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Abstract
In the 1920s, it was recognized that a mucoid or matte colony phenotype of Streptococcus pyogenes was 
associated with virulence in mice and with resistance to killing by human blood leukocytes. The gelatinous 
material produced by the mucoid isolates, currently known as capsule, was later characterized as hyaluronic 
acid, a linear polymer of N-acetylglucosamine and glucuronic acid with a high molecular mass that is 
structurally identical to hyaluronic acid found in the extracellular matrix of many higher animals, including 
human beings. It is now recognized that most (but not all) clinical isolates of group A streptococci produce 
hyaluronic acid, which is associated with the cell surface during exponential growth and shed during stationary 
phase. This chapter presents a summary of information on the capsule of Streptococcus pyogenes, its 
biochemistry, genetics, and role in virulence.

For many years, clinical microbiologists and infectious diseases clinicians have noted that group A streptococci 
freshly isolated from patients with pharyngitis or invasive infection often grow as large, wet-appearing, 
translucent colonies on blood agar. With prolonged incubation, these “mucoid” colonies collapse and assume an 
irregular or “matte” appearance. Laboratory passage of such isolates frequently resulted in loss of the mucoid 
phenotype and conversion to small, compact, or “glossy” colonies (Figure 1). In the 1920s, Lancefield and Todd 
recognized that the mucoid or matte colony phenotype was associated with virulence in mice and with 
resistance to killing by human blood leukocytes (Lancefield & Todd, 1928; Todd & Lancefield, 1928). Kendall 
and co-workers characterized the gelatinous material produced by mucoid isolates as hyaluronic acid, a linear 
polymer of N-acetylglucosamine and glucuronic acid with a high molecular mass that is structurally identical to 
hyaluronic acid found in the extracellular matrix of many higher animals, including human beings (Figure 2) 
(Kendall, Heidelberger, & Dawson, 1937). Wilson demonstrated that the growth of such isolates on media 
containing hyaluronidase prevented the development of mucoidy, which confirmed that the production of 
hyaluronic acid was responsible for the mucoid colony phenotype (Wilson, 1959). It is now recognized that most 
(but not all) clinical isolates of group A streptococci produce hyaluronic acid, which is associated with the cell 
surface during exponential growth and shed during stationary phase. Presumably because it is recognized by the 
host immune system as a self-antigen, the group A streptococcal hyaluronic acid capsule is poorly immunogenic 
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in animals, including human beings. In contrast to capsular polysaccharides of Streptococcus pneumoniae and S. 
agalactiae, hyaluronic acid polymers are not covalently linked to the group A streptococcal cell wall, but rather 
are associated with the cell surface in a dynamic fashion, as they are synthesized by a cell membrane-associated 
polymerase. Although its mode of attachment to the bacterial surface is more tenuous than that of covalently 
bound polysaccharide capsules in other species, there is abundant evidence that the hyaluronic acid capsule is an 

Figure 1. Blood agar plate with typical colonies of a mucoid strain of group A streptococcus (left) and non-mucoid (glossy) colonies of 
an acapsular mutant (right).

Figure 2. Repeating unit structure of hyaluronic acid.
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important virulence determinant as a modulator of multiple interactions between group A streptococci and their 
human hosts.

Genetics and biochemistry of hyaluronic acid biosynthesis
Studies in the 1990s used transposon mutagenesis to identify a chromosomal locus required for hyaluronic acid 
production in group A streptococci (DeAngelis, Papaconstantinou, & Weigel, 1993a; Dougherty & van de Rijn, 
1992; Wessels, Moses, Goldberg, & DiCesare, 1991). Further characterization of the locus revealed an operon of 
three genes, hasA, hasB, and hasC, each of which encodes an enzyme involved in hyaluronic acid synthesis 
(DeAngelis, Papaconstantinou, & Weigel, 1993a; Crater, Dougherty, & van de Rijn, 1995; DeAngelis, 
Papaconstantinou, & Weigel, 1993b; Dougherty & van de Rijn, 1993; Dougherty & van de Rijn, 1994) (Figure 3). 
The 4.2 kb has operon is highly conserved among group A streptococcal strains, but is notably absent in isolates 
of M-types 4 and 22, which do not produce capsules (Henningham, et al., 2014; Flores, Jewell, Fittipaldi, Beres, 
& Musser, 2012). Notably, strains of M-types 4 and 22 produce hyaluronidase, which degrades hyaluronic acid, 
while the vast majority of other group A streptococcal isolates harbor an inactivating point mutation in the 
chromosomal hyaluronidase gene, hylA (Henningham, et al., 2014; Hynes, Johnson, & Stokes, 2009). This 
association suggests an evolutionary branch point in which group A streptococcal strains developed alternative 
strategies for adaptation through expression of either the anti-phagocytic hyaluronic acid capsule or 
hyaluronidase, which facilitates the spread of secreted toxins by degrading the host’s extracellular matrix, but can 
also digest the group A streptococcus capsule.

Hyaluronic acid is synthesized from the nucleotide sugar precursors UDP-glucuronic acid and UDP-N-
acetylglucosamine by a membrane-associated enzyme, hyaluronan synthase, encoded by hasA. High-Mr 
hyaluronic acid can be produced by the incubation of cell-free membrane extracts of group A streptococci with 
the two substrate UDP-sugars in the presence of divalent cations (Markovitz, Cifonelli, & Dorfman, 1959; 
Stoolmiller & Dorfman, 1969; Sugahara, Schwartz, & Dorfman, 1979). The hasA gene product has a predicted 
Mr of 47.9 kD and includes at least four predicted membrane-spanning domains, which is consistent with 
evidence that the enzyme is localized at the cell membrane where it mediates both polymer formation and 
export (DeAngelis, Papaconstantinou, & Weigel, 1993a; Dougherty & van de Rijn, 1994). The group A 
streptococcus hyaluronan synthase shares significant similarity with hyaluronan synthases from other microbial 
and higher animal species (DeAngelis, Yang, & Weigel, 1994; Weigel, Hascall, & Tammi, 1997). The second gene 
of the has operon, hasB, encodes UDP-glucose dehydrogenase, a 45.5 kD protein that catalyzes the oxidation of 
UDP-glucose to UDP-glucuronic acid (Dougherty & van de Rijn, 1993). The third gene in the cluster, hasC, 
encodes a predicted 33.7 kD protein identified as UDP-glucose pyrophosphorylase (Crater, Dougherty, & van de 
Rijn, 1995). This enzyme catalyzes the condensation of UTP with glucose-1-phosphate to form UDP-glucose. 
Thus, the reaction catalyzed by the hasC product yields a substrate for UDP-glucose dehydrogenase encoded by 
hasB, whose reaction product is, in turn, a substrate for hyaluronan synthase encoded by hasA. While the 
enzyme protein encoded by hasC is enzymatically active, it is not required for hyaluronic acid synthesis by group 
A streptococci. The inactivation of hasC resulted in no reduction in hyaluronic acid synthesis by a highly 
encapsulated strain of group A streptococci—a finding that implies that another source of UDP-glucose is 
available within the cell (Ashbaugh, Alberti, & Wessels, 1998a). Furthermore, expression of recombinant hasA 
and hasB (without hasC) conferred the capacity to synthesize hyaluronic acid in Escherichia coli and 
Enterococcus faecalis (DeAngelis, Papaconstantinou, & Weigel, 1993a; DeAngelis, Papaconstantinou, & Weigel, 
1993b). A hasB paralog, hasB2, is widely conserved among group A streptococcus isolates. This gene is located at 
a site remote from the has operon; it encodes a protein with the same enzymatic activity as hasB and can support 
a reduced level of capsule synthesis in the absence of hasB (Cole, et al., 2012).
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Regulation of capsule expression
While the has operon is highly conserved, there is wide variation in production of the hyaluronic acid capsule 
among group A streptococcus isolates and under different growth conditions in an individual strain. 
Transcription of the has operon and synthesis of hyaluronic acid is maximal during exponential phase in liquid 
cultures, and declines to very low levels during the stationary phase (Crater & van de Rijn, 1995; Unnikrishnan, 
Cohen, & Sriskandan, 1999). Cessation of capsule synthesis is associated with shedding of hyaluronic acid from 
the cell surface into the culture medium. Capsule production is highest in a nutrient-rich environment. 
Expression of the has operon is rapidly induced upon introduction of the bacteria into the peritoneal cavity of 
mice or into the pharynx of baboons in a non-human primate model of pharyngeal colonization (Gryllos, et al., 

Figure 3. (A) Schematic of the has operon encoding enzymes involved in hyaluronic acid biosynthesis in group A streptococci. (B) 
Diagram illustrating the enzymatic function in hyaluronic acid synthesis of the proteins encoded by hasA, hasB, and hasC.
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2001). Strain-to-strain variation in capsule production may be partially explained by polymorphisms in the 
promoter region upstream of the has operon (Albertí, Ashbaugh, & Wessels, 1998).

The CsrRS (also known as CovRS) two-component system is a critical regulator of has operon transcription in 
response to environmental signals. The CsrRS system was discovered by a transposon mutagenesis screen for 
mutants that formed mucoid colonies; a phenotype that is shown to be the result of inactivation of the csrRS 
locus (Levin & Wessels, 1998). Subsequent work has shown that CsrRS regulates approximately 10% of group A 
streptococcal genes, including several virulence factors, in addition to the has operon (Dalton, Collins, Barnett, 
& Scott, 2006; Federle, McIver, & Scott, 1999; Graham, et al., 2002; Gryllos, et al., 2007; Heath, DiRita, Barg, & 
Engleberg, 1999). According to our current model of the CsrRS system, CsrS is a cell membrane-associated 
histidine kinase that is activated by extracellular magnesium, and perhaps also by other unknown environmental 
signals (Gryllos, et al., 2007; Gryllos, Levin, & Wessels, 2003). Autophosphorylation of the cytoplasmic domain 
of CsrS is followed by phosphotransfer to CsrR, which increases the affinity of the latter protein for target 
promoters—including the has operon promoter, where it represses transcription and reduces capsule 
production. The human antimicrobial peptide LL-37 appears to signal through the CsrRS system in a manner 
opposite to that of magnesium: exposure of group A streptococci to 100-300 nM LL-37 (concentrations far 
below those that inhibit bacterial growth) results in stimulation of expression of the has operon (and of other 
CsrR-repressed genes) (Gryllos, et al., 2008; Tran-Winkler, Love, Gryllos, & Wessels, 2011). LL-37 has been 
shown to bind to the predicted extracellular domain of CsrS in vitro, and studies of smaller peptides have 
identified a 10-amino acid internal fragment of LL-37 that is completely devoid of antimicrobial activity against 
group A streptococci, but retains its CsrS-signaling activity (Velarde, Ashbaugh, & Wessels, 2014). These findings 
suggest that LL-37 signaling reflects a specific interaction with CsrS rather than a response to a non-specific 
membrane injury. It has been suggested that the CsrRS system enables group A streptococci to detect the host’s 
innate immune response to group A streptococcal infection by sensing any subinhibitory concentrations of 
LL-37 secreted by leukocytes and/or epithelial cells. LL-37 signaling through CsrS results in upregulation of 
capsule production, as well as that of other antiphagocytic factors that enhance group A streptococcal virulence 
(Gryllos, et al., 2008; Tran-Winkler, Love, Gryllos, & Wessels, 2011).

RocA is another regulatory protein that affects capsule expression. Inactivating mutations in rocA have been 
shown to reduce expression of CsrR and are associated with increased capsule production (Biswas & Scott, 
2003). In M-type 18 strains that form mucoid colonies as a result of abundant capsule production, the RocA 
protein is truncated and non-functional. Replacement of the mutated rocA gene with the consensus rocA 
sequence in a mucoid M18 strain suppressed the mucoid phenotype (Lynskey, et al., 2013).

Role of the capsule in pathogenesis
Early studies by Lancefield, Todd, and others found an association between the presence of the mucoid colony 
type and virulence in mice (Todd & Lancefield, 1928; Ward & Lyons, 1935). However, because mucoid strains 
tended to be rich in M protein as well as in hyaluronic acid capsule, it was difficult to confidently ascribe an 
independent role in virulence to the capsule. Investigators in the mid-twentieth century found that 
hyaluronidase treatment increased the susceptibility of mucoid strains to killing by human blood phagocytes, 
supporting a role for the capsule in resistance to phagocytosis (Rothbard, 1948; Foley & Wood, Jr., 1959; 
Stollerman, Rytel, & Ortiz, 1963). Kass and Seastone showed that hyaluronidase treatment of mice reduced the 
virulence of group A streptococci during experimental infections (Kass & Seastone, 1944). Epidemiological 
observations have also suggested a link between capsule expression and virulence. Mucoid strains of group A 
streptococci have been associated with invasive infections and with outbreaks of acute rheumatic fever (Johnson, 
Stevens, & Kaplan, 1992; Tamayo, Montes, García-Medina, García-Arenzana, & Pérez-Trallero, 2010; Veasy, et 
al., 2004).
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The development of methods for genetic manipulation of streptococci permitted more direct assessment of the 
role of the capsule in pathogenesis. Acapsular mutants derived by transposon mutagenesis and subsequently by 
targeted deletion of the hasA gene were found to have reduced virulence in systemic infection models in mice 
and in chicken embryos, in a murine model of invasive soft tissue infection, and in airway challenge models in 
mice (Wessels, Moses, Goldberg, & DiCesare, 1991; Ashbaugh, Warren, Carey, & Wessels, 1998b; Husmann, 
Yung, Hollingshead, & Scott, 1997; Schmidt, Günther, & Courtney, 1996; Schrager, Rheinwald, & Wessels, 1996; 
Wessels & Bronze, 1994). Capsule-deficient mutants have increased susceptibility to complement-mediated 
opsonophagocytic killing by human blood leukocytes, as compared to their respective encapsulated parent 
strains, and resistance to phagocytosis is thought to be a major mechanism through which the capsule enhances 
virulence. The presence of the capsule does not inhibit complement activation or deposition of complement 
fragments on the bacterial cell wall, but rather interferes with access of leukocyte receptors for opsonic 
complement proteins on the bacterial surface (Dale, Washburn, Marques, & Wessels, 1996).

In a baboon model of group A streptococcal pharyngeal colonization, an acapsular mutant colonized at a similar 
efficiency as the parent strain, but was cleared more rapidly (Ashbaugh, et al., 2000). This result suggested that 
the capsule contributed to persistence in the pharynx. However, genomic analysis of serial isolates from the 
pharynges of experimentally infected macaques showed the development over time of mutations in the has 
operon and promoter that reduced transcription of the hyaluronic acid biosynthesis genes (Shea, et al., 2011). 
Similar mutations were detected in sequential group A streptococcal isolates from human pharyngeal samples 
(Flores, et al., 2014). When taken together, these observations suggest that the down-regulation of capsule 
production may favor chronic pharyngeal carriage.

In vitro studies of group A streptococcal adherence to epithelial cells have shown that the capsule reduces 
bacterial attachment (Hollands, et al., 2010; Schrager, Albertí, Cywes, Dougherty, & Wessels, 1998). The capsule 
itself can act as an adhesin by mediating attachment to the hyaluronic acid binding protein CD44, which is 
expressed on multiple cell types including oropharyngeal keratinocytes (Schrager, Albertí, Cywes, Dougherty, & 
Wessels, 1998). The potential role of CD44 as a group A streptococcus receptor was supported by studies 
showing reduced pharyngeal colonization in mice after intranasal administration of monoclonal antibody to 
CD44 together with a group A streptococcal challenge or after pretreatment with exogenous hyaluronic acid 
(Cywes, Stamenkovic, & Wessels, 2000). Mice expressing a CD44 anti-sense transgene targeted to stratified 
squamous epithelia also were resistant to group A streptococcal pharyngeal colonization. In addition to the role 
of CD44 in adherence, the binding of encapsulated group A streptococcus to CD44 on human oropharyngeal 
keratinocytes induces an intracellular signaling cascade that results in disruption of intercellular junctions and 
enhancement of group A streptococcal translocation across the epithelial barrier. In this way, CD44-mediated 
signaling by the hyaluronic acid capsule may facilitate group A streptococcus tissue invasion (Cywes & Wessels, 
2001).
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