U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

PDQ Cancer Information Summaries [Internet]. Bethesda (MD): National Cancer Institute (US); 2002-.

Cover of PDQ Cancer Information Summaries

PDQ Cancer Information Summaries [Internet].

Show details

Acupuncture (PDQ®)

Health Professional Version

.

Published online: February 6, 2019.

Created: .

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the use of acupuncture in the treatment of people with cancer. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.

This summary is reviewed regularly and updated as necessary by the PDQ Integrative, Alternative, and Complementary Therapies Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Overview

This cancer information summary provides an overview of the use of acupuncture as a treatment for individuals with cancer or cancer-related disorders. The summary includes a brief history of acupuncture practice, a review of laboratory and animal studies, the results of clinical observations and trials, and possible side effects of acupuncture therapy. Information presented in some sections of the summary can also be found in tables located at the end of those sections.

This summary contains the following key information:

Many of the medical and scientific terms used in this summary are hypertext linked (at first use in each section) to the NCI Dictionary of Cancer Terms, which is oriented toward nonexperts. When a linked term is clicked, a definition will appear in a separate window.

Reference citations in some PDQ cancer information summaries may include links to external websites that are operated by individuals or organizations for the purpose of marketing or advocating the use of specific treatments or products. These reference citations are included for informational purposes only. Their inclusion should not be viewed as an endorsement of the content of the websites, or of any treatment or product, by the PDQ Integrative, Alternative, and Complementary Therapies Editorial Board or the National Cancer Institute.

General Information

Acupuncture, a complementary therapy used in symptom management,[1-4] is used clinically to manage cancer-related symptoms, treat side effects induced by anticancer therapies, boost blood cell count, and enhance lymphocyte and natural killer (NK) cell activity. In cancer treatment, its primary use is symptom management; commonly treated symptoms are cancer pain,[4,5] chemotherapy-induced nausea and vomiting (N/V),[6,7] and other symptoms that affect a patient’s quality of life, including weight loss, anxiety, depression, insomnia, poor appetite, fatigue, xerostomia, hot flashes, chemotherapy-induced peripheral neuropathy, gastrointestinal symptoms (constipation and diarrhea), and postoperative ileus.[8-10] Acupuncture is acceptable and safe for children.[11,12]

Cancer patients are receptive to receiving acupuncture for symptom control. A 2018 cross-sectional study of breast cancer survivors showed that an equal percentage of patients preferred acupuncture versus medication for pain management.[13] The most common barriers to using acupuncture for these patients were lack of knowledge about acupuncture, concerns about lack of insurance coverage, cost, and difficulty finding qualified acupuncturists. For acupuncture to become part of the standard of care for cancer patients, further education about acupuncture, improved insurance coverage, and accessibility to qualified acupuncturists are needed.[14]

More than 40 states and the District of Columbia have laws regulating acupuncture practice. The National Certification Commission for Acupuncture and Oriental Medicine offers national certification examinations for practitioners of acupuncture and traditional Chinese medicine (TCM) (www.nccaom.org); most, but not all, states require this certification. More than 50 schools and colleges of acupuncture and Oriental medicine operate in the United States, many of which offer master’s-level programs and are accredited by or have been granted candidacy status by the Accreditation Commission for Acupuncture and Oriental Medicine (ACAOM). ACAOM standards for a master's-level degree require a 3-year program (approximately 2,000 hours of study) for acupuncture and a 4-year program for Oriental medicine, which includes acupuncture and herbal therapy (www.ACAOM.org). In recent years, some schools have begun to offer programs for Doctor of Acupuncture and Oriental Medicine with an additional 1,200 hours of clinical-based doctoral training. Some Western medical training, including the study of anatomy, physiology, and clean-needle technique is included in the curriculums of these schools. Postgraduate training programs in medical acupuncture for physicians also exist. In the United States, training to be a licensed acupuncturist is regulated according to individual state law. Because the educational and licensing requirements for acupuncture practice vary from state to state, one should inquire from each state board of acupuncture (or other relevant board) for particular information (www.nccaom.org). Third-party reimbursements also vary from state to state. Some insurance companies cover acupuncture or limited acupuncture treatment. Federal payers such as Medicare and Medicaid do not generally reimburse for acupuncture treatment.

Acupuncture has been practiced in China and other Asian countries for more than 4,000 years.[15-17] In China, acupuncture is part of a TCM system of traditional medical knowledge and is practiced along with other treatment modalities such as herbal medicine, tui na (massage and acupressure), mind/body exercise (e.g., qigong and tai chi), and dietary therapy.[18,19] In the United States, several different acupuncture styles are practiced in addition to TCM. These include Japanese acupuncture (e.g., meridian therapy), English acupuncture (e.g., five-element or traditional acupuncture), French acupuncture (e.g., French energetic acupuncture), Korean acupuncture (e.g., constitutional acupuncture), and American medical acupuncture. Most of these are derived from ancient Chinese medical philosophy and practices. All are based on the view that the human body must be perceived and treated as a whole and as part of nature; health is the result of harmony among bodily functions and between the body and nature, and disease occurs when this harmony is disrupted. TCM therapeutic interventions, including acupuncture, are used to restore the state of harmony.

Acupuncture is closely associated with Chinese meridian theory. According to this theory, there are 12 primary meridians, or channels, and eight additional meridians, each following a particular directional course along the body. A vital energy known as qi flows through these meridians and participates in the homeostatic regulation of various bodily functions. Along the meridians are approximately 360 points that serve as both pathognomonic signs of disorder and as loci for acupuncture treatments.[17,20] When the normal flow of energy over a meridian is obstructed (e.g., as a result of tissue injury or a tumor), pain or other symptoms result. Chinese medicine proposes that the purpose of acupuncture therapy is to normalize energy flow, thereby relieving the symptoms by stimulating specific sites (acupuncture points) on the meridians.[21] In acupuncture treatment, stainless steel needles, usually ranging from 0.22 mm to 0.25 mm in diameter, are inserted into relevant acupuncture points to stimulate the affected meridians. A needling sensation known as de qi sensation occurs, in which the patient may feel heaviness, numbness, or tingling during an acupuncture treatment. Length and frequency of treatment vary according to the condition being treated. An acupuncture treatment course for cancer symptoms or treatment of side effects is often given as multiple sessions per week.[22] Needles are typically left in place for 15 to 30 minutes after insertion, and their effects may be augmented with manual or electrical stimulation and/or heat (e.g., moxibustion or heat lamps).

Classical techniques of acupuncture include needling, moxibustion, and cupping. Acupressure, using fingers or mechanical devices to apply pressure on acupuncture points is based on the same principles as acupuncture. Moxibustion is a method in which an herb (Artemisia vulgaris) is burned above the skin or on an acupuncture point for the purpose of warming it to alleviate symptoms. Cupping promotes blood circulation and stimulates acupuncture points by creating a vacuum or negative pressure on the surface of the skin.[21] During the past several decades, various new auxiliary devices have been developed. Acupuncture devices such as electroacupuncture (EA) machines and heat lamps are commonly used to enhance the effects of acupuncture.

In addition to classical acupuncture techniques, other techniques have been developed and are sometimes used in cancer management. These include trigger point acupuncture, laser acupuncture, acupuncture point injection, and techniques focusing on particular regions of the body: auricular acupuncture, scalp acupuncture, face acupuncture, hand acupuncture, nose acupuncture, and foot acupuncture. Of these, auricular acupuncture is the most commonly used.

In clinical practice, most acupuncturists in the United States follow the traditional theories and principles of Chinese medicine. A 2017 survey of 472 licensed acupuncturists in the San Francisco Bay area reported that 77% were caring for patients with cancer, and 44% have training that is specific to the needs of patients with cancer.[23]

Although acupuncture has been practiced for millennia, it has come under rigorous scientific investigation only recently. In 1976, the U.S. Food and Drug Administration (FDA) classified acupuncture needles as investigational devices (class III) (www.fda.gov), resulting in a number of research studies on the effectiveness and safety of acupuncture.[24] In November 1994, the Office of Alternative Medicine (the predecessor of the National Center for Complementary and Integrative Health) at the National Institutes of Health (NIH) sponsored an NIH-FDA workshop on the status of acupuncture needle usage. Two years later, the FDA reclassified acupuncture needles as medical devices (class II) without, however, giving specific indications for their use.[25] In 1997, NIH held a Consensus Development Conference on acupuncture to evaluate its safety and efficacy. The 12-member panel concluded that promising research results showing the efficacy of acupuncture in certain conditions have emerged and that further research is likely to uncover additional areas in which acupuncture intervention will be useful. The panel stated that “there is clear evidence that needle acupuncture treatment is effective for postoperative and chemotherapy N/V.” It also stated that there are “a number of other pain-related conditions for which acupuncture may be effective as an adjunct therapy, an acceptable alternative, or as part of a comprehensive treatment program,” and it agreed that further research is likely to uncover additional areas in which acupuncture intervention will be useful.[24]

These actions by the FDA and NIH have resulted in the establishment of a number of active programs of research into the mechanisms and efficacy of acupuncture, much of which is, or is potentially, relevant to cancer management. The most extensively investigated aspect of these mechanisms has been the effect of acupuncture on pain management. The NIH Consensus Panel concluded that “acupuncture can cause multiple biological responses,” local and distal, “mediated mainly by sensory neurons…within the central nervous system.” Acupuncture “may also activate the hypothalamus and the pituitary gland, resulting in a broad spectrum of systemic effects,” including “alterations in peptides, hormones and neurotransmitters and the regulation of blood flow.”[24] Recent studies show the effect of acupuncture on chronic inflammatory pain.[26,27] Evidence suggests that acupuncture operates through the autonomic nervous system to balance the sympathetic and parasympathetic systems and suggests that the anti-inflammatory effects of acupuncture are mediated by its electrophysiologic effects on neurotransmitters, cytokines, and neuropeptides.[1,27-36] Many studies provide evidence that opioid peptides are released during acupuncture and that acupuncture analgesia is mediated by the endogenous opioid system.[37,38]

Although the mechanism of acupuncture is not fully understood, it has been proposed that beneficial results are mediated by changes in neurohormones and cytokines. Animal research suggests that acupuncture achieves its anesthetic effect by stimulating nerves in the muscle, which then relay the signal to the spinal cord, midbrain, and hypothalamus-pituitary system, ultimately triggering release of neurotransmitters and hormones, such as endorphins and enkephalins.[39,40] Laboratory and animal cancer studies have also explored the mechanisms of acupuncture through the activation and modulation of the immune system. Previous animal and human studies have suggested that acupuncture worked through immunomodulation, with significant changes in cytokines including interleukin (IL)-1, IL-6, IL-8, IL-10, and tumor necrosis factor-alpha (TNF-alpha).[41-45] These studies were limited by small sample size and occasional conflicting results. Acupuncture has been associated with significant changes in proinflammatory cytokines including IL-1-beta, IL-6, IL-17, and TNF-alpha.[41-46] In addition, studies showed that acupuncture needle manipulation stimulated surrounding connective tissues and sensory nerves [47] and affected adenosine-mediated peripheral sensory modulation.[48]

Acupuncture treatment points are located by using standard anatomic landmarks and comparative anatomy. EA is the most commonly used treatment intervention; a few studies have used moxibustion.[49] These studies show that acupuncture may boost animal immune function by enhancing NK cell and lymphocyte activity.[49-51] According to one animal study, acupuncture may be a useful adjuvant for suppressing chemotherapy-induced emesis.[52]

Although several studies published in China examined the effect of acupuncture on the human immune system,[8,34,37,53-56] most cancer-related human clinical studies of acupuncture evaluated its effect on patient quality of life. These investigations mainly focused on cancer symptoms or cancer treatment–related symptoms, predominantly cancer pain [10,28,57-61] and chemotherapy-induced N/V.[30,32,62-70] Studies have also evaluated the effect of acupuncture on radiation-induced xerostomia (dry mouth), proctitis, dysphonia, weight loss, cough, thoracodynia, hemoptysis, fever, esophageal obstruction, poor appetite, night sweats, hot flashes in women and men,[71] dizziness, fatigue, anxiety, and depression in cancer patients.[8-10,72-75] The evidence from most of these clinical studies is inconclusive, despite their positive results; either poor research design or incompletely described methodologic procedures limit their value.[76] There is controversy about the most appropriate control for acupuncture, which also limits the interpretability of the results of clinical trials.[77] The positive results of the studies on chemotherapy-induced N/V, which benefit from scientifically sound research designs, are the most convincing.

References

  1. Wong R, Sagar CM, Sagar SM: Integration of Chinese medicine into supportive cancer care: a modern role for an ancient tradition. Cancer Treat Rev 27 (4): 235-46, 2001. [PubMed: 11545543]
  2. Pan CX, Morrison RS, Ness J, et al.: Complementary and alternative medicine in the management of pain, dyspnea, and nausea and vomiting near the end of life. A systematic review. J Pain Symptom Manage 20 (5): 374-87, 2000. [PubMed: 11068159]
  3. Norheim AJ, Fønnebø V: Attitudes to the contribution of placebo in acupuncture--a survey. Complement Ther Med 10 (4): 202-9, 2002. [PubMed: 12594970]
  4. Sellick SM, Zaza C: Critical review of 5 nonpharmacologic strategies for managing cancer pain. Cancer Prev Control 2 (1): 7-14, 1998. [PubMed: 9765761]
  5. Charlton JE: Cancer pain management. Cah Anesthesiol 41 (6): 621-4, 1993. [PubMed: 8287304]
  6. Ezzo J, Vickers A, Richardson MA, et al.: Acupuncture-point stimulation for chemotherapy-induced nausea and vomiting. J Clin Oncol 23 (28): 7188-98, 2005. [PubMed: 16192603]
  7. Ezzo JM, Richardson MA, Vickers A, et al.: Acupuncture-point stimulation for chemotherapy-induced nausea or vomiting. Cochrane Database Syst Rev (2): CD002285, 2006. [PubMed: 16625560]
  8. Xia YQ, Zhang D, Yang CX, et al.: An approach to the effect on tumors of acupuncture in combination with radiotherapy or chemotherapy. J Tradit Chin Med 6 (1): 23-6, 1986. [PubMed: 3016416]
  9. Johnstone PA, Polston GR, Niemtzow RC, et al.: Integration of acupuncture into the oncology clinic. Palliat Med 16 (3): 235-9, 2002. [PubMed: 12047000]
  10. Niemtzow RC: Integration of complementary disciplines into the oncology clinic. Part I. Acupuncture. Curr Probl Cancer 24 (4): 184-93, 2000 Jul-Aug. [PubMed: 11001324]
  11. Kemper KJ, Sarah R, Silver-Highfield E, et al.: On pins and needles? Pediatric pain patients' experience with acupuncture. Pediatrics 105 (4 Pt 2): 941-7, 2000. [PubMed: 10742351]
  12. Chokshi SK, Ladas EJ, Taromina K, et al.: Predictors of acupuncture use among children and adolescents with cancer. Pediatr Blood Cancer 64 (7): , 2017. [PubMed: 28176457]
  13. Bao T, Li SQ, Dearing JL, et al.: Acupuncture versus medication for pain management: a cross-sectional study of breast cancer survivors. Acupunct Med 36 (2): 80-87, 2018. [PMC free article: PMC6264909] [PubMed: 29440043]
  14. Bao T, Li Q, DeRito JL, et al.: Barriers to Acupuncture Use Among Breast Cancer Survivors: A Cross-Sectional Analysis. Integr Cancer Ther : 1534735418754309, 2018. [PMC free article: PMC6142082] [PubMed: 29338443]
  15. Liu G, Hyodo A, eds.: Fundamentals of Acupuncture & Moxibustion. Tianjin, China: Tianjin Science & Technology Translation & Publishing Corp, 1994.
  16. Cheng X, ed.: Chinese Acupuncture and Moxibustion. Beijing, China: Foreign Languages Press, 1987.
  17. O'Connor J, Bensky D, eds.: Acupuncture: A Comprehensive Text. Chicago, Ill: Eastland Press, 1981.
  18. Lao L: Traditional Chinese medicine. In: Jonas WB, Levin JS, eds.: Essentials of Complementary and Alternative Medicine. Philadelphia, Pa: Lippincott Williams & Wilkins, 1999, pp 216-233.
  19. Ergil KV: China's traditional medicine. In: Micozzi MS, ed.: Fundamentals of Complementary and Alternative Medicine. New York, NY: Churchill Livingstone, 1996, pp 185-223.
  20. Stux G: History of acupuncture. In: Stux G, Pomeranz B: Acupuncture: Textbook and Atlas. New York, NY: Springer-Verlag, 1987, pp 36-7.
  21. Lao L: Acupuncture techniques and devices. J Altern Complement Med 2 (1): 23-5, 1996. [PubMed: 9395637]
  22. Lu W, Rosenthal DS: Acupuncture for cancer pain and related symptoms. Curr Pain Headache Rep 17 (3): 321, 2013. [PMC free article: PMC4008096] [PubMed: 23338773]
  23. Abrams D, McCulloch M, Cohen M, et al.: A Survey of Licensed Acupuncturists in the San Francisco Bay Area: Prevalence of Treating Oncology Patients. Integr Cancer Ther 17 (1): 92-98, 2018. [PMC free article: PMC5950947] [PubMed: 28056563]
  24. NIH Consensus Conference. Acupuncture. JAMA 280 (17): 1518-24, 1998. [PubMed: 9809733]
  25. Acupuncture needle. In: Office of the Federal Register: Electronic Code of Federal Regulations Title 21 [Database]. U.S. National Archives and Records Administration and U.S. Government Publishing Office, 2018, Sec. 880.5580. Available online. Last accessed March 7, 2018.
  26. Lao L, Zhang G, Wei F, et al.: Electro-acupuncture attenuates behavioral hyperalgesia and selectively reduces spinal Fos protein expression in rats with persistent inflammation. J Pain 2 (2): 111-7, 2001. [PubMed: 14622832]
  27. Zijlstra FJ, van den Berg-de Lange I, Huygen FJ, et al.: Anti-inflammatory actions of acupuncture. Mediators Inflamm 12 (2): 59-69, 2003. [PMC free article: PMC1781596] [PubMed: 12775355]
  28. Dang W, Yang J: Clinical study on acupuncture treatment of stomach carcinoma pain. J Tradit Chin Med 18 (1): 31-8, 1998. [PubMed: 10437260]
  29. Moyad MA, Hathaway S, Ni HS: Traditional Chinese medicine, acupuncture, and other alternative medicines for prostate cancer: an introduction and the need for more research. Semin Urol Oncol 17 (2): 103-10, 1999. [PubMed: 10332924]
  30. Dundee JW, Ghaly RG, Fitzpatrick KT, et al.: Acupuncture prophylaxis of cancer chemotherapy-induced sickness. J R Soc Med 82 (5): 268-71, 1989. [PMC free article: PMC1292129] [PubMed: 2666662]
  31. Hoskin PJ, Hanks GW: The management of symptoms in advanced cancer: experience in a hospital-based continuing care unit. J R Soc Med 81 (6): 341-4, 1988. [PMC free article: PMC1291628] [PubMed: 2457110]
  32. Dundee JW, Ghaly RG, Fitzpatrick KT, et al.: Optimising antiemesis in cancer chemotherapy. Br Med J (Clin Res Ed) 294 (6565): 179, 1987. [PMC free article: PMC1245189] [PubMed: 3109556]
  33. Harris PF, Remington PL, Trentham-Dietz A, et al.: Prevalence and treatment of menopausal symptoms among breast cancer survivors. J Pain Symptom Manage 23 (6): 501-9, 2002. [PubMed: 12067774]
  34. Zhou RX, Huang FL, Jiang SR, et al.: The effect of acupuncture on the phagocytic activity of human leukocytes. J Tradit Chin Med 8 (2): 83-4, 1988. [PubMed: 3412017]
  35. Petti F, Bangrazi A, Liguori A, et al.: Effects of acupuncture on immune response related to opioid-like peptides. J Tradit Chin Med 18 (1): 55-63, 1998. [PubMed: 10437265]
  36. Johnstone PA, Bloom TL, Niemtzow RC, et al.: A prospective, randomized pilot trial of acupuncture of the kidney-bladder distinct meridian for lower urinary tract symptoms. J Urol 169 (3): 1037-9, 2003. [PubMed: 12576840]
  37. He CJ, Gong KH, Xu QZ, et al.: Effects of microwave acupuncture on the immunological function of cancer patients. J Tradit Chin Med 7 (1): 9-11, 1987. [PubMed: 3613646]
  38. Mayer DJ: Biological mechanisms of acupuncture. Prog Brain Res 122: 457-77, 2000. [PubMed: 10737077]
  39. Han JS: Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci 26 (1): 17-22, 2003. [PubMed: 12495858]
  40. Berman B: A 60-year-old woman considering acupuncture for knee pain. JAMA 297 (15): 1697-707, 2007. [PubMed: 17440146]
  41. Joos S, Schott C, Zou H, et al.: Immunomodulatory effects of acupuncture in the treatment of allergic asthma: a randomized controlled study. J Altern Complement Med 6 (6): 519-25, 2000. [PubMed: 11152056]
  42. Petti FB, Liguori A, Ippoliti F: Study on cytokines IL-2, IL-6, IL-10 in patients of chronic allergic rhinitis treated with acupuncture. J Tradit Chin Med 22 (2): 104-11, 2002. [PubMed: 12125480]
  43. Jeong HJ, Kim BS, Oh JG, et al.: Regulatory effect of cytokine production in asthma patients by SOOJI CHIM (Koryo Hand Acupuncture Therapy). Immunopharmacol Immunotoxicol 24 (2): 265-74, 2002. [PubMed: 12066852]
  44. Wu HG, Zhou LB, Pan YY, et al.: Study of the mechanisms of acupuncture and moxibustion treatment for ulcerative colitis rats in view of the gene expression of cytokines. World J Gastroenterol 5 (6): 515-517, 1999. [PMC free article: PMC4688795] [PubMed: 11819501]
  45. Jeong HJ, Hong SH, Nam YC, et al.: The effect of acupuncture on proinflammatory cytokine production in patients with chronic headache: a preliminary report. Am J Chin Med 31 (6): 945-54, 2003. [PubMed: 14992546]
  46. Arrieta Ó, Hernández-Pedro N, Fernández-González-Aragón MC, et al.: Retinoic acid reduces chemotherapy-induced neuropathy in an animal model and patients with lung cancer. Neurology 77 (10): 987-95, 2011. [PMC free article: PMC3171957] [PubMed: 21865574]
  47. Langevin HM, Bouffard NA, Badger GJ, et al.: Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: evidence for a mechanotransduction-based mechanism. J Cell Physiol 207 (3): 767-74, 2006. [PubMed: 16511830]
  48. Goldman N, Chen M, Fujita T, et al.: Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 13 (7): 883-8, 2010. [PMC free article: PMC3467968] [PubMed: 20512135]
  49. Wu P, Cao Y, Wu J: Effects of moxa-cone moxibustion at Guanyuan on erythrocytic immunity and its regulative function in tumor-bearing mice. J Tradit Chin Med 21 (1): 68-71, 2001. [PubMed: 11360545]
  50. Liu LJ, Guo CJ, Jiao XM: [Effect of acupuncture on immunologic function and histopathology of transplanted mammary cancer in mice] Zhongguo Zhong Xi Yi Jie He Za Zhi 15 (10): 615-7, 1995. [PubMed: 8704430]
  51. Sato T, Yu Y, Guo SY, et al.: Acupuncture stimulation enhances splenic natural killer cell cytotoxicity in rats. Jpn J Physiol 46 (2): 131-6, 1996. [PubMed: 8832330]
  52. Lao L, Zhang G, Wong RH, et al.: The effect of electroacupuncture as an adjunct on cyclophosphamide-induced emesis in ferrets. Pharmacol Biochem Behav 74 (3): 691-9, 2003. [PubMed: 12543236]
  53. Wu B, Zhou RX, Zhou MS: [Effect of acupuncture on interleukin-2 level and NK cell immunoactivity of peripheral blood of malignant tumor patients] Zhongguo Zhong Xi Yi Jie He Za Zhi 14 (9): 537-9, 1994. [PubMed: 7866002]
  54. Wu B, Zhou RX, Zhou MS: [Effect of acupuncture on immunomodulation in patients with malignant tumors] Zhongguo Zhong Xi Yi Jie He Za Zhi 16 (3): 139-41, 1996. [PubMed: 9208533]
  55. Wei Z: Clinical observation on therapeutic effect of acupuncture at zusanli for leukopenia. J Tradit Chin Med 18 (2): 94-5, 1998. [PubMed: 10437222]
  56. Ye F, Chen S, Liu W: Effects of electro-acupuncture on immune function after chemotherapy in 28 cases. J Tradit Chin Med 22 (1): 21-3, 2002. [PubMed: 11977512]
  57. Li QS, Cao SH, Xie GM, et al.: Combined traditional Chinese medicine and Western medicine. Relieving effects of Chinese herbs, ear-acupuncture and epidural morphine on postoperative pain in liver cancer. Chin Med J (Engl) 107 (4): 289-94, 1994. [PubMed: 8088198]
  58. Alimi D, Rubino C, Leandri EP, et al.: Analgesic effects of auricular acupuncture for cancer pain. J Pain Symptom Manage 19 (2): 81-2, 2000. [PubMed: 10766574]
  59. He JP, Friedrich M, Ertan AK, et al.: Pain-relief and movement improvement by acupuncture after ablation and axillary lymphadenectomy in patients with mammary cancer. Clin Exp Obstet Gynecol 26 (2): 81-4, 1999. [PubMed: 10459443]
  60. Filshie J, Redman D: Acupuncture and malignant pain problems. Eur J Surg Oncol 11 (4): 389-94, 1985. [PubMed: 4065352]
  61. Wen HL: Cancer pain treated with acupuncture and electrical stimulation. Mod Med Asia 13 (2): 12-6, 1977.
  62. Shen J, Wenger N, Glaspy J, et al.: Electroacupuncture for control of myeloablative chemotherapy-induced emesis: A randomized controlled trial. JAMA 284 (21): 2755-61, 2000. [PubMed: 11105182]
  63. Dundee JW, Yang J, McMillan C: Non-invasive stimulation of the P6 (Neiguan) antiemetic acupuncture point in cancer chemotherapy. J R Soc Med 84 (4): 210-2, 1991. [PMC free article: PMC1293184] [PubMed: 2027146]
  64. Dundee JW, Yang J: Prolongation of the antiemetic action of P6 acupuncture by acupressure in patients having cancer chemotherapy. J R Soc Med 83 (6): 360-2, 1990. [PMC free article: PMC1292684] [PubMed: 2380964]
  65. Aglietti L, Roila F, Tonato M, et al.: A pilot study of metoclopramide, dexamethasone, diphenhydramine and acupuncture in women treated with cisplatin. Cancer Chemother Pharmacol 26 (3): 239-40, 1990. [PubMed: 2357773]
  66. Dundee JW, McMillan CM: Clinical uses of P6 acupuncture antiemesis. Acupunct Electrother Res 15 (3-4): 211-5, 1990. [PubMed: 1982043]
  67. Dundee JW, Ghaly RG, Fitzpatrick KT, et al.: Acupuncture to prevent cisplatin-associated vomiting. Lancet 1 (8541): 1083, 1987. [PubMed: 2883410]
  68. Price H, Lewith G, Williams C: Acupressure as an antiemetic in cancer chemotherapy. Complementary Medical Research 5 (2): 93-4, 1991.
  69. Stannard D: Pressure prevents nausea. Nurs Times 85 (4): 33-4, 1989 Jan 25-31. [PubMed: 2928174]
  70. McMillan C, Dundee JW, Abram WP: Enhancement of the antiemetic action of ondansetron by transcutaneous electrical stimulation of the P6 antiemetic point, in patients having highly emetic cytotoxic drugs. Br J Cancer 64 (5): 971-2, 1991. [PMC free article: PMC1977487] [PubMed: 1834156]
  71. Lee MS, Kim KH, Shin BC, et al.: Acupuncture for treating hot flushes in men with prostate cancer: a systematic review. Support Care Cancer 17 (7): 763-70, 2009. [PubMed: 19224253]
  72. Porzio G, Trapasso T, Martelli S, et al.: Acupuncture in the treatment of menopause-related symptoms in women taking tamoxifen. Tumori 88 (2): 128-30, 2002 Mar-Apr. [PubMed: 12088252]
  73. Zhang ZH: Effect of acupuncture on 44 cases of radiation rectitis following radiation therapy for carcinoma of the cervix uteri. J Tradit Chin Med 7 (2): 139-40, 1987. [PubMed: 3448396]
  74. Yao W: Prof. Sheng Canruo's experience in acupuncture treatment of throat diseases with yan si xue. J Tradit Chin Med 20 (2): 122-5, 2000. [PubMed: 11039000]
  75. Feng RZ: Relief of oesophageal carcinomatous obstruction by acupuncture. J Tradit Chin Med 4 (1): 3-4, 1984. [PubMed: 6565880]
  76. Garcia MK, McQuade J, Haddad R, et al.: Systematic review of acupuncture in cancer care: a synthesis of the evidence. J Clin Oncol 31 (7): 952-60, 2013. [PMC free article: PMC3577953] [PubMed: 23341529]
  77. Moffet HH: Sham acupuncture may be as efficacious as true acupuncture: a systematic review of clinical trials. J Altern Complement Med 15 (3): 213-6, 2009. [PubMed: 19250001]

History

The generally accepted history of acupuncture/moxibustion (known as zhen jiu) is part of traditional Chinese medicine (TCM), an indigenous, coherent system of medicine that has been practiced in China for thousands of years. The history of acupuncture/moxibustion in China can be traced back archeologically at least 4,000 years, when bian (stone needles) were in use. During the long history of recorded practice, acupuncture has been applied to many disorders. The earliest written medical text, the ancient classic Huang Di Nei Jing (Yellow Emperor's Inner Classic, second century BC), records nine types of needles and their therapeutic functions.

The dissemination of acupuncture and TCM to other regions dates back centuries; first to Korea and Japan and then to other Asian countries.[1] The use of acupuncture in Europe was documented in the middle of the 16th century.[2] The relatively brief history of acupuncture in the United States can be traced back about 200 years, when Dr. Franklin Bache published a report in the North American Medical and Surgical Journal on his use of acupuncture to treat lower back pain.[3] However, until the 1970s, when U.S.–Chinese diplomatic ties were resumed, the practice of acupuncture in this country was mainly limited to Chinatowns.[4]

For centuries, Chinese acupuncturists treated cancer symptomatically. Ancient literature and acupuncture textbooks classify cancer as a Zhi syndrome or blood stasis condition and document acupuncture treatment principles and methods.[5-7] Since the development of modern conventional medicine, acupuncture has primarily been used clinically as an adjunct to conventional cancer treatment.

References

  1. Lu GD, Needham J: A history of forensic medicine in China. Med Hist 32 (4): 357-400, 1988. [PMC free article: PMC1139911] [PubMed: 3059100]
  2. Peacher WG: Adverse reactions, contraindications and complications of acupuncture and moxibustion. Am J Chin Med (Gard City N Y) 3 (1): 35-46, 1975. [PubMed: 1091133]
  3. Bache F: Cases illustrative of the remedial effects of acupuncture. North American Medical and Surgical Journal 1: 311-21, 1826.
  4. Ergil KV: China's traditional medicine. In: Micozzi MS, ed.: Fundamentals of Complementary and Alternative Medicine. New York, NY: Churchill Livingstone, 1996, pp 185-223.
  5. Maciocia G: The Practice of Chinese Medicine: The Treatment of Diseases with Acupuncture and Chinese Herbs. New York, NY: Churchill Livingstone, 1994.
  6. Maciocia G: Obstetrics and Gynecology in Chinese Medicine. New York, NY: Churchill Livingstone, 1997.
  7. Kaptchuk T: The Web That Has No Weaver: Understanding Chinese Medicine. New York, NY: Congdon & Weed, 1983.

Laboratory/Animal/Preclinical Studies

At least seven animal studies investigating the effects of acupuncture in cancer or cancer-related conditions have been reported in the scientific literature.[1-5] Two of the studies were conducted in China, one of which was published in Chinese with an English abstract. One study was conducted in Japan, one in Sweden, and one in the United States. Four of the studies were ex vivo laboratory investigations using blood or tissue samples;[1-3,5] the remaining study was an animal behavioral study testing the effect of acupuncture on chemotherapy-induced nausea and vomiting.[4]

The four ex vivo studies suggested that acupuncture is useful in anticancer therapy either by actively stimulating immune activity or by preventing chemotherapy suppression of immune activity.[1-3,5]

In a study involving normal rats, electroacupuncture (EA) (1 Hz, 5–20 V, 1-millisecond pulse width, 2 hours) applied at the point Zu-Sanli (S36) for 2 hours daily on 3 consecutive days enhanced the cytotoxicity of splenic natural killer (NK) cells compared with a stimulation of a nonacupuncture control point in the abdominal muscle.[3]

Another study found that NK cell activity and T-lymphocyte transformation rate were increased in a mouse model of transplanted mammary cancer compared with a control (P < .05) after eight sessions of acupuncture and moxibustion.[2]

A study involving tumor-bearing mice (sarcoma S180) using moxibustion to warm the acupuncture point Guanyuan (CV4) once a day for 10 days found significantly increased production of erythrocytes, compared with a nontreatment control.[1]

The fourth ex vivo study used a rat model to investigate the effect of EA on nerve growth factor (NGF), which is associated with polycystic ovary syndrome (PCOS). Women with PCOS have an increased risk of endometrial cancer and other diseases. Repeated EA treatments (12 treatments administered over 30 days) in PCO rats significantly lowered the concentrations of NGF in the ovaries, compared with untreated PCO rats.[5]

A study of cyclophosphamide-induced emesis in a ferret behavioral model used acupuncture as an adjunct therapy in treating the emetic side effects of chemotherapy. EA at 100 Hz, 1.5 V, for 10 minutes in combination with subeffective doses of antiemetics such as ondansetron (0.04 mg/kg), droperidol (0.25 mg/kg), and metoclopramide (2.24 mg/kg) significantly reduced the total number of emetic episodes by 52%, 36%, and 73%, respectively (P < .01), in this ferret model.[4]

A rat model has been established by injecting AT-3.1 prostate cancer cells into the tibia of the adult male Copenhagen rat, which closely mimics prostate cancer-induced bone cancer pain.[6] The cancer-caused pain was treated with 10 Hz EA for 30 minutes a day at acupuncture point gallbladder 30 (GB30) from days 14 to 18 after cancer-cell injection. For sham control, EA needles were inserted into GB30 without stimulation. Thermal hyperalgesia, a decrease in paw withdrawal latency to a noxious thermal stimulus, and mechanical hyperalgesia, a decrease in paw withdrawal pressure threshold, were measured at baseline and 20 minutes after EA. EA significantly attenuated the hyperalgesia compared with sham control. Moreover, the EA inhibited up-regulation of preprodynorphin mRNA and dynorphin as well as interleukin-1beta (IL-1beta) and its mRNA compared with sham control. Intrathecal injection of antiserum against dynorphin A (1–17) and IL-1 receptor antagonist significantly inhibited the cancer-induced hyperalgesia. These data suggests that EA alleviates bone cancer pain at least in part by suppressing spinal dynorphin and IL-1beta expression.[7,8]

Another cutaneous cancer pain model has been established by injecting B16-BL6 melanoma cells into the plantar region of one hind paw of C57BL/6 mice. A single EA treatment showed significant analgesia on day 8 but not on day 20. EA treatments once every other day starting on day 8 showed analgesia at day 20, but EA starting on day 16 did not. The results indicate that EA exerts antihyperalgesic effects on early stage but not on late stage cutaneous cancer pain.[9] These animal studies support the clinical use of EA in the treatment of cancer pain.

The findings of these studies suggest that acupuncture may be effective in treating cancer-related symptoms and cancer treatment–related disorders and that acupuncture may be able to activate immune functions [1-3] and regulate the autonomic nervous system.[4,5] Only one study reported a decrease in tumor volume in animals treated with acupuncture compared with control animals; however, the scientific value of this report is limited because of insufficient information about the research methodology.[2]

References

  1. Wu P, Cao Y, Wu J: Effects of moxa-cone moxibustion at Guanyuan on erythrocytic immunity and its regulative function in tumor-bearing mice. J Tradit Chin Med 21 (1): 68-71, 2001. [PubMed: 11360545]
  2. Liu LJ, Guo CJ, Jiao XM: [Effect of acupuncture on immunologic function and histopathology of transplanted mammary cancer in mice] Zhongguo Zhong Xi Yi Jie He Za Zhi 15 (10): 615-7, 1995. [PubMed: 8704430]
  3. Sato T, Yu Y, Guo SY, et al.: Acupuncture stimulation enhances splenic natural killer cell cytotoxicity in rats. Jpn J Physiol 46 (2): 131-6, 1996. [PubMed: 8832330]
  4. Lao L, Zhang G, Wong RH, et al.: The effect of electroacupuncture as an adjunct on cyclophosphamide-induced emesis in ferrets. Pharmacol Biochem Behav 74 (3): 691-9, 2003. [PubMed: 12543236]
  5. Stener-Victorin E, Lundeberg T, Waldenström U, et al.: Effects of electro-acupuncture on nerve growth factor and ovarian morphology in rats with experimentally induced polycystic ovaries. Biol Reprod 63 (5): 1497-503, 2000. [PubMed: 11058557]
  6. Zhang RX, Liu B, Wang L, et al.: Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain 118 (1-2): 125-36, 2005. [PubMed: 16154703]
  7. Zhang RX, Li A, Liu B, et al.: Electroacupuncture attenuates bone cancer pain and inhibits spinal interleukin-1 beta expression in a rat model. Anesth Analg 105 (5): 1482-8, table of contents, 2007. [PubMed: 17959986]
  8. Zhang RX, Li A, Liu B, et al.: Electroacupuncture attenuates bone-cancer-induced hyperalgesia and inhibits spinal preprodynorphin expression in a rat model. Eur J Pain 12 (7): 870-8, 2008. [PMC free article: PMC3107701] [PubMed: 18221900]
  9. Mao-Ying QL, Cui KM, Liu Q, et al.: Stage-dependent analgesia of electro-acupuncture in a mouse model of cutaneous cancer pain. Eur J Pain 10 (8): 689-94, 2006. [PubMed: 16376128]

Human/Clinical Studies

Effect of Acupuncture on Immune Function

There has been limited research, mostly performed in China, evaluating the effect of acupuncture on immune system function in cancer patients, suggesting that acupuncture improves immune function.[1-7]

Effect of Acupuncture on Cancer Pain

Seven clinical studies of acupuncture as a treatment for cancer-related pain have been reported in the English language (refer to Table 1).[8-13] Two studies were randomized controlled trials (RCTs), with one study conducted in China and one in France.[9,13] Four studies were case series, with one each from England, France, Hong Kong, and the United States.[8,10-12]

One randomized trial compared classical Chinese acupuncture, acupuncture point injection with freeze-dried human transfer factor, and conventional analgesic treatment in patients with gastric cancer pain.[9] The investigators reported an equivalent analgesic effect among the three groups observed after 2 months of treatment; however, the conventionally treated group experienced significantly superior analgesia compared with both acupuncture treatment groups during the first 10 days of treatment. The researchers reported that the patients in both acupuncture treatment groups also experienced improved quality of life (QOL) and a decrease in the side effects of chemotherapy, in addition to analgesia.

Also, a nonrandomized, single-arm, observational clinical study evaluated the effect of auricular acupuncture in 20 cancer patients who were still experiencing pain after treatment with analgesics.[10] While patients continued their analgesic medication, auricular acupuncture needles were embedded in ear acupuncture points, chosen according to clinical symptoms and electrodermal response, and were left in place until they fell out. In some cases, the needles remained in place for 35 days, while in others they fell out after 5 days. Pain intensity was measured by a nurse on the visual analog scale (VAS) on day 0 and day 60, and the data were analyzed using a t test. The results showed that pain intensity decreased or remained stable after auricular acupuncture in all patients, with a significant average pain intensity decrease of 33 mm (P < .001). The same investigators later reported a larger (N = 90) randomized, blinded, controlled trial in which cancer pain intensity was significantly decreased (by 36%) in an auricular acupuncture treatment group, in comparison with control groups (by 2%, acupuncture at placebo points or auricular seeds placed at placebo points) after 2 months of treatment (P < .001).[13]

Although most of these studies were positive and demonstrated the effectiveness of acupuncture in cancer pain control, the findings have limited significance because of methodologic weaknesses such as small sample sizes, an absence of patient blinding to treatment in most cases, varying acupuncture treatment regimens, a lack of standard outcome measurements, and an absence of adequate randomization. A 2015 Cochrane systematic review of five RCTs reported benefits of acupuncture in reducing pancreatic cancer pain, pain from late-stage cancer, and chronic cancer-related neuropathic pain; the study found no difference between real and sham electroacupuncture (EA) for ovarian cancer pain.[14] However, because of small sample sizes and a high risk of bias, the authors concluded, “there is insufficient evidence to judge whether acupuncture is effective in treating cancer pain in adults.”[14] In addition, a 2016 systematic review and meta-analysis of 1,639 participants with cancer-related pain in 20 RCTs with a high risk of bias showed that acupuncture alone was not superior to conventional drug therapy, although acupuncture plus drug therapy appeared to be superior to drug therapy alone.[15] However, this study was limited by the poor quality of combination therapy trials. Further investigations into the effects of acupuncture on cancer pain using rigorous scientific methodology are warranted.

Table 1. Clinical Studies of Acupuncture for Cancer-Related Paina

Reference/Sample Size Type of StudyType of PainTreatment Groupsb Treatment DurationConcurrent Therapy Used (Yes/No/ Unknown)cLevel of Evidence Score and Resultsd
[9] (N = 48) RCT Gastric cancer painGroup 1, acupuncture (N = 16) and acupuncture point injection of freeze-dried human transfer factor (N = 16); Group 2, conventional analgesics (N = 16)2 moNo1iiC; in long-term treatment, equal or better analgesia than conventional drugse
[13] (N = 90)RCTCancer painGroup 1, auricular acupuncture (N = 28); Group 2, acupuncture at placebo points in ear or auricular seeds fixed at placebo points with adhesive (N = 51) 2 moYes (analgesics and co-analgesics, including tricyclic antidepressants and antiepileptics)1sC; pain intensity decreased by 36% at 2 monthsf
[10] (N = 20)Nonconsecutive case seriesCancer painGroup 1, auricular acupuncture (N = 20); Control, noneUnknownYes (analgesics)3iiiC; average pain intensity decreased by 43%, using VAS (0–100 mm)g
[11] (N = 183)Nonconsecutive case seriesCancer-related painGroup 1, acupuncture (N = 183); Control, noneUnknownYes (analgesics)3iC; 95 (52%) “significantly helped”
[12] (N = 29)Nonconsecutive case seriesCancer painGroup 1, EA (N = 29); Control, noneUnknownYes (analgesics)3iC; pain reduced; injection of analgesics reduced or no longer required
[8] (N = 5)Best case seriesCancer painGroup 1, auricular EA (N = 5); Control, noneUnknownUnknown4; symptoms improved

EA = electroacupuncture; N = number of patients; RCT = randomized controlled trial; VAS = visual analog scale.

aRefer to text and the NCI Dictionary of Cancer Terms for additional information and definition of terms.

bNumber of patients treated plus number of patient controls may not equal number of patients enrolled; number of patients enrolled equals number of patients initially recruited/considered by the researchers who conducted a study; number of patients treated equals number of enrolled patients who were given the treatment being studied AND for whom results were reported.

cConcurrent therapy for symptoms treated (not cancer).

dStrongest evidence reported that the treatment under study has activity or otherwise improves the well-being of cancer patients. For information about levels of evidence analysis and an explanation of the level of evidence scores, refer to Levels of Evidence for Human Studies of Integrative, Alternative, and Complementary Therapies.

eP < .05, acupuncture treatment versus conventional analgesics.

fP < .0001, acupuncture versus placebo.

gP < .00001, day 60 after start of acupuncture treatment versus day 0.

Effect of Acupuncture on Cancer Treatment–Related Side Effects

Pain

Acupuncture for postsurgical pain

Five RCTs published in English have addressed the use of acupuncture for pain related to cancer treatment, mostly postsurgical pain (refer to Table 2). One RCT of 106 cancer patients who experienced postthoracotomy pain showed no statistical difference in the real acupuncture (RA) group compared with the sham acupuncture (SA) group in patients' pain scores measured by the Brief Pain Inventory at the 30-, 60-, and 90-day follow-up.[16] The efficacy of the unique intradermal needles used in this study was questionable.

Another smaller RCT (N = 27) showed a trend of lower VAS pain scores in patients who received EA when compared with patients who received SA on postoperative days 2 and 6; and a statistically significant lower cumulative dose of patient controlled analgesia on postoperative day 2 (P < .05).[17] However, this study was limited by its small sample size.

One RCT (N = 93) compared acupuncture with massage therapy and usual care in controlling postoperative pain, nausea, vomiting, and depressive moods.[18] This study showed that postoperative acupuncture and massage in addition to usual care significantly improved pain control when compared with usual care alone.

Another study showed that in cancer patients with chronic pain or dysfunction as a result of neck dissection, four weekly acupuncture treatments significantly reduced pain and improved function compared with standard care alone.[19] Additionally, a study of 80 patients with breast cancer showed that when compared with usual care alone, acupuncture significantly improved postoperative pain and range of movement.[20] However, with no sham therapy group in these two studies, it is difficult to determine how much of the improvement is because of the placebo effect, and whether RA needles and professionally trained acupuncturists and massage therapists are required in the intervention.

Acupressure has been shown to be efficacious in reducing procedural pain. Two RCTs showed that acupressure at LI4 and HT7 significantly reduced patients’ pain and anxiety.[21 ,22]

Table 2. Summary of Randomized Controlled Trials of Acupuncture for Cancer Treatment–Related Pain Reliefa

Reference/Sample SizeType of PainTreatment GroupsbTreatment DurationConcurrent Therapy Used (Yes/No/ Unknown)cLevel of Evidence Score and Resultsd
[16] (N = 106)Postthoracotomy painGroup 1, intradermal acupuncture (N = 52); Group 2, SA (N = 54)1 moUnknown1sC; no difference between the two groups.
[17] (N = 25)Postthoracotomy painGroup 1, EA (N = 13); Group 2, SA (N = 12)7 dYes, oral or intravenous antibiotics1sC; lower cumulative dose of patient-controlled analgesic morphine used on postoperative day 2 in EA groupe
[18] (N = 45)Postoperative painGroup 1, acupuncture and massage (N = 93); Group 2, usual care (N = 45)2 dMassage1iiC; the treatment group reported less painf
[19] (N = 58)Pain and dysfunction in patients with cancer and a history of neck dissectionGroup 1, acupuncture (N = 28); Group 2, usual care (N = 30) Weekly for 4 wkUnknown1iiC; Constant-Murley scores improved more in the acupuncture group (adjusted difference between groups = 11.2; 95% CI, 3.0–19.3)g
[20] (N = 80)Postoperative pain in breast cancer patients Group 1, acupuncture (N = 48); Group 2, usual care (N = 32) Postoperative d 3, 5, 7 and day of dischargeUnknown1iiC; the acupuncture group had improved postoperative painh and range of movementi
[21] (N = 77)BMAB painGroup 1, acupressure (N = 37); Group 2, sham acupressure (N = 40)During the BMAB (11–12 min)Yes, local analgesics1sC; acupressure reduced severe pain compared with sham acupressure
[22] (N = 90)BMABGroup 1, acupressure at LI4 (N = 30); Group 2, acupressure at HT7 (N = 30); Group 3, sham acupressure (N = 30)2 min after the start and end of biopsyYes, lidocaine1sC; reduced anxiety and pain in treatment group

BMAB = Bone marrow aspiration and biopsy; CI = confidence interval; EA = electroacupuncture; N = number of patients; SA = sham acupuncture.

aRefer to text and the NCI Dictionary of Cancer Terms for additional information and definition of terms.

bNumber of patients treated plus number of patient controls may not equal number of patients enrolled; number of patients enrolled equals number of patients initially recruited/considered by the researchers who conducted a study; number of patients treated equals number of enrolled patients who were given the treatment being studied AND for whom results were reported.

cConcurrent therapy for symptoms treated (not cancer).

dStrongest evidence reported that the treatment under study has activity or otherwise improves the well-being of cancer patients. For information about levels of evidence analysis and an explanation of the level of evidence scores, refer to Levels of Evidence for Human Studies of Integrative, Alternative, and Complementary Therapies.

eP < .05, acupuncture versus placebo.

fP = .038, acupuncture and massage versus usual care.

gP = .008, acupuncture versus usual care.

hP ≤ .01, acupuncture versus usual care.

iP < .001, acupuncture versus usual care.

Acupuncture for aromatase inhibitor-associated musculoskeletal symptoms

A 2012 meta-analysis of 29 trials with 17,922 patients found that RA is more beneficial than both SA and no acupuncture in the treatment of chronic pain, with a modest effect size of 0.23 (95% confidence interval [CI], 0.13–0.33).[23] However, none of the patients in these trials had pain due to cancer or cancer therapies. Recently published meta-analyses have examined outcomes from RCTs evaluating the effects of acupuncture on aromatase inhibitor-associated musculoskeletal symptoms (AIMSS) in breast cancer survivors with a history of stage I, II, or III nonmetastatic hormone receptor–positive breast cancer currently taking an aromatase inhibitor.

Three meta-analyses [24-26] identified five studies [27-31] that randomly assigned participants to receive SA or RA. Four of the studies were conducted in the United States and one was conducted in Australia. Two studies used EA [29,30] and three studies used manual acupuncture (MA).[27,28,31] Three of these studies were sham-controlled; one randomly assigned patients to receive either acupuncture followed by observation or vice versa, and one was a three-arm study where participants were randomly assigned to SA, EA, or wait-list control (WLC). All studies had relatively small sample sizes ranging from 19 to 67.

All studies included in the meta-analyses [24-26] classified changes in measures of joint pain and stiffness as primary outcomes. Participant symptom improvement was assessed by using self-reported measures for pain, and pain interference and stiffness at baseline and at specified intervals during and after the intervention. Results from these meta-analyses were not definitive and suggested further research needs to be conducted in this area.

Further extending the literature supporting the efficacy of acupuncture in treating AIMSS, an RCT was conducted using 226 participants (SWOG-S1200 [NCT01535066]) randomly assigned to three groups (MA, SA, and WLC) and found improvements in joint pain after treatment when compared with SA and WLC.[31] These findings are of uncertain clinical significance because the magnitude of difference in the primary outcome measure between groups (MA vs. SA) was less than the amount that was predetermined as being clinically meaningful by the researchers. However, these findings are consistent with results from existing observational studies showing the safety and feasibility of acupuncture in treating pain.

Table 3. Clinical Studies of Acupuncture for Aromatase Inhibitor-Induced Musculoskeletal Symptomsa

Reference/Sample SizeType of StudyTreatment GroupsbTreatment DurationcConcurrent Therapy Used (Yes/No/ Unknown)dLevel of Evidence Score and Resultse
[31] (N = 226)RCTGroup 1, RA (N = 110); Group 2, SA (N = 59); Group 3, WLC (N = 57)Twice weekly for 6 wk, then once weekly for the following 6 wk for a total of 12 wkYes, non-opioid analgesics1sC
[27] (N = 38)RCTGroup 1, RA (N = 20); Group 2, SA (N = 18)Twice weekly for 6 wkYes, non-opioid analgesics1sC; RA significantly reduced AIMSS more than did SA
[28] (N = 47)RCTGroup1, RA (N = 23); Group 2, SA (park device) (N = 24) Weekly acupuncture or SA for 8 wkUnknown1sC; no significant difference between two groups
[29] (N = 29)Pilot studyGroup 1, real EA (N = 14); Group 2 sham EA (N = 15)Twice weekly for 6 wkYes, non-opioid analgesics1sC; no significant differences in outcome measures between two groups

AIMSS = aromatase inhibitor-induced musculoskeletal symptoms; EA = electroacupuncture; N = number of patients; RA = real acupuncture; RCT = randomized controlled trial; SA = sham acupuncture; WLC = wait-list control.

aRefer to text and the NCI Dictionary of Cancer Terms for additional information and definition of terms.

bNumber of patients treated plus number of patient controls may not equal number of patients enrolled; number of patients enrolled equals number of patients initially recruited/considered by the researchers who conducted a study; number of patients treated equals number of enrolled patients who were given the treatment being studied AND for whom results were reported.

c Represents primary outcome analysis time point; certain studies may have an extended intervention period.

d Concurrent therapy for symptoms treated (not cancer).

eStrongest evidence reported that the treatment under study has activity or otherwise improves the well-being of cancer patients. For information about levels of evidence analysis and an explanation of the level of evidence scores, refer to Levels of Evidence for Human Studies of Integrative, Alternative, and Complementary Therapies.

Nausea and vomiting

Chemotherapy-induced nausea and vomiting

Of all the investigated effects of acupuncture on cancer-related or chemotherapy-related symptoms and disorders, the positive effect of acupuncture on chemotherapy-induced nausea and vomiting (N/V) is the most convincing, as demonstrated by the consistency of the results of a variety of clinical study types, including RCTs, nonrandomized trials, prospective consecutive case series, and retrospective studies (refer to Table 4). Consistent with the findings from clinical studies of acupuncture on N/V due to other causes (i.e., postoperative N/V and morning sickness), these studies showed acupuncture to be effective in the treatment of chemotherapy-induced N/V.

A 2013 systematic review of literature on acupuncture in cancer care screened 2,151 publications and identified 41 RCTs studying the effect of using acupuncture to treat eight cancer treatment–related symptoms (pain, nausea, hot flashes, fatigue, radiation-induced xerostomia, prolonged postoperative ileus, anxiety/mood disorders, and sleep disturbance). The review concluded that acupuncture is an appropriate adjunctive treatment for chemotherapy-induced N/V (CINV), but additional studies are needed because most RCTs had unclear bias or a high risk of bias.[32]

In 2005, a comprehensive meta-analysis of 11 RCTs (N = 1,247) evaluating the effect of acupuncture-point stimulation in controlling CINV showed that acupuncture-point stimulation significantly reduced the proportion of acute vomiting (relative risk, 0.82; 95% CI, 0.69–0.99, P = .04),[33] although the meta-analysis did not show that acupuncture reduced the mean number of acute emetic episodes or acute or delayed nausea severity compared with control.

The trials in the meta-analysis were published between 1987 and 2003, and the sample sizes ranged from ten patients in the smallest trial [34] to 747 patients in the largest trial.[35] Among the ten trials that reported a chemotherapy regimen, all patients received moderate to high emetogenic chemotherapy. Eight of the trials used 5-HT3-receptor antagonist, ondansetron antiemetic regimen. The other three trials used methotrexate alone, methotrexate with prednisone, or methotrexate with dopaminergic antagonists as the antiemetic regimen.[33] None of the antiemetic regimens contained aprepitant because the trials all predated this drug.

A meta-analysis of acupuncture in N/V is the most comprehensive summary of clinical research on the role of acupuncture-point stimulation in controlling CINV. It found that acupuncture-point stimulation decreases the proportion of patients who experience acute chemotherapy-induced vomiting and concurred with the previous systemic review and meta-analysis.[36,37] It suggested that acupressure may relieve chemotherapy-induced nausea, even though the studies were limited by lack of an effective control arm to rule out the placebo effect. It also suggested differences among acupuncture-point stimulation modalities, with invasive-point stimulation to be more effective than noninvasive-point stimulation in reducing acute CINV.[33] It has since been cited multiple times by review articles and oncology practice guidelines.[38-40]

The acupuncture point specificity is worth mentioning because most of the earlier acupuncture CINV trials used the PC6 acupuncture point and showed positive results. A well-designed, randomized, placebo-controlled trial published in 2014 showed that K1 acupoint acustimulation combined with antiemetics did not prevent cisplatin-induced or oxaliplatin-induced nausea in 103 liver cancer patients who underwent a transarterial chemoembolization (TACE) procedure.[41] A single-blind, randomized, controlled trial in 2017 showed that transcutaneous electrical stimulation at P6, LI4, and ST36 acupoints did not significantly alleviate CINV associated with TACE, when compared with placebo in patients with liver cancer.[42] EA at P6, LI4, and ST36 points did, however, reduce anorexia scores more than SA.

A 2016 RCT showed that among 48 breast cancer patients receiving chemotherapy, patients randomly assigned to the auricular acupressure group (ear seed placed on point zero, stomach, brainstem, shenmen, and cardia) had significantly less intense and less frequent N/V in acute and delayed phases compared with the control group that had no auricular acupressure.[43] This study is limited by its small sample size and lack of placebo control. However, it describes an additional noninvasive method to control CINV that may deserve further investigation.

Fewer studies have been done on acupuncture effects on pediatric oncology patients. A 2018 RCT of 165 pediatric patients receiving chemotherapy with high emetogenic potential showed that acupressure bands at PC6 point were safe but did not improve CINV when compared with placebo wrist bands.[44]

Radiation-induced nausea and vomiting

Acupuncture has also been used to relieve radiation-induced N/V. In one randomized study, patients who were randomly assigned to receive either verum or SA experienced fewer episodes of N/V than did those who received standard care.[45]

Table 4. Clinical Studies of Acupuncture for Nausea and Vomitinga

Reference/Sample Size Type of StudyTreatment GroupsbTreatment DurationConcurrent TherapycLevel of Evidence Scored and Results
[46] (N = 104) RCTGroup 1, acupuncture (N = 37); Group 2, mock electrostimulation (N = 33); Group 3, no needling (N = 34)5 dYes (prochlorperazine, lorazepam, and diphenhydramine)1iiC; less N/V in EA groupe
[34,47,48] (N = 10)RCT Group 1, EA (N = 10); Group 2, sham EA (crossover study) (N = 10)UnknownYes (metoclopramide)1iiC; significantly less N/V than controlf
[49] (N = 100)RCTGroup 1, surface electrodes (N = 27); Group 2, rubber electrodes (N = 11); Group 3, crossover study (N = 14); Group 4, transcutaneous electrical stimulation (N = 24)5 dYes (metoclopramide, thiethylperazine, prochlorperazine, cyclizine, lorazepam, and steroid)1iiC; 75% achieved considerable benefitg
[50] (N = 16)RCT Group 1, ondansetron plus transcutaneous electrical stimulation (N = 16); Group 2, crossover treatment ondansetron only (N = 16) 5 dYes (ondansetron)1iiC; symptom-free patient days: 58.8%h
[51] (N = 53)RCT Group 1, acupressure (N = 38); Group 2, crossover to acupressure at a sham point (N = 38)UnknownYes (antiemetics)1sC; 55% reduction in N/Vi
[52] (N = 80)RCT Group 1, acupuncture (N = 41); noninvasive placebo acupuncture (N = 39)UnknownYes (ondansetron)1sC; no additional effect for the prevention of acute N/V was observed in high-dose chemotherapyj
[35] (N = 739)RCT Group 1, bilateral acupressure bands (N = 233) and transcutaneous electrical stimulation bands (N = 234); Group 2, no bands (N = 233); Group 3, not evaluable (N = 39)5 dYes (5-HT3 receptor antagonist, prochlorperazine, and/or others)1iiC; less N/V in treatment groups than in controlk
[44] (N = 165)RCTGroup 1, real acupressure bands (N = 83); Group 2, sham bands (N = 82)Up to 7 d after chemotherapyYes (cisplatin, cyclophosphamide, ifosfamide, anthracycline, antiemetics)1sC
[53] (N = 142)RCTGroup 1, acupuncture + vitamin B6 PC6 point injection (N = 48); Group 2, vitamin B6 (N = 46); Group 3, acupuncture (N = 48)3 wkYes (diazepam, diphenhydramine, cimetidine, and granisetron)1iiC; fewer emesis episodes
[54] (N = 36) RCTGroup 1, acupressure (N = 17); Group 2, control (N = 19)5 dYes (antiemetics)1iiC; significantly lower N/V
[41] (N = 103)RCTGroup 1, acustimulation at K1 acupoint (N = 51); Group 2, electrostimulation at placebo point on heel (N = 52)5 dYes (tropisetron)1iiC
[45] (N = 277)RCTGroup 1, acupuncture (N = 109); Group 2, SA (N = 106); Group 3, standard care (N = 62)Six treatmentsYes (antiemetics)1sC; less nausea
[55] (N = 160)RCTGroup 1, acupressure P6 (active) (N = 53); Group 2, acupressure S13 (placebo) (N = 53); Group 3, usual care (N = 54)10 dYes (anthracycline, cyclophosphamide, and an antiemetic)1iiC; decreased delayed N/V for acupressure

EA = electroacupuncture; N = number of patients; N/V = nausea and vomiting; RCT = randomized controlled trial; SA = sham acupuncture.

aRefer to text and the NCI Dictionary of Cancer Terms for additional information and definition of terms.

bNumber of patients treated plus number of patient controls may not equal number of patients enrolled; number of patients enrolled equals number of patients initially considered by the researcher who conducted a study; number of patients treated equals number of enrolled patients who were given the treatment being studied AND for whom results were reported; historical control subjects are not included in number of patients enrolled.

cConcurrent therapy for symptoms treated (not cancer).

dStrongest evidence reported that the treatment under study has activity or improves the well-being of cancer patients. For information about levels of evidence analysis and an explanation of the level of evidence scores, refer to Levels of Evidence for Human Studies of Integrative, Alternative, and Complementary Therapies.

eP < .001, low-frequency EA at classical antiemetic acupuncture points daily versus minimal needling at control points with sham EA versus no adjunct needling.

fP < .001, EA versus sham EA.

gP < .001, surface electrodes versus rubber electrodes.

hP < .00059.

iP < .02, acupressure versus acupressure at a sham point.

jP < .05, acupuncture versus noninvasive placebo acupuncture.

kP < .05, acupressure and acustimulation wrist bands versus no treatment.

Vasomotor symptoms

Some studies have reported that acupuncture may be effective in reducing vasomotor symptoms among postmenopausal women with breast cancer and prostate cancer patients receiving androgen-deprivation therapy.[56-62]

Six RCTs have studied the role of acupuncture in reducing hot flashes in breast cancer survivors.

In 2007, one study reported results from a randomized, sham-controlled trial on the effect of acupuncture in treating breast cancer survivors who experienced three or more hot flashes per day.[56] The investigators reported that the mean number of hot flashes per day at week 6 changed from 8.7 to 6.2 in the RA arm, and from 10.0 to 7.6 in the SA arm. However, the difference between the RA group and the SA group was not statistically significant (P = .3). When patients in the SA group crossed over to receive RA, their hot flash frequency further reduced from 7.6 to 5.8. The reduction in hot flashes in all patients persisted during the 6 months of follow-up (RA arm, 6.1 per day; SA arm, 6.8 per day). On the basis of fewer hot flashes in both groups, the authors concluded that acupuncture reduced hot-flash frequency, although the difference between the RA and SA groups was not statistically significant.[56]

In 2009, one study reported another randomized SA-controlled trial on the effect of acupuncture in treating women with breast cancer who suffered from hot flashes after receiving tamoxifen for at least 3 months.[63] Fifty-nine women were randomly assigned to either 15 sessions (5 weeks biweekly followed by 5 weeks weekly) of RA or SA. The authors reported that at the end of the treatment period, the mean number of daytime hot flashes was reduced significantly from 9.5 to 4.7 (P = .001) in the RA group and from 12.3 to 11.7 (P = .382) in the SA group. At 12 weeks follow-up, further reduction was observed in the RA group (from 4.7 to 3.2) but not in the SA group (from 11.7 to 12.1). The difference between the RA group and SA group was statistically significant (P < .001). The authors concluded that acupuncture provided effective relief from hot flashes in women with breast cancer who suffered from hot flashes while taking tamoxifen.[63] The evidence generated from these two trials suggests that acupuncture effectively decreases hot-flash frequency, although it is not clear whether it is superior to SA.

Another clinical trial compared the effects of EA with hormonal therapy in breast cancer survivors with vasomotor symptoms; in 19 of 27 women who completed 12 weeks of EA treatment, the number of hot flashes was significantly reduced from 9.6 per day to 4.3 per day. The improvement persisted at the 12-month follow up.[64] In the hormonal treatment group, the median number of hot flashes dropped from 6.6 at baseline to 0 at week 12. Although hot flashes decreased less in the EA group than in the hormonal treatment group, health-related QOL improved at least to the same extent. It suggests that EA could be further evaluated as treatment for women with breast cancer and climacteric complaints, particularly since hormonal treatment is no longer recommended for breast cancer survivors.[64]

In 2010, another RCT compared the effect of acupuncture with venlafaxine in treating vasomotor symptoms in breast cancer patients suffering from more than 13 hot flashes per week.[58] Changes in hot flash frequency from baseline and at 3-, 6-, 9- and 12-month follow-up were used as the primary outcome. Fifty patients were randomly assigned to 12 weeks (biweekly for 4 weeks, followed by weekly for 8 weeks) of acupuncture versus daily venlafaxine (37.5 mg for 1 week, then 75 mg for 11 weeks). The investigators observed a significant reduction in hot flash frequency and severity in both groups. In addition, 2 weeks after treatments were stopped, patients randomly assigned to venlafaxine reported increased hot-flash frequency, whereas the acupuncture group remained at a low level of hot flashes. There was no significant difference between the acupuncture arm and the venlafaxine arm. There were 18 reported adverse events (i.e., nausea, dizziness, headache) in the venlafaxine arm and none in the acupuncture arm. The authors concluded that acupuncture appears to be as effective as venlafaxine and is a safe and durable treatment option for breast cancer patients experiencing vasomotor symptoms.[58]

In 2013, a study reported the results of a three-arm RCT (N = 94) comparing RA (N = 31) with SA (N = 29) and usual care alone (N = 34) in reducing hot flashes in breast cancer survivors. In the acupuncture group, 16 (52%) patients experienced a significant reduction in hot flashes compared with 7 (24%) in the SA group (P < .05). There was also a statistically positive effect on sleep when RA was compared with SA. Importantly, the researchers measured the plasma estradiol level and determined that there was not a correlation between symptoms improvement and an increase in estradiol level.[65]

In 2014, a study reported the results of a two-arm RCT (N = 47) on the effect of acupuncture in reducing AIMSS and hot flashes as one of the secondary end points. When compared with baseline, acupuncture significantly improved hot-flash severity, frequency, and function. SA significantly improved the Hot Flash Related Daily Interference Scale only. However, there was no significant difference between the two groups.[66]

These trials once again confirmed that acupuncture is safe. They showed that acupuncture reduced hot flashes significantly when compared with baseline, although the benefit of RA versus SA was not clear.

A 2015 systematic review of acupuncture to control hot flashes in cancer patients showed that in all eight studies included in the review, acupuncture resulted in significant improvement from the baseline, and three studies showed RA was significantly better than SA in different aspects of hot flashes. However, none of the studies were rated with a low risk of bias.[67] A 2016 meta-analysis of 12 RCTs published before April 2015 on the efficacy of acupuncture or EA on breast cancer survivors suffering from hot flashes failed to show a favorable effect of acupuncture on reducing the frequency of hot flashes when compared with control groups such as SA, hormone therapy, antidepressants, or relaxation intervention.[68] The authors explained that this finding may be due to heterogeneity of the studies, small sample size of the studies, and the underlying methodological issues with some studies. Another 2016 systematic review of 12 RCTs (including eight in the aforementioned meta-analysis) found that all RCTs showed the effect of acupuncture when compared with no acupuncture. However, only two of the six RCTs comparing RA with SA showed significant benefit of acupuncture over placebo. The other studies showed that acupuncture was no better than hormone therapy, venlafaxine, or relaxation controls.[69] Consequently, there is insufficient evidence supporting or refuting using acupuncture to treat hot flashes. Further studies are needed.

A study published in 2015 that used EA in the treatment of hot flashes randomly assigned 120 breast cancer survivors who were suffering from hot flashes at least twice daily to one of four of the following arms: EA, SA, gabapentin (GP), and placebo pills (PP) for 8 weeks.[70] Unlike other acupuncture efficacy trials, however, the primary end point was the change in hot flash composite scores (HFCS) between SA and PP at week 8, with secondary end points including posttreatment comparisons of all groups at different time points and examination of treatment durability at week 24. It showed that SA produced significantly greater reductions in HFCS than did PP by week 8, indicating a greater placebo effect with SA. Although all arms experienced HFCS reductions, SA produced significantly better results than did both GP and PP interventions (EA, −7.4; SA, −5.9; GP, −5.2; and PP, −3.4), compared with baseline scores. In addition, SA had a smaller nocebo effect than PP, as evidenced by the significantly higher percentage of reported adverse events for PP (20.0%) compared with SA (3.1%). Another intriguing finding is the more-durable effect in HFCS reductions produced at week 24 (16 weeks posttreatment) with both EA and SA treatments (EA, −8.5; SA, −6.1) than with GP (GP, −2.8), suggesting that both types of acupuncture may elicit underlying physiologic changes not induced by pharmacologic intervention. On the other hand, the effect size of EA compared with SA was small at week 8 (Cohen’s d, 0.21) but got bigger at week 24 (Cohen’s d, 0.31), suggesting EA may produce additional or longer-lasting physiological effects than would SA.[70]

A 2016 pragmatic RCT (N = 190) that compared individualized acupuncture plus enhanced self-care (as described in an information booklet provided to all patients) with enhanced self-care alone showed that the combination therapy is superior to self-care alone in reducing hot flash scores at the end of treatment, at the 3-month follow-up visit, and at the 6-month follow-up visit.[71][Level of evidence: 1iiC] In addition, this highly impactful study also showed that acupuncture significantly improved patients’ QOL without any serious adverse effects.[71] It used the standard traditional Chinese medicine acupuncture approach, which first identified menopausal syndromes according to Maciocia’s recommendations and consequently chose individualized acupoints in addition to three common acupoints: SP6, LI11, and CV4.[71] This study provides solid evidence to support the use of acupuncture to reduce hot flashes and improve breast cancer survivors’ QOL. However, further research is needed to understand the mechanisms of how acupuncture may have reduced hot flashes.

Table 5. Summary of Randomized Controlled Trials of Acupuncture for Hot Flashes in Breast Cancer Patientsa

Reference/Sample SizeTreatment GroupsbTreatment DurationConcurrent Therapy (Yes/No/Unknown)cLevel of Evidence Scored
[71] (N = 190)Group 1, RA and enhanced self-care (N = 85); Group 2, enhanced self-care (N = 105)12 wkYes, HT1iiC
[56] (N = 72) Group 1, RA (N = 42); Group 2, SA (N = 30)4 wkYes, aromatase inhibitors, SSRIs, tamoxifen 1sC; RA was associated with 0.8 fewer hot flashes per day than SA at 6 wk, but the difference did not reach statistical significance.
[63] (N = 59) Group 1, RA (N = 30); Group 2, SA (N = 29)10 wkYes, tamoxifen1sC; during the treatment period, mean number of day and night hot flashes was significantly reduced by almost 60% from baseline in the acupuncture group, and was further reduced by 30% both day and night during the next 12 wk. Kupperman index was reduced by 44% from baseline to the end of the treatment period in the acupuncture group, and largely maintained 12 wk after treatment ended.
[64] (N = 45) Group 1, EA (N = 27); Group 2 HT (N = 18)24 moYes, estrogen/progesterone/tamoxifen 1iiC; the median number of hot flashes/24 hr decreased from 9.6 at baseline to 4.3 at 12 wk of treatment in the EA groupe, and decreased from 6.6 at baseline to 0 in the HT group.
[58] (N = 50)Group 1, RA (N = 25); Group 2, venlafaxine (N = 25)12 wkYes, tamoxifen or arimidex, HT1iiC; acupuncture was as effective as venlafaxine.
[65] (N = 94) Group 1, RA (N = 31); Group 2, SA (N = 29); Group 3, usual care (N = 34)Weekly for 5 wkUnknown1sC; 16 patients (52%) in the RA group had significant reduction of hot flashes compared with 7 patients (24%) in the SA groupf.
[70] (N = 120)Group 1, EA (N = 30); Group 2, SA (N = 32); Group 3, GA (N = 28); Group 4, placebo pills (N = 30)8 wkYes, HT, antidepressants1sC
[66] (N = 47) Group 1, RA (N = 23); Group 2, SA (N = 24)Weekly for 8 wkYes, aromatase inhibitors1sC; compared with baseline, RA significantly improved hot flash severity, frequency, and HFRDI; SA significantly improved HFRDI only. No significant difference between the two groups.

EA = electroacupuncture; GA = gabapentin; HFRDI = hot flash–related daily interference scale; HT = hormone therapy; hr = hour(s); N = number of patients; SA = sham acupuncture; RA = real acupuncture; SSRI = selective serotonin reuptake inhibitor.

aRefer to text and the NCI Dictionary of Cancer Terms for additional information and definition of terms.

bNumber of patients treated plus number of patient controls may not equal number of patients enrolled; number of patients enrolled equals number of patients initially recruited/considered by the researchers who conducted a study; number of patients treated equals number of enrolled patients who were given the treatment being studied AND for whom results were reported.

cConcurrent therapy for symptoms treated (not cancer).

dFor information about levels of evidence analysis and an explanation of the level of evidence scores, refer to Levels of Evidence for Human Studies of Integrative, Alternative, and Complementary Therapies.

eP < .001, acupuncture versus hormone therapy.

fP < .05, acupuncture versus placebo versus usual care.

Cancer-related fatigue

Fatigue is a common symptom in patients with cancer and a frequent side effect of chemotherapy and radiation therapy. No effective treatment exists. Several RCTs have been conducted to study the effect of acupuncture in reducing cancer-related fatigue (refer to Table 6).

One pilot RCT enrolled 47 cancer patients experiencing moderate to severe cancer fatigue and randomly assigned them to one of three groups: acupuncture (N = 15), acupressure (N = 16), or SA (N = 16). Patients in the acupuncture group received six 20-minute acupuncture sessions during a 2-week period; patients in the two acupressure groups were taught to massage RA versus SA points daily for 2 weeks.[72] The Multidimensional Fatigue Inventory was used to assess their responses at baseline, and at week 2 and week 4 follow-up. At the end of week 2, general fatigue, physical fatigue, activity, and motivation significantly improved in the acupuncture and acupressure groups when compared with baseline. At the end of week 2, fatigue level improved by 36% in the acupuncture group, 19% in the acupressure group and 0.6% in the control group. Moreover, the improvement was maintained at the week 4 follow-up. Acupuncture was found to be a more effective method than acupressure or SA. The authors concluded that acupuncture showed a greater potential for managing cancer-related fatigue; further testing in a multicenter RCT with larger sample sizes is warranted.[72] A small randomized study of 28 patients with non-small cell lung cancer reported decreased fatigue and improved QOL with RA compared with SA. The effect was sustained during the 6-week observation period.[73]

A follow-up RCT (N = 302) by the same group of investigators was published in 2013; among the 246 evaluable patients, acupuncture significantly reduced cancer-related fatigue, anxiety, and depression, and improved QOL when compared with usual care.[74] The investigators again randomly assigned 197 patients to receive 4 weeks of therapist-delivered acupuncture (N = 65), self-acupuncture (N = 67), or no acupuncture (N = 65) to determine the effect of maintenance therapy for cancer-related fatigue, and found that there was no difference between the therapist-delivered acupuncture and self-acupuncture; there was a nonsignificant trend in improving fatigue when comparing the acupuncture groups with the no-acupuncture group (P = .07).[75]

Conversely, two RCTs showed no significant difference between RA and SA in reducing cancer-related fatigue (refer to Table 6).[76,77] One study reported in 2009 that among the 27 patients receiving daily radiation therapy, both weekly RA and SA treatment improved fatigue, fatigue distress, QOL, and depression from baseline to 10 weeks, but the differences between the two interventions were not significant.[76] In 2013, another study reported the results of an RCT of RA compared with SA involving 101 patients with postchemotherapy chronic fatigue; among the 74 evaluable patients, both groups had a one-point decrease in Brief Fatigue Inventory score; however, there was no statistically significant difference between the groups. This study was limited by the large number of patients (27) lost to follow up.[77]

The effect of acupuncture on cancer-related fatigue was also studied as one of the secondary end points in acupuncture for the AIMSS study published in 2014.[78] When compared with WLCs, EA significantly improved fatigue, anxiety, and depression, although SA did not improve fatigue or anxiety but did improve depression.[78] In this study, the investigators did not compare EA with SA directly because the study was not powered to detect a difference between EA and SA, especially for secondary end points. Lastly, an Australian pilot study (N = 30) showed that when compared with controls, acupuncture significantly reduced fatigue and improved well-being in breast cancer patients with posttreatment fatigue.[79]

These results showed that acupuncture significantly improved fatigue when compared with usual care alone, although whether it is significantly better than SA will warrant further study.

A 2016 pilot RCT of 78 cancer survivors with cancer-related fatigue showed that infrared laser acupuncture point stimulation was safe in cancer patients and that patients who received infrared laser acupuncture point stimulation on ST36, CV4, and CV6 acupoints 3 times per week for 4 weeks had less fatigue than those who received sham treatment at the end of treatment (3.01 vs. 4.40; P = .002), and the effect lasted to week 8.[80]

Table 6. Summary of Pilot Studies of Acupuncture for Cancer Fatiguea

Reference/Sample SizeTreatment GroupsbTreatment DurationConcurrent Therapy Used (Yes/No/Unknown)cLevel of Evidence Score and Resultsd
[72] (N = 47) Group 1, acupuncture: six 20-minute sessions during 2 wk (N = 15); Group 2, acupressure: massage acupoints daily (N = 16); Group 3, SA: massage no acupoints daily (N = 16)2 wkUnknown1sC; both acupuncture and acupressure significantly reduced cancer fatigue. Acupuncture was a more effective method than acupressure or sham acupressure.
[74] (N = 302) Group 1, acupuncture: once per wk for 6 wk (N = 227); Group 2, usual care (N = 75) 6 wkUnknown1iiC; acupuncture significantly improved fatigue (-3.11; 95% CI, -3.97 to -2.25)e; anxiety and depression, and QOL.
[81] (N = 13) Group 1, education integrated with acupuncture (N = 6); Group 2, usual care (N = 7)Improve self-care for 4 wk; acupuncture for 8 wkUnknown1iiC; a 2.38-point decline in fatigue as measured by the BFI when compared with usual care control (90% CI, 0.586–5.014)f.
[82] (N = 27)Group 1, RA (N = 16); Group 2, SA (N = 11)Once to twice per wk during the 6-wk course of radiation therapyUnknown 1sC; both groups had improvement in fatigue, fatigue distress, QOL and depression from baseline to wk 10, but no statistically significant intergroup difference.
[77] (N = 101) Group 1, RA (N = 34); Group 2, SA (N = 40) Weekly for 6 wkUnknown1sC; 74 (34 RA; 40 SA control) patients were evaluable. No significant difference of BFI scores between groups.
[78] (N = 67) Group 1, EA (N = 22); Group 2, SA: Steinberg needles (N = 22); Group 3, WLC (N = 23)10 treatments during 8 wkYes, aromatase inhibitors1sC; compared with the WLC condition, EA produced significant improvements in fatigueg, anxietyh, and depressioni and a nonsignificant improvement in sleep disturbancej during the 12-wk intervention and follow-up period. In contrast, SA did not produce significant reductions in fatigue or anxiety symptoms but did produce a significant improvement in depression compared with the WLC conditionk.
[79] (N = 30) Group 1, acupuncture (N = 10); Group 2, SA (N = 10); Group 3, WLC (N = 10)Six treatments in 8 wkUnknown1sC; this pilot study demonstrated feasibility of the study; acupuncture significantly reduced fatigue in 2 wk and improved well-being in 6 wk.
[80] (N = 78)Group 1, laser acupuncture point stimulation (N = 39); Group 2, sham laser acupuncture point stimulation (N = 39)Once every other day (3x/wk for 4 wk) for a total of 12 sessionsYes1sC; less fatigue in the treatment group

BFI = Brief Fatigue Inventory; EA = electroacupuncture; CI = confidence interval; N = number of patients; QOL = quality of life; RA = real acupuncture; SA = sham acupuncture; WLC = wait-list control.

aRefer to text and the NCI Dictionary of Cancer Terms for additional information and definition of terms.

bNumber of patients treated plus number of patient controls may not equal number of patients enrolled; number of patients enrolled equals number of patients initially recruited/considered by the researchers who conducted a study; number of patients treated equals number of enrolled patients who were given the treatment being studied AND for whom results were reported.

cConcurrent therapy for symptoms treated (not cancer).

dStrongest evidence reported that the treatment under study has activity or otherwise improves the well-being of cancer patients. For information about levels of evidence analysis and an explanation of the level of evidence scores, refer to Levels of Evidence for Human Studies of Integrative, Alternative, and Complementary Therapies.

eP < .001, acupuncture versus usual care.

fP < .10, education and acupuncture versus usual care.

gP = .0095, acupuncture versus WLC group in the improvement of fatigue.

hP = .044, acupuncture versus WLC group in the improvement of anxiety.

iP = .015, acupuncture versus WLC group in the improvement of depression.

jP = .058, acupuncture versus WLC group in the improvement of sleep disturbance.

kP = .0088, SA versus WLC group in the improvement of fatigue, anxiety, and depression.

Xerostomia

A number of clinical studies have investigated the effect of acupuncture for the treatment and prevention of xerostomia in nasopharyngeal carcinoma and head and neck cancer patients.

Acupuncture was associated with a decrease in the onset of symptoms and an increased saliva flow in two randomized studies that compared acupuncture with standard care for preventing xerostomia in patients undergoing radiation therapy.[83,84]

Compared with standard care, acupuncture significantly improved xerostomia symptoms in patients who experienced the condition following radiation therapy.[19,85]

Two RCTs, one for prevention, and one for treatment of radiation-induced xerostomia revealed increases in salivary flow rates following RA and SA (superficial needling 1 or 2 cm away from acupuncture points), although differences between groups were not significant.[86,87] It also reported improvements in QOL after acupuncture treatment, but there were no significant differences between the groups.[87]

In 2012, one group published two studies on the effect of acupuncture for preventing xerostomia. The first was a pilot study (N = 23); when compared with SA, RA significantly reduced xerostomia questionnaire scores from week 3 through the 1-month follow-up after radiation therapy. However, they did not find significant difference in salivary flow rates between the groups.[88] The other study (N = 86) showed that when compared with standard care acupuncture significantly lowered the xerostomia questionnaire scores in weeks 3 to 6 during 6 weeks of chemoradiation therapy. In addition, greater saliva flow was noticed in the acupuncture group than in the control group at weeks 7 and 11 and at the 6-month follow-up.[83]

Another study examined long-term effects of acupuncture on xerostomia.[89] Patients who received RA were followed for 6 months and up to 3 years. Compared with baseline, significant differences in salivary flow rates were seen in patients 6 months after acupuncture treatment. At 3 years, patients who received additional acupuncture exhibited greater saliva flow rates than patients who did not continue acupuncture treatment.

Two ongoing phase III clinical trials are evaluating the effect of acupuncture for treatment (NCT01141231 and NCT01266044) of xerostomia in head and neck cancer patients. Information about ongoing clinical trials is available from the NCI website.

The findings from these studies are summarized in Table 7 below.

Table 7. Summary of Randomized Controlled Trials of Acupuncture for Radiation-Induced Xerostomiaa

Reference/Sample Size Treatment GroupsbTreatment DurationConcurrent Therapy (Yes/No/ Unknown)cLevel of Evidence Score and Resultsd
[87] (N = 12)Group 1, SA: nonactive acupuncture points located 2 cm away from real points (N = 6); Group 2, RA (N = 6)6 wkUnknown1sC; improved symptoms
[86] (N = 38)Group 1, acupuncture (N = 20); Group 2, SA (N = 18)UnknownUnknown1sC; increased salivary flow rates
[83] (N = 86) Group 1, acupuncture (N = 40); Group 2, control (N = 46)7 wk No1iiC; symptoms improved and salivary flow increased
[85] (N = 145) Group 1, oral care followed by acupuncture (N = 75); Group 2, acupuncture followed by oral care (N = 70)8 wkNo 1iiC; symptoms improved
[88] (N = 23)Group 1, acupuncture (N = 11); Group 2, SA (N = 12)UnknownNo1sC; symptoms improved only

N = number; RA = real acupuncture; SA = sham acupuncture.

aRefer to text and the NCI Dictionary of Cancer Terms for additional information and definition of terms.

bNumber of patients treated plus number of patient controls may not equal number of patients enrolled; number of patients enrolled equals number of patients initially considered by the researcher who conducted a study; number of patients treated equals number of enrolled patients who were given the treatment being studied AND for whom results were reported.

cConcurrent therapy for symptoms treated (not cancer).

dStrongest evidence reported that the treatment under study has anticancer activity or otherwise improves the well-being of cancer patients. For information about levels of evidence analysis and an explanation of the level of evidence scores, refer to Levels of Evidence for Human Studies of Integrative, Alternative, and Complementary Therapies.

Chemotherapy-induced peripheral neuropathy

Chemotherapy-induced peripheral neuropathy (CIPN), a common side effect of several chemotherapeutic agents, includes a variety of symptoms, such as paresthesia, pain, and muscle weakness.[90] CIPN can be serious enough to limit or delay the dose of administered chemotherapy and may warrant discontinuation of treatment. Long-term CIPN often produces substantive functional decline and diminished QOL.[91,92] For patients with persistent CIPN, treatment has been limited to symptom management with narcotics, antidepressants, and antiepileptics.[91] Studies suggest that analgesic regimens typically produce only modest relief of pain and are commonly associated with side effects such as dizziness, sedation, dry mouth, and constipation.[91]

CIPN from platinum-containing agents or taxanes

There have been several studies investigating the use of acupuncture treatment to alleviate CIPN. Two small nonplacebo-controlled studies (N = 5 [93] and N = 6 [94]) have shown preliminary evidence that MA can improve CIPN symptoms. A three-arm RCT (N = 90) that examined the use of auricular acupuncture to treat chronic peripheral or central neuropathic pain in cancer patients after treatment found a significant reduction in pain at 2 months compared with sham-controlled patients.[13] Another RCT that randomly assigned patients to either EA (N = 14), hydroelectric baths (N = 14), high-dose B vitamins (N = 15), or placebo (N = 17) reported no significant change in pain when treatments were compared with placebo.[95]

At least one research group has investigated if acupuncture could prevent the progression of CIPN in patients actively undergoing chemotherapy. In a phase IIA trial of acupuncture to prevent progression of CIPN severity from weekly paclitaxel in breast cancer patients, 26 of 27 patients did not experience a progression from grade II to grade III neuropathy, yielding a significantly lower progression than expected from historical controls, meeting the prespecified endpoint for the study warranting further investigation.[96]

CIPN from bortezomib or thalidomide

Studies evaluating the effects of acupuncture on bortezomib and/or thalidomide-induced peripheral neuropathy have also shown promising results. Two studies of patients with multiple myeloma (N = 27 [97] and N = 19, electroacupuncture [98]) concluded that acupuncture was safe and effective in treating CIPN after 10 weeks and 9 weeks of treatment, respectively. Another larger study (N = 104) randomly assigned patients to receive either methylcobalamin or acupuncture and methylcobalamin. This study reported a greater reduction in CIPN pain and improvement in daily functioning in the acupuncture group.[99]

Lymphedema

Treatment-induced lymphedema may be a lifelong concern for some breast cancer survivors. There have been a number of case reports, retrospective chart reviews, and pilot studies demonstrating that acupuncture was safe and potentially effective in reducing swelling and improving symptoms in patients with upper- and lower-extremity edema.[100-103] A 2016 qualitative study of 23 breast and head and neck cancer patients with lymphedema who completed acupuncture and moxibustion treatments showed that patients viewed acupuncture and moxibustion as a valuable whole-person approach that helped them improve their energy and decrease pain.[104]

A 2013 single-arm clinical trial (N = 37) evaluated the safety and potential efficacy of acupuncture in treating patients with breast cancer–related lymphedema (BCRL).[103] In this trial, the investigators enrolled 37 breast cancer survivors with moderate to severe unilateral chronic BCRL; the survivors received eight sessions of standard acupuncture treatment given twice per week for 4 weeks. Four patients were not able to be evaluated because of early withdrawal. Acupuncture was deemed to be safe; no serious adverse events were reported after 255 acupuncture treatment sessions. Twelve of the 33 evaluable patients reported at least one incidence of mild bruising or minor pain/tingling in the arm, shoulder, or acupuncture site; no infections were reported, although the standard acupuncture treatment protocol involved inserting four acupuncture needles in the limb with lymphedema. This pilot study, although not an RCT, suggested a trend toward efficacy with a mean reduction in arm circumference of 0.90 cm in patients who received acupuncture treatment; eleven patients (33%) experienced at least a 30% reduction in arm circumference. Two patients did not use any additional lymphedema treatment during the trial. Most patients (28 of the remaining 31 patients) reported making no changes in their standard regimens to treat lymphedema during treatment. The authors concluded that acupuncture for BCRL is safe and may be effective. The same research group is conducting an RCT to further determine the efficacy of acupuncture in reducing BCRL symptoms (NCT01706081). However, in 2014, a pilot RCT of 17 women that compared acupuncture with usual care showed that 12 acupuncture treatments on the nonlymphedematous limb during 8 weeks did not change extracellular fluid or any patient-reported lymphedema outcomes.[105] The authors concluded that acupuncture may stabilize symptoms; however, further study is needed.

A 2016 RCT of 30 patients showed that warm acupuncture (acupuncture and moxibustion) improved BCRL in 51% of patients compared with 26% of patients treated with oral diosmin in the control group.[106] No adverse reaction was reported in the acupuncture and moxibustion group. The acupuncture and moxibustion group also had significant improvement in shoulder joint range of movement and QOL compared with the control group.

A RCT of acupuncture versus usual care WLC studying 82 BCRL patients did not show a significant difference in arm circumference or bioimpedance.[107]

Ileus

Three RCTs have studied the effect of acupuncture in reducing the duration of postoperative ileus and have generated conflicting results. In 2010, one study reported the results of an RCT studying the effect of EA compared with usual care and found that EA did not significantly prevent prolonged postoperative ileus.[108]

In 2012, another study reported the results of a phase II RCT that compared RA with SA (N = 90) for reducing postcolectomy ileus. No significant differences were reported between RA and SA in reducing postcolectomy ileus as measured by the time that the patient first tolerated solid food and the time that the patient first passed flatus or a bowel movement.[109]

In 2013, a third study reported the results of a three-arm RCT (N = 165) that compared EA with SA and no acupuncture in reducing duration of postoperative ileus after laparoscopic surgery for colorectal cancer. EA significantly shortened the time to defecation and the hospital stay compared with SA and no acupuncture.[110]

A 2017 systematic review and meta-analysis of 10 RCTs involving 776 cancer patients showed that acupuncture was associated with earlier recovery of bowel function (shorter time to first flatus and defecation) compared with the control (no acupuncture, or SA or other types of active treatments).[111] However, the data quality was deemed low because of the high risk of bias stemming from small sample sizes and methodological limitations.

Sleep

A number of RCTs have studied the effect of acupuncture in improving depression and sleep quality in cancer patients. In 2011, one study (N = 80) reported that acupuncture significantly improved depression and sleep quality when compared with fluoxetine. Patients receiving acupuncture reported significantly greater reductions in Self-rating Depression Scale, Hamilton Depression Rating Scale, and Pittsburgh Sleep Quality Index scores.[112]

The effect of acupuncture on sleep was also studied as one of the secondary end points in acupuncture for an AIMSS study published in 2014.[78] When compared with WLCs, EA resulted in a nonsignificant improvement in sleep disturbance (P = .058).[78] Further studies are warranted.

Other treatment-related side effects

A 2017 RCT comparing acupuncture with SA in 60 multiple myeloma patients undergoing bone marrow transplantation (BMT) showed that even though acupuncture did not significantly improve overall symptoms during and 15 days after BMT compared with SA, it was significantly more efficacious in reducing nausea, lack of appetite, and drowsiness at 15 days after BMT.[113] Patients who received SA were more likely to increase pain medication usage post-BMT.

Many studies have reported on the effects of acupuncture on cancer or other cancer treatment–related symptoms, including weight loss, cough, hemoptysis, fever, anxiety, depression, proctitis, dysphonia, esophageal obstruction, and hiccups.[1,8,57,114-118] These studies were from China,[1,115-117] Japan,[57] and Sweden.[8,27,114,118] The findings from these studies are summarized in Table 8 below.

Table 8. Clinical Studies of Acupuncture for Other Cancer-Related Symptoms or Cancer Treatment–Related Side Effectsa

Reference/Sample Size Type of Study Condition Treated Treatment GroupsbTreatment DurationConcurrent Therapy (Yes/No/ Unknown)c Level of Evidence Score and Resultsd
[1] (N = 76)RCTSymptoms of weight loss, cough, thoracodynia, hemoptysis, fever, and side effects of chemotherapy and radiation therapy Group 1, acupuncture (N = 38); Group 2, no acupuncture (N = 38) UnknownNo1iiC; weight gain, symptom relief, fewer side effectse
[72] (N = 47)RCTCancer-related fatigue Group 1, acupuncture (N = 15); Group 2, acupressure (N = 16); Group 3, SA (N = 16) 4 wkNo1sC; improved fatigue levels
[106] (N = 30)RCTBreast cancer–related lymphedemaGroup 1, warm acupuncture at 6 acupoints (N = 15); Group 2, control group received 900 mg diosmin tablets (N = 15)Acupuncture, 30 min on alternate days for 30 d; diosmin 3 times a day for 30 dUnknown1iiC
[107] (N = 82)RCTBreast cancer–related lymphedemaGroup 1, RA (N = 40); Group 2, WLC (N = 42)Twice weekly for 6 wkYes (massage, compression garments, exercise, or wraps)1iiC
[119] (N = 80)RCTChemotherapy-related cognitive impairmentGroup 1, RA (N = 40); Group 2, control (N = 40)5x/wk for two 4-wk coursesUnknown1iiC
[113] (N = 60)RCTNausea, decreased appetite, and drowsiness in multiple myeloma patients after BMTGroup 1, RA (N = 29); Group 2, SA (N = 31)5 d for 20 min each treatment or until ANC dropped below 200/μl or platelet count dropped below 20,000/μlYes1sC
[57] (N = 79)Nonconsecutive case series, surveyed retrospectively Unspecified symptoms (including pain, xerostomia, hot flashes, nausea/loss of appetite) from cancer or cancer treatment 79 traditional Chinese acupuncture, auricular acupuncture, percutaneous nerve stimulation, Korean hand acupuncture, or Japanese scalp acupuncture; none UnknownYes (standard medical therapies)3iiiC; 60% showed at least 30% improvement
[115] (N = 44)Nonconsecutive case series Radiation proctitis in women treated for cervical cancerAcupuncture (N = 44); none UnknownNo3iiiC; 73% radiation proctitis cured: no blood or mucus for 15 days
[100] (N = 24)Nonconsecutive case series Postoperative lower-extremity lymphedema in women treated for gynecologic tumors Group 1, acupuncture and moxibustion (N = 24); Group 2, control group, none 5x/wk during hospitalization and two times/wk at outpatient clinic Unknown 3iiiC; edema prevented or markedly reduced
[120] (N = 35)Nonconsecutive case seriesSymptoms related to lymphedema (including pain, discomfort, anxiety, and insomnia)Group 1, acupuncture and moxibustion (N = 30); Control group, none2 wk with 4- and 12-wk follow-upUnknown3iiiC; symptoms improved
[116]Case report Dysphonia after radiation therapy 1; 1 acupuncture; none UnknownUnknown Not applicable; voice recovered
[117]Case report Esophageal obstruction in patients with esophageal cancer 2; 2 acupuncture; none UnknownYes (not specified) Not applicable
[118] (N = 16)Retrospective case series Hiccups Group 1, acupuncture (N = 16); Control group, none 1–7 dUnknown 3iiiC; symptom relief

ANC = absolute neutrophil count; BMT = bone marrow transplantation; N = number; RA = real acupuncture; RCT = randomized controlled trial; SA = sham acupuncture; WLC = wait-list control.

aRefer to text and the NCI Dictionary of Cancer Terms for additional information and definition of terms.

bNumber of patients treated plus number of patient controls may not equal number of patients enrolled; number of patients enrolled equals number of patients initially considered by the researcher who conducted a study; number of patients treated equals number of enrolled patients who were given the treatment being studied AND for whom results were reported.

cConcurrent therapy for symptoms treated (not cancer).

dStrongest evidence reported that the treatment under study has anticancer activity or otherwise improves the well-being of cancer patients. For information about levels of evidence analysis and an explanation of the level of evidence scores, refer to Levels of Evidence for Human Studies of Integrative, Alternative, and Complementary Therapies.

eP < .001, versus baseline.

In an RCT,[1] 76 patients with various types of cancer, including 38 with esophageal cancer, 24 with gastric cancer, and 14 with lung cancer, were randomly assigned to two groups (N = 38 per group). The treatment group received acupuncture in combination with radiation therapy or chemotherapy, and the control group was treated with radiation therapy or chemotherapy alone. The data showed that the patients in the acupuncture group gained significantly more body weight than patients in the control group (P < .001). In patients with lung cancer, the acupuncture group also showed greater improvement than the controls in the symptoms of cough, thoracodynia, hemoptysis, and fever; in patients with esophageal cancer, the acupuncture group showed greater improvement in the symptoms of chest pain, mucus vomiting, and difficulty in swallowing. In addition, the acupuncture group suffered fewer side effects (e.g., poor appetite, N/V, dizziness, or fatigue) from radiation therapy or chemotherapy than the control group. However, no statistical analysis was performed on these data. An RCT of 138 postoperative cancer patients treated with acupuncture plus massage showed decreased pain (P = .05) and a decrease in depressive mood (P = .003) compared with usual care.[18]

A retrospective study involved patients at an oncology clinic who were offered acupuncture treatment for potential palliation of symptoms.[114] Among 89 patients treated with acupuncture, 79 responded to a telephone questionnaire survey. The data indicated that the major reasons for referral included pain (53%), xerostomia (32%), hot flashes (6%), and nausea/loss of appetite (6%). Sixty percent of the patients showed at least 30% improvement in their symptoms, and about one-third had no change in the severity of symptoms. Patients were not questioned about acupuncture-treatment expectations.

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References

  1. Xia YQ, Zhang D, Yang CX, et al.: An approach to the effect on tumors of acupuncture in combination with radiotherapy or chemotherapy. J Tradit Chin Med 6 (1): 23-6, 1986. [PubMed: 3016416]
  2. Zhou RX, Huang FL, Jiang SR, et al.: The effect of acupuncture on the phagocytic activity of human leukocytes. J Tradit Chin Med 8 (2): 83-4, 1988. [PubMed: 3412017]
  3. He CJ, Gong KH, Xu QZ, et al.: Effects of microwave acupuncture on the immunological function of cancer patients. J Tradit Chin Med 7 (1): 9-11, 1987. [PubMed: 3613646]
  4. Wu B, Zhou RX, Zhou MS: [Effect of acupuncture on interleukin-2 level and NK cell immunoactivity of peripheral blood of malignant tumor patients] Zhongguo Zhong Xi Yi Jie He Za Zhi 14 (9): 537-9, 1994. [PubMed: 7866002]
  5. Wu B, Zhou RX, Zhou MS: [Effect of acupuncture on immunomodulation in patients with malignant tumors] Zhongguo Zhong Xi Yi Jie He Za Zhi 16 (3): 139-41, 1996. [PubMed: 9208533]
  6. Wei Z: Clinical observation on therapeutic effect of acupuncture at zusanli for leukopenia. J Tradit Chin Med 18 (2): 94-5, 1998. [PubMed: 10437222]
  7. Ye F, Chen S, Liu W: Effects of electro-acupuncture on immune function after chemotherapy in 28 cases. J Tradit Chin Med 22 (1): 21-3, 2002. [PubMed: 11977512]
  8. Niemtzow RC: Integration of complementary disciplines into the oncology clinic. Part I. Acupuncture. Curr Probl Cancer 24 (4): 184-93, 2000 Jul-Aug. [PubMed: 11001324]
  9. Dang W, Yang J: Clinical study on acupuncture treatment of stomach carcinoma pain. J Tradit Chin Med 18 (1): 31-8, 1998. [PubMed: 10437260]
  10. Alimi D, Rubino C, Leandri EP, et al.: Analgesic effects of auricular acupuncture for cancer pain. J Pain Symptom Manage 19 (2): 81-2, 2000. [PubMed: 10766574]
  11. Filshie J, Redman D: Acupuncture and malignant pain problems. Eur J Surg Oncol 11 (4): 389-94, 1985. [PubMed: 4065352]
  12. Wen HL: Cancer pain treated with acupuncture and electrical stimulation. Mod Med Asia 13 (2): 12-6, 1977.
  13. Alimi D, Rubino C, Pichard-Léandri E, et al.: Analgesic effect of auricular acupuncture for cancer pain: a randomized, blinded, controlled trial. J Clin Oncol 21 (22): 4120-6, 2003. [PubMed: 14615440]
  14. Paley CA, Johnson MI, Tashani OA, et al.: Acupuncture for cancer pain in adults. Cochrane Database Syst Rev (10): CD007753, 2015. [PMC free article: PMC6513493] [PubMed: 26468973]
  15. Hu C, Zhang H, Wu W, et al.: Acupuncture for Pain Management in Cancer: A Systematic Review and Meta-Analysis. Evid Based Complement Alternat Med 2016: 1720239, 2016. [PMC free article: PMC4764722] [PubMed: 26977172]
  16. Deng G, Rusch V, Vickers A, et al.: Randomized controlled trial of a special acupuncture technique for pain after thoracotomy. J Thorac Cardiovasc Surg 136 (6): 1464-9, 2008. [PMC free article: PMC2633643] [PubMed: 19114190]
  17. Wong RH, Lee TW, Sihoe AD, et al.: Analgesic effect of electroacupuncture in postthoracotomy pain: a prospective randomized trial. Ann Thorac Surg 81 (6): 2031-6, 2006. [PubMed: 16731125]
  18. Mehling WE, Jacobs B, Acree M, et al.: Symptom management with massage and acupuncture in postoperative cancer patients: a randomized controlled trial. J Pain Symptom Manage 33 (3): 258-66, 2007. [PubMed: 17349495]
  19. Pfister DG, Cassileth BR, Deng GE, et al.: Acupuncture for pain and dysfunction after neck dissection: results of a randomized controlled trial. J Clin Oncol 28 (15): 2565-70, 2010. [PMC free article: PMC2881730] [PubMed: 20406930]
  20. He JP, Friedrich M, Ertan AK, et al.: Pain-relief and movement improvement by acupuncture after ablation and axillary lymphadenectomy in patients with mammary cancer. Clin Exp Obstet Gynecol 26 (2): 81-4, 1999. [PubMed: 10459443]
  21. Bao T, Ye X, Skinner J, et al.: The analgesic effect of magnetic acupressure in cancer patients undergoing bone marrow aspiration and biopsy: a randomized, blinded, controlled trial. J Pain Symptom Manage 41 (6): 995-1002, 2011. [PubMed: 21306863]
  22. Sharifi Rizi M, Shamsalinia A, Ghaffari F, et al.: The effect of acupressure on pain, anxiety, and the physiological indexes of patients with cancer undergoing bone marrow biopsy. Complement Ther Clin Pract 29: 136-141, 2017. [PubMed: 29122251]
  23. Vickers AJ, Cronin AM, Maschino AC, et al.: Acupuncture for chronic pain: individual patient data meta-analysis. Arch Intern Med 172 (19): 1444-53, 2012. [PMC free article: PMC3658605] [PubMed: 22965186]
  24. Chien TJ, Liu CY, Chang YF, et al.: Acupuncture for treating aromatase inhibitor-related arthralgia in breast cancer: a systematic review and meta-analysis. J Altern Complement Med 21 (5): 251-60, 2015. [PMC free article: PMC4432489] [PubMed: 25915433]
  25. Bae K, Yoo HS, Lamoury G, et al.: Acupuncture for Aromatase Inhibitor-Induced Arthralgia: A Systematic Review. Integr Cancer Ther 14 (6): 496-502, 2015. [PubMed: 26220605]
  26. Chen L, Lin CC, Huang TW, et al.: Effect of acupuncture on aromatase inhibitor-induced arthralgia in patients with breast cancer: A meta-analysis of randomized controlled trials. Breast 33: 132-138, 2017. [PubMed: 28384564]
  27. Crew KD, Capodice JL, Greenlee H, et al.: Randomized, blinded, sham-controlled trial of acupuncture for the management of aromatase inhibitor-associated joint symptoms in women with early-stage breast cancer. J Clin Oncol 28 (7): 1154-60, 2010. [PubMed: 20100963]
  28. Bao T, Cai L, Giles JT, et al.: A dual-center randomized controlled double blind trial assessing the effect of acupuncture in reducing musculoskeletal symptoms in breast cancer patients taking aromatase inhibitors. Breast Cancer Res Treat 138 (1): 167-74, 2013. [PMC free article: PMC3594526] [PubMed: 23393007]
  29. Oh B, Kimble B, Costa DS, et al.: Acupuncture for treatment of arthralgia secondary to aromatase inhibitor therapy in women with early breast cancer: pilot study. Acupunct Med 31 (3): 264-71, 2013. [PubMed: 23722951]
  30. Mao JJ, Xie SX, Farrar JT, et al.: A randomised trial of electro-acupuncture for arthralgia related to aromatase inhibitor use. Eur J Cancer 50 (2): 267-76, 2014. [PMC free article: PMC3972040] [PubMed: 24210070]
  31. Hershman DL, Unger JM, Greenlee H, et al.: Effect of Acupuncture vs Sham Acupuncture or Waitlist Control on Joint Pain Related to Aromatase Inhibitors Among Women With Early-Stage Breast Cancer: A Randomized Clinical Trial. JAMA 320 (2): 167-176, 2018. [PMC free article: PMC6583520] [PubMed: 29998338]
  32. Garcia MK, McQuade J, Haddad R, et al.: Systematic review of acupuncture in cancer care: a synthesis of the evidence. J Clin Oncol 31 (7): 952-60, 2013. [PMC free article: PMC3577953] [PubMed: 23341529]
  33. Ezzo J, Vickers A, Richardson MA, et al.: Acupuncture-point stimulation for chemotherapy-induced nausea and vomiting. J Clin Oncol 23 (28): 7188-98, 2005. [PubMed: 16192603]
  34. Dundee JW, Ghaly RG, Fitzpatrick KT, et al.: Acupuncture to prevent cisplatin-associated vomiting. Lancet 1 (8541): 1083, 1987. [PubMed: 2883410]
  35. Roscoe JA, Morrow GR, Hickok JT, et al.: The efficacy of acupressure and acustimulation wrist bands for the relief of chemotherapy-induced nausea and vomiting. A University of Rochester Cancer Center Community Clinical Oncology Program multicenter study. J Pain Symptom Manage 26 (2): 731-42, 2003. [PubMed: 12906958]
  36. Vickers AJ: Can acupuncture have specific effects on health? A systematic review of acupuncture antiemesis trials. J R Soc Med 89 (6): 303-11, 1996. [PMC free article: PMC1295813] [PubMed: 8758186]
  37. Lee A, Done ML: The use of nonpharmacologic techniques to prevent postoperative nausea and vomiting: a meta-analysis. Anesth Analg 88 (6): 1362-9, 1999. [PubMed: 10357346]
  38. Park J, Linde K, Manheimer E, et al.: The status and future of acupuncture clinical research. J Altern Complement Med 14 (7): 871-81, 2008. [PMC free article: PMC3155101] [PubMed: 18803496]
  39. Ezzo J, Streitberger K, Schneider A: Cochrane systematic reviews examine P6 acupuncture-point stimulation for nausea and vomiting. J Altern Complement Med 12 (5): 489-95, 2006. [PubMed: 16813514]
  40. Ezzo JM, Richardson MA, Vickers A, et al.: Acupuncture-point stimulation for chemotherapy-induced nausea or vomiting. Cochrane Database Syst Rev (2): CD002285, 2006. [PubMed: 16625560]
  41. Shen Y, Liu L, Chiang JS, et al.: Randomized, placebo-controlled trial of K1 acupoint acustimulation to prevent cisplatin-induced or oxaliplatin-induced nausea. Cancer 121 (1): 84-92, 2015. [PMC free article: PMC4270896] [PubMed: 25204437]
  42. Xie J, Chen LH, Ning ZY, et al.: Effect of transcutaneous electrical acupoint stimulation combined with palonosetron on chemotherapy-induced nausea and vomiting: a single-blind, randomized, controlled trial. Chin J Cancer 36 (1): 6, 2017. [PMC free article: PMC5223354] [PubMed: 28069044]
  43. Eghbali M, Yekaninejad MS, Varaei S, et al.: The effect of auricular acupressure on nausea and vomiting caused by chemotherapy among breast cancer patients. Complement Ther Clin Pract 24: 189-94, 2016. [PubMed: 27502820]
  44. Dupuis LL, Kelly KM, Krischer JP, et al.: Acupressure bands do not improve chemotherapy-induced nausea control in pediatric patients receiving highly emetogenic chemotherapy: A single-blinded, randomized controlled trial. Cancer 124 (6): 1188-1196, 2018. [PMC free article: PMC5839969] [PubMed: 29266260]
  45. Enblom A, Lekander M, Hammar M, et al.: Getting the grip on nonspecific treatment effects: emesis in patients randomized to acupuncture or sham compared to patients receiving standard care. PLoS One 6 (3): e14766, 2011. [PMC free article: PMC3063156] [PubMed: 21448267]
  46. Shen J, Wenger N, Glaspy J, et al.: Electroacupuncture for control of myeloablative chemotherapy-induced emesis: A randomized controlled trial. JAMA 284 (21): 2755-61, 2000. [PubMed: 11105182]
  47. Dundee JW, Ghaly RG, Fitzpatrick KT, et al.: Acupuncture prophylaxis of cancer chemotherapy-induced sickness. J R Soc Med 82 (5): 268-71, 1989. [PMC free article: PMC1292129] [PubMed: 2666662]
  48. Dundee JW, McMillan CM: Clinical uses of P6 acupuncture antiemesis. Acupunct Electrother Res 15 (3-4): 211-5, 1990. [PubMed: 1982043]
  49. Dundee JW, Yang J, McMillan C: Non-invasive stimulation of the P6 (Neiguan) antiemetic acupuncture point in cancer chemotherapy. J R Soc Med 84 (4): 210-2, 1991. [PMC free article: PMC1293184] [PubMed: 2027146]
  50. McMillan C, Dundee JW, Abram WP: Enhancement of the antiemetic action of ondansetron by transcutaneous electrical stimulation of the P6 antiemetic point, in patients having highly emetic cytotoxic drugs. Br J Cancer 64 (5): 971-2, 1991. [PMC free article: PMC1977487] [PubMed: 1834156]
  51. Price H, Lewith G, Williams C: Acupressure as an antiemetic in cancer chemotherapy. Complementary Medical Research 5 (2): 93-4, 1991.
  52. Streitberger K, Friedrich-Rust M, Bardenheuer H, et al.: Effect of acupuncture compared with placebo-acupuncture at P6 as additional antiemetic prophylaxis in high-dose chemotherapy and autologous peripheral blood stem cell transplantation: a randomized controlled single-blind trial. Clin Cancer Res 9 (7): 2538-44, 2003. [PubMed: 12855628]
  53. You Q, Yu H, Wu D, et al.: Vitamin B6 points PC6 injection during acupuncture can relieve nausea and vomiting in patients with ovarian cancer. Int J Gynecol Cancer 19 (4): 567-71, 2009. [PubMed: 19509551]
  54. Molassiotis A, Helin AM, Dabbour R, et al.: The effects of P6 acupressure in the prophylaxis of chemotherapy-related nausea and vomiting in breast cancer patients. Complement Ther Med 15 (1): 3-12, 2007. [PubMed: 17352966]
  55. Dibble SL, Luce J, Cooper BA, et al.: Acupressure for chemotherapy-induced nausea and vomiting: a randomized clinical trial. Oncol Nurs Forum 34 (4): 813-20, 2007. [PubMed: 17723973]
  56. Deng G, Vickers A, Yeung S, et al.: Randomized, controlled trial of acupuncture for the treatment of hot flashes in breast cancer patients. J Clin Oncol 25 (35): 5584-90, 2007. [PubMed: 18065731]
  57. Porzio G, Trapasso T, Martelli S, et al.: Acupuncture in the treatment of menopause-related symptoms in women taking tamoxifen. Tumori 88 (2): 128-30, 2002 Mar-Apr. [PubMed: 12088252]
  58. Walker EM, Rodriguez AI, Kohn B, et al.: Acupuncture versus venlafaxine for the management of vasomotor symptoms in patients with hormone receptor-positive breast cancer: a randomized controlled trial. J Clin Oncol 28 (4): 634-40, 2010. [PubMed: 20038728]
  59. Beer TM, Benavides M, Emmons SL, et al.: Acupuncture for hot flashes in patients with prostate cancer. Urology 76 (5): 1182-8, 2010. [PMC free article: PMC2928879] [PubMed: 20494414]
  60. Nedstrand E, Wyon Y, Hammar M, et al.: Psychological well-being improves in women with breast cancer after treatment with applied relaxation or electro-acupuncture for vasomotor symptom. J Psychosom Obstet Gynaecol 27 (4): 193-9, 2006. [PubMed: 17225620]
  61. Frisk J, Spetz AC, Hjertberg H, et al.: Two modes of acupuncture as a treatment for hot flushes in men with prostate cancer--a prospective multicenter study with long-term follow-up. Eur Urol 55 (1): 156-63, 2009. [PubMed: 18294761]
  62. Ashamalla H, Jiang ML, Guirguis A, et al.: Acupuncture for the alleviation of hot flashes in men treated with androgen ablation therapy. Int J Radiat Oncol Biol Phys 79 (5): 1358-63, 2011. [PubMed: 20605360]
  63. Hervik J, Mjåland O: Acupuncture for the treatment of hot flashes in breast cancer patients, a randomized, controlled trial. Breast Cancer Res Treat 116 (2): 311-6, 2009. [PubMed: 18839306]
  64. Frisk J, Carlhäll S, Källström AC, et al.: Long-term follow-up of acupuncture and hormone therapy on hot flushes in women with breast cancer: a prospective, randomized, controlled multicenter trial. Climacteric 11 (2): 166-74, 2008. [PubMed: 18365859]
  65. Bokmand S, Flyger H: Acupuncture relieves menopausal discomfort in breast cancer patients: a prospective, double blinded, randomized study. Breast 22 (3): 320-3, 2013. [PubMed: 22906948]
  66. Bao T, Cai L, Snyder C, et al.: Patient-reported outcomes in women with breast cancer enrolled in a dual-center, double-blind, randomized controlled trial assessing the effect of acupuncture in reducing aromatase inhibitor-induced musculoskeletal symptoms. Cancer 120 (3): 381-9, 2014. [PMC free article: PMC3946917] [PubMed: 24375332]
  67. Garcia MK, Graham-Getty L, Haddad R, et al.: Systematic review of acupuncture to control hot flashes in cancer patients. Cancer 121 (22): 3948-58, 2015. [PMC free article: PMC4635055] [PubMed: 26281028]
  68. Salehi A, Marzban M, Zadeh AR: Acupuncture for treating hot flashes in breast cancer patients: an updated meta-analysis. Support Care Cancer 24 (12): 4895-4899, 2016. [PubMed: 27497608]
  69. Chen YP, Liu T, Peng YY, et al.: Acupuncture for hot flashes in women with breast cancer: A systematic review. J Cancer Res Ther 12 (2): 535-42, 2016 Apr-Jun. [PubMed: 27461606]
  70. Mao JJ, Bowman MA, Xie SX, et al.: Electroacupuncture Versus Gabapentin for Hot Flashes Among Breast Cancer Survivors: A Randomized Placebo-Controlled Trial. J Clin Oncol 33 (31): 3615-20, 2015. [PMC free article: PMC4622101] [PubMed: 26304905]
  71. Lesi G, Razzini G, Musti MA, et al.: Acupuncture As an Integrative Approach for the Treatment of Hot Flashes in Women With Breast Cancer: A Prospective Multicenter Randomized Controlled Trial (AcCliMaT). J Clin Oncol 34 (15): 1795-802, 2016. [PubMed: 27022113]
  72. Molassiotis A, Sylt P, Diggins H: The management of cancer-related fatigue after chemotherapy with acupuncture and acupressure: a randomised controlled trial. Complement Ther Med 15 (4): 228-37, 2007. [PubMed: 18054724]
  73. Cheng CS, Chen LY, Ning ZY, et al.: Acupuncture for cancer-related fatigue in lung cancer patients: a randomized, double blind, placebo-controlled pilot trial. Support Care Cancer 25 (12): 3807-3814, 2017. [PubMed: 28707168]
  74. Molassiotis A, Bardy J, Finnegan-John J, et al.: Acupuncture for cancer-related fatigue in patients with breast cancer: a pragmatic randomized controlled trial. J Clin Oncol 30 (36): 4470-6, 2012. [PubMed: 23109700]
  75. Molassiotis A, Bardy J, Finnegan-John J, et al.: A randomized, controlled trial of acupuncture self-needling as maintenance therapy for cancer-related fatigue after therapist-delivered acupuncture. Ann Oncol 24 (6): 1645-52, 2013. [PubMed: 23436910]
  76. Wells S, Trower C, Hough TA, et al.: Urethral obstruction by seminal coagulum is associated with medetomidine-ketamine anesthesia in male mice on C57BL/6J and mixed genetic backgrounds. J Am Assoc Lab Anim Sci 48 (3): 296-9, 2009. [PMC free article: PMC2696834] [PubMed: 19476720]
  77. Deng G, Chan Y, Sjoberg D, et al.: Acupuncture for the treatment of post-chemotherapy chronic fatigue: a randomized, blinded, sham-controlled trial. Support Care Cancer 21 (6): 1735-41, 2013. [PMC free article: PMC3953893] [PubMed: 23334562]
  78. Mao JJ, Farrar JT, Bruner D, et al.: Electroacupuncture for fatigue, sleep, and psychological distress in breast cancer patients with aromatase inhibitor-related arthralgia: a randomized trial. Cancer 120 (23): 3744-51, 2014. [PMC free article: PMC4239308] [PubMed: 25077452]
  79. Smith C, Carmady B, Thornton C, et al.: The effect of acupuncture on post-cancer fatigue and well-being for women recovering from breast cancer: a pilot randomised controlled trial. Acupunct Med 31 (1): 9-15, 2013. [PubMed: 23196311]
  80. Mao H, Mao JJ, Guo M, et al.: Effects of infrared laser moxibustion on cancer-related fatigue: A randomized, double-blind, placebo-controlled trial. Cancer 122 (23): 3667-3672, 2016. [PMC free article: PMC5132039] [PubMed: 27495269]
  81. Johnston MF, Hays RD, Subramanian SK, et al.: Patient education integrated with acupuncture for relief of cancer-related fatigue randomized controlled feasibility study. BMC Complement Altern Med 11: 49, 2011. [PMC free article: PMC3144009] [PubMed: 21703001]
  82. Balk J, Day R, Rosenzweig M, et al.: Pilot, randomized, modified, double-blind, placebo-controlled trial of acupuncture for cancer-related fatigue. J Soc Integr Oncol 7 (1): 4-11, 2009. [PubMed: 19476729]
  83. Meng Z, Garcia MK, Hu C, et al.: Randomized controlled trial of acupuncture for prevention of radiation-induced xerostomia among patients with nasopharyngeal carcinoma. Cancer 118 (13): 3337-44, 2012. [PMC free article: PMC3422773] [PubMed: 22072272]
  84. Braga FP, Lemos Junior CA, Alves FA, et al.: Acupuncture for the prevention of radiation-induced xerostomia in patients with head and neck cancer. Braz Oral Res 25 (2): 180-5, 2011 Mar-Apr. [PubMed: 21537645]
  85. Simcock R, Fallowfield L, Monson K, et al.: ARIX: a randomised trial of acupuncture v oral care sessions in patients with chronic xerostomia following treatment of head and neck cancer. Ann Oncol 24 (3): 776-83, 2013. [PubMed: 23104718]
  86. Blom M, Dawidson I, Fernberg JO, et al.: Acupuncture treatment of patients with radiation-induced xerostomia. Eur J Cancer B Oral Oncol 32B (3): 182-90, 1996. [PubMed: 8762876]
  87. Cho JH, Chung WK, Kang W, et al.: Manual acupuncture improved quality of life in cancer patients with radiation-induced xerostomia. J Altern Complement Med 14 (5): 523-6, 2008. [PubMed: 18532895]
  88. Meng Z, Kay Garcia M, Hu C, et al.: Sham-controlled, randomised, feasibility trial of acupuncture for prevention of radiation-induced xerostomia among patients with nasopharyngeal carcinoma. Eur J Cancer 48 (11): 1692-9, 2012. [PMC free article: PMC3832185] [PubMed: 22285177]
  89. Blom M, Lundeberg T: Long-term follow-up of patients treated with acupuncture for xerostomia and the influence of additional treatment. Oral Dis 6 (1): 15-24, 2000. [PubMed: 10673783]
  90. Hershman DL, Lacchetti C, Dworkin RH, et al.: Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 32 (18): 1941-67, 2014. [PubMed: 24733808]
  91. Pachman DR, Barton DL, Watson JC, et al.: Chemotherapy-induced peripheral neuropathy: prevention and treatment. Clin Pharmacol Ther 90 (3): 377-87, 2011. [PubMed: 21814197]
  92. Mols F, Beijers T, Lemmens V, et al.: Chemotherapy-induced neuropathy and its association with quality of life among 2- to 11-year colorectal cancer survivors: results from the population-based PROFILES registry. J Clin Oncol 31 (21): 2699-707, 2013. [PubMed: 23775951]
  93. Wong R, Sagar S: Acupuncture treatment for chemotherapy-induced peripheral neuropathy--a case series. Acupunct Med 24 (2): 87-91, 2006. [PubMed: 16783284]
  94. Schroeder S, Meyer-Hamme G, Epplée S: Acupuncture for chemotherapy-induced peripheral neuropathy (CIPN): a pilot study using neurography. Acupunct Med 30 (1): 4-7, 2012. [PubMed: 22146780]
  95. Rostock M, Jaroslawski K, Guethlin C, et al.: Chemotherapy-induced peripheral neuropathy in cancer patients: a four-arm randomized trial on the effectiveness of electroacupuncture. Evid Based Complement Alternat Med 2013: 349653, 2013. [PMC free article: PMC3771477] [PubMed: 24066010]
  96. Bao T, Seidman AD, Piulson L, et al.: A phase IIA trial of acupuncture to reduce chemotherapy-induced peripheral neuropathy severity during neoadjuvant or adjuvant weekly paclitaxel chemotherapy in breast cancer patients. Eur J Cancer 101: 12-19, 2018. [PMC free article: PMC6147260] [PubMed: 30007894]
  97. Bao T, Goloubeva O, Pelser C, et al.: A pilot study of acupuncture in treating bortezomib-induced peripheral neuropathy in patients with multiple myeloma. Integr Cancer Ther 13 (5): 396-404, 2014. [PMC free article: PMC4562796] [PubMed: 24867959]
  98. Garcia MK, Cohen L, Guo Y, et al.: Electroacupuncture for thalidomide/bortezomib-induced peripheral neuropathy in multiple myeloma: a feasibility study. J Hematol Oncol 7: 41, 2014. [PMC free article: PMC4038108] [PubMed: 24886772]
  99. Han X, Wang L, Shi H, et al.: Acupuncture combined with methylcobalamin for the treatment of chemotherapy-induced peripheral neuropathy in patients with multiple myeloma. BMC Cancer 17 (1): 40, 2017. [PMC free article: PMC5223334] [PubMed: 28068938]
  100. Kanakura Y, Niwa K, Kometani K, et al.: Effectiveness of acupuncture and moxibustion treatment for lymphedema following intrapelvic lymph node dissection: a preliminary report. Am J Chin Med 30 (1): 37-43, 2002. [PubMed: 12067095]
  101. Alem M, Gurgel MS: Acupuncture in the rehabilitation of women after breast cancer surgery--a case series. Acupunct Med 26 (2): 87-93, 2008. [PubMed: 18591908]
  102. Cassileth BR, Van Zee KJ, Chan Y, et al.: A safety and efficacy pilot study of acupuncture for the treatment of chronic lymphoedema. Acupunct Med 29 (3): 170-2, 2011. [PMC free article: PMC3171073] [PubMed: 21685498]
  103. Cassileth BR, Van Zee KJ, Yeung KS, et al.: Acupuncture in the treatment of upper-limb lymphedema: results of a pilot study. Cancer 119 (13): 2455-61, 2013. [PMC free article: PMC3738927] [PubMed: 23576267]
  104. de Valois B, Asprey A, Young T: "The Monkey on Your Shoulder": A Qualitative Study of Lymphoedema Patients' Attitudes to and Experiences of Acupuncture and Moxibustion. Evid Based Complement Alternat Med 2016: 4298420, 2016. [PMC free article: PMC5007335] [PubMed: 27630734]
  105. Smith CA, Pirotta M, Kilbreath S: A feasibility study to examine the role of acupuncture to reduce symptoms of lymphoedema after breast cancer: a randomised controlled trial. Acupunct Med 32 (5): 387-93, 2014. [PubMed: 24990160]
  106. Yao C, Xu Y, Chen L, et al.: Effects of warm acupuncture on breast cancer-related chronic lymphedema: a randomized controlled trial. Curr Oncol 23 (1): e27-34, 2016. [PMC free article: PMC4754066] [PubMed: 26966410]
  107. Bao T, Iris Zhi W, Vertosick EA, et al.: Acupuncture for breast cancer-related lymphedema: a randomized controlled trial. Breast Cancer Res Treat 170 (1): 77-87, 2018. [PMC free article: PMC6159216] [PubMed: 29520533]
  108. Meng ZQ, Garcia MK, Chiang JS, et al.: Electro-acupuncture to prevent prolonged postoperative ileus: a randomized clinical trial. World J Gastroenterol 16 (1): 104-11, 2010. [PMC free article: PMC2799905] [PubMed: 20039456]
  109. Deng G, Wong WD, Guillem J, et al.: A phase II, randomized, controlled trial of acupuncture for reduction of Postcolectomy Ileus. Ann Surg Oncol 20 (4): 1164-9, 2013. [PMC free article: PMC3978767] [PubMed: 23188543]
  110. Ng SS, Leung WW, Mak TW, et al.: Electroacupuncture reduces duration of postoperative ileus after laparoscopic surgery for colorectal cancer. Gastroenterology 144 (2): 307-313.e1, 2013. [PubMed: 23142625]
  111. Liu YH, Dong GT, Ye Y, et al.: Effectiveness of Acupuncture for Early Recovery of Bowel Function in Cancer: A Systematic Review and Meta-Analysis. Evid Based Complement Alternat Med 2017: 2504021, 2017. [PMC free article: PMC5750515] [PubMed: 29422935]
  112. Feng Y, Wang XY, Li SD, et al.: Clinical research of acupuncture on malignant tumor patients for improving depression and sleep quality. J Tradit Chin Med 31 (3): 199-202, 2011. [PubMed: 21977863]
  113. Deng G, Giralt S, Chung DJ, et al.: Acupuncture for reduction of symptom burden in multiple myeloma patients undergoing autologous hematopoietic stem cell transplantation: a randomized sham-controlled trial. Support Care Cancer 26 (2): 657-665, 2018. [PMC free article: PMC6159943] [PubMed: 28920142]
  114. Johnstone PA, Polston GR, Niemtzow RC, et al.: Integration of acupuncture into the oncology clinic. Palliat Med 16 (3): 235-9, 2002. [PubMed: 12047000]
  115. Zhang ZH: Effect of acupuncture on 44 cases of radiation rectitis following radiation therapy for carcinoma of the cervix uteri. J Tradit Chin Med 7 (2): 139-40, 1987. [PubMed: 3448396]
  116. Yao W: Prof. Sheng Canruo's experience in acupuncture treatment of throat diseases with yan si xue. J Tradit Chin Med 20 (2): 122-5, 2000. [PubMed: 11039000]
  117. Feng RZ: Relief of oesophageal carcinomatous obstruction by acupuncture. J Tradit Chin Med 4 (1): 3-4, 1984. [PubMed: 6565880]
  118. Ge AX, Ryan ME, Giaccone G, et al.: Acupuncture treatment for persistent hiccups in patients with cancer. J Altern Complement Med 16 (7): 811-6, 2010. [PMC free article: PMC3035062] [PubMed: 20575702]
  119. Tong T, Pei C, Chen J, et al.: Efficacy of Acupuncture Therapy for Chemotherapy-Related Cognitive Impairment in Breast Cancer Patients. Med Sci Monit 24: 2919-2927, 2018. [PMC free article: PMC5963738] [PubMed: 29735975]
  120. de Valois BA, Young TE, Melsome E: Assessing the feasibility of using acupuncture and moxibustion to improve quality of life for cancer survivors with upper body lymphoedema. Eur J Oncol Nurs 16 (3): 301-9, 2012. [PubMed: 21917515]

Adverse Effects

Serious adverse effects of acupuncture are rare. Reported accidents and infections appear to be related to violations of sterile procedure, negligence of the practitioner, or both.[1,2] A systematic review of case reports on the safety of acupuncture, involving 98 papers published in the English language from 22 countries during the period from 1965 to 1999, found only 202 incidents. The number of incidents appeared to decline as training standards and licensure requirements were enhanced. Among the 118 (60%) reported incidents involving infection, 94 (80%) involved hepatitis, occurring mainly in the late 1970s and early 1980s. Very few hepatitis or other infections associated with acupuncture have been reported since 1988, when widespread use of disposable needles was introduced and national certification requirements for clean-needle techniques were developed and enforced as an acupuncture licensure requirement.[3,4] Because cancer patients who are undergoing chemotherapy or radiation therapy are immunocompromised, precautions must be taken and strict clean-needle techniques must be applied when acupuncture treatment is given.[5]

Minor adverse effects of acupuncture, such as pain at needling sites, hematoma, tiredness, lightheadedness, drowsiness, and localized skin irritation, have been reported.[6-11] These minor adverse effects can be minimized by appropriate patient management, including local pressing and massage at the needling site after treatment.[12,13]

Acupuncture in children has not been studied extensively; however, adverse effects appear to be rare and limited to the same effects as observed in adults.[14-16]. At least one study has shown that there was no increased incidence of adverse events in children with thrombocytopenia or neutropenia.[16]

References

  1. Lao L: Acupuncture techniques and devices. J Altern Complement Med 2 (1): 23-5, 1996. [PubMed: 9395637]
  2. MacPherson H: Fatal and adverse events from acupuncture: allegation, evidence, and the implications. J Altern Complement Med 5 (1): 47-56, 1999. [PubMed: 10100030]
  3. Lao L, Zhang G, Wong RH, et al.: The effect of electroacupuncture as an adjunct on cyclophosphamide-induced emesis in ferrets. Pharmacol Biochem Behav 74 (3): 691-9, 2003. [PubMed: 12543236]
  4. National Commission for the Certification of Acupuncturists: Clean Needle Technique for Acupuncturists: A Manual: Guidelines and Standards for the Clean & Safe Clinical Practice of Acupuncture. 3rd ed. Washington, DC: National Commission for the Certification of Acupuncturists, 1989.
  5. Shen J, Wenger N, Glaspy J, et al.: Electroacupuncture for control of myeloablative chemotherapy-induced emesis: A randomized controlled trial. JAMA 284 (21): 2755-61, 2000. [PubMed: 11105182]
  6. Enblom A, Johnsson A: Type and frequency of side effects during PC6 acupuncture: observations from therapists and patients participating in clinical efficacy trials of acupuncture. Acupunct Med 35 (6): 421-429, 2017. [PubMed: 29222203]
  7. Brattberg G: Acupuncture treatment: a traffic hazard? Am J Acupunct 14 (3): 265-7, 1986.
  8. Ernst E, White AR: Prospective studies of the safety of acupuncture: a systematic review. Am J Med 110 (6): 481-5, 2001. [PubMed: 11331060]
  9. White A, Hayhoe S, Hart A, et al.: Adverse events following acupuncture: prospective survey of 32 000 consultations with doctors and physiotherapists. BMJ 323 (7311): 485-6, 2001. [PMC free article: PMC48133] [PubMed: 11532840]
  10. MacPherson H, Thomas K, Walters S, et al.: The York acupuncture safety study: prospective survey of 34 000 treatments by traditional acupuncturists. BMJ 323 (7311): 486-7, 2001. [PMC free article: PMC48134] [PubMed: 11532841]
  11. Yamashita H, Tsukayama H, Tanno Y, et al.: Adverse events related to acupuncture. JAMA 280 (18): 1563-4, 1998. [PubMed: 9820249]
  12. Cheng X, ed.: Chinese Acupuncture and Moxibustion. Beijing, China: Foreign Languages Press, 1987.
  13. O'Connor J, Bensky D, eds.: Acupuncture: A Comprehensive Text. Chicago, Ill: Eastland Press, 1981.
  14. Jindal V, Ge A, Mansky PJ: Safety and efficacy of acupuncture in children: a review of the evidence. J Pediatr Hematol Oncol 30 (6): 431-42, 2008. [PMC free article: PMC2518962] [PubMed: 18525459]
  15. Ladas EJ, Rooney D, Taromina K, et al.: The safety of acupuncture in children and adolescents with cancer therapy-related thrombocytopenia. Support Care Cancer 18 (11): 1487-90, 2010. [PubMed: 20556436]
  16. Chokshi SK, Ladas EJ, Taromina K, et al.: Predictors of acupuncture use among children and adolescents with cancer. Pediatr Blood Cancer 64 (7): , 2017. [PubMed: 28176457]

Summary of the Evidence for Acupuncture Treatment of Cancer-Related Symptoms

It is noteworthy that almost all reported clinical studies on the effects of acupuncture on cancer or cancer therapy–related symptoms focus on symptom management rather than the disease itself. Investigations into the effects of acupuncture on chemotherapy-induced nausea and vomiting, many of which were randomized and well-controlled, produced the most convincing findings. A number of randomized controlled trials have reported on the effect of acupuncture in alleviating other cancer treatment-associated side effects, with many showing promising evidence supporting the use of acupuncture. Additional phase III clinical trials are ongoing.

Changes to This Summary (02/06/2019)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Human/Clinical Studies

Revised Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, and Table 8 to include level of evidence 1sC.

The Acupuncture for aromatase inhibitor-associated musculoskeletal symptoms subsection was extensively revised.

Added Chemotherapy-induced peripheral neuropathy (CIPN) from platinum-containing agents or taxanes as a new subsection.

Added CIPN from bortezomib or thalidomide as a new subsection.

This summary is written and maintained by the PDQ Integrative, Alternative, and Complementary Therapies Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® - NCI's Comprehensive Cancer Database pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the use of acupuncture in the treatment of people with cancer. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Integrative, Alternative, and Complementary Therapies Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

The lead reviewers for Acupuncture are:

  • Ting Bao, MD, DABMA, MS (Memorial Sloan Kettering Cancer Center)
  • Jinhui Dou, PhD (Yiling Pharmaceutical, Inc.)
  • Weidong Lu, MB, PhD, MPH (Dana-Farber Cancer Institute)
  • Patrick J. Mansky, MD (FMH Regional Cancer Therapy Center)

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Integrative, Alternative, and Complementary Therapies Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Integrative, Alternative, and Complementary Therapies Editorial Board. PDQ Acupuncture. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/about-cancer/treatment/cam/hp/acupuncture-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389159]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

Bookshelf ID: NBK65714PMID: 26389159

Views

  • PubReader
  • Print View
  • Cite this Page
  • Disable Glossary Links

Version History

Related publications

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Similar articles in PubMed

See reviews...See all...

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...