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Studies:
• In vitro
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Background
[PubMed]

Malignant cells that precede rapid cellular proliferation require an increasing supply of precursor amino acids to 
support protein and nucleotide biosynthesis (1). These substrates are translocated from the blood stream into 
cytoplasma (internalization) via highly efficient transporters that belong to a group of carrier proteins residing in 
the plasma membrane. After entering the cytoplasma, glutamine (Gln) is further transported into the 
mitochondria and hydrolyzed by phosphate-dependent glutaminase (2). As a main source of nitrogen, Gln 
circulates in the blood stream at 0.6–0.9 mmol/L and accumulates in some tissues in concentrations as high as 
20 mmol/L (2). Tumors compete with surrounding tissues for nitrogen compounds, producing a negative 
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nitrogen balance in host tissues and substantial nitrogen increase in tumors (3). Therefore, the evaluation of 
protein metabolism can be carried out via imaging of the Gln uptake in tumors (4, 5). Because the 
internalization of Gln is mediated by Na+-dependent amino acid transporters, attaching a small gadolinium 
(Gd) chelate to Gln should not interfere with this receptor-mediated endocytosis process (RME) (5, 6). Although 
receptors normally are found in concentrations of 10-9 to 10-13 mol/g of tissue (1 μM to 10-4 μM), the RME 
mechanism recycles the receptor rapidly and results in a substantial ligand accumulation inside a cell in a short 
time (7). As an example, the ligands can be enriched to 10-8 to 10-9 mol/g in 1 h (7). For Gd chelates, this 
concentration meets the minimum requirement for magnetic resonance imaging (MRI) detection (8). The Gln 
transportation rate for tumors like hepatoma is 10–20 times faster than that for the healthy hepatocytes (1). 
Thus, the difference in Gln uptake can be used to distinguish between tumors and tissues via contrast agent–
enhanced MRI (5).

Gadolinium 1-((11-S)-3,10-diaza-13-carboxamido-11-carboxy-2,9-dioxotridecyl)-N,N’,N”-
tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane (Gd-DOTAMA-C6-Gln) is a functionalized Gln in which 
the amino group is linked to a Gd-1,4,7,10-tetraazacyclododecane-N,N’,N”,N”’- tetraacetic monoamide (Gd-
DOTA) through a linear aliphatic chain of six carbons (-C6H12-) (5). Gd-DOTA moiety has a high 
thermodynamic stability that protects against the in vivo release of Gd ions (9). The aliphatic chain serves as a 
spacer between the DOTA coordination cage and the Gln moiety to reduce the hindrance of the whole complex 
and improve the interaction between the Gln moiety and the receptor on the cell membrane (5). The conjugation 
of Gd chelate to the amino group sacrifices one of the four Gln recognition points on its transporting proteins 
and prevents the transporting protein from proceeding with the successive steps that bring the Gln into the 
mitochondria (5). Thus, the transporter may move the Gd-DOTAMA-C6-Gln to the clathrin-rich region, where 
the chelates are trapped in the endosomal vesicles. The entrapment can cause a quenching effect in the relaxation 
enhancement because the endosomal membrane forms barriers for water molecules to interact with the 
paramagnetic centers (5). The small size of DOTAMA-C6-Gln allows for easy extravasation and diffusion into 
the tissue to reach the surface of tumor cells.

Synthesis
[PubMed]

Crich et al. reported a detailed synthesis of Gd-DOTAMA-C6-Gln (5). DOTAMA-C6-Gln was obtained by a 
coupling reaction between the N-hydroxysuccinimide (NHS) activated ester of 1-(3-aza-8-carboxy-2-oxooctyl)-
N,N’,N”-tris((1,1-dimethylethoxy)carbonylmethyl)-1,4,7,10-tetraazacyclododecane (DOTAMA(tBuO)3-
(CH2)6-OH) and the unprotected L-glutamine in a homogeneous mixture of acetonitrile and a phosphate buffer 
(pH 8). After deprotection of the tert-butyl esters in the presence of trifluoroacetic acid and CH2Cl2 (1:1) at 50% 
yield, the purified ligand formed a complex with GdCl3 (pH 6.5).

The precursor 1-(3-aza-8-carboxy-2-oxooctyl)-4,7,10-tris(1,1-dimethylethoxy)-1,4,7,10-tetraazacyclododecane 
NHS (DOTAMA(tBuO)3-(CH2)6-NHS) was prepared in multiple steps. First, 6-aminohexanoic acid benzyl 
ester was reacted with bromoacetyl bromide in the presence of K2CO3 in acetonitrile to yield 7-aza-9-bromo-8-
oxononanoic acid benzyl ester at 90% yield. This product was converted to 1-(3-aza-8-carboxy-2-oxooctyl)-
N,N’,N”-tris((1,1-dimethylethoxy)carbonylmethyl)-1,4,7,10-tetraazacyclododecane benzyl ester at 96.5% yield 
by reacting it with 1,4,7,10-tetraazacyclododecane-N,N’,N”-tris-tert-butylester (DO3A-tris-tert-butylester) in the 
presence of K2CO3 in acetonitrile. Then, the ester was hydrogenated in methanol under catalyzation of 10% 
Pd/C to produce DOTAMA(tBuO)3-(CH2)6-OH in 50% yield, which was further converted to DOTAMA-
(CH2)6-NHS by reacting with NHS in CH2Cl2.

In Vitro Studies: Testing in Cells and Tissues
[PubMed]
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The relaxation properties of water were examined with 1H nuclear magnetic resonance (NMR) dispersion 
spectroscopy (NMRD) at different magnetic field strengths and with 17O NMR spectroscopy at different 
temperatures (5). The structural water residual time (τm) was found to be 1.5 μs at 25°C, and the electronic 
relaxation time (τv) and the rotation correlation time (τR) were 25 and 83 ps, respectively. The T1 relaxivity was 
found to be 5.5 mM-1s-1 at 0.47 T and 25°C in aqueous solution. For hepatoma cellular pellets with internalized 
Gd-DOTAMA-C6-Gln, the T1 relaxivity was measured as a function of Gd per cell, which exhibited a 
substantial deviation from the theoretical calculation. This indicated that the internalization of the chelates 
occurred through the entrapment into endosomal vesicles.

The uptake of Gd-DOTAMA-C6-Gln in cells was tested in healthy rat hepatocytes, rat hepatoma cells (HTC), rat 
glioma C6 cells, murine breast adenocarcinoma cells (TSA), and murine neuroblastoma cells (Neuro-2a) (5). 
Two to three million cells were incubated for 6 h at 37°C in Earl’s balanced salt solution (EBSS) containing Gd-
DOTAMA-C6-Gln at 1.6 mM (three times higher than the glutamine physiological concentration). After 
incubation, the cells were washed three times and then destroyed. The Gd was released from the cells as free 
aquo-ions and quantified by inductively coupled plasma mass spectrometry (ICP-MS) to determine internalized 
Gd content (10). For all tumor cells, the internalized Gd was found to be >1 × 10-8 mol Gd /mg cell protein. The 
uptake of Gd-DOTAMA-C6-Gln by HTC cells appeared to decrease markedly as the concentration of the free 
Gln added to the culture medium increased. This result also demonstrated that Gln residue present on the 
surface of Gd-DOTAMA-C6-Gln complex was the vehicle for the internalization through the amino 
transporting system. The Gd-DOTAMA-C6-Gln uptake for HTC cells was further compared with that for 
hepatocytes by in vitro MRI on a 7-T imager. After 4 h of incubation in 1.6 mM of Gd-DOTAMA-C6-Gln, 23 
nmol of Gd/mg cell protein was found in HTC cells, which was four times higher than the 5.5 nmol of Gd/mg 
cell protein in the hepatocytes. This difference was also reflected in the T1-weighted images on which a 45% 
increase in signal intensity was found for the HTC cells compared to the healthy hepatocytes.

Animal Studies

Rodents
[PubMed]

MRI experiments were conducted to distinguish between tumors and normal tissues in two rodent tumor 
models (5). A dose of Gd-DOTAMA-C6-Gln (0.2 mmol/kg) was injected intravenously into A/J mice grafted 
with Neuro-2a and her-2/neu transgenic mice with mammary carcinoma. From 24 to 72 hr after injection, T1-
weighted images were acquired on a 7-T imager when the renal elimination of the non-internalized Gd complex 
was complete. The tumor signal intensity (SI) was significantly high, indicating that the amount of internalized 
Gd complex was sufficient to yield a substantial enhancement effect. The SI enhancement was homogeneously 
distributed in the tumor mass and was more pronounced in tumors with a diameter <3 mm. In comparison, the 
kidney cortical region showed ~15% SI enhancement. For the transgenic mouse model, the Gd uptake in the 
her-2/neu tumors was determined by ICP-MS. Tumors were extracted by euthanizing the mice 24 h after 
injection. The amount of Gd-DOTAMA-C6-Gln in tumors was found to be 2.1 ± 0.4 nmol Gd/g protein in 
tumors <3 mm in diameter and 1.2 ± 0.4 nmol Gd/g protein in tumors >3 mm in diameter. Compared to the 
muscles, the uptake of Gd-DOTAMA-C6-Gln was seven- to eight-fold higher for tumors <3 mm in diameter 
and four-fold higher for tumors >3 mm in diameter.

Other Non-Primate Mammals
[PubMed]

No publication is currently available.
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Non-Human Primates
[PubMed]

No publication is currently available.

Human Studies
[PubMed]

No publication is currently available.
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