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13. Selected baculovirus genes without orthologs in 
the AcMNPV genome: Conservation and function

Below is a non-inclusive list of baculovirus genes that are not present in the AcMNPV genome, but that either 
have homology with well-characterized genes from other organisms, or that have been investigated in 
baculoviruses. Following this list is a summary of investigations on each gene.

• Apsup
• CIDE domain protein
• Collagenase
• DNA ligase
• dUTPase
• Enhancin
• Eukaryotic translation initiation factor 5
• G protein-coupled receptor
• Helicase-2
• HOAR
• Iap-3
• Metalloproteinase
• Nicotinamide riboside kinase 1
• PARP
• Phosphotransferase
• PTP-2
• Photolyase
• Ribonucleotide reductase Large subunit
• Ribonucleotide reductase Small Subunit
• Serpin
• SWI/SNF Chromatin remodelers
• Thymidylate kinase
• Trypsin-like
• V-TREX

Apsup: a third baculovirus antiapoptotic gene family

The apoptotic suppressor (apsup) was discovered in the genome of the Lymantria dispar MNPV. It encodes a 
protein with a predicted mass 39.3 kDa and does not appear to be related to other proteins in the database. It 
blocks initiator caspases. Homologs were identified in Lymantria xylina MNPV and also in AcMNPV 
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(Ac112/113). Ac112/113 shows about 30% amino acid sequence identity to APSUP, but is truncated and lacks 79 
amino acids at its C-terminus and also lacks anti apoptotic activity (1-3).

CIDE domain proteins. The cell death-inducing DFF45-like effector (CIDE) domain is usually present near the 
N-terminus of a DNAse that is activated by caspase cleavage and is associated with the degradation of DNA 
during apoptosis and lipid homeostasis (4). CIDE_N domains have been identified (ORF38) of the Mythimna 
unipuncta GV (MyunGV)) (5) and in a Group I NPV Choristoneura fumiferana def (CfdefMNPV) (orf142). 
MyunGV orf38 is related to orfs from 5 other GVs. In contrast, CfdefMNPV orf142 is most closely related to an 
orf from another Group I NPV (Neophasia sp – the pine butterfly – NespNPV. Both lineages showed structural 
relatedness to CIDE domains from Mus musculus and Drosophila melanogaster with a probability of almost 
100% by Hhpred (6). The predicted CIDE domain proteins from the NPVs and GVs are only distantly related 
suggesting that this protein may have been incorporated into baculovirus genomes on two independent 
occasions.

Collagenase. Most group II alphabaculoviruses encode proteins of over 800 amino acids related to collagenases 
from Clostridium. In Clostridium these are extracellular enzymes (reviewed in (7)).

DNA Ligase. A DNA ligase would be involved in the ligation of Okazaki fragments during lagging strand 
synthesis. Homologs of DNA ligase are present in all sequenced granulovirus genomes and at least two NPV 
genomes (LdMNPV and MacoNPV-B). The GV ligases are similar to ligase I, whereas the LdMNPV is similar to 
ligase III (8). Vaccinia also encodes an ortholog of ligase III (9). The DNA ligase of LdMNPV was characterized 
and found to be capable of ligating double-stranded synthetic DNA substrates containing a single nick (10). A 
striking feature of the baculovirus ligase homologs is that they are always (except MacoNPV-B) accompanied 
with a helicase homolog that is not found in any of the genomes lacking ligase. This helicase is related to the 
PIF1 family (10) (note: this is not a per os infectivity factor). Members of this family have a preference for RNA-
DNA hybrids and could be involved in the maturation of Okazaki fragments (11). This may involve 
displacement of the RNA primer, producing an RNA flap that would then be cleaved by a flap endonuclease 
(FEN) (12) or digested by a 5' to 3' exonuclease. DNA polymerase would then fill in the gap by extending the 
Okazaki fragment, and the ligase could join the fragments.

dUTPase. Deoxyuridine triphosphate (dUTP) can be mutagenic if incorporated into DNA. The enzyme 
dUTPase dephosphorylates dUTP to dUMP, which is a substrate for thymidine biosynthesis. Homologs of 
dUTPase are present in many NPVs (most in Group II) and a few GV genomes (13). Baculoviruses may have 
incorporated this gene to either supplement or substitute for the host gene. The viruses that encode a dutpase 
homolog also normally encode both subunits of ribonucleotide reductase (RR) (see below). The presence of RR 
may have selected for the incorporation of dutpase in order to mitigate the production of the dUTP mutagen by 
ribonucleotide reductase. In one study of an NPV, dUTPase first appeared in cell nuclei, but late in the infection 
it appeared to be excluded from the nucleus, but was diffusely located in the cytoplasm (14). An orf in Perigonia 
lusca single nucleopolyhedrovirus (PeluSNPV), (pelu112) was predicted to encode a fusion of dUTP and 
thymidylate kinase (tmk) (15).

Enhancin. Metalloproteinases are endopeptidases that contain divalent cations as integral components of their 
structure (16). Enhancins are members of this proteinase group and are encoded by a few lepidopteran NPVs 
and GVs. In one study of TnGV, enhancin was estimated to comprise up to 5% of the mass of occlusion bodies 
(17). In LdMNPV, enhancin was found to be associated with ODV (18). Enhancin genes are often present in 
multiple copies, e.g., the XecnGV genome has four copies (19). In LdMNPV, which encodes two enhancins, 
deletion of either results in a 2- to 3-fold reduction in potency, whereas deletion of both caused a 12-fold 
reduction (20). Enhancin is thought to facilitate baculovirus infection by digesting the peritrophic membrane 
(PM). The PM forms a barrier in insect guts that prevents the ready access of pathogens to the epithelial cells. 
The PM is rich in chitin and insect intestinal mucin, and enhancins appear to target the degradation of intestinal 
mucin, thereby facilitating access of virions to the underlying cells (21) (22). Enhancins show sequence 
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homology with high levels of significance (e.g., E = 3e-29) to predicted proteins of some pathogenic bacteria, 
e.g., Clostridium botulinum, and a variety of Bacillus (e.g., B. anthracis) and Yersinia (e.g., Y. pestis) species. To 
investigate their function, enhancins from B. cereus, Y. pseudotuberculosis, or TnGV were cloned into a construct 
of AcMNPV that yielded occluded viruses. Although the LD50 of these constructs was found to be about half of 
wt, only the construct expressing the TnGV enhancin caused a reduction in survival time. In addition, the 
bacterial enhancins failed to degrade insect intestinal mucin. It was suggested that the bacterial enhancins may 
have evolved an activity distinct from their viral homologs (23).

Eukaryotic translation initiation factor 5. Orthologs of eukaryotic translation initiation factor 5 have been 
found in at least two baculoviruses including Choristoneura rosaceana NPV (ChroNPV) and Choristoneura 
occidentalis GV (ChocGV). They are closely related (72% sequence identity) and are members of a lepidopteran 
lineage indicating that the gene was likely captured from a host insect and subsequently one virus obtained it 
from the other during a co-infection (24) (25).

G protein-coupled receptor (GPCR). A predicted G protein-coupled receptor (GPCR) was found in the 
Diatraea saccharalis GV (DisaGV-Disa-038) genome. It has not been reported in other baculoviruses, but orthologs 
have been identified in a number of entompox viruses. The DisaGV GPCR was most closely related to those from 
Lepidoptera (26). The DisaGV GPCR was predicted to encode a signal peptide and 7 trans membrane domains 
suggesting that it belongs to the Secretin family of GPCRs (27). A human herpesvirus (Epstein-Barr virus) encodes 
a GPCR that hijacks the signaling pathways of the cell (28).

Helicase-2. A second helicase homolog has been found in many GV and a few NPV genomes (13). The 
homology to one of the NPVs, from Spodoptera littoralis (SpliNPV)-ORF 40, is minimal. The hel-2 gene from 
LdMNPV (29) is related to a yeast helicase that is important in recombination and repair of mitochondrial DNA. 
It had no effect on DNA replication in a transient replication assay and could not substitute for helicase-p143 
(10). With one exception, Mamestra configurata NPV (MacoNPV-B) (and the limited homology of SpliNPV-
ORF40 described above), the hel-2 and DNA ligase genes (see above) are found in the same genomes 
(predominantly GVs), suggesting that they may participate in the same metabolic pathway in these viruses (see 
Chapter 5). In one GV genome, the hel-2 gene was fused to the alkaline exonuclease gene (30), suggesting that 
the fused gene may encode a protein involved in the separating and digestion of the RNA primer component of 
Okazaki fragments during lagging strand synthesis. A closely related ortholog of hel-2 is also present in 
ascoviruses.

HOAR. According to Prof. David Tribe the name is derived as follows: ‘H refers to Heliothis, O open reading 
frame and Hoar sounds like the given second name of the student Hoa (TH Le) who determined the sequence.’ 
HOAR is predicted to contain a RING-finger domain and the gene appears to be somewhat unstable and shows 
a high degree of variation in a repeated region (31). Based on Hhpred it has a 96% probability of being a 
ubiquitin ligase. It is found in many group II alphabaculoviruses

Iap-3. Inhibitor of apoptosis-3. Although 6 lineages of iap genes have been identified in baculoviruses, the iap-3 
lineage is the most well-characterized and is a powerful inhibitor of apoptosis in certain cell lines. It is not found 
in the AcMNPV genome, although related iap genes are present. This lack of iap-3 is likely compensated by the 
presence of p35, another apoptotic inhibitor. Members of the iap-3 lineage are found in Group I, II, GVs and 
hymenopteran NPVs. Iap-3 genes are closely related to iap genes of insects. OpMNPV IAP-3 is 57% identical to 
IAP from B. mori, indicating that the iap gene was likely captured by viruses on one or more occasions. In 
addition, iap from S. frugiperda has similar properties to IAP-3 in terms of its structure and function (32). For 
additional information, see Chapter 7.

Metalloproteinase. As described above, metalloproteinases are endopeptidases that contain divalent cations. 
Baculoviruses encode three distinct metalloproteinases, cathepsin, enhancin, and a stromelysin1-like 
metalloproteinase. Although cathepsin homologs are found most lepidopteran group I and II NPVs, they are 
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only found in four GV genomes and are not present in the hymenopteran and dipteran viruses. However, there 
are other enzymes encoded in GVs that might compensate for the lack of cathepsin. One such enzyme is a 
metalloproteinase that has homologs in all sequenced GV genomes, but is not present in NPV genomes. They 
have about 30% amino acid sequence identity to a catalytic domain in a stromelysin1 metalloproteinase of 
humans and sea urchins. The GV enzyme lacks a signal peptide and a cysteine switch that maintains the other 
enzymes in an inactive form. The stromelysin1-like metalloproteinase from XcGV was characterized and found 
be capable of digesting proteins and was inhibited by metalloproteinase inhibitors (33). It is possible that the 
universal presence of metalloproteinase homologs in the GV genomes is involved in assisting in their viral 
transmission by facilitating the disintegration of cells after the GV replicative cycle is complete.

Nicotinamide riboside kinase 1 (NRK1). Orthologs of NRK1 are found in most group II NPVs and in some 
GVs. It plays a role in nicotinamide adenine dinucleotide (NAD+) synthesis. It phosphorylates nicotinamide 
riboside yielding nicotinate mononucleotide (34). Since PARG reverses the ADP-ribosylation of proteins by 
PARP and NRK1 is part of the nicotinamide adenine dinucleotide pathway, it is possible that the presence of 
PARG and NRK1 in many group II baculoviruses is indicative of their ability to manipulate these processes.

PARP. A homolog of poly (ADP-ribose) polymerases (PARP) has only been reported in a single baculovirus 
genome, Anticarsia gemmatalis (AgMNPV), Ag31 (35) (36). PARP is an enzyme found in nuclei. It is activated 
by DNA strand breaks and signals enzymatic pathways involved in DNA repair. Upon detecting a single strand 
break, it binds to the DNA and uses NAD+ as a substrate to synthesize polymers of ADP-ribose on acceptor 
proteins that in turn act as signals for recruiting enzymes involved in DNA repair. It is also involved in telomere 
elongation, chromatin structure, and the transcription of a variety of genes involved in immunity, stress 
resistance, hormone responses, and the possible silencing of retroelements (37) (38). It may also be involved in 
the regulation of a mitochondrial protein that induces apoptosis (39). PARP is a caspase-3 substrate and its 
cleavage is used as a measure of apoptosis.

Phosphotransferase. Homologs to RNA 2′-phosphotransferase are found in all three of the sequenced 
gammabaculovirus genomes (40). The substrates of this enzyme are [[2'-phospho-[ligated tRNA]]] and NAD+ 
and yields mature tRNA.

Protein tyrosine phosphatase-2. All group Group I alphabaculoviruses encode an ortholog of protein tyrosine 
phosphatase. The Group I viruses are divided into two major lineages and most of the viruses in one of these 
lineages encode another ptp gene called ptp-2. In addition, most Group II baculoviruses and at least two 
betabaculoviruses (GVs) also encode orthologs to ptp-2 (41). In OpMNPV, ptp-1 (op10) shows 60% aa sequence 
identity to AcMNPV PTP-1, but only ~20% identity to Op9 (PTP-2). PTP-2 is more closely related to a vaccinia 
and a human PTP with sequence identity of ~27% (42). The PTP2 of Spodoptera exigua multiple 
nucleopolyhedrovirus (SeMNPV) was found to induce mild apoptosis when transiently expressed in Spodoptera 
frugiperda (Sf) 21 cells and the larvae infected. Deletion of ptp2 from SeMNPV resulted in a reduced yield of 
viral inclusion bodies (43). The crystal structure of ptp-2 from Cydia pomonella virus (CpGV) has been reported 
and it was found to contain a similar fold and active site structure to other phosphatases. It also contains a C-
terminal extension in a region that corresponds to the interface of poxvirus dimeric phosphates that belong to 
the Tyr-Ser homology group(44).

Photolyase. Homologs of photolyase genes have been found in the genomes of Group II baculovirus that are 
members of a lineage that infects insects of the subfamily Plusiinae of the family Noctuidae (45-47). Orthologs 
are also found in some poxviruses (48) including entomopox viruses (49). They have also been observed to be 
associated with mitotic structures (50). Photolyases are involved in the repair of DNA damage caused by 
ultraviolet light. Chrysodeixis chalcites NPV (ChchNPV) encodes two photolyase genes that are predicted to 
encode proteins with 45% amino acid sequence identity. When both were tested, only one copy showed 
photoreactivating activity (51). Transfection of egfp fusions of photolyase genes into T. ni cells resulted in 
fluorescence localized to chromosomes and spindles and other structures associated with mitosis. Baculovirus 
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infection of the transfected cells caused fluorescence to localize to the virogenic stroma (50). It was observed that 
one of the ChchNPV binds a CLOCK protein and represses CLOCK/BMAL1- transcription affected the 
oscillation of embryonic mouse fibroblasts indicating that it may be involved in circadian clock regulation (52). 
The incorporation of an algal virus photolyase gene as a means to cause resistance to UV inactivation of 
AcMNPV has been described. However, although BV survival was increased after exposure to UV light, 
occluded virion survival was not affected (53).

Ribonucleotide reductase. Ribonucleotide reductase is a heterodimer composed of large and small subunits 
(RR1 and RR2, respectively). It is involved in the catalysis of ribonucleotides to deoxyribonucleotides as a 
pathway for providing nucleotides for DNA synthesis. Well-documented RR1 and RR2 genes have been reported 
in the genomes of a few GVs, many Group II NPVs, and at least one Group I NPV (OpMNPV) (13). Two 
different RR2 genes have been reported for LdMNPV (29). Based on the phylogeny of baculovirus RR1 genes, it 
has been postulated that two different capture events resulted in baculoviruses obtaining this gene (8). One 
source was from a bacterium for the OpMNPV and LdMNPV RR1 gene lineage, whereas the other lineage (e.g., 
Spodoptera exigua MNPV (SeMNPV)) appears to have been derived from eukaryotes, most likely insects. The 
two RR2 genes from LdMNPV appear to be derived independently, one from each different source, rather than 
via gene duplication.

Serpin. Serpins, (serine protease inhibitors), were named because of their ability to inhibit chymotrypsin-like 
serine proteases. A sequence related to lepidopteran serpins was found in the genome of a baculovirus of 
Hemileuca sp., a member of the Saturniidae. It shows about 34% amino acid sequence identity to serpins from 
Manduca sexta and Bombyx mori suggesting that it was captured from a host insect (54). No other baculoviruses 
have been reported to encode this gene. Expression of the HespNPV serpin in AcMNPV increased the virulence 
of infection by four fold in T. ni larvae (55). It was found that in Helicoverpa armigera inhibition of melanization 
by serpin-9 and -5 elevated the levels of baculovirus infection (56).

SWI/SNF Chromatin remodelers. Blast analysis indicates that Lonomia obliqua NPV (LoobMNPV) (57) 
encodes a protein (loob035) closely related to Transcription termination factor 2 (TTF2)(57). Hhpred (6) 
analysis of this same orf predicts with about 100% probability that it is related to the SWI/SNF family of 
chromatin remodelers.

Thymidylate kinase. A gene encoding an ortholog of Thymidylate kinase was observed in the genome of a GV 
pathogenic for Epinotia aporema (30). Thymidylate kinase is involved in adding a phosphate to thymidine 5’ 
monophosphate and converting it to thymidine 5’ diphosphate. It is important for the production of dTTP for 
DNA synthesis. An orf in Perigonia lusca single nucleopolyhedrovirus (PeluSNPV), (pelu112) was predicted to 
encode a fusion of dUTP and thymidylate kinase (tmk) (15).

Transcription termination factor 2. See WI/SNF Chromatin remodelers above.

Trypsin-like. Although hymenopteran lack homologs of chitinase and cathepsin, they all encode a trypsin-like 
protein (e.g., Nese7) (58) that shows high levels of aa sequence identity (e.g., 50%) to insect trypsin-like 
homologs. It is possible that the presence of this enzyme compensates for the absence of chitinase and cathepsin 
and facilitates the release of virus from infected gut cells into the environment and to provide inoculum for the 
re-infection of other gut cells.

V-TREX (Viral three-prime repair exonuclease). A gene with homology to 3' to 5' exonucleases from other 
systems has been identified in three Group I NPVs, AgMNPV, CfMNPV and AnpeNPV. The enzyme from both 
AgMNPV and CfMNPV demonstrated to 3' to 5' exonucleolytic activity. It is thought that they may be involved 
in DNA repair (59, 60).
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