CARMIL C-terminus; This domain is found near to the C-terminus of leucine-rich ...
786-1077
4.41e-115
CARMIL C-terminus; This domain is found near to the C-terminus of leucine-rich repeat-containing proteins in the CARMIL family. In leucine-rich repeat-containing protein 16A (LRRC16A) it includes the region responsible for interaction with F-actin-capping protein subunit alpha-2 (CAPZA2).
:
Pssm-ID: 464966 [Multi-domain] Cd Length: 299 Bit Score: 362.17 E-value: 4.41e-115
Carmil pleckstrin homology domain; This is a non-canonical pleckstrin homology (PH) domain ...
38-119
4.38e-35
Carmil pleckstrin homology domain; This is a non-canonical pleckstrin homology (PH) domain connected to a 16-leucine-rich repeat domain found in CARMIL (CP Arp2/3 complex myosin-I linker) proteins. The PH domain is interconnected with an N-terminal helix (N-helix), residues 10-20 and a C-terminal linker (Linker), residues 129-147 in Swiss:Q6EDY6. Structural and functional studies indicate that the PH domain involved in direct binding to the PM (plasma membrane) and a HD (helical domain) responsible for antiparallel dimerization and enhancement of CARMIL's membrane-binding activity. Furthermore, it appears that CARMIL's PH domain mediates non-specific binding to the membrane, in contrast to other PH domains that bind polyphosphorylated phosphatidylinositides, which are thought to function as signalling lipids.
:
Pssm-ID: 436119 Cd Length: 94 Bit Score: 128.94 E-value: 4.38e-35
CARMIL C-terminus; This domain is found near to the C-terminus of leucine-rich ...
786-1077
4.41e-115
CARMIL C-terminus; This domain is found near to the C-terminus of leucine-rich repeat-containing proteins in the CARMIL family. In leucine-rich repeat-containing protein 16A (LRRC16A) it includes the region responsible for interaction with F-actin-capping protein subunit alpha-2 (CAPZA2).
Pssm-ID: 464966 [Multi-domain] Cd Length: 299 Bit Score: 362.17 E-value: 4.41e-115
Carmil pleckstrin homology domain; This is a non-canonical pleckstrin homology (PH) domain ...
38-119
4.38e-35
Carmil pleckstrin homology domain; This is a non-canonical pleckstrin homology (PH) domain connected to a 16-leucine-rich repeat domain found in CARMIL (CP Arp2/3 complex myosin-I linker) proteins. The PH domain is interconnected with an N-terminal helix (N-helix), residues 10-20 and a C-terminal linker (Linker), residues 129-147 in Swiss:Q6EDY6. Structural and functional studies indicate that the PH domain involved in direct binding to the PM (plasma membrane) and a HD (helical domain) responsible for antiparallel dimerization and enhancement of CARMIL's membrane-binding activity. Furthermore, it appears that CARMIL's PH domain mediates non-specific binding to the membrane, in contrast to other PH domains that bind polyphosphorylated phosphatidylinositides, which are thought to function as signalling lipids.
Pssm-ID: 436119 Cd Length: 94 Bit Score: 128.94 E-value: 4.38e-35
Leucine-rich repeats (LRRs), ribonuclease inhibitor (RI)-like subfamily. LRRs are 20-29 residue sequence motifs present in many proteins that participate in protein-protein interactions and have different functions and cellular locations. LRRs correspond to structural units consisting of a beta strand (LxxLxLxxN/CxL conserved pattern) and an alpha helix. This alignment contains 12 strands corresponding to 11 full repeats, consistent with the extent observed in the subfamily acting as Ran GTPase Activating Proteins (RanGAP1).
Pssm-ID: 238064 [Multi-domain] Cd Length: 319 Bit Score: 70.46 E-value: 1.32e-12
pneumococcal surface protein PspC, LPXTG-anchored form; The pneumococcal surface protein PspC, ...
994-1280
9.28e-04
pneumococcal surface protein PspC, LPXTG-anchored form; The pneumococcal surface protein PspC, as described in Streptococcus pneumoniae, is a repetitive and highly variable protein, recognized by a conserved N-terminal domain and also by genomic location. This form, subgroup 2, is anchored covalently after cleavage by sortase at a C-terminal LPXTG site. The other form, subgroup 1, has variable numbers of a choline-binding repeat in the C-terminal region, and is also known as choline-binding protein A.
Pssm-ID: 468202 [Multi-domain] Cd Length: 557 Bit Score: 43.60 E-value: 9.28e-04
CARMIL C-terminus; This domain is found near to the C-terminus of leucine-rich ...
786-1077
4.41e-115
CARMIL C-terminus; This domain is found near to the C-terminus of leucine-rich repeat-containing proteins in the CARMIL family. In leucine-rich repeat-containing protein 16A (LRRC16A) it includes the region responsible for interaction with F-actin-capping protein subunit alpha-2 (CAPZA2).
Pssm-ID: 464966 [Multi-domain] Cd Length: 299 Bit Score: 362.17 E-value: 4.41e-115
Carmil pleckstrin homology domain; This is a non-canonical pleckstrin homology (PH) domain ...
38-119
4.38e-35
Carmil pleckstrin homology domain; This is a non-canonical pleckstrin homology (PH) domain connected to a 16-leucine-rich repeat domain found in CARMIL (CP Arp2/3 complex myosin-I linker) proteins. The PH domain is interconnected with an N-terminal helix (N-helix), residues 10-20 and a C-terminal linker (Linker), residues 129-147 in Swiss:Q6EDY6. Structural and functional studies indicate that the PH domain involved in direct binding to the PM (plasma membrane) and a HD (helical domain) responsible for antiparallel dimerization and enhancement of CARMIL's membrane-binding activity. Furthermore, it appears that CARMIL's PH domain mediates non-specific binding to the membrane, in contrast to other PH domains that bind polyphosphorylated phosphatidylinositides, which are thought to function as signalling lipids.
Pssm-ID: 436119 Cd Length: 94 Bit Score: 128.94 E-value: 4.38e-35
Leucine-rich repeats (LRRs), ribonuclease inhibitor (RI)-like subfamily. LRRs are 20-29 residue sequence motifs present in many proteins that participate in protein-protein interactions and have different functions and cellular locations. LRRs correspond to structural units consisting of a beta strand (LxxLxLxxN/CxL conserved pattern) and an alpha helix. This alignment contains 12 strands corresponding to 11 full repeats, consistent with the extent observed in the subfamily acting as Ran GTPase Activating Proteins (RanGAP1).
Pssm-ID: 238064 [Multi-domain] Cd Length: 319 Bit Score: 70.46 E-value: 1.32e-12
Leucine-rich repeats (LRRs), ribonuclease inhibitor (RI)-like subfamily. LRRs are 20-29 residue sequence motifs present in many proteins that participate in protein-protein interactions and have different functions and cellular locations. LRRs correspond to structural units consisting of a beta strand (LxxLxLxxN/CxL conserved pattern) and an alpha helix. This alignment contains 12 strands corresponding to 11 full repeats, consistent with the extent observed in the subfamily acting as Ran GTPase Activating Proteins (RanGAP1).
Pssm-ID: 238064 [Multi-domain] Cd Length: 319 Bit Score: 69.69 E-value: 2.22e-12
Leucine-rich repeats (LRRs), ribonuclease inhibitor (RI)-like subfamily. LRRs are 20-29 residue sequence motifs present in many proteins that participate in protein-protein interactions and have different functions and cellular locations. LRRs correspond to structural units consisting of a beta strand (LxxLxLxxN/CxL conserved pattern) and an alpha helix. This alignment contains 12 strands corresponding to 11 full repeats, consistent with the extent observed in the subfamily acting as Ran GTPase Activating Proteins (RanGAP1).
Pssm-ID: 238064 [Multi-domain] Cd Length: 319 Bit Score: 67.77 E-value: 9.16e-12
Leucine-rich repeats (LRRs), ribonuclease inhibitor (RI)-like subfamily. LRRs are 20-29 residue sequence motifs present in many proteins that participate in protein-protein interactions and have different functions and cellular locations. LRRs correspond to structural units consisting of a beta strand (LxxLxLxxN/CxL conserved pattern) and an alpha helix. This alignment contains 12 strands corresponding to 11 full repeats, consistent with the extent observed in the subfamily acting as Ran GTPase Activating Proteins (RanGAP1).
Pssm-ID: 238064 [Multi-domain] Cd Length: 319 Bit Score: 67.00 E-value: 1.98e-11
Leucine-rich repeats (LRRs), ribonuclease inhibitor (RI)-like subfamily. LRRs are 20-29 residue sequence motifs present in many proteins that participate in protein-protein interactions and have different functions and cellular locations. LRRs correspond to structural units consisting of a beta strand (LxxLxLxxN/CxL conserved pattern) and an alpha helix. This alignment contains 12 strands corresponding to 11 full repeats, consistent with the extent observed in the subfamily acting as Ran GTPase Activating Proteins (RanGAP1).
Pssm-ID: 238064 [Multi-domain] Cd Length: 319 Bit Score: 65.45 E-value: 5.28e-11
Leucine-rich repeats (LRRs), ribonuclease inhibitor (RI)-like subfamily. LRRs are 20-29 residue sequence motifs present in many proteins that participate in protein-protein interactions and have different functions and cellular locations. LRRs correspond to structural units consisting of a beta strand (LxxLxLxxN/CxL conserved pattern) and an alpha helix. This alignment contains 12 strands corresponding to 11 full repeats, consistent with the extent observed in the subfamily acting as Ran GTPase Activating Proteins (RanGAP1).
Pssm-ID: 238064 [Multi-domain] Cd Length: 319 Bit Score: 59.68 E-value: 4.84e-09
pneumococcal surface protein PspC, LPXTG-anchored form; The pneumococcal surface protein PspC, ...
994-1280
9.28e-04
pneumococcal surface protein PspC, LPXTG-anchored form; The pneumococcal surface protein PspC, as described in Streptococcus pneumoniae, is a repetitive and highly variable protein, recognized by a conserved N-terminal domain and also by genomic location. This form, subgroup 2, is anchored covalently after cleavage by sortase at a C-terminal LPXTG site. The other form, subgroup 1, has variable numbers of a choline-binding repeat in the C-terminal region, and is also known as choline-binding protein A.
Pssm-ID: 468202 [Multi-domain] Cd Length: 557 Bit Score: 43.60 E-value: 9.28e-04
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options