phox Homology domain of Sorting Nexins 7 and 30; The PX domain is ... |
6-53 | 2.98e-07 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexins 7 and 30; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. This subfamily consists of SNX7, SNX30, and similar proteins. They harbor a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain, similar to the sorting nexins SNX1-2, SNX4-6, SNX8, and SNX32. Both domains have been shown to determine the specific membrane-targeting of SNX1. The specific function of the sorting nexins in this subfamily has yet to be elucidated. Pssm-ID: 132770 Cd Length: 116 Bit Score: 47.33 E-value: 2.98e-07
|
|||||||
PX_Atg24p | cd06863 | The phosphoinositide binding Phox Homology domain of yeast Atg24p, an autophagic degradation ... |
6-55 | 6.00e-07 | |||
The phosphoinositide binding Phox Homology domain of yeast Atg24p, an autophagic degradation protein; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. The yeast Atg24p is a sorting nexin (SNX) which is involved in membrane fusion events at the vacuolar surface during pexophagy. This is facilitated via binding of Atg24p to phosphatidylinositol 3-phosphate (PI3P) through its PX domain. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Pssm-ID: 132773 Cd Length: 118 Bit Score: 46.51 E-value: 6.00e-07
|
|||||||
PX_SNX3 | cd07293 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 3; The PX domain is a ... |
6-57 | 1.05e-06 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 3; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX3 associates with early endosomes through a PX domain-mediated interaction with phosphatidylinositol-3-phosphate (PI3P). It associates with the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, and functions as a cargo-specific adaptor for the retromer. SNX3 is required for the formation of multivesicular bodies, which function as transport intermediates to late endosomes. It also promotes cell surface expression of the amiloride-sensitive epithelial Na+ channel (ENaC), which is critical in sodium homeostasis and maintenance of extracellular fluid volume. Pssm-ID: 132826 Cd Length: 123 Bit Score: 45.75 E-value: 1.05e-06
|
|||||||
PX_SNX3_like | cd06894 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 3 and related proteins; The ... |
6-56 | 2.17e-06 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 3 and related proteins; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily is composed of SNX3, SNX12, and fungal Grd19. Grd19 is involved in the localization of late Golgi membrane proteins in yeast. SNX3/Grp19 associates with the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, and functions as a cargo-specific adaptor for the retromer. Pssm-ID: 132804 Cd Length: 123 Bit Score: 45.14 E-value: 2.17e-06
|
|||||||
PX_Vps5p | cd06861 | The phosphoinositide binding Phox Homology domain of yeast sorting nexin Vps5p; The PX domain ... |
6-56 | 5.27e-06 | |||
The phosphoinositide binding Phox Homology domain of yeast sorting nexin Vps5p; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Vsp5p is the yeast counterpart of human SNX1 and is part of the retromer complex, which functions in the endosome-to-Golgi retrieval of vacuolar protein sorting receptor Vps10p, the Golgi-resident membrane protein A-ALP, and endopeptidase Kex2. The PX domain of Vps5p binds phosphatidylinositol-3-phosphate (PI3P). Similar to SNX1, Vps5p contains a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. Both domains have been shown to determine the specific membrane-targeting of SNX1. Pssm-ID: 132771 Cd Length: 112 Bit Score: 43.88 E-value: 5.27e-06
|
|||||||
PX_SNX_like | cd06865 | The phosphoinositide binding Phox Homology domain of SNX-like proteins; The PX domain is a ... |
6-56 | 5.75e-06 | |||
The phosphoinositide binding Phox Homology domain of SNX-like proteins; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. This subfamily is composed of uncharacterized proteins, predominantly from plants, with similarity to sorting nexins. A few members show a similar domain architecture as a subfamily of sorting nexins, containing a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. The PX-BAR structural unit is known to determine specific membrane localization. Pssm-ID: 132775 Cd Length: 120 Bit Score: 43.95 E-value: 5.75e-06
|
|||||||
PX_YPT35 | cd07280 | The phosphoinositide binding Phox Homology domain of the fungal protein YPT35; The PX domain ... |
6-38 | 6.39e-06 | |||
The phosphoinositide binding Phox Homology domain of the fungal protein YPT35; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. This subfamily is composed of YPT35 proteins from the fungal subkingdom Dikarya. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. The PX domain of YPT35 binds to phosphatidylinositol 3-phosphate (PI3P). It also serves as a protein interaction domain, binding to members of the Yip1p protein family, which localize to the ER and Golgi. YPT35 is mainly associated with endosomes and together with Yip1p proteins, may be involved in a specific function in the endocytic pathway. Pssm-ID: 132813 Cd Length: 120 Bit Score: 43.47 E-value: 6.39e-06
|
|||||||
PX_SNX8_Mvp1p_like | cd06866 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 8 and yeast Mvp1p; The PX ... |
6-53 | 2.36e-05 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 8 and yeast Mvp1p; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX8 and the yeast counterpart Mvp1p are involved in sorting and delivery of late-Golgi proteins, such as carboxypeptidase Y, to vacuoles. Pssm-ID: 132776 Cd Length: 105 Bit Score: 41.83 E-value: 2.36e-05
|
|||||||
PX_SNX4 | cd06864 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 4; The PX domain is a ... |
6-54 | 3.25e-05 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 4; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX4 is involved in recycling traffic from the sorting endosome (post-Golgi endosome) back to the late Golgi. It shows a similar domain architecture as SNX1-2, among others, containing a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. SNX4 is implicated in the regulation of plasma membrane receptor trafficking and interacts with receptors for EGF, insulin, platelet-derived growth factor and the long form of the leptin receptor. Pssm-ID: 132774 Cd Length: 129 Bit Score: 41.97 E-value: 3.25e-05
|
|||||||
PX_SNX2 | cd07282 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 2; The PX domain is a ... |
6-55 | 7.66e-05 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 2; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX2 is a component of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi. The retromer consists of a cargo-recognition subcomplex and a subcomplex formed by a dimer of sorting nexins (SNX1 and/or SNX2), which ensures efficient cargo sorting by facilitating proper membrane localization of the cargo-recognition subcomplex. Similar to SNX1, SNX2 contains a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. The PX domain of SNX2 preferentially binds phosphatidylinositol-3-phosphate (PI3P), but not PI(3,4,5)P3. Studies on mice deficient with SNX1 and/or SNX2 suggest that they provide an essential function in embryogenesis and are functionally redundant. Pssm-ID: 132815 Cd Length: 124 Bit Score: 40.81 E-value: 7.66e-05
|
|||||||
PX_SNX12 | cd07294 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 12; The PX domain is a ... |
6-56 | 1.59e-04 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 12; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. The specific function of SNX12 has yet to be elucidated. Pssm-ID: 132827 Cd Length: 132 Bit Score: 40.02 E-value: 1.59e-04
|
|||||||
PX_Grd19 | cd07295 | The phosphoinositide binding Phox Homology domain of fungal Grd19; The PX domain is a ... |
6-55 | 1.70e-04 | |||
The phosphoinositide binding Phox Homology domain of fungal Grd19; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Grd19 is involved in the localization of late Golgi membrane proteins in yeast. Grp19 associates with the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, and functions as a cargo-specific adaptor for the retromer. Pssm-ID: 132828 Cd Length: 116 Bit Score: 39.79 E-value: 1.70e-04
|
|||||||
PX_SNARE | cd06897 | The phosphoinositide binding Phox Homology domain of SNARE proteins from fungi; The PX domain ... |
5-34 | 3.95e-04 | |||
The phosphoinositide binding Phox Homology domain of SNARE proteins from fungi; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. This subfamily is composed of fungal proteins similar to Saccharomyces cerevisiae Vam7p. They contain an N-terminal PX domain and a C-terminal SNARE domain. The SNARE (Soluble NSF attachment protein receptor) family of proteins are integral membrane proteins that serve as key factors for vesicular trafficking. Vam7p is anchored at the vacuolar membrane through the specific interaction of its PX domain with phosphatidylinositol-3-phosphate (PI3P) present in bilayers. It plays an essential role in vacuole fusion. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. Pssm-ID: 132807 Cd Length: 108 Bit Score: 38.41 E-value: 3.95e-04
|
|||||||
PX_SNX14 | cd06877 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 14; The PX domain is a ... |
9-55 | 5.01e-04 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 14; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX14 may be involved in recruiting other proteins to the membrane via protein-protein and protein-ligand interaction. It is expressed in the embryonic nervous system of mice, and is co-expressed in the motoneurons and the anterior pituary with Islet-1. SNX14 shows a similar domain architecture as SNX13, containing an N-terminal PXA domain, a regulator of G protein signaling (RGS) domain, a PX domain, and a C-terminal domain that is conserved in some SNXs. Pssm-ID: 132787 Cd Length: 119 Bit Score: 38.51 E-value: 5.01e-04
|
|||||||
PX_SNX13 | cd06873 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 13; The PX domain is a ... |
9-43 | 6.49e-04 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 13; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX13, also called RGS-PX1, contains an N-terminal PXA domain, a regulator of G protein signaling (RGS) domain, a PX domain, and a C-terminal domain that is conserved in some SNXs. It specifically binds to the stimulatory subunit of the heterotrimeric G protein G(alpha)s, serving as its GTPase activating protein, through the RGS domain. It preferentially binds phosphatidylinositol-3-phosphate (PI3P) through the PX domain and is localized in early endosomes. SNX13 is involved in endosomal sorting of EGFR into multivesicular bodies (MVB) for delivery to the lysosome. Pssm-ID: 132783 Cd Length: 120 Bit Score: 38.02 E-value: 6.49e-04
|
|||||||
PX_SNX7 | cd07284 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 7; The PX domain is a ... |
6-56 | 7.70e-04 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 7; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX7 harbors a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain, similar to the sorting nexins SNX1-2, SNX4-6, SNX8, SNX30, and SNX32. Both domains have been shown to determine the specific membrane-targeting of SNX1. The specific function of SNX7 has yet to be elucidated. Pssm-ID: 132817 Cd Length: 116 Bit Score: 37.65 E-value: 7.70e-04
|
|||||||
PX_SNX27 | cd06886 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 27; The PX domain is a ... |
4-37 | 8.21e-04 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 27; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX27 contains an N-terminal PDZ domain followed by a PX domain and a Ras-Associated (RA) domain. It binds G protein-gated potassium (Kir3) channels, which play a role in neuronal excitability control, through its PDZ domain. SNX27 downregulates Kir3 channels by promoting their movement in the endosome, reducing surface expression and increasing degradation. SNX27 also associates with 5-hydroxytryptamine type 4 receptor (5-HT4R), cytohesin associated scaffolding protein (CASP), and diacylglycerol kinase zeta, and may play a role in their intracellular trafficking and endocytic recycling. The SNX27 PX domain preferentially binds to phosphatidylinositol-3-phosphate (PI3P) and is important for targeting to the early endosome. Pssm-ID: 132796 Cd Length: 106 Bit Score: 37.39 E-value: 8.21e-04
|
|||||||
PX_SNX15_like | cd06881 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 15-like proteins; The PX ... |
5-54 | 1.03e-03 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 15-like proteins; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Members of this subfamily have similarity to sorting nexin 15 (SNX15), which contains an N-terminal PX domain and a C-terminal Microtubule Interacting and Trafficking (MIT) domain. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNX15 plays a role in protein trafficking processes in the endocytic pathway and the trans-Golgi network. The PX domain of SNX15 interacts with the PDGF receptor and is responsible for the membrane association of the protein. Other members of this subfamily contain an additional C-terminal kinase domain, similar to human RPK118, which binds sphingosine kinase and the antioxidant peroxiredoxin-3 (PRDX3). RPK118 may be involved in the transport of proteins such as PRDX3 from the cytoplasm to its site of function in the mitochondria. Pssm-ID: 132791 Cd Length: 117 Bit Score: 37.30 E-value: 1.03e-03
|
|||||||
COG5391 | COG5391 | Phox homology (PX) domain protein [Intracellular trafficking and secretion / General function ... |
5-101 | 1.20e-03 | |||
Phox homology (PX) domain protein [Intracellular trafficking and secretion / General function prediction only]; Pssm-ID: 227680 [Multi-domain] Cd Length: 524 Bit Score: 39.01 E-value: 1.20e-03
|
|||||||
PX_MONaKA | cd06871 | The phosphoinositide binding Phox Homology domain of Modulator of Na,K-ATPase; The PX domain ... |
9-53 | 1.55e-03 | |||
The phosphoinositide binding Phox Homology domain of Modulator of Na,K-ATPase; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. MONaKA (Modulator of Na,K-ATPase) binds the plasma membrane ion transporter, Na,K-ATPase, and modulates its enzymatic and ion pump activities. It modulates brain Na,K-ATPase and may be involved in regulating electrical excitability and synaptic transmission. MONaKA contains an N-terminal PX domain and a C-terminal catalytic kinase domain. The PX domain interacts with PIs and plays a role in targeting proteins to PI-enriched membranes. Pssm-ID: 132781 Cd Length: 120 Bit Score: 36.95 E-value: 1.55e-03
|
|||||||
PX_CISK | cd06870 | The phosphoinositide binding Phox Homology Domain of Cytokine-Independent Survival Kinase; The ... |
9-54 | 1.63e-03 | |||
The phosphoinositide binding Phox Homology Domain of Cytokine-Independent Survival Kinase; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Cytokine-independent survival kinase (CISK), also called Serum- and Glucocorticoid-induced Kinase 3 (SGK3), plays a role in cell growth and survival. It is expressed in most tissues and is most abundant in the embryo and adult heart and spleen. It was originally discovered in a screen for antiapoptotic genes. It phosphorylates and inhibits the proapoptotic proteins, Bad and FKHRL1. CISK/SGK3 also regulates many transporters, ion channels, and receptors. It plays a critical role in hair follicle morphogenesis and hair cycling. N-terminal to a catalytic kinase domain, CISK contains a PX domain which binds highly phosphorylated PIs, directs membrane localization, and regulates the enzyme's activity. Pssm-ID: 132780 Cd Length: 109 Bit Score: 36.62 E-value: 1.63e-03
|
|||||||
PX_SNX9_18_like | cd06862 | The phosphoinositide binding Phox Homology domain of Sorting Nexins 9 and 18; The PX domain is ... |
5-56 | 2.97e-03 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexins 9 and 18; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily consists of SNX9, SNX18, and similar proteins. They contain an N-terminal Src Homology 3 (SH3) domain, a PX domain, and a C-terminal Bin/Amphiphysin/Rvs (BAR) domain. SNX9 is localized to plasma membrane endocytic sites and acts primarily in clathrin-mediated endocytosis, while SNX18 is localized to peripheral endosomal structures, and acts in a trafficking pathway that is clathrin-independent but relies on AP-1 and PACS1. Pssm-ID: 132772 Cd Length: 125 Bit Score: 36.14 E-value: 2.97e-03
|
|||||||
PX_IRAS | cd06875 | The phosphoinositide binding Phox Homology domain of the Imidazoline Receptor ... |
9-38 | 9.63e-03 | |||
The phosphoinositide binding Phox Homology domain of the Imidazoline Receptor Antisera-Selected; The PX domain is a phosphoinositide binding (PI) module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Imidazoline Receptor Antisera-Selected (IRAS), also called nischarin, contains an N-terminal PX domain, leucine rich repeats, and a predicted coiled coil domain. The PX domain of IRAS binds to phosphatidylinositol-3-phosphate in membranes. Together with the coiled coil domain, it is essential for the localization of IRAS to endosomes. IRAS has been shown to interact with integrin and inhibit cell migration. Its interaction with alpha5 integrin causes a redistribution of the receptor from the cell surface to endosomal structures, suggesting that IRAS may function as a sorting nexin (SNX) which regulates the endosomal trafficking of integrin. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Pssm-ID: 132785 Cd Length: 116 Bit Score: 34.56 E-value: 9.63e-03
|
|||||||
Blast search parameters | ||||
|