Clinical Description
In more than half of individuals with progressive myoclonic epilepsy type 1 (EPM1) the first manifestation is involuntary myoclonic jerks [Kälviäinen et al 2008, Hyppönen et al 2015]. The myoclonic jerks are action activated and stimulus sensitive and may be provoked by light, physical exertion, and stress. They occur predominantly in the proximal muscles of the extremities and are asynchronous; they may be focal or multifocal and may generalize to a series of myoclonic seizures or even status myoclonicus (continuous myoclonic jerks involving a semi-loss of consciousness).
During the first five to ten years, the symptoms/myoclonic jerks characteristically progress and about one third of affected individuals become severely incapacitated (wheelchair bound). Although the myoclonic jerks are disabling and resistant to therapy, the individual usually learns to tolerate them over time, if psychosocial support is good and depression not too severe.
In almost half of individuals, the first manifestation is tonic-clonic seizures. There may also be absence, psychomotor, and/or focal motor seizures. Epileptic seizures, infrequent in the early stages of the disease, often increase in frequency during the ensuing three to seven years. Later they may cease entirely with appropriate anti-seizure medication. In rare cases, tonic-clonic seizures do not occur.
Neurologic findings initially appear normal; however, experienced observers usually note recurrent, almost imperceptible myoclonus, especially in response to photic stimuli or other stimuli (threat, clapping of hands, nose tapping, reflexes) or to action (movements made during neurologic examination) or to cognitive stimuli (task demanding cognitive and psychomotor processing). Some years after the onset, ataxia, incoordination, intentional tremor, and dysarthria develop.
Cognitive performance, especially memory, is mostly within the normal range. However, affected individuals may exhibit poor performance in time-limited tests dependent on motor functions.
The disease course is inevitably progressive; however, the rate of deterioration – especially in terms of walking capacity – appears to vary even within the same family. Generalized tonic-clonic seizures are usually controlled with treatment, but myoclonic jerks may become severe, appear in series, and inhibit normal activities [Magaudda et al 2006, Hyppönen et al 2015]. Myoclonic jerks may also be subcortical in origin and therefore difficult to control [Danner et al 2009]. The individual becomes depressed and progression ensues. Education is often interrupted because of emotional, social, and intellectual problems.
In the past, life span was shortened; many individuals died eight to 15 years after the onset of disease, usually before age 30 years. With better pharmacologic, physiotherapeutic, and psychosocial supportive treatment, life expectancy is comparable to controls up to age 40 years, but is poorer over the long term. Death occurs mainly due to respiratory infections [R Kälviäinen, personal communication].
Genotype-Phenotype Correlations
Individuals with pathogenic variants in CSTB usually develop similar disease manifestations. There is evidence that correlation exists between the length of the expanded dodecamer repeat and the age of onset or disease severity [Hyppönen et al 2015]. However, disease severity also varies among affected individuals within a family with apparently similar repeat-size expansions.
Moreover, EPM1 resulting from compound heterozygosity for a dodecamer repeat expansion and a sequence variant (i.e., single-nucleotide variant or indel) often presents with earlier age of onset, more severe myoclonus, and seizures that may be drug resistant [Koskenkorva et al 2011, Canafoglia et al 2012]. It has been also suggested that compound heterozygosity causes a more severe EPM1 phenotype in affected males than females, but the numbers are small [Assenza et al 2017].
Recently, homozygous stop-codon and frameshift pathogenic variants in CSTB were associated with infantile-onset progressive disorders with unexplained severe developmental delay, microcephaly, and hypomyelination [Mancini et al 2016, O'Brien et al 2017).