4.1.3. Supplementary interventions

Clinical Question/ PICO

Population:	Adults and children living in areas with ongoing malaria transmission
Intervention:	Larviciding
Comparator:	no larviciding

Summary

Larviciding versus no larviciding:

Larviciding versus no larviciding:	parasite prevalence compared to no larviciding
Four studies were included in the systematic review, of	(Odds Ratio: 1.49; 95% CI (0.45–4.93); one study; very
which only one was an RCT; the remaining three studies	low certainty evidence)
were non-randomized. Studies were undertaken in	
Gambia, Kenya, Sri Lanka and United Republic of	Larviciding applied to mosquito aquatic habitats less
Tanzania.	than 1km ² in area:
	Larviciding probably reduces malaria incidence compared
Larviciding applied to mosquito aquatic habitats	to no larviciding
exceeding 1km ² in area:	(Rate Ratio: 0.20; 95% CI (0.16–0.25); one study;
It is unknown whether larviciding has an effect on	moderate certainty evidence)
malaria incidence compared to no larviciding	Larviciding may reduce parasite prevalence compared to
(Odds Ratio: 1.97; 95% CI (1.39-2.81); one study; very	no larviciding
low certainty evidence)	(Odds Ratio: 0.72; 95% CI (0.58-0.89); two studies; low
It is unknown whether larviciding has an effect on	certainty evidence)

Outcome Timeframe	Study results and measurements	Comparator no larviciding	Intervention Larviciding	Certainty of the Evidence (Quality of evidence)	Plain language summary
Malaria incidence of habitats >1km2	Odds Ratio 1.97 (Cl 95% 1.39 – 2.81) Based on data from 1,793 participants in 1 studies. (Observational (non-randomized))	230 per 1000 Difference:	370 per 1000 140 more per 1000 (CI 95% 70 more – 230 more)	Very low Due to serious inconsistency, Due to serious imprecision ¹	We are uncertain of the effects on malaria incidence in area where mosquito aquatic habitats are more than 1 km ² .
Parasite prevalence of habitats >1km2	Odds Ratio 1.49 (CI 95% 0.45 – 4.93) Based on data from 3,574 participants in 1 studies. (Observational (non-randomized))	140 per 1000 Difference:	190 per 1000 50 more per 1000 (CI 95% 70 fewer — 300 more)	Very low Due to serious inconsistency, Due to very serious imprecision ²	We are uncertain of the effects on parasite prevalence in area where mosquito aquatic habitats are more than 1 km ² .
Malaria incidence of habitats <1km2	Relative risk 0.2 (CI 95% 0.16 — 0.25) Based on data from 4,649 participants in 1 studies. (Randomized controlled)	230 per 1000 Difference:	50 per 1000 180 fewer per 1000 (CI 95% 190 fewer – 170 fewer)	Moderate Due to serious imprecision ³	Larviciding probably decreases malaria incidence compared to no larviciding in area where mosquito aquatic habitats are less than 1 km ² .
Parasite prevalence of habitats <1km2	Odds Ratio 0.72 (Cl 95% 0.58 — 0.89) (Observational (non- randomized))	120 per 1000 Difference:	90 per 1000 30 fewer per 1000 (CI 95% 50 fewer — 10 fewer)	Low	Larviciding may decrease parasite prevalence compared to no larviciding in area where mosquito aquatic habitats are less than 1 km ²

1. Inconsistency: serious. Imprecision: serious.

2. Inconsistency: serious. Imprecision: very serious.

3. Imprecision: serious.

References

59. Choi L, Majambere S, Wilson AL : Larviciding to prevent malaria transmission. Cochrane Database of Systematic Reviews 2019;(8): Pubmed Journal Website

Clinical Question/ PICO

Population:	Adults and children living in areas with ongoing malaria transmission
Intervention:	Larval habitat manipulation (water management using spillways across streams)

Comparator:

No larval habitat manipulation

1. Risk of Bias: very serious. Inconsistency: no serious. Indirectness: no serious. Imprecision: very serious. Publication bias: no serious.

Clinical Question/ PICO

Population:	Adults and children living in areas with ongoing malaria transmission
Intervention: annual IRS	Larval habitat manipulation (water management using floodgates on a dam across a stream) and
Comparator:	Annual IRS

Outcome Timeframe	Study results and measurements	Comparator IRS	Intervention Larval habitat manipulation and IRS	Certainty of the Evidence (Quality of evidence)	Plain language summary
Clinical malaria incidence	Based on data from: participants in 1 studies. (Observational (non- randomized))	The study did not of participants i baseline, the mear rates were 1304 children in control per 1000 childre villages. Following a decline in malar seen each year in villages (1000, 6 181.8 per 1000 ch to increases in m during the corresp the control	report the number n either arm. At a annual incidence cases per 1000 villages versus 786 n in intervention dam construction, ria incidence was the intervention .36.4, 181.8 and hildren), compared halaria incidence bonding periods in ol villages.	Very low Due to serious risk of bias, due to very serious imprecision ¹	We are uncertain whether using floodgates on a dam as a habitat manipulation water management across streams approach compared to no habitat manipulation in areas with IRS reduced clinical malaria incidence
Malaria parasite prevalence (all ages)	Based on data from: participants in 1 studies. (Observational (non- randomized))	At baseline th participants in the and 299 in the co The parasite intervention villa villages during the year were 17.0 respectively. Howe years after constru- there was gradua	ere were 271 intervention group omparator group, prevalence in ages and control e pre-construction 6% and 18.9%, ever, in subsequent action of the dam, al and significant	Very low Due to serious risk of bias, due to very serious imprecision ²	We are uncertain whether flushing of dams through sluice gates in areas with IRS has an effect on malaria parasite prevalence compared to no flushing

Outcome Timeframe	Study results and measurements	Comparator IRS	Intervention Larval habitat manipulation and IRS	Certainty of the Evidence (Quality of evidence)	Plain language summary
decline in parasite rate (P < 0.0 intervention villages. (Data numbers of participants at follo not provided)		e rate (P < 0.01) in llages. (Data on pants at follow-up ovided)			

1. Risk of Bias: serious. Inconsistency: no serious. Indirectness: no serious. Imprecision: very serious. Publication bias: no serious.

2. Risk of Bias: serious. Inconsistency: no serious. Indirectness: no serious. Imprecision: very serious. Publication bias: no serious.

Clinical Question/ PICO

Population:	Adults and children living in areas with ongoing malaria transmission
Intervention:	Larvivorous fish
Comparator:	no larvivorous fish

Summary

Larvivorous fish versus no larvivorous fish:

Fifteen studies were included in the systematic review. Studies were undertaken in Comoros, Ethiopia, India (three studies), Indonesia, Kenya, Republic of Korea (two studies), Sri Lanka (two studies), Sudan, and Tajikistan (two studies).

Treated aquatic habitats included wells, domestic water containers, fishponds and pools (seven studies); river bed pools below dams (two studies); rice field plots (four studies); and canals (two studies).

No studies reported on clinical malaria, EIR or adult vector densities; 12 studies reported on density of immature stages; and five studies reported on the number of aquatic habitats positive for immature stages of the vector species.

The studies were not suitable for a pooled analysis. It is unknown whether larvivorous fish reduce the density of immature vector stages compared to no larvivorous fish

(unpooled data; 12 studies; very low certainty evidence) Larvivorous fish may reduce the number of larval sites positive for immature vector stages compared to no larvivorous fish

(unpooled data; five studies; low certainty evidence)

Outcome Timeframe	Study results and measurements	Comparator no larvivorous fish	Intervention Larvivorous fish	Certainty of the Evidence (Quality of evidence)	Plain language summary
Density of adult malaria vectors					No studies
Density of immature stages of vectors in aquatic habitats (Quasi- experimental studies)	Based on data from: participants in 12 studies. (Observational (non-randomized))	Not pooled. Variab	le effects reported.	Very low Due to serious inconsistency ¹	No clear evidence whether or not larvivorous fish reduce the density of immature anopheline mosquitoes in water bodies.
Larval sites positive for immature stages of the vectors (Quasi- experimental studies)	Based on data from: participants in 5 studies. (Observational (non- randomized))	Not pooled. Positiv	ve effects reported	Very low	Larvivorous fish may reduce the number of larval sites positive for immature anopheline mosquitoes.

1. Inconsistency: serious.

References

61. Walshe DP, Garner P, Adeel AA, Pyke GH, Burkot TR : Larvivorous fish for preventing malaria transmission. Cochrane Database of Systematic Reviews 2017;(12): Pubmed Journal Website

Clinical Question/ PICO

Population:	Adults and children living in areas with ongoing malaria transmission
Intervention:	Topical repellent
Comparator:	placebo or no topical repellent

Summary

Topical repellent versus placebo or no topical repellent:	It is unknown whether topical repellents have an effect
A total of six RCTs were included in the review. Studies	on clinical malaria caused by P. falciparum
were conducted among residents in Plurinational State	(Risk Ratio: 0.65; 95% CI (0.40–1.07); three studies; very
of Bolivia, Cambodia, Lao People's Democratic Republic	low certainty evidence)
and United Republic of Tanzania, and in specific	Topical repellents may or may not have a protective
populations in Pakistan (refugees) and Thailand (pregnant	effect against P. falciparum parasitaemia
women).	(Risk Ratio: 0.84; 95% CI (0.64–1.12); four studies; low

certainty evidence)

Topical repellents may increase the number of clinical cases caused by *P. vivax* (Risk Ratio: 1.32; 95% CI (0.99–1.76); two studies; low certainty evidence)

Topical repellents may or may not have a protective effect against *P. vivax* parasitaemia (Risk Ratio: 1.07; 95% CI (0.80–1.41); three studies; low certainty evidence)

Outcome Timeframe	Study results and measurements	Comparator placebo or no topical repellent	Intervention Topical repellent	Certainty of the Evidence (Quality of evidence)	Plain language summary
Clinical malaria (P. falciparum)	Relative risk 0.65 (Cl 95% 0.4 – 1.07) Based on data from 4,450 participants in 3 studies.	39 per 1000 Difference:	25 per 1000 14 fewer per 1000 (CI 95% 24 fewer – 2 more)	Very low Due to serious risk of bias, Due to serious imprecision, Due to serious inconsistency ¹	We do not know if topical repellents have an effect on malaria cases caused by P. falciparum. We have very little confidence in the effect estimate. The true effect is likely to be substantially different from the estimate of effect.
Parasitaemia (P. falciparum)	Relative risk 0.84 (CI 95% 0.64 — 1.12) Based on data from 13,310 participants in 4 studies.	15 per 1000 Difference:	12 per 1000 3 fewer per 1000 (CI 95% 6 fewer - 2 more)	Low Due to serious risk of bias, Due to serious imprecision ²	Topical repellents may or may not have a protective effect against P. falciparum parasitaemia. Our confidence in the effect estimate is limited. The true effect may be substantially different from the estimation of the effect.
Clinical malaria (P. vivax)	Relative risk 1.32 (CI 95% 0.99 – 1.76) Based on data from 3,996 participants in 2 studies.	36 per 1000 Difference:	48 per 1000 12 more per 1000 (CI 95% 0 more – 28 more)	Low Due to serious risk of bias, Due to serious imprecision ³	Topical repellents may increase the number of clinical cases caused by P. vivax. Our confidence in the effect estimate is limited. The true effect may be substantially different from the estimation of the effect.
Parasitaemia (P. vivax)	Relative risk 1.07 (Cl 95% 0.8 – 1.41) Based on data from 9,434 participants in 3 studies.	18 per 1000 Difference:	19 per 1000 1 more per 1000 (CI 95% 4 fewer – 7 more)	Low Due to serious risk of bias, Due to serious imprecision ⁴	Topical repellents may or may not have a protective effect against P. vivax parasitaemia Our confidence in the effect estimation is limited. The true effect may be substantially different from the estimation of the effect.

- 1. Risk of Bias: serious. Inconsistency: serious. Imprecision: serious.
- 2. Risk of Bias: serious. Imprecision: serious.
- 3. Risk of Bias: serious. Imprecision: serious.
- 4. Risk of Bias: serious. Imprecision: serious.

References

62. Maia MF, Kliner M, Richardson M, Lengeler C, Moore SJ : Mosquito repellents for malaria prevention. Cochrane Database of Systematic Reviews 2018;(2): Pubmed Journal Website

Clinical Question/ PICO

Population:	Adults and children living in areas with ongoing malaria transmission
Intervention:	Insecticide-treated clothing
Comparator:	placebo or untreated clothing

Summary

Insecticide-treated clothing versus placebo or untreated clothing:	against clinical malaria caused by <i>P. falciparum</i> (Risk Ratio: 0.49; 95% CI (0.29–0.83); two studies; low
Two RCTs were included in the systematic review.	certainty evidence)
Studies were conducted in specific populations in	Insecticide-treated clothing may have a protective effect
Colombia (military personnel) and Pakistan (Afghan	against clinical malaria caused by P. vivax
refugees).	(Risk Ratio: 0.64; 95% CI (0.40-1.01); two studies; low
Insecticide-treated clothing may have a protective effect	certainty evidence)

Outcome Timeframe	Study results and measurements	Comparator placebo or untreated clothing	Intervention Insecticide- treated clothing	Certainty of the Evidence (Quality of evidence)	Plain language summary
Clinical malaria (P. falciparum)	Relative risk 0.49 (CI 95% 0.29 — 0.83) Based on data from 997 participants in 2 studies.	35 per 1000 Difference:	17 per 1000 18 fewer per 1000 (Cl 95% 25 fewer – 6 fewer)	Low Due to serious risk of bias, Due to serious imprecision ¹	Insecticide-treating clothing may have a protective effect against malaria caused by P. falciparum. Our confidence in the effect estimate is limited. The true effect may be substantially different from the estimate of the effect.
Clinical malaria (P. vivax)	Relative risk 0.64 (CI 95% 0.4 — 1.01) Based on data from 997 participants in 2 studies.	116 per 1000 Difference:	74 per 1000 42 fewer per 1000 (CI 95% 69 fewer – 1 more)	Low Due to serious risk of bias, Due to serious imprecision ²	Insecticide-treated clothing may have a protective effect against malaria caused by P. vivax. Our confidence in the effect estimate is limited. The true effect may be substantially different from the estimate of the effect.

1. Risk of Bias: serious. Imprecision: serious.

2. Risk of Bias: serious. Imprecision: serious.

References

62. Maia MF, Kliner M, Richardson M, Lengeler C, Moore SJ : Mosquito repellents for malaria prevention. Cochrane Database of Systematic Reviews 2018;(2): Pubmed Journal Website

Clinical Question/ PICO

Population:	Adults and children living in areas with ongoing malaria transmission
Intervention:	Spatial/airborne repellents
Comparator:	placebo or no malaria prevention intervention

Summary

Spatial/airborne repellents versus placebo or no malaria	It is unknown whether spatial repellents protect against
prevention intervention:	malaria parasitaemia
Two RCTs were included in the systematic review.	(Risk Ratio: 0.24; 95% CI (0.03–1.72); two studies; very
Studies were conducted in China and Indonesia.	low certainty evidence)

Outcome Timeframe	Study results and measurements	Comparator placebo or no malaria prevention intervention	Intervention Spatial/ airborne repellents	Certainty of the Evidence (Quality of evidence)	Plain language summary
Parasitaemia (all species)	Relative risk 0.24 (CI 95% 0.03 — 1.72) Based on data from 6,683 participants in 2 studies.	10 per 1000 Difference:	2 per 1000 8 fewer per 1000 (CI 95% 10 fewer – 8 more)	Very low Due to serious risk of bias, Due to serious imprecision, Due to serious inconsistency ¹	We do not know if spatial repellents protect against malaria. We have very little confidence in the effect estimate. The true effect is likely to be substantially different from the estimate of effect.

1. Risk of Bias: serious. Inconsistency: serious. Imprecision: serious.

References

62. Maia MF, Kliner M, Richardson M, Lengeler C, Moore SJ : Mosquito repellents for malaria prevention. Cochrane Database of Systematic Reviews 2018;(2): Pubmed Journal Website

Clinical Question/ PICO

Population:	Adults and children living in areas with ongoing malaria transmission
Intervention:	Space spraying
Comparator:	no space spraying

Summary

Summary of evidence from systematic review After searching for relevant trials up to 18 April 2018, we identified four studies conducted between 1972 and 2000. Across the four studies, a range of insecticide delivery methods were used, including handheld, vehicle-mounted, and aircraft-mounted spraying equipment. A variety of different insecticides, doses, and spraying times were also used to suit the local environment and the behaviour of the targeted mosquito species.

In three studies, the evidence was considered to be unsuitable for reliably assessing the impact of space spraying on the number of cases of malaria. The remaining study, which took place in a single state in India and covered a combined population of 18,460 people, reported the number of malaria cases in the years preceding and following the introduction of space spraying. The evidence suggested that space spraying led to a decrease in the number of cases of malaria, but as the trial was conducted over 30 years ago and within one state in India, we cannot be certain that these findings are applicable in other areas where malaria occurs. Reliable research in a variety of settings will help to establish whether and when this intervention may be worthwhile.

Across the included studies, the incidence of malaria was the only outcome reported with a valid comparator that could be used to estimate the impact of space spraying. One study reported the monthly incidence of malaria over a four-year period, with at least one year prior and at least two years post-intervention reported (Tewari 1990). The findings of the study suggest that space spraying had an effect on the incidence of malaria. However, the certainty of the evidence is very low, and we cannot be certain that the evidence provided is indicative of the true impact of space spraying on malaria incidence. We do not know if space spraying causes a step change in malaria incidence (1.00, 95% CI 0.51 to 1.92, 1 study, very low-certainty evidence). In addition, we do not know if space spraying causes a change in the slope of malaria incidence over time (RR 0.85, 95% CI 0.79 to 0.91, 1 study, very low-certainty evidence).

Outcome Timeframe	Study results and measurements	Comparator no space spraying	Intervention Space spraying	Certainty of the Evidence (Quality of evidence)	Plain language summary
Malaria cases per month (Instant effect)	Relative risk 1 (Cl 95% 0.51 — 1.92) Based on data from participants in 1 studies. (Observational (non- randomized))	6 per 1000 Difference:	6 per 1000 0 more per 1000 (Cl 95% 3 fewer – 6 more)	Very low Due to serious risk of bias, Due to serious indirectness, Due to serious imprecision ¹	We do not know if space spraying causes an immediate shift in the trend of malaria incidence.
Malaria cases per month (Effect after 12 months follow-up)	Relative risk 0.85 (Cl 95% 0.79 – 0.91) Based on data from participants in 1 studies. (Observational (non- randomized))	6 per 1000 Difference:	1 per 1000 5 fewer per 1000 (Cl 95% 6 fewer - 4 fewer)	Very low Due to serious risk of bias, Due to serious indirectness, Due to serious imprecision ²	We do not know if space spraying causes a change in the slope of malaria incidence over time.

1. Risk of Bias: serious. Indirectness: serious. Imprecision: serious.

2. Risk of Bias: serious. Indirectness: serious. Imprecision: serious.

References

63. Pryce J, Choi L, Richardson M, Malone D : Insecticide space spraying for preventing malaria transmission. Cochrane Database of Systematic Reviews 2018;(11): Pubmed Journal Website

Clinical Question/ PICO

Population:	Adults and children living in areas with ongoing malaria transmission
Intervention:	Screening of windows, ceilings, doors and eaves with untreated material
Comparator:	No house screening

Summary

House screening versus no house screening in areas with risk of malaria:

Six cRCTs met the inclusion criteria, all conducted in sub-Saharan Africa; three randomized by household, two by village, and one by communities. At the time of publishing the review (January 2021), two of the six trials had published results, both of which compared screened houses (without insecticide) to unscreened houses. One trial in Ethiopia assessed screening of windows and doors. Another trial in The Gambia assessed full screening (screening of eaves, doors and windows), as well as screening of ceilings only.

Screening may reduce clinical malaria incidence caused by *Plasmodium falciparum* (rate ratio 0.38, 95% CI 0.18 to 0.82; 1 trial, 184 participants, 219.3 person-years; lowcertainty evidence; Ethiopian study). For malaria parasite prevalence, the point estimate, derived from The Gambia study, was smaller (RR 0.84, 95% CI 0.60 to 1.17; 713 participants, 1 trial; low-certainty evidence), and showed an effect on anaemia (RR 0.61, 95% CI 0.42, 0.89; 705 participants; 1 trial, moderate-certainty evidence).

Screening may reduce the entomological inoculation rate (EIR): both trials showed lower estimates in the intervention arm. In the Gambian trial, there was a mean difference in EIR between the control houses and treatment houses ranging from 0.45 to 1.50 (CIs ranged from -0.46 to 2.41; low-certainty evidence), depending on the study year and treatment arm. The Ethiopian trial reported a mean difference in EIR of 4.57, favouring screening (95% CI 3.81 to 5.33; low-certainty evidence).

Pooled analysis of the trials showed that individuals living in fully screened houses were slightly less likely to sleep under a bed net (RR 0.84, 95% CI 0.65 to 1.09; 2 trials, 203 participants). In one trial, bed net usage was also lower in individuals living in houses with screened ceilings (RR 0.69, 95% CI 0.50 to 0.95; 1 trial, 135 participants).

Outcome Timeframe	Study results and measurements	Comparator No screening	Intervention Screening	Certainty of the Evidence (Quality of evidence)	Plain language summary
Clinical malaria incidence caused by P. falciparum	Relative risk 0.38 (Cl 95% 0.18 — 0.82) Based on data from participants in 1 studies. (Randomized controlled) Follow up: 6 months.	91 per 1000 Difference:	35 per 1000 56 fewer per 1000 (CI 95% 75 fewer – 21 fewer)	Low Due to serious risk of bias, Due to serious imprecision ¹	Screening may reduce clinical P falciparum malaria.
Malaria parasite prevalence	Relative risk 0.84 (CI 95% 0.6 – 1.17) Based on data from 713 participants in 1 studies. ² (Randomized controlled) Follow up: 1 year.	234 per 1000 Difference:	197 per 1000 37 fewer per 1000 (CI 95% 94 fewer – 40 more)	Low Due to serious imprecision ³	Screening may have a small effect on malaria parasite prevalence.
Anaemia (haemoglobin conc <80g/L) prevalence	Relative risk 0.61 (Cl 95% 0.42 – 0.89) Based on data from 705 participants in 1 studies. ⁴ (Randomized controlled) Follow up: 1 year.	211 per 1000 Difference:	128 per 1000 82 fewer per 1000 (CI 95% 122 fewer – 23 fewer	Moderate Due to serious imprecision ⁵	Screening probably reduces anaemia prevalence.

Outcome Timeframe	Study results and measurements	Comparator No screening	Intervention Screening	Certainty of the Evidence (Quality of evidence)	Plain language summary
Entomological Inoculation Rate (EIR)	Based on data from: participants in 2 studies. (Randomized controlled) Follow up: range 6 months to 2 years.	In one study, the r EIR between the of treatment houses to 1.50 (CIs rang 2.41), depending and treatment arm there was a mean 4.57 (95% CI) mean difference in control houses and ranged from 0.45 ged from -0.46 to on the study year ; in a second study, difference in EIR of 3.81 to 5.33).	Low Due to very serious imprecision ⁶	Screening may reduce EIR.

1. Risk of Bias: serious. Imprecision: serious.

2. Systematic review with included studies: Kirby 2009. **Baseline/comparator:** Control arm of reference used for intervention.

3. Imprecision: serious.

4. Systematic review with included studies: Kirby 2009. **Baseline/comparator:** Control arm of reference used for intervention.

5. Imprecision: serious.

6. Imprecision: very serious. the CIs around the mean estimates are very wide..