Males
The dystrophinopathies cover a spectrum of muscle disease that ranges from mild to severe. The mild end of the spectrum includes the phenotypes of asymptomatic increase in serum concentration of creatine phosphokinase (CK) and muscle cramps with myoglobinuria. The severe end of the spectrum includes progressive muscle diseases that are classified as Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) when skeletal muscle is primarily affected and as DMD-associated dilated cardiomyopathy (DCM) when the heart is primarily affected [Beggs 1997, Cox & Kunkel 1997, Muntoni et al 2003].
DMD vs BMD vs DMD-associated DCM. The distinction between DMD and BMD is based on the age of wheelchair dependency: before age 13 years in DMD and after age 16 years in BMD. An intermediate group of individuals who become wheelchair bound between ages 13 and 16 years is also recognized. Additionally, some investigators have extended the mild end of the BMD spectrum to include individuals with elevated serum CK concentration and abnormal dystrophin on muscle biopsy, but with "subclinical" skeletal muscle involvement [Melacini et al 1996]. When these individuals with atypical disease develop severe cardiomyopathy, it is not possible to distinguish between BMD and DMD-associated DCM [Cox & Kunkel 1997].
Cardiac involvement is usually asymptomatic in the early stages of the disease, although sinus tachycardia and various EKG abnormalities may be noted. Echocardiography is normal or shows only regional abnormalities. Pericardial effusion with cardiac tamponade and myocardial inflammation precipitating heart failure has been described in people with DMD [Lin et al 2009, Mavrogeni et al 2010]. Subclinical or clinical cardiac involvement is present in approximately 90% of individuals with DMD or BMD; however, cardiac involvement is the cause of death in only 20% of individuals with DMD and 50% of those with BMD [Hermans et al 2010].
DMD-associated DCM generally presents with congestive heart failure secondary to an increase in ventricular size and impairment of ventricular function. In males, DCM is rapidly progressive with onset in teenage years, leading to death from heart failure within one to two years after the diagnosis [Finsterer & Stollberger 2003]. Individuals with DCM may or may not have clinical evidence of skeletal muscle disease [Neri et al 2007].
DMD
Motor development. DMD usually presents in early childhood with delayed motor milestones, including delays in walking independently and standing up from the floor. The mean age of walking is approximately 18 months (range 12-24 months). The first symptoms of DMD as identified by parents are typically: general motor delays (42%); gait problems including persistent toe-walking and flat-footedness (30%); delay in walking (20%); learning difficulties (5%); and speech problems (3%). The mean age of diagnosis of boys with DMD without a family history of DMD is approximately four years ten months (range: 16 months - 8 years) [Bushby 1999, Zalaudek et al 1999]. A recent study reported a mean age of 41 months at diagnosis of DMD [D'Amico et al 2017]. Proximal weakness causes a waddling gait and difficulty climbing stairs, running, jumping, and standing up from a squatting position [Li et al 2012, Liang et al 2018]. Boys use the Gower maneuver to rise from a supine position, using the arms to supplement weak pelvic girdle muscles. The calf muscles are hypertrophic and firm to palpation. Occasionally there is calf pain. DMD is rapidly progressive, with affected children being wheelchair bound by age 12 years [Darras et al 2015].
Cardiomyopathy. Among children with DMD, the incidence of cardiomyopathy increases steadily in the teenage years, with approximately one third of individuals being affected by age 14 years, one half by age 18 years, and all individuals after age 18 years [Nigro et al 1990].
Cognitive abilities. Some degree of non-progressive cognitive impairment in boys with DMD has long been known. This was initially described as a general "leftward shift" in the spectrum of IQ scores of a population with DMD compared to the population at large. Earlier reports had suggested that verbal IQ was more affected than performance IQ on the Wechsler Intelligence Scales.
A retrospective study by Banihani et al [2015] demonstrated that in their sample, 27% of the boys had IQ <70, with 19% overall fulfilling all criteria for intellectual disability (ID). A learning disability was present in 44%, attention-deficit/hyperactivity disorder (ADHD) in 32%, autism spectrum disorder (ASD) in 15%, and anxiety in 27%. No significant correlation was seen between these neuropsychiatric conditions and dystrophin isoforms.
Ricotti et al [2016] accessed 130 males with DMD from four European centers and reviewed IQ assessment and a screening questionnaire. Of the original 130, 87 then underwent more extensive testing. Comparable rates of ID, ASD, ADHD, learning disability, and anxiety were observed.
These retrospective studies thus suggest increased rates of ID, ASD, ADHD, and learning disability in boys with DMD compared to the population at large.
Battini et al [2018] engaged in a prospective assessment of 40 boys with DMD. Their work showed that in boys without frank ID, executive functions such as multitasking, problem solving, inhibition, and working memory were affected out of proportion to overall cognitive function. They suggested that DMD was therefore associated with deficits in "executive function" in boys who did not demonstrate ID.
This confirms the retrospective work of Wicksell et al [2004], who demonstrated that boys with DMD who did not have ID showed deficits in active working memory in both verbal and visuospatial domains. It also confirms the retrospective study of Hinton et al [2001], who demonstrated short-term verbal memory issues in boys with DMD who did not have ID.
All of these studies thus suggest that the earlier allegation of poorer verbal function in boys with DMD and without ID was better explained by deficits in executive function, which could also lead to visuospatial difficulties in certain settings.
Mobility. DMD is associated with reduced mobility. Thus, boys with DMD have decreased bone density and are at increased risk for fractures. Corticosteroids further increase the risk of vertebral compression fractures, many of which are asymptomatic.
Life span. Despite improvement of survival, few affected individuals survive beyond the third decade [Passamano et al 2012]. Respiratory complications and progressive cardiomyopathy are common causes of death. A study of individuals with molecularly confirmed diagnoses has determined a median survival of 24 years, with ventilated patients reaching a median survival of 27 years [Rall & Grimm 2012]. In a cohort of affected individuals having both spinal surgery and nocturnal ventilation, the median survival was 30 years [Eagle et al 2007]. Because death frequently occurs outside the hospital setting, the cause of death is often difficult to determine [Parker et al 2005].
BMD
Motor development. BMD is characterized by later-onset skeletal muscle weakness. With improved diagnostic techniques, it has been recognized that the mild end of the spectrum includes men with onset of symptoms after age 30 years who remain ambulatory even into their 60s [Yazaki et al 1999].
Mildly affected individuals with confirmatory DMD molecular genetic studies and/or dystrophin studies on muscle biopsy have been classified as having either of the following [Melacini et al 1996]:
BMD with "subclinical" skeletal muscle involvement in the presence of elevated serum CK concentration, calf hypertrophy, muscle cramps, myalgia, and exertional myoglobinuria
"Benign" skeletal muscle involvement when "subclinical" findings are accompanied by muscle weakness in the pelvic girdle and/or shoulder girdle
Cardiomyopathy. While skeletal muscle involvement is milder in BMD, heart failure from DCM is a common cause of morbidity and the most common cause of death [Cox & Kunkel 1997]. Mean age at cardiomyopathy diagnosis is 14.6 years, similar to that in DMD (14.4 years) [Connuck et al 2008]. Heart transplantation rate in BMD is high within five years after the diagnosis of cardiomyopathy [Connuck et al 2008, Kamdar & Garry 2016]. Mean age of death is in the mid-40s [Bushby 1999].
Cognitive abilities. Cognitive impairment is not as common or as severe in BMD as in DMD.
DMD-associated DCM
In 1987, a five-generation, 63-member family with DCM but no evidence of skeletal myopathy was reported. Males present in their teens and twenties; the disease course is rapidly progressive and associated ventricular arrhythmias are common. Heterozygous females develop mild dilated cardiomyopathy in the fourth or fifth decade, with slow progression. The only biochemical abnormality is elevation in serum CK concentration. Towbin et al [1993] demonstrated linkage to the dystrophin locus in this family and one other.
Subsequent study demonstrated that in individuals with the most severe cardiac phenotype the cardiac muscle is usually unable to produce functional dystrophin in the heart, while in skeletal muscle reduced levels of virtually normal dystrophin transcript and protein are present [Ferlini et al 1999, Neri et al 2007, Neri et al 2012]; see Molecular Genetics.
DMD-associated DCM may be the presenting finding in individuals with BMD who have little or no clinical evidence of skeletal muscle disease. Some investigators classify such individuals as having subclinical or benign BMD, whereas others may classify such individuals as having DCM with increased serum CK concentration [Towbin 1998]. In one study of 28 individuals with subclinical and benign BMD between ages six and 48 years, 19 (68%) had myocardial involvement, although only two were symptomatic [Melacini et al 1996]. In another study of 21 individuals ranging from age three to 63 years (mean age 40 years), 33% had cardiac failure despite relatively mild skeletal muscle findings [Saito et al 1996].
DMD is a relatively infrequent cause of DCM. In a cohort of 99 Japanese unrelated adult males and females with familial and sporadic DCM, DMD pathogenic variants were identified in only three males [Shimizu et al 2005].