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Summary
 

At the start of the 21st century, several federal agen
cies and organizations began to recognize the potential of 
improving chemical risk assessment by using the scientif
ic and technological advances in biology and other related 
fields that were allowing the biological basis of disease 
to be better understood. Substantial increases in compu
tational power and advances in analytical and integrative 
methods made incorporating the emerging evidence into 
risk assessment a possibility. Strategies were developed to 
use the advances to improve assessment of the effects of 
chemicals or other stressors that could potentially affect 
human health. Building on those efforts, the National Re
search Council (NRC) report Toxicity Testing in the 21st 
Century: A Vision and a Strategy1 envisioned a future in 
which toxicology relied primarily on high-throughput in 
vitro assays and computational models based on human 
biology to evaluate potential adverse effects of chemi
cal exposures. Similarly, the NRC report Exposure Sci-
ence in the 21st Century: A Vision and a Strategy2 articu
lated a long-term vision for exposure science motivated 
by the advances in analytical methods, sensor systems, 
molecular technologies, informatics, and computational 
modeling. That vision was to inspire a transformational 
change in the breadth and depth of exposure assessment 
that would improve integration with and responsiveness 
to toxicology and epidemiology. 

­

­

­

­

­

­

Since release of those two reports, government col­
laborations have been formed, large-scale US and inter­
national programs have been initiated, and data are being 
generated from government, industry, and academic lab­
oratories at an overwhelming pace. It is anticipated that 
the data being generated will inform risk assessment and 
support decision-making to improve public health and the 
environment. In the meantime, questions have arisen as to 
whether or how the data now being generated can be used 
to improve risk-based decision-making. Because several 
federal agencies recognize the potential value of such data 

1Referred to hereafter as the Tox21 report.
 
2Referred to hereafter as the ES21 report.
 

in helping them to address their many challenging tasks, 
the US Environmental Protection Agency (EPA), US 
Food and Drug Administration (FDA), National Center 
for Advancing Translational Sciences (NCATS), National 
Institute of Environmental Health Sciences (NIEHS) and 
asked the National Academies of Sciences, Engineering, 
and Medicine to recommend the best ways to incorporate 
the emerging science into risk-based evaluations.3 As a 
result of the request, the National Academies convened 
the Committee on Incorporating 21st Century Science 
into Risk-Based Evaluations, which prepared this report. 

SCIENTIFIC ADVANCES 

To approach its task, the committee assessed scien
tific and technological advances in exposure science and 
toxicology that could be integrated into and used to im
prove any of the four elements of risk assessment—haz
ard identification, dose–response assessment, exposure 
assessment, and risk characterization. Although the Na
tional Academies has not been asked to produce a report 
on epidemiology comparable with its Tox21 and ES21 
reports, epidemiological research is also undergoing a 
transformation. Because it plays a critical role in risk as
sessment by providing human evidence on adverse effects 
of chemical and other exposures, the committee assessed 
advances in epidemiology as part of its charge. The com
mittee highlights here some of the advances, challenges, 
and needs in each field in the context of risk assessment. 
The committee’s report provides specific recommenda
tions to address the challenges. Overall, a common theme 
is the need for a multidisciplinary approach. Exposure 
scientists, toxicologists, epidemiologists, and scientists 
in other disciplines need to collaborate closely to ensure 
that the full potential of 21st century science is realized 
to help to solve the complex environmental and public-
health problems that society faces. 

­

­
­

­

­

­

­

3The verbatim statement of task is provided in Chapter 1 of the 
committee’s report. 
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Exposure Science 

A primary objective for improving exposure science 
is to build confidence in the exposure estimates used to 
support risk-based decision-making by enhancing quality, 
expanding coverage, and reducing uncertainty. The many 
scientific and technological advances that are transform ­
ing exposure science should help to meet that objective. 
Some of the endeavors that the committee considered 
promising for advancing that objective and in which prog­
ress has been made since the ES21 report are highlighted 
below. 

•	 Remote sensing, personal sensors, and other 
sampling techniques. Remote sensing enhances the ca­
pacity to assess human and ecological exposures by help­
ing to fill gaps in time and place left by traditional ground-
based monitoring systems. Advances in passive sampling 
techniques and personal sensors offer unparalleled oppor­
tunities to characterize individual exposures, particularly 
in vulnerable populations. If remote sensing and personal 
sensors can be combined with global positioning systems, 
exposure and human-activity data can be linked to pro­
vide a more complete understanding of human exposures. 

•	 Computational exposure tools. Because expo­
sure-measurement data on many agents are not available, 
recent advances in computational tools for exposure sci­
ence are expected to play a crucial role in most aspects of 
exposure estimation for risk assessments, not just high-
throughput applications. However, improving the scope 
and quality of data that are needed to develop parameters 
for these tools is critically important because without such 
data the tools have greater uncertainty and less applicabil­
ity. Comparisons of calculated and measured exposures 
are required to characterize uncertainties in the computa­
tional tools and their input parameters. 

•	 Targeted and nontargeted analyses. Advances 
in two complementary approaches in analytical chem­
istry are improving the accuracy and breadth of human 
and ecological exposure characterizations and are ex ­
panding opportunities to investigate exposure–disease 
relationships. First, targeted analyses focus on identify­
ing selected chemicals for which standards and methods 
are available. Improved analytical methods and expanded 
chemical-identification libraries are increasing opportuni­
ties for such analyses. Second, nontargeted analyses of­
fer the ability to survey more broadly the presence of all 
chemicals in the environment and in biofluids regardless 
of whether standards and methods are available. Nontar­
geted analyses reveal the presence of numerous substanc­
es whose identities can be determined after an initial anal­
ysis by using cheminformatic approaches or advanced or 
novel analytical techniques. 

•	 -Omics technologies. -Omics technologies can 
measure chemical or biological exposures directly or iden­
tify biomarkers of exposure or response that allow one to 
infer exposure on the basis of a mechanistic understand­
ing of biological responses. These emerging technologies 
and data streams will complement other analyses, such 
as targeted and nontargeted analyses, and lead to a more 
comprehensive understanding of the exposure-to-outcome 
continuum. Identifying biomarkers of exposure to indi­
vidual chemicals or chemical classes within the complex 
exposures of human populations remains a considerable 
challenge for these tools. 

•	 Exposure matrices for life-span research. Re
sponding to the need to improve the characterization of 
fetal exposures to chemicals, researchers have turned to 
new biological matrices, such as teeth, hair, nails, pla
cental tissue, and meconium. The growth properties (the 
sequential deposition or addition of tissue with accumula
tion of chemicals) and availability of the biospecimens 
offer the opportunity to extract a record of exposure. The 
question that needs to be addressed now is how concentra
tions in these matrices are related to and can be integrated 
with measures of exposure that have been traditionally 
used to assess chemical toxicity or risk. 

­

­

­

­

•	 Physiologically based pharmacokinetic (PBPK) 
models. PBPK models are being applied more regularly 
to support aggregate (multiroute) exposure assessment, to 
reconstruct exposure from biomonitoring data, to trans­
late exposures between experimental systems, and to un­
derstand the relationship between biochemical and physi­
ological variability and variability in population response. 
An important focus has been on the development of PBPK 
models for translating exposures between test systems and 
human-exposure scenarios, development that has been 
driven by the rapidly expanding use of high-throughput in 
vitro assays to characterize the bioactivity of chemicals and 
other materials. That research will remain critical as regu­
latory agencies, industry, and other organizations increase 
their dependence on in vitro systems. 

The emerging technologies and data streams offer 
great promise for advancing exposure science and im­
proving and refining exposure measurements and assess ­
ment. However, various challenges will need to be ad­
dressed. A few are highlighted here. 

•	 Expanding and coordinating exposure-science 
infrastructure. A broad spectrum of disciplines and in­
stitutions are participating in advancing exposure meth­
ods, measurements, and models. Given the number and 
diversity of participants in exposure science, the informa­
tion is mostly fragmented, incompletely organized, and 
in some cases not readily available or accessible. Thus, 
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an infrastructure is needed to improve the organization 
and coordination of the existing and evolving components 
for exposure science and ultimately to improve exposure 
assessment. Infrastructure development should include 
creating or expanding databases that contain informa
tion on chemical quantities in and chemical release rates 
from products and materials, on chemical properties and 
on processes, and analytical features that can be used in 
chemical identification. 

­

•	 Aligning environmental and test-system expo-
sures. Aligning information on environmental exposures 
with information obtained from experimental systems is 
a critical aspect of risk-based evaluation. Concentrations 
in test-system components need to be quantified by mea ­
surement, which is preferred, or by reliable estimation 
methods. Knowledge of physical processes, such as bind­
ing to plastic and volatilization, and of biological process ­
es, such as metabolism, needs to be improved. 

•	 Integrating exposure information. Integration 
and appropriate application of exposure data on envi­
ronmental media, biomonitoring samples, conventional 
samples, and emerging matrices constitute a scientific, 
engineering, and big-data challenge. The committee em­
phasizes that integration of measured and modeled data is 
a key step in developing coherent exposure narratives, in 
evaluating data concordance, and ultimately in determin­
ing confidence in an exposure assessment. New multidis ­
ciplinary projects are needed to integrate exposure data 
and to gain experience that can be used to guide data col­
lection and integration of conventional and emerging data 
streams. 

Toxicology 

The decade since publication of the Tox21 report 
has seen continued advances in an array of technologies 
that can be used to understand human biology and dis­
ease at the molecular level. Technologies are now avail­
able to profile the transcriptome, epigenome, proteome, 
and metabolome. There are large banks of immortalized 
cells collected from various populations to use for toxico­
logical research; large compilations of publicly available 
biological data that can be mined to develop hypotheses 
about relationships between chemicals, genes, and diseas­
es; and genetically diverse mouse strains and alternative 
species that can be used for toxicological research. High­
lighted below are some assays, models, and approaches 
for predicting biological responses that have seen rapid 
advances over the last decade; they are arranged by in­
creasing level of biological organization. 

•	 Probing interactions with biological molecules. 
Chemical interactions with specific receptors, enzymes, 
or other discrete proteins and nucleic acids have long been 
known to have adverse effects on biological systems, and 

development of in vitro assays that probe chemical inter­
actions with cellular components has been rapid, driven 
partly by the need to reduce high attrition rates in drug de­
velopment. The assays can provide reliable and valid re­
sults with high agreement among laboratories and can be 
applied in low-, medium-, and high-throughput formats. 
Computational models have been developed to predict 
activity of chemical interactions with protein targets, and 
research to improve the prediction of protein–chemical 
interactions continues. 

•	 Detecting cellular response. Cell cultures can be 
used to evaluate a number of cellular processes and re­
sponses, including receptor binding, gene activation, cell 
proliferation, mitochondrial dysfunction, morphological 
changes, cellular stress, genotoxicity, and cytotoxicity. Si­
multaneous measurements of multiple toxic responses are 
also possible with high-content imaging and other novel 
techniques. Furthermore, cell cultures can be scaled to a 
high-throughput format and can be derived from geneti­
cally different populations so that aspects of variability in 
response to chemical exposure that depend on genetic dif­
ferences can be studied. In addition to cell-based assays, 
numerous mathematical models and systems-biology 
tools have been advanced to describe various aspects of 
cell function and response. 

•	 Investigating effects at higher levels of biologi-
cal organization. The last decade has seen advances in 
engineered three-dimensional (3-D) models of tissues. 
Organotypic or organ-on-a-chip models are types of 3-D 
models in which two or more cell types are combined in 
an arrangement intended to mimic an in vivo tissue and, 
therefore, recapitulate at least some of the physiologi­
cal responses that the tissue or organ exhibits in vivo. 
NCATS, for example, has a number of efforts in this field. 
Although the models are promising, they are not yet ready 
for inclusion in risk assessment. In addition to cell cul­
tures, computational systems-biology models have been 
developed to simulate tissue-level response. EPA, for ex­
ample, has developed virtual-tissue models for the em­
bryo and liver. Virtual-tissue models can potentially help 
in conceptualizing and integrating current knowledge 
about the factors that affect key pathways and the degree 
to which pathways must be perturbed to activate early and 
intermediate responses in human tissues and, when more 
fully developed, in supporting risk assessments. 

•	 Predicting organism and population response. 
Animal studies remain an important tool in risk assess­
ment, but scientific advances are providing opportunities 
to enhance the utility of whole-animal testing. Gene-ed­
iting technologies, for example, have led to the creation 
of transgenic rodents that can be used to investigate spe­
cific questions, such as those related to susceptibility or 
gene–environment interactions. Genetically diverse ro­
dent strains have provided another approach for address­
ing questions related to interindividual sensitivity to toxi­
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cants. Combining transgenic or genetically diverse rodent 
strains with -omics and other emerging technologies can 
increase the information gained from whole-animal test­
ing alone. Those targeted studies can help to address 
knowledge gaps in risk assessment and can link in vitro 
observations to molecular, cellular, or physiological ef­
fects in the whole animal. In addition to the mammalian 
species, scientific advances have made some alternative 
species—such as the nematode Caenorhabditis elegans, 
the fruit fly Drosophila melanogaster, and the zebrafish 
Danio rerio—useful animal models for hazard identifica­
tion and investigation of biological mechanisms. 

The assays, models, and tools noted above hold great 
promise in the evolution of toxicology, but there are im­
portant technical and research challenges, a few of which 
are highlighted below. 

•	 Accounting for metabolic capacity in assays. 
Current in vitro assays generally have little or no metabol­
ic capability, and this aspect potentially constrains their 
usefulness in evaluating chemical exposures that are rep­
resentative of human exposures that could lead to toxicity. 
Research to address the metabolic-capacity issues needs 
to have high priority, and formalized approaches need to 
be developed to characterize the metabolic competence of 
assays, to determine for which assays it is not an essential 
consideration, and to account for the toxicity of metabo­
lites appropriately. 

•	 Understanding and addressing other limitations 
of cell systems. Cell cultures can be extremely sensitive 
to environmental conditions, responses can depend on the 
cell type used, and current assays can evaluate only chem­
icals that have particular properties. Research is needed 
to determine the breadth of cell types required to capture 
toxicity adequately; cell batches need to be characterized 
sufficiently before, during, and after experimentation; 
and practical guidance will need to be developed for cell 
systems regarding their range of applicability and for de­
scribing the uncertainty of test results. 

•	 Addressing biological coverage. Developing a 
comprehensive battery of in vitro assays that covers the 
important biological responses to the chemical exposures 
that contribute to adverse health effects is a consider­
able challenge. In addition, most assays used in the fed­
eral government high-throughput testing programs were 
developed by the pharmaceutical industry and were not 
designed to cover the full array of biological response. 
As emphasized in the Tox21 report, research is needed to 
determine the extent of relevant mechanisms that lead to 
adverse responses in humans and to determine which ex­
perimental models are needed to cover these mechanisms 
adequately. Using -omics technologies and targeted test­
ing approaches with transgenic and genetically diverse 

rodent species and alternative species will address knowl­
edge gaps more comprehensively. 

When one considers the progress in implementing the 
Tox21 vision and the current challenges, it is important to 
remember that many assays, models, and tools were not 
developed with risk-assessment applications as a primary 
objective. Thus, understanding of how best to apply them 
and interpret the data is evolving. The usefulness or ap­
plicability of various in vitro assays will need to be deter­
mined by continued data generation and critical analysis, 
and some assays that are highly effective for some pur­
poses, such as pharmaceutical development, might not be 
as useful for risk assessment of commodity chemicals or 
environmental pollutants. It will most likely be necessary 
to adapt current assays or develop new assays specifically 
intended for risk-assessment purposes. 

Epidemiology 

The scientific advances that have propelled exposure 
science and toxicology onto new paths have also substan
tially influenced the direction of epidemiological studies 
and research. The factors reshaping epidemiology in the 
21st century include expansion of the interdisciplinary 
nature of the field; the increasing complexity of scientific 
inquiry; emergence of new data sources and technologies 
for data generation, such as new medical and environ
mental data sources and -omics technologies; advances 
in exposure characterization; and increasing demands to 
integrate new knowledge from basic, clinical, and popu
lation sciences. There is also a movement to register past 
and present datasets so that on particular issues datasets 
can be identified and combined. 

­

­

­

One of the most important developments has been the 
emergence of the -omics technologies and their incorpo­
ration into epidemiological research. -Omics technologies 
have substantially transformed epidemiological research 
and advanced the paradigm of molecular epidemiol­
ogy, which focuses on underlying biology (pathogenesis) 
rather than on empirical observations alone. The utility 
of -omics technologies in epidemiological research is al­
ready clear and well exemplified by the many studies that 
have incorporated genomics. For example, the genetic 
basis of disease has been explored in genome-wide as­
sociation studies in which the genomic markers in people 
who have and do not have a disease or condition of inter­
est are compared. The -omics technologies that have been 
applied in epidemiological research, however, have now 
expanded beyond genomics to include epigenomics, pro­
teomics, transcriptomics, and metabolomics. New studies 
are being designed with the intent of prospectively storing 
samples that can be used for existing and future -omics 
technologies. Thus, obtaining data from human popula­
tion studies that are parallel to data obtained from in vi­
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tro and in vivo assays or studies is already possible and 
potentially can help in harmonizing comparisons of ex ­
posure and dose. Furthermore, -omics technologies have 
the potential for providing a suite of new biomarkers for 
hazard identification and risk assessment. 

Like exposure science and toxicology, epidemiology 
faces challenges in incorporating 21st century science 
into its practice. -Omics assays can generate extremely 
large datasets that need to be managed and curated in 
ways that facilitate access and analysis. Databases that 
can accommodate the large datasets, support analyses for 
multiple purposes, and foster data-sharing need to be de­
veloped. Powerful and robust statistical techniques also 
are required to analyze all the data. And standard ways 
to describe the data are needed so that data can be har­
monized among investigative groups and internationally. 

The landscape of epidemiological research is chang
ing rapidly as the focus shifts from fixed, specific cohorts, 
such as those in the Nurses’ Health Study,4 to large co
horts enrolled from health-care organizations or other 
resources that incorporate biospecimen banks and use 
health-care records to characterize participants and to 
track outcomes. Such studies offer large samples but will 
need new approaches to estimate exposures that will work 
in this context. Thus, there will be a need for close collab
oration with exposure scientists to ensure that exposure 
data are generated in the best and most comprehensive 
way possible. Furthermore, various biospecimens are be
ing collected and stored with the underlying assumption 
that they will be useful in future studies; researchers in
volved in such future-looking collections need to seek 
input from the scientists who are developing new assays 
so that the biospecimens can be collected and stored in a 
way that maximizes the potential for their future use. All 
those concerns emphasize the need to expand the multi
disciplinary teams involved in epidemiological research. 

­

­

­

­

­

­

APPLICATIONS OF 21st CENTURY SCIENCE 

The scientific and technological advances described 
above and in further detail in this report offer opportu
nities to improve the assessment or characterization of 
risk for the purpose of environmental and public-health 
decision-making. The committee highlights below sev
eral activities—priority-setting, chemical assessment, 
site-specific assessment, and assessments of new chem
istries—that could benefit from the incorporation of 21st 
century science. Case studies of practical applications are 
provided in Appendixes B–D. 

­

­

­

Priority-setting has been seen as a principal initial 
application for 21st century science. High-throughput 

4The Nurses’ Health Study is a prospective study that has fol­
lowed a large cohort of women over many decades to identify risk 
factors for major chronic diseases. 

screening programs have produced toxicity data on thou
sands of chemicals, and high-throughput methods have 
provided quantitative exposure estimates. Several meth
ods have been proposed for priority-setting, including 
risk-based approaches that use a combination of the high-
throughput exposure and hazard information to calculate 
margins of exposure (differences between toxicity and 
exposure metrics). For that approach, chemicals that have 
a small margin of exposure would be seen as having high 
priority for further testing and assessment. 

­

­

Chemical assessment is another activity in which the 
committee sees great potential for application of 21st cen­
tury science. Chemical assessments encompass a broad 
array of analyses. Some cover chemicals that have a sub­
stantial database for decision-making, and for these as­
sessments scientific and technical advances can be used to 
reduce uncertainties around key issues and to address un­
answered questions. Many assessments, however, cover 
chemicals on which there are few data to use in decision-
making, and for these assessments the committee finds an 
especially promising application for 21st century science. 
One approach for evaluating data-poor chemicals is to use 
toxicity data on well-tested chemicals (analogues) that are 
similar to the chemicals of interest in their structure, me­
tabolism, or biological activity in a process known as read-
across (see Figure S-1). The assumption is that a chemical 
of interest and its analogues are metabolized to common 
or biologically similar metabolites or that they are suf­
ficiently similar in structure to have the same or similar 
biological activity. The method is facilitated by having 
a comprehensive database of toxicity data that is search-
able by curated and annotated chemical structures and by 
using a consistent decision process for selecting suitable 
analogues. The approach illustrated in Figure S-1 can be 
combined with high-throughput in vitro assays, such as 
gene-expression analysis, or possibly with a targeted in 
vivo study to allow better selection of the analogues to en­
sure that the biological activities of a chemical of interest 
and its analogues are comparable. The committee notes 
that computational exposure assessment, which includes 
predictive fate and transport modeling, is an important 
complement to the approach described and can provide 
information on exposure potential, environmental persis­
tence, and likelihood of bioaccumulation. 

Site-specific assessment represents another applica­
tion for which 21st century science can play an important 
role. Understanding the risks associated with a chemical 
spill or the extent to which a hazardous-waste site needs 
to be remediated depends on understanding exposures 
to various chemicals and their toxicity. The assessment 
problem contains three elements—identifying and quan­
tifying chemicals present at the site, characterizing their 
toxicity, and characterizing the toxicity of chemical mix­
tures—and the advances described in this report can ad­
dress each element. First, targeted analytical-chemistry 
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approaches can identify and quantify chemicals for which 
standards are available, and nontargeted analyses can help 
to assign provisional identities to previously unidentified 
chemicals. Second, analogue-based methods coupled 
with high-throughput or high-content screening methods 
have the potential to characterize the toxicity of data-poor 
chemicals. Third, high-throughput screening methods can 
provide information on mechanisms that can be useful in 
determining whether mixture components might act via a 
common mechanism, affect the same organ, or cause the 
same outcome and thus should be considered as posing 
a cumulative risk. High-throughput methods can also be 
used to assess the toxicity of mixtures that are present at 
specific sites empirically rather than assessing individual 
chemicals. 

Assessment of new chemistries is similar to the chem­
ical assessment described above except that it typically 
involves new molecules on which there are no toxicity 
data and that might not have close analogues. Here, mod­
ern in vitro toxicology methods could have great utility 
by providing guidance on which molecular features are 
associated with greater or less toxicity and by identifying 
chemicals that do not affect biological pathways that are 
known to be relevant for toxicity. Modern exposure-sci­
ence methods might also help to identify chemicals that 

have the highest potential for widespread environmental 
or human exposure and for bioaccumulation. 

VALIDATION 

Before new assays, models, or test systems can be 
used in regulatory-decision contexts, it is expected and 
for some purposes legally required that their relevance, 
reliability, and fitness for purpose be established and 
documented. That activity has evolved into elaborate 
processes that are commonly referred to as validation of 
alternative methods. One critical issue is that current pro­
cesses for validation cannot match the pace of develop­
ment of new assays, models, and test systems, and many 
have argued that validation processes need to evolve. 
Important elements of the validation process that need to 
be addressed include finding appropriate comparators for 
enabling fit-for-purpose validation of new test methods, 
clearly defining assay utility and how assay data should 
be interpreted, establishing performance standards for 
assays and clear reporting standards for testing methods, 
and determining how to validate batteries of assays that 
might be used to replace toxicity tests. The committee dis­
cusses those challenges further and offers some recom­
mendations in Chapter 6. 

FIGURE S-1  Approach to deriving health reference values when data on similar chemicals are available. Similarity can be based on such 
characteristics as chemical structure, physicochemical properties, metabolism, key events in biological pathways, or gene expression; similar
ity of several characteristics increases confidence in the analogy. The point of departure (POD) of the appropriate analogue would be adjusted 
on the basis of pharmacokinetic differences between the chemical of interest and the analogue and other important biological factors, such as 
receptor activation; relevant uncertainty factors would then be applied or models would be used to derive the health reference value. Account
ing for uncertainty could include a determination of the degree of confidence in the read-across, including the number of analogues identified, 
the degree of similarity of the analogues to the chemical of interest, and the extent of the dataset on the analogues. 

­

­
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A NEW DIRECTION FOR RISK ASSESSMENT
 
AND THE CHALLENGES IT POSES
 

The advances in exposure science, toxicology, and 
epidemiology described in this report support a new di­
rection for risk assessment, one based on biological path­
ways and processes rather than on observation of apical 
responses and one incorporating the more comprehensive 
exposure information emerging from new tools and ap­
proaches in exposure science. The exposure aspect of the 
new direction focuses on estimating or predicting internal 
and external exposures to multiple chemicals and stress-
ors, characterizing human variability in those exposures, 
providing exposure data that can inform toxicity testing, 
and translating exposures between test systems and hu­
mans. The toxicology and epidemiology elements of the 
new direction focus on the multifactorial and nonspe­
cific nature of disease causation; that is, stressors from 
multiple sources can contribute to a single disease, and 
a single stressor can lead to multiple adverse outcomes. 
The question shifts from whether A causes B to whether 
A increases the risk of B. The committee found that the 
sufficient-component-cause model, which is illustrated in 
Figure S-2, is a useful tool for conceptualizing the new di ­
rection. The same outcome can result from more than one 
causal complex or mechanism; each mechanism generally 
involves joint action of multiple components. 

Most diseases that are the focus of risk assessment 
have a multifactorial etiology; some disease components 
arise from endogenous processes, and some result from 
the human experience, such as background health condi­
tions, co-occurring chemical exposures, food and nutri­
tion, and psychosocial stressors. Those additional compo­
nents might be independent of the environmental stressor 
under study but nonetheless influence and contribute to 
the overall risk and incidence of disease. As shown in the 
case studies in this report, one does not need to know all 

FIGURE S-2 Multifactorial nature of disease illustrated by using 
the sufficient-component-cause model in which various overall 
mechanisms (I, II, and III) for a disease are represented as causal 
pies of various components (A–J). The committee considers path
ways to be components of the mechanism. 

­

the pathways or components involved in a particular dis
ease to begin to apply the new tools to risk assessment. 
The 21st century tools provide the mechanistic and expo
sure data to support dose–response characterizations and 
human-variability derivations described in the NRC re
port Science and Decisions: Advancing Risk Assessment. 
They also support the understanding of relationships be
tween disease and components and can be used to probe 
specific chemicals for their potential to perturb pathways 
or activate mechanisms and increase risk. 

­

­

­

­

The 21st century science with its diverse, complex, 
and very large datasets, however, poses challenges relat­
ed to analysis, interpretation, and integration of data and 
evidence for risk assessment. In fact, the technology has 
evolved far faster than the approaches for those activities. 
The committee found that Bradford-Hill causal guidelines 
could be extended to help to answer such questions as 
whether specific pathways, components, or mechanisms 
contribute to a disease or outcome and whether a particu­
lar agent is linked to pathway perturbation or mechanism 
activation. Although the committee considered various 
methods for data integration, it concluded that guided ex­
pert judgment should be used in the near term for integrat ­
ing diverse data streams for drawing causal conclusions. 
In the future, pathway-modeling approaches that incor­
porate uncertainties and integrate multiple data streams 
might become an adjunct to or perhaps a replacement for 
guided expert judgment, but research will be needed to 
advance those approaches. The committee emphasizes 
that insufficient attention has been given to analysis, in ­
terpretation, and integration of various data streams from 
exposure science, toxicology, and epidemiology. It pro­
poses a research agenda that includes developing case 
studies that reflect various scenarios of decision-making 
and data availability; testing case studies with multidisci­
plinary panels; cataloguing evidence evaluations and de­
cisions that have been made on various agents so that ex­
pert judgments can be tracked and evaluated, and expert 
processes calibrated; and determining how statistically 
based tools for combining and integrating evidence, such 
as Bayesian approaches, can be used for incorporating 
21st century science into all elements of risk assessment. 

CONCLUDING REMARKS 

As highlighted here and detailed in the committee’s 
report, many scientific and technical advances have fol­
lowed publication of the Tox21 and ES21 reports. The 
committee concludes that the data that are being gener­
ated today can be used to address many of the risk-related 
tasks that the agencies face, and it provides several case 
studies in its report to illustrate the potential applications. 
Although the challenges to achieving the visions of the 
earlier reports often seem daunting, 21st century science 
holds great promise for advancing risk assessment and 
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ultimately for improving public health and the environ­
ment. The committee emphasizes, however, that commu­
nicating the strengths and limitations of the approaches in 
a transparent and understandable way will be necessary 
if the results are to be applied appropriately and will be 
critical for the ultimate acceptance of the approaches. 
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Introduction
 

Over the last decade, several large-scale US and in­
ternational programs have been initiated to incorporate 
advances in molecular and cellular biology, -omics tech­
nologies, analytical methods, bioinformatics, and com­
putational tools and methods into the field of toxicology. 
The overarching goal of the various programs is to move 
toxicology from a practice that uses whole-animal testing 
to one that uses primarily modern in vitro assays and com­
putational approaches to predict toxicity on the basis of an 
understanding of the biological processes that ultimately 
lead from the initial chemical exposure to adverse effects. 
Similar efforts are being pursued in the field of exposure 
science with the goals of obtaining more accurate and 
complete exposure data on individuals and populations 
for thousands of chemicals over the lifespan; predicting 
exposures from use data and chemical-property informa­
tion; and translating exposures between test systems and 
humans. It is hoped that the advances in toxicology and 
exposure science and better integration of the fields will 
improve risk assessment and thus better support decision-
making to improve public and environmental health. 
With various efforts under way, diverse data are being 
generated, and their utility for risk assessment investi­
gated. Although the programs and the data being gener­
ated are still evolving and will undoubtedly continue to 
do so, some data could be used now to help to fill gaps 
and assess chemical risk better. Several federal agencies 
recognize the potential value of such data in helping them 
to address their many challenging tasks. Accordingly, 
the US Environmental Protection Agency (EPA), the US 
Food and Drug Administration (FDA), the National Cen­
ter for Advancing Translational Sciences (NCATS), and 
the National Institute of Environmental Health Sciences 
(NIEHS), and the asked the National Academies of Sci­
ences, Engineering, and Medicine to consider the integra­
tion of modern and emerging scientific approaches and 
data into risk-based evaluations and to recommend the 
best ways to do so. As a result of the request, the National 
Academies convened the Committee on Incorporating 
21st Century Science into Risk-Based Evaluations, which 
prepared this report. 

TOXICOLOGY IN THE 21st CENTURY 

In the early 2000s, several agencies and organiza­
tions began to recognize the potential of various scien­
tific advances in biology and related fields and the pos ­
sibilities provided by increases in computational power to 
characterize risks of environmental exposures. Roadmaps 
were developed to incorporate such advances into their 
strategic plans for assessing chemicals and other agents 
(EPA 2003; NTP 2004). In 2007, the National Research 
Council (NRC) released the report Toxicity Testing in the 
21st Century: A Vision and a Strategy,1 which envisioned 
transforming toxicity testing from a system that relies 
on animal assays to one that relies primarily on high-
throughput in vitro assays and computational methods 
based on human biology. The primary goals behind the 
vision were “(1) to provide broad coverage of chemicals, 
chemical mixtures, outcomes, and life stages, (2) to re­
duce the cost and time of testing, (3) to use fewer animals 
and cause minimal suffering in the animals used, and (4) 
to develop a more robust scientific basis for assessing 
health effects of environmental agents” (NRC 2007). The 
committee that prepared the 2007 report emphasized that 
the transformation would require a focused effort over 
several decades for full implementation. On release of the 
report, the NIEHS National Toxicology Program, the EPA 
National Center for Computational Toxicology, and the 
Chemical Genomics Center2 of the National Institutes of 
Health formed a collaboration, known as Tox21, to ad­
vance the vision set forth in the 2007 report (Collins et al. 
2008). FDA later joined the collaboration. 

The goals of the Tox21 collaboration are to iden
tify and characterize specific mechanisms or pathways 
that lead to adverse effects in humans, to design assays 
to measure pathway responses, to develop models that 
can predict toxicity using the assay data, and to set pri
orities among chemicals for more comprehensive tox
icity testing (NCATS 2015a). It is planned that the data 
generated will ultimately help to inform EPA, FDA, and 

­

­
­

1Referred to hereafter as the Tox21 report.
 
2The Chemical Genomics Center is now part of NCATS.
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other agencies on the hazards posed by the chemicals or 
products that they regulate and will be used by industry 
to screen for potential toxicity in product development. 
A phased approach to the research is being taken. Phase 
I of Tox21 has been completed and involved testing of 
about 2,800 chemicals in about 50 assays, including ones 
to assess cytotoxicity, mitochondrial toxicity, cell signal
ing, DNA damage, immune response, drug metabolism, 
nuclear-receptor activation, and inhibition of various mo
lecular targets (Tice et al. 2013; NCATS 2015b). Phase II 
involves testing of over 10,000 chemicals that occupy a 
diverse chemical and toxicological space and include “in
dustrial chemicals, sunscreen additives, flame retardants, 
pesticides and selected metabolites, plasticizers, solvents, 
food additives, natural product components, drinking 
water disinfection by-products, preservatives, therapeu
tic agents, and chemical synthesis by-products” (Tice et 
al. 2013). Phase III will involve identification of physi
ologically relevant cells, measurement of gene expression 
in a large number of molecular pathways, and testing of 
chemical mixtures and extracts (NCATS 2015b). 

­

­

­

­

­

In 2007, EPA initiated its Toxicity Forecaster (Tox-
Cast) program, which seeks to develop high-throughput 
screening (HTS) assays for evaluating biological re­
sponses that are relevant to prediction of adverse effects 
of chemical exposures on humans (EPA 2013). A phased 
approach to research is also being taken in the ToxCast 
program. Phase I, which has been completed, involved 
testing of over 300 well-studied chemicals in several hun­
dred HTS assays (Kavlock and Dix 2010). Phase II has 
also been completed; it involved testing of over 2,000 
chemicals—including industrial and consumer products, 
food additives, and potentially safer chemical alternatives 
to existing chemicals—in HTS assays for evaluating vari­
ous cell responses and over 300 signaling pathways (EPA 
2013; Silva et al. 2015). ToxCast data are now being eval­
uated as a means of setting priorities among chemicals for 
testing in EPA’s Endocrine Disruptor Screening Program 
and in other programs that require setting priorities for 
testing. 

In addition to US government-led efforts, internation­
al efforts are transforming toxicology from an observation­
al to a predictive science. In the European Union, for ex­
ample, the European Commission and Cosmetics Europe 
(a trade association for the cosmetics and personal-care 
industry) have co-funded the research initiative Safety 
Evaluation Ultimately Replacing Animal Testing (SEUR­
AT 2015). The initiative was started to develop tools to 
comply with legislation that banned all animal testing for 
cosmetic ingredients and all marketing of animal-tested 
cosmetic ingredients and products; a complete ban went 
into effect in March 2013. Its vision was to eliminate tra­
ditional animal testing by adopting a “toxicological mode-
of-action framework to describe how any substance may 

adversely affect human health, and use this knowledge to 
develop complementary theoretical, computational and 
experimental (in vitro) models that predict quantitative 
points of departure needed for safety assessment” (Berg­
gren 2015). The research initiative was a 5-year program 
(2011–2015) that involved development of in vitro assays 
that use human pluripotent stem cells, development of a 
hepatic microfluidic bioreactor, identification and investi­
gation of human biomarkers of chronic toxicity in cellular 
models, and development of computational tools for pre­
dicting chronic toxicity. 

Private industry and other organizations are also 
working to transform the ways in which chemicals are as­
sessed. For example, the pharmaceutical industry has been 
developing and using in vitro and computational tools 
as early screens for drug safety for many years (Greene 
and Song 2011; Bowes et al. 2012). Organizations have 
developed case studies related to the use of new in vitro 
assays and computational systems-biology tools for as­
sessment of chemical risk (Daston et al. 2015; Gocht et 
al. 2015). Cheminformatics research has resulted in the 
development of rational systems for informing qualita­
tive structure–activity relationship assessments (Wu et al. 
2010) and in the development of automated decision trees 
for identifying toxicity end points, such as developmental 
and reproductive toxicity (Wu et al. 2013). 

Academic institutions are generating a substantial 
amount of data that could help to inform chemical risk 
assessment. Academic laboratories tend to focus on end 
points that are not typically covered in guideline animal 
studies, such as mammary gland development (Fenton 
2006; Soto et al. 2008; Osborne et al. 2015), synaptic 
morphology and other aspects of nervous system develop­
ment (Patisaul and Polston 2008), and complex behaviors, 
including sociality, aggression, cognition, and behavioral 
hallmarks of psychiatric disorders, such as autism spec­
trum disorder and attention deficit disorder (Eubig et al. 
2010; de Cock et al. 2012; Leon-Olea et al. 2014). Re­
search on genetics, genomics, and epigenetics (including 
the role of noncoding RNAs) is also abundant and is pro­
viding insights on novel biological mechanisms and gene­
by-environment interactions (Dolinoy et al. 2007; Rusyn 
et al. 2010; Tal and Tanguay 2012; Nebert et al. 2013; Yeo 
et al. 2013). Academic laboratories have been responsible 
for generating nearly all the data on transgenerational ef­
fects (Rissman and Adli 2014); have pioneered the use 
of nontraditional animal models, including transgenic and 
population-based models (Churchill et al. 2004; Rusyn 
et al. 2010; Sullivan et al. 2014); and have conducted 
most of the epidemiological studies of chemical risk. The 
enormous volume of data being generated throughout the 
basic- and clinical-research communities has prompted 
questions about how the data could best be used for vari­
ous risk-related activities and decision-making. 



 

 

11 Introduction 

EXPOSURE SCIENCE IN THE 21st CENTURY 

Exposure science is undergoing a transformation sim­
ilar to that affecting toxicology with the advances in mo­
lecular technologies, computational tools, bioinformatics, 
sensor systems, and analytical methods. In 2012, the NRC 
released the report Exposure Science in the 21st Century: 
A Vision and a Strategy,3 which articulated a long-term 
vision for exposure science. The primary long-term goal 
of the vision was to broaden the reach of exposure science 
from a traditional focus on discrete exposures to an “in­
tegrated approach that considers exposures from source 
to dose, on multiple levels of integration (including time, 
space, and biological scale), to multiple stressors, and 
scaled from molecular systems to individuals, popula­
tions, and ecosystems” (NRC 2012). The report described 
scientific and technological progress that has the potential 
to transform exposure science, including geographic in­
formation technologies that can track sources, exposure 
concentrations, and receptors; monitoring technologies 
that can collect data on personal exposure of millions 
of people; highly sensitive analytical technologies that 
can identify and measure biomarkers that are indicative 
of internal exposures; and computational tools that can 
manage the large amounts of data generated. It also high­
lighted high-priority research, emphasized the need for 
interagency collaboration and resources, and elaborated 
the broad concept of the exposome, defined as “the record 
of all exposures both internal and external that people 
receive throughout their lifetime” (Rappaport and Smith 
2010). Last, it recognized the interdependence of the fields 
of toxicology, risk assessment, and exposure science and 
foresaw the need to evolve the risk-assessment paradigm 
toward one in which exposure science plays a strong 
role, specifically, a paradigm that is “influenced by and 
responsive to human and environmental exposure data.” 
The report described four objectives of exposure science: 
to set priorities among chemicals for toxicity testing; to 
provide exposure information to guide toxicity testing; to 
provide quantitative pharmacokinetic data on absorption, 
distribution, metabolism, and excretion (ADME) derived 
from human-exposure studies; and to connect exposure 
data with biological activity data to identify exposure–re­
sponse relationships. 

In response to the recommendation to improve inte­
gration of exposure science throughout the federal gov­
ernment, the Exposure Science in the 21st Century (ES21) 
Federal Working Group has emerged (EPA 2016a). It con­
sists of representatives of more than 20 federal organi­
zations that have a common interest in exposure-science 
research and development. The purpose of the working 
group is to build on the framework recommended in the 
ES21 report, share information, integrate activities, re­
duce duplication of efforts among agencies, and promote 

3Referred to hereafter as the ES21 report. 

federal collaboration in the development of exposure sci­
ence. In addition to the activities of the working group, 
several research programs are involved in advancing ex­
posure science on paths that are consistent with the vision 
articulated in the ES21 report. EPA created the Exposure 
Forecasting (ExpoCast) program, which complements 
its ToxCast program (EPA 2016b). ExpoCast focuses on 
developing high-throughput methods for estimating ex­
posure and so far has been used to make exposure pre­
dictions related to over 1,900 chemicals. EPA’s goal is to 
combine the exposure estimates from ExpoCast with bio­
activity data from ToxCast to predict human health and 
environmental risks. 

NIEHS is also interested in advancing exposure sci­
ence and has supported research to develop new sensor 
systems and to identify biomarkers of response to expo­
sure (NIEHS 2015). It has created the Children’s Health 
Exposure Analysis Resource (NIEHS 2016), an infra­
structure designed to enable and expand incorporation of 
environmental exposures into studies of children’s health; 
it includes a data repository, support for statistical analy­
sis, and a network of laboratories to analyze biological 
samples. The NIEHS strategic plan emphasizes a com­
mitment to supporting research to define and explore the 
exposome, and the agency has funded the HERCULES 
center at Emory University to conduct exposome-focused 
research (NIEHS 2012). 

In addition to the efforts in the United States, there are 
international efforts, such as the Human Early-Life Expo-
some (HELIX) project and the EXPOsOMICS project. 
HELIX has the ambitious goal of characterizing early-life 
exposures and ultimately linking exposures with chil­
dren’s health outcomes (Vrijheid et al. 2014). The project 
is studying 32,000 mother–child pairs in six European 
countries. EXPOsOMICS focuses on the external and in­
ternal exposome associated with air pollution and water 
contamination (Vineis et al. 2013, in press). The project 
will perform personal-exposure monitoring of air pollut­
ants for hundreds of subjects in Europe, and biological 
samples from thousands of subjects will be analyzed for 
internal exposure markers by using -omics technologies 
(CORDIS 2015). 

Like the toxicology initiatives, the exposure pro­
grams are generating vast amounts of data, but how the 
data are best used to inform risk-related tasks and deci­
sion-making remains to be determined. 

TERMINOLOGY 

The recent advances in toxicology and exposure sci­
ence have given rise to a new vocabulary and a plethora 
of new terms. Some researchers and practitioners distin­
guish between terms, but others use the same terms in­
terchangeably and inconsistently. Consequently, there is 
some confusion as to the specific meanings of various 
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terms. Mode of action, mechanism of action, and adverse 
outcome pathway are exemplary of the confusion. Each 
term denotes a progression from some exposure or molec
ular initiating event to an adverse outcome. Mechanism 
of action is often distinguished from mode of action by 
a greater level of biological detail in the understanding 
and description of the progression from exposure to out
come (EPA 2005; NRC 2007). Mode of action typically 
describes the progression of key events that result from 
a chemical exposure whereas adverse outcome pathway  
conceptually describes the sequential chain of causally 
linked events at various levels of biological organization 
starting from a molecular initiating event through to the 
observable adverse outcome (OECD 2013; Berggren et 
al. 2015). Although all three terms are used to describe 
the sequence of steps from an initiating event to an ad
verse outcome, subtle distinctions between the terms have 
been made. The subtleties are often lost in practice, and 
the terms are used interchangeably. In the present report, 
the committee uses primarily mechanism  and defines the 
term generally to refer to a detailed description of the pro
cess by which an agent causes an effect. It uses adverse 
outcome pathway only in the context of frameworks that 
have been developed specifically with the phrase. Mecha
nism is further defined in the context of the new direction 
of risk assessment in Chapters 5 and 7. 

­

­

­

­

­

Exposure  and dose  are two other terms that are often 
defined and used inconsistently. The NRC (2012) defined 
exposure broadly as the contact between a stressor and 
a receptor at any level of biological organization (organ
ism, organ, tissue, or cell). Given that broad definition, the 
distinction between exposure and dose becomes arbitrary, 
and dose becomes unnecessary. Exposure is then charac
terized by the identity of the stressor and the amount, lo
cation, and timing of the stressor that comes into contact 
with the receptor; timing encompasses both duration and 
the time at which the contact occurs. The committee uses 
exposure  primarily in the present report but acknowledges 
that it often uses dose in conventional phrases, such as 
dose–response relationship. 

­

­
­

Many terms associated with -omics technologies have 
been coined in recent years. Box 1-1 provides definitions 
of various terms used throughout this report. Other terms 
that are specific to topics discussed in various chapters are 
defined in those chapters. The committee acknowledges 
that as the science progresses new terms will be needed, 
but it urges the scientific community to be judicious in 
inventing new terms. If needed, new terms should be de
fined clearly and used consistently. 

­

The committee debated how to refer to all the as­
says, tools, and methods arising from the “21st century 
visions” for toxicology and exposure science; some are 

BOX 1-1 Definitions of Various -Omics Terms 

Adductomics: The comprehensive identification of chemicals that bind to DNA or selected proteins, such as albumin. 

Epigenomics: The analysis of epigenetic changes in DNA, histones, and chromatin that regulate gene expression. 
Epigenetic changes are changes other than changes in DNA sequence that are involved in gene silencing. 

Exposome: A term first coined by Wild (2005) to represent the totality of a person’s exposure from conception to 
death; exposome research involves the measurement of multiple exposure indicators by using -omics approaches. 

Genomics: The analysis of the structure and function of genomes. 

Metabolomics: The scientific study of small molecules (metabolites) that are created from chemicals that originate 
inside the body (endogenously) or outside the body (exogenously) (NASEM 2016). For purposes of the present 
report, metabolomics is assumed to include exogenous chemicals found in biological systems in their unmetabo-
lized forms. 

Proteomics: The analysis of the proteins produced by cells, tissues, or organisms. Analysis is conducted to under-
stand the location, abundance, and post-translational modification of proteins in a biological sample. 

Transcriptomics: Qualitative and quantitative analysis of the transcriptome, that is, the set of transcripts (mRNAs, 
noncoding RNAs, and miRNAs) that is present in a biological sample. 
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no longer “new,” and others are still in development. To 
simplify the text, the committee often refers to them as 
Tox21 or ES21 assays, tools, or methods. That notation is 
meant to be broad and includes all the assays, tools, and 
methods coming from government, academic, and private 
laboratories, not only those being developed as part of the 
Tox21 program previously described. 

THE COMMITTEE AND ITS TASK 

The committee that was convened as a result of the 
agencies’ request included experts in toxicology; physio­
logically based pharmacokinetic modeling; computation­
al methods and bioinformatics; -omics, in vitro models, 
and alternative methods; epidemiology; exposure assess­
ment; statistics; and risk assessment (see Appendix A for 
the committee’s biographical information). As noted, the 
committee was asked to consider and recommend the best 
uses of the various types of emerging data in risk-based 
evaluations. The committee’s verbatim statement of task 
is provided in Box 1-2. 

THE COMMITTEE’S APPROACH TO ITS TASK 

To address its task, the committee held seven meet­
ings, which included three open sessions to hear primarily 
from various sponsor representatives. Given the potential 
breadth of its task, the committee devoted substantial time 
to interpretation of its charge. It used as a basis of its work 
the risk-assessment framework that was initially proposed 
in the 1983 report Risk Assessment in the Federal Gov-
ernment: Managing the Process (NRC 1983) and updated 
most recently in the 2009 report Science and Decisions: 
Advancing Risk Assessment (NRC 2009) (see Figure 1-1). 

The committee considered and describes scientific and 
technological advances in exposure science, toxicology, 
and epidemiology that could be integrated into and used 
to improve any of the four elements of risk assessment 
(hazard identification, dose–response assessment, expo
sure assessment, and risk characterization). The report, 
however, is not a catalog of all scientific and technologi
cal advances that have been made since publication of the 
2007 and 2012 reports (NRC 2007, 2012), but rather a 
review of the ones most relevant to risk-based evaluations 
in EPA and FDA. 

­

­

The committee identified various agency tasks and 
decision-making contexts (see Box 1-3)—which require 
different depths of information—and used the tasks and 
contexts to frame general and specific examples of appli ­
cations (case studies) for integrating the new science into 
various components of risk assessment. The examples 
provide guidance for communicating to various stake­
holders how the new science could be used. The commit­
tee then considered how data validation, data integration, 
and uncertainty analysis might need to be adapted to use 
the new science. The committee recognizes that there will 
be challenges in using new tools and concepts in fields 
that are already heavy with practice standards and set pro­
tocols. 

ORGANIZATION OF THIS REPORT 

The committee’s report is organized into seven chap­
ters and five appendixes. Chapters 2, 3, and 4 describe 
new or emerging methods and tools in exposure science, 
toxicology, and epidemiology, respectively. Chapter 5 
highlights the new direction of risk assessment and de­
scribes practical applications for 21st century science. 

BOX 1-2 Statement of Task 

An ad hoc committee under the auspices of the National Research Council (NRC) will provide recommenda-
tions on integrating new scientific approaches into risk-based evaluations. Specifically, the committee will first 
consider the scientific advances that have occurred following the publication of the NRC reports Toxicity Testing 
in the 21st Century: A Vision and a Strategy and Exposure Science in the 21st Century: A Vision and a Strategy. 
Given the various ongoing lines of investigation and new data streams that have emerged, the committee will then 
propose how best to integrate and use the emerging results in evaluating chemical risk and identify how traditional 
human-health risk assessment can incorporate the new science. It will consider whether a new paradigm is needed 
for data validation (or acceptance), how to integrate the divergent data streams, how uncertainty might need to 
be characterized (or how characterization of uncertainty might need to change), and how best to communicate 
the new approaches so that they are understandable to various stakeholders. It will focus its recommendations on 
pragmatic solutions and provide case studies that illustrate its recommendations. Finally, the committee will identify 
barriers or obstacles to advancing and integrating the various types of science, and ultimately transforming risk 
assessment. 
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FIGURE 1-1 The risk-assessment 
process as defined by its four elements: 
hazard identification, dose–response 
assessment, exposure assessment, and 
risk characterization. Source: Adapted 
from NRC 2009. 

BOX 1-3 Agency Tasks and Decision-Making Contexts 

1. Priority-setting—Can be based on hazard, exposure, or risk. 
2. Chemical assessment—Can include Integrated Risk Information System assessments, Provisional Peer Re-
viewed Toxicity Values, National Toxicology Program Office of Health Assessment and Translation hazard as-
sessments, and assessments of various regulated substances, such as pesticides, drugs, and food additives. 

3. Site-specific assessments—Can involve selection of geographic sites or chemicals at a site to evaluate and 
can involve assessment of data-poor chemicals or mixtures; can also involve assessment of previously un-
identified chemicals in the environment. 

4. Assessment of new chemistries—Can involve assessment of green chemistry, new-to-the-world technologies, 
and unexpected environmental degradation products of chemicals in commerce. 

Chapter 6 discusses issues surrounding model and assay 
validation and acceptance. Chapter 7 focuses on inter­
pretation and integration of data and evidence. Appendix 
A provides biographical information on the committee 
members, and Appendixes B, C, and D provide case stud­
ies that demonstrate practical applications of the com­
mittee’s recommendations for using new data streams in 
risk-based evaluations. Appendix E provides a case study 
in using Bayesian approaches with high-throughput data. 
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Advances in Exposure Science
 

As described in Chapter 1, the National Research 
Council (NRC) report Exposure Science in the 21st Cen-
tury: A  Vision and a Strategy  articulated a vision for expo
sure science that was intended to transform, expand, and 
invigorate the field (NRC 2012). Recent investments in 
exposome technologies and programs (CHEAR; NIEHS 
2016), in new large-scale longitudinal exposure-epide
miology research programs (HELIX; Vrijheid et al. 2014 
and EXPOsOMICS; Vineis et al. 2013), and in the rap
idly expanding exposure-science programs headed by the 
National Exposure Research Laboratory and the National 
Center for Computational Toxicology of the US Envi
ronmental Protection Agency (EPA) are examples of the 
immediate impact of the ES21 report.1 Several research 
fields have seen substantial advances since the ES21 re
port was published, and these advances create opportu
nities for providing guidance to EPA, the US Food and 
Drug Administration, and others on how best to integrate 
emerging exposure-science data into risk assessments 
(Egeghy et al. 2016). Accordingly, this chapter describes 
the major advances in exposure science since the publica
tion of the ES21 report and applications that would be 
most relevant and useful for risk-based decision-making. 
It also presents unaddressed opportunities related to de
cision-making based on exposure or risk and discusses 
major obstacles to various applications. 

­

­

­

­

­
­

­

­

The interrelationship among the fields of exposure 
science, toxicology, and epidemiology is a central theme 
of this chapter. Figure 2-1 illustrates the series of events 
from introduction of a stressor into the environment and 
its movement through the environment via specific path
ways to the receptor and the triggering of a biological 
response of potential regulatory concern. The figure pro
vides a broad conceptual overview of the scope of expo
sure science and a general organizational framework as 
envisaged by the ES21 committee and the present com
mittee. The figure also illustrates the points of integration 
with toxicology and epidemiology and the fundamental 

­

­
­

­

1The present committee refers to Exposure Science in the 21st 
Century: A Vision and a Strategy (NRC 2012) as the ES21 report 
and to its committee as the ES21 committee. 

distinctions between fields. Although the continuum is 
depicted as a linear path, the committee recognizes that 
multiple interconnecting paths are typically involved in 
the source-to-outcome continuum. In cases where source 
identification or mitigation rather than toxicology or risk 
assessment is the goal, one moves from right to left from 
measured exposures to sources. Box 2-1 provides some 
definitions of the key terms used in this chapter related to 
exposure science. 

Organizational frameworks for exposure science, 
such as the one in Figure 2-1, have been used to describe 
exposure pathways for contaminated sites and are implicit 
in all models of environmental or biological fate of chem­
icals (Wania and Mackay 1999; Koelmans et al. 2001; 
Schenker et al. 2009). The frameworks have been essen­
tial in guiding the acquisition of data, the organization of 
data, and the use of data in modeling to describe or predict 
exposure quantitatively. Although some frameworks, such 
as the Conceptual Site Model (Regens et al. 2002; Mayer 
et al. 2005), are largely qualitative and conceptual and ap­
ply to specific exposure settings or specifically to mod ­
eling exercises, others, such as the Aggregate Exposure 
Pathway framework (Teeguarden et al. 2016), attempt to 
expand on earlier successes by generalizing the approach 
to support data acquisition, data organization, conceptu­
alization, and modeling in the broader exposure-science 
community. As the field of exposure science evolves as a 
result of advances in the tools and approaches described 
in this chapter, the use of the frameworks will enable 
the development of infrastructure to support exposure-
data acquisition, collection, organization, and access and 
to improve the accuracy, completeness, efficiency, and 
transparency of exposure assessment and modeling. 

MAJOR ADVANCES IN EXPOSURE SCIENCE 

The committee reviewed advances in the field of ex ­
posure science since the publication of the ES21 report 
with the goal of identifying major advances that have the 
potential for sustained effects on the important applica­
tions described later in this chapter and in the case studies 
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FIGURE 2-1 Conceptual overview of the scope of and common methods for exposure science. Toxicology and epidemiology have tradition
ally used both internal-exposure and external-exposure information. The biological interface between exposure and a receptor (such as a hu
man, tissue, or cell) is the test-system or target-site exposure. The main benefit of applying target-site exposures is a reduction in confounding 
by pharmacokinetic and other factors and has led to increasing use of target-site exposure metrics in toxicology and epidemiology. 

­
­

described in Appendixes B–D. The advances are summa
rized in this section. 

­

Remote Sensing and Geospatial 

Environmental Exposure Assessment
 

Several substantial advances in exposure science are 
the result of innovations in remote sensing, global po­
sitioning systems (GPSs), and geographic information 
systems (GISs). Remote sensing is an important tool for 
enhancing the capacity to assess human and ecological 
exposures because it provides information on Earth’s 
surface, water, and atmosphere that cannot be provided 
by traditional ground-based monitoring systems (Al-
Hamdan et al. 2014). Since the ES21 report, remote-
sensing data have been used to estimate concentrations 
of ambient criteria air pollutants (NO2, O3, and PM2.5) on 
a global scale (Brauer et al. 2015; Geddes et al. 2016; 
van Donkelaar et al. 2015). Models have estimated the 
changes in global air pollution and have allowed complete 
global coverage of key pollutants on a relatively fine spa­
tial scale. The application of remote-sensing technologies 
with ground-based monitoring will continue to improve 
human exposure assessment. Several recent key advances 
include the National Aeronautics and Space Administra­
tion (NASA) launch of six Earth-observing missions and 

the addition of three new instruments to the International 
Space Station (Seltenrich 2014). NASA and the National 
Oceanic and Atmospheric Administration provide free ac­
cess to exposure-relevant data, such as NO2 and PM2.5 
concentrations in the troposphere, and environmental 
data relevant to exposure assessment and interpretation of 
monitoring data (Seltenrich 2014). 

The studies generated with remote sensing data pro­
vide even greater insights into human exposures when 
coupled with GPS and GIS data on populations of inter­
est. GPS data are used to track people in observational 
exposure and epidemiological studies (Elgethun et al. 
2007), and recent advances have allowed more automated 
coding of GPS data on activities and microenvironments, 
such as inside and outside at home and at work (Wu et al. 
2011; Breen et al. 2014; Nethery et al. 2014; Andra et al. 
2015). Data on microenvironments can be used as input 
for exposure models to refine exposure estimates based on 
remote sensing data, ground-based ambient air data, and 
indoor air monitoring data (Breen et al. 2014). Advances 
in GPS technologies have also been coupled with sensor 
technologies that measure basic health data, such as heart 
and respiratory rates and activity level. Information on 
such measures can be additional inputs for the exposure 
models and allow further refinement and improvement of 
exposure classification (Andersen et al. 2015). 
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BOX 2-1 Definitions of Selected Exposure Terms 

Exposure science. “The collection and analysis of quantitative and qualitative information needed to understand 
the nature of contact between receptors (such as people or ecosystems) and physical, chemical, or biologic stress-
ors. Exposure science strives to create a narrative that captures the spatial and temporal dimensions of exposure 
events with respect to acute and long-term effects on human populations and ecosystems” (NRC 2012). 

Internal and external exposure. Internal and external exposures are two commonly used classes of exposure 
metrics. Blood or tissue concentrations from biomonitoring studies are relatively direct measures of internal expo-
sure; amounts or concentrations in biofluids leaving the body (breath and urine) are less direct measures. Internal 
measures can be estimated from the less direct measures when supporting pharmacokinetic data and models 
are available. Air or media concentrations are external measures of exposure from which internal measures of 
exposure might be derived if necessary. What exposure metric is considered appropriate depends on the decision 
context, confidence in the measurement, and proximity to the site of action. 

Near-field chemical exposures. Near-field human exposures result from chemical release or use near a person. 
Near-field chemical exposures include direct dermal application (for example, of sunscreen or cosmetics), direct 
inhalation (for example, of tobacco smoke or pharmaceuticals), and direct ingestion (for example, of pharmaceuti-
cals). Near-field chemical exposures can also result from the intentional use (as in the case of consumer products) 
and inadvertent release (as in the case of building materials) of chemicals near a person and later near-field trans-
port to a person that results in contact or intake through inhalation, dermal, or ingestion pathways. 

Far-field chemical exposures. Far-field human exposures result from release or use distant from a person. They 
can also result from initial near-field use (indoors) and later fate and transport in the natural environment (outdoors) 
before the chemical reaches a person. Far-field exposures can result from inhalation of outdoor air and ingestion 
of drinking water and foods that contain chemicals that have entered the contact media through fate and transport 
processes in the natural environment. 

Aggregate exposure. Aggregate exposure is exposure to a given substance from multiple sources via multi-
ple pathways and routes (that is, combined exposure from multiple sources by dermal, ingestion, and inhalation 
routes). 

Computational Exposure Assessment 

For the vast majority of stressors, there are few ex­
posure measurements (Muir and Howard 2006; Egeghy 
et al. 2012). Various conceptual, empirical, and predic­
tive exposure models are needed to address those data 
gaps and to enhance the usefulness and application of 
measured data to exposure and risk assessment. Since the 
release of the ES21 report, there has been substantial re­
search activity and advancement in the development of 
computational exposure tools, particularly for calculating 
near-field chemical exposures of humans, for quantify­
ing relationships between external and internal exposures 
and between in vivo and in vitro exposures, and for high-
throughput exposure estimation that has been used alone 
and in combination with bioactivity data to set priorities 
for chemical assessment. 

Egeghy et al. (2011) reviewed tools designed to set 
priorities rapidly for large numbers of chemicals, and 
Mitchell et al. (2013) conducted an “exposure model pri­
oritization challenge.” A key finding of the challenge was 
the need to reconcile exposures to chemicals released out­
doors (far-field sources) with exposures to chemicals in 
consumer products applied directly or through indoor-en­
vironment exposure pathways (near-field exposures). The 
recognized absence of tools and exposure information is 
stimulating research to develop and improve near-field 
and far-field exposure science. Specifically, the seminal 
model developed for simulating chemical transport in an 
indoor environment (Bennett and Furtaw 2004) has been 
revised to include exposure pathways for which external 
human exposures (intake fractions) (Shin et al. 2012) and 
internal exposures (estimates of whole-body concentra­
tions) (Zhang et al. 2014; Webster et al. 2016) can be 
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estimated. Furthermore, data and models are evolving to 
improve mechanistic understanding of chemical releases 
and exposures indoors (Weschler and Nazaroff 2010, 
2012; Little et al. 2012). Exposure models for consumer 
products also are evolving and being evaluated for select 
chemicals (Young et al. 2012; Gosens et al. 2014; Del
maar et al. 2015; Dudzina et al. 2015). Exposure mod
els and frameworks that combine far-field and near-field 
pathways for aggregate human exposure assessments are 
also being developed and applied (Isaacs et al. 2014; Shin 
et al. 2015; Fantke et al. 2016). 

­
­

EPA’s ExpoCast project conducts research on and 
uses computational tools for high-throughput exposure 
estimation or “forecasting” to set testing or assessment 
priorities. The ExpoCast project combines various mod ­
els and data sources to estimate exposures, which can 
then be compared with high-throughput ToxCast data and 
other sources of toxicity or bioactivity data. As a part of 
the ExpoCast exposure estimation, the Systematic Empir­
ical Evaluation of Models (SEEM) framework includes 
calibration and evaluation of exposure-model estimates 
against chemical concentrations measured in or estimated 
from blood and urine samples from a group of nonoccu­
pationally exposed US residents over the age of 6 years 
(Wambaugh et al. 2013, 2014).2 Exposure-model predic­
tions are compared with available biomonitoring data to 
estimate the uncertainty in the combined exposure-mod­
el calculations (Wambaugh et al. 2013). The Stochastic 
Human Exposure and Dose Simulation Model for Mul­
timedia, Multipathway chemicals (SHEDS-MM) for ex­
posure-based priority-setting and screening has been re­
vised for high-throughput capacity (SHEDS-HT) (Isaacs 
et al. 2014) and feeds into the SEEM framework. Other 
complementary high-throughput aggregate exposure-esti­
mation models that combine existing and emerging tools 
(see, for example, Shin et al. 2015) can also be incorpo­
rated into the SEEM framework, and they are being ap­
plied, evaluated, and refined in other contexts. 

Improving the amount and quality of the data that 
are needed to develop parameters for the computational 
exposure tools is critically important; without such data, 
the applicability of the tools is limited. Some advances 
include updated exposure factors (EPA 2011) and the de­
velopment of the Consumer Product Chemical Profile Da­
tabase (Goldsmith et al. 2014) and the Chemical/Product 
Categories Database (Dionisio et al. 2015).3 Numerous 
quantitative structure–activity relationship (QSAR) mod­
els, quantitative structure–property relationship (QSPR) 
models, and other computational tools for predicting 
chemical-property information—such as solubilities, 
partition coefficients, and degradation rates—continue 
to evolve. The applicability domains of existing tools for 

2Data are from the US National Health and Nutrition Examina­
tion Survey. 

3See http://actor.epa.gov/cpcat. 

calculating chemical-property information require further 
examination and more explicit definition to ensure that 
the models are calibrated and applied within the same 
chemical space. Integrated testing strategies to obtain 
more high-quality measurements can then be strategically 
developed to expand the applicability domains of current 
QSAR models, QSPR models, and other tools used for 
property estimation. 

Because of the extensive measurement-data gaps, the 
recent advances in computational tools for exposure sci­
ence are expected to play a crucial role in most aspects of 
exposure estimation for risk-based assessments, not only 
high-throughput applications. Higher-tiered models that 
link exposure databases and spatial information (see, for 
example, Georgopoulos et al. 2014) and opportunities to 
combine and integrate measurements and models to char­
acterize and quantify the source-to-receptor relationship 
more fully (see, for example, McKone et al. 2007) are be­
ing developed and applied. Exposure-model uncertainty 
and sensitivity analyses are useful computational methods 
that can be used to set priorities for exposure-science re­
search systematically (Arnot et al. 2012; NRC 2012; Ar­
nold and Ramachandran 2014). 

Personalized Exposure Assessment 

Behavior patterns that determine exposure routes, 
durations, and conditions combined with the variation 
in environmental concentrations of stressors over space 
and time result in unique exposure patterns for individu­
als and populations. Exposure data that are needed to as­
sess personal exposures can now be generated on various 
spatial and temporal scales with traditional and emerging 
methods. New opportunities to measure exposures in and 
outside the body will help to characterize and quantify 
personal exposures to an array of stressors. Particularly 
notable are recent advances in the application of pas­
sive sampling techniques to determine internal human 
concentrations (for example, using silicone implants) 
(Allan et al. 2013a; Gilbert et al. 2015; O’Connell et al. 
2015), external exposure concentrations integrated over 
time and space (for example, using silicone wristbands) 
(O’Connell et al. 2014a,b), and chemical concentrations 
and chemical activities4 in media to which humans are 
exposed, such as foods (Allan et al. 2013b; Jahnke et al. 
2014) and indoor air (Wetzel and Doucette 2015). Por­

4Chemical activity is related to the energetic state of a chemical, 
is a measure of the effective concentration of a chemical in a given 
exposure medium (Reichenberg and Mayer 2006; Mackay et al. 
2011), and is closely related to the freely dissolved concentration. 
For example, chemical activity is an improved measure of expo­
sure when interaction with media constituents (such as particles in 
air and organic matter in water) effectively reduces the amount of 
chemical free to interact with a biological receptor (such as a hu­
man), often referred to as the bioavailable fraction. 

http://actor.epa.gov/cpcat
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table sensors for measuring particles and volatile organic 
chemicals are being refined and are providing valuable 
information on personal exposures, particularly in vulner
able populations (McGinn et al. 2016). Mobility-based 
exposure assessment that uses personal devices, such as 
cell phones, to provide GPS information, can be used to 
determine time and location of people relative to exposure 
levels determined from remote sensing information (Ad
ams et al. 2009; de Nazelle et al. 2013; Su et al. 2015). 
Consumer product and use databases and market research 
data can provide population and personal exposure infor
mation that can help to inform exposure assessment, for 
example (Goldsmith et al. 2014). All those emerging tech
nologies and data streams will complement existing tools 
and techniques in the effort to obtain more comprehensive 
knowledge of the source-to-outcome continuum. 

­

­

­

­

Targeted and Nontargeted Exogenous 

Chemical Exposure Assessment
 

Important advances in two complementary ap
proaches for characterizing human exposure—targeted 
and nontargeted analysis—are improving the accuracy 
and breadth of human and ecological exposure assess
ment (Fiehn 2002; Park et al. 2012; O’Connell 2014a,b; 
Go et al. 2015; Mastrangelo et al. 2015; Sud et al. 2016). 
Both approaches, whether focused on endogenous or ex
ogenous chemicals, are commonly referred to as metabo
lomics approaches.5  Targeted analysis focuses on selected 
chemicals for which standards and methods are available 
and identifies chemicals on the basis of mass spectrum, 
elution time, detector signals, or some combination of 
these measures. Targeted analysis has produced much of 
the exposure data used in epidemiological studies and risk 
assessment. The US National Health and Nutrition Ex
amination Survey and the Canadian Health Measures Sur
vey are two extensive biomonitoring programs that use 
targeted analytical techniques for exposure assessment 
(Needham et al. 2005; Calafat 2012; Haines and Mur
ray 2012). Although initially limited by throughput and 
a focus on single chemicals, small groups of chemicals 
(Casas et al. 2011; Mortensen et al. 2014), or modest-size 
chemical classes (O’Connell et al. 2014b), targeted meth
ods are emerging for quantitative analysis of hundreds of 
chemicals (O’Connell et al. 2015). Generally, there is a 
tradeoff between sensitivity and selectivity that imposes 
limitations on the number of chemicals that can be ana
lyzed in single runs by using a single instrument or meth
od. Targeted analyses are limited to chemicals for which 
standards are available. Accepted standards for identifica
tion and quantitation have been articulated for most ana
lyte classes (such as metabolites and peptides) (Castle et 

­

­

­
­

­
­

­

­

­
­

­
­

5As defined in Chapter 1 (see Box 1-1), metabolomics is assumed 
to include exogenous chemicals found in biological systems in their 
unmetabolized forms. 

al. 2006; Fiehn et al. 2006; Goodacre et al. 2007; Sumner 
et al. 2014), but these standards are inconsistently applied 
in practice. 

Targeted analytical methods for protein and DNA ad­
ducts have emerged as an alternative to direct measure­
ment of chemicals in blood. When stable protein or DNA 
adducts can be easily measured and information on the 
rates of adduct formation and loss is available, adduct con­
centrations can be used as proxies for the time-weighted 
average exposure to the parent chemical. Those approach­
es are particularly valuable for exposure assessment and 
exposure reconstruction for short-lived chemicals whose 
concentrations in blood and other biofluids might be very 
low and subject to high temporal variability. One example 
is the use of hemoglobin adducts of acrylamide and its 
metabolite glycidamide for accurate reconstruction of 
acrylamide exposure and its concentration in blood over 
time in humans (Young et al. 2007). Chemical-specific 
adducts of the carcinogens butadiene, formaldehyde, and 
acetaldehyde have emerged recently as metrics of expo­
sure to these extremely short-lived chemicals (Swenberg 
et al. 2007, 2008; Moeller et al. 2013; Yu et al. 2015). The 
benefits of using stable adducts to measure exposure to 
short-lived chemicals include the ability to integrate expo­
sure over time (that is, the adducts can serve as integrative 
measures of exposure because they are more stable) and 
biological relevance because of the proximity to a target 
site, such as DNA. Swenberg and co-workers have estab­
lished highly sensitive methods for specific formaldehyde 
DNA adducts and pioneered methods for establishing the 
contribution of endogenous and exogenous formaldehyde 
to total internal exposure (Edrissi et al. 2013; Moeller et 
al. 2013; Pottenger et al. 2014; Pontel et al. 2015; Yu et al. 
2015). The studies highlight the utility of targeted analy­
sis of adducts for exposure assessment and perhaps a po­
tential for broad assessment of the adductome (Gavina et 
al. 2014; Pottenger et al. 2014). 

Nontargeted analysis has emerged as an approach to 
provide qualitative information on the large portion of 
the exposome that is uncharacterized—a portion that in­
cludes bioactive endogenous peptides, exogenous chemi­
cals, metabolites, lipids, and other biomolecules. It of­
fers the ability to survey more broadly the presence of 
all chemicals in the environment and in biofluids regard ­
less of whether standards and methods are available. The 
nontargeted approach trades selectivity for breadth and 
produces numerous unidentified analytical features. Com ­
paring unidentified analytical features from large cohorts 
and correlating them with responses of interest in the co­
horts can help to identify analytical features for further 
investigation (Burgess et al. 2015). Cheminformatics and 
computational chemistry can be used to identify chemi­
cals with varying levels of confidence; nuclear magnetic 
resonance spectroscopy can be used to identify chemical 
structure with high accuracy. Accepted standards for iden­
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tification of metabolites (Castle et al. 2006; Fiehn et al. 
2006; Sumner et al. 2014) have not been routinely applied 
to nontargeted approaches, so chemical matches to the 
analytical features is tentative and association between 
specific chemicals and disease is uncertain. 

Nontargeted approaches are promising, but there are 
limitations in the use of data produced from nontargeted 
analyses that should be considered before collecting the 
data. For example, an unidentified analyte cannot be used 
to develop a mechanistic argument to support or refute a 
causal association between the presence of the analyte and 
a clinical effect, it cannot be quantified in absolute terms, 
it cannot be subjected to toxicity testing, and it cannot be 
attributed to sources for purposes of exposure mitigation. 
Although identifying all analytes is an important objec ­
tive, reducing the number of analytes—to investigate, for 
example, on the basis of frequency in samples, member­
ship in an important chemical class, and association with 
a clinical outcome—will be important until methods for 
identification of unknown analytes become more efficient. 

Initial efforts to understand potential contributions 
of exogenous and endogenous exposure have led to im­
portant insights about the role of each and about poten­
tial limitations of analytical technologies. Rappaport and 

co-workers (2014) reported human blood concentrations 
of many chemicals, their sources, evidence of chronic-
disease risks, and numbers of metabolic pathways. Blood 
concentrations of endogenous chemicals, food chemicals, 
and drugs were indistinguishable and spanned 11 orders 
of magnitude; blood concentrations of pollutants were on 
the average lower by a factor of about 1,000 (see Figure 
2-2). Although the findings cannot be generalized to all 
chemicals or all exposure scenarios, the blood-concentra
tion ranges highlight the importance of using highly sen
sitive analytical instrumentation to characterize human 
exposure (Athersuch 2016; Uppal et al. 2016). 

­
­

Risk assessment and mitigation of sources and risks 
all depend on knowing absolute quantities of specific 
chemicals; therefore, targeted analyses will continue to 
be the primary source of exposure information. Because 
the results of nontargeted analyses provide only relative 
or qualitative exposures, they are not readily applicable 
to conventional risk assessment. However, when uniden
tified analytical  features can be aggregated according to 
their toxicity or pharmacokinetic behavior, there will be 
new opportunities to conduct hazard or risk assessments 
on the basis of similarity to chemicals whose toxicity is 
known. 

­

FIGURE 2-2  A survey of measured blood concentrations shows that for the selected chemicals concentrations of pharmaceuticals and natu
rally present endogenous chemicals are similar and are generally higher than concentrations of environmental contaminants. The findings 
highlight the importance of using highly sensitive analytical instrumentation to characterize human exposure. Source: Rappaport et al. 2014. 

­
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Exposure Inference from -Omics Technologies 

-Omics technologies that quantify the abundance of 
biomolecules, such as proteins and transcripts, offer dis­
tinct and diverse applications for exposure assessment. In 
contrast with metabolomic approaches that quantify ex­
posure to specific metabolites of endogenous and exoge ­
nous chemicals, proteomic and transcriptomic approaches 
provide global assessment of biological responses to ex­
posure to multiple stressors. Those -omics approaches can 
provide biomarkers or biosignatures of response to chem­
ical classes, such as oxidants (Roede et al. 2013; Go and 
Jones 2014) and potentially genotoxic chemicals (Fenech 
and Bonassi 2011; Lovreglio et al. 2014; Kalemba-
Drozdz 2015; Moro et al. 2015; Tumer et al. 2016). That 
particular application of -omics technologies, a key el­
ement of Wild’s original vision of the exposome (Wild 
2005, 2012), is used to infer exposure to one or more 
chemicals on the basis of a mechanistic understanding of 
biological response to them. Some biomarkers of expo­
sure can result from changes in the body that are induced 
by chemical exposure (for example, changes in metab­
olite or protein profiles), but these types of biomarkers 
commonly do not provide quantitative exposure informa­
tion that can be used for risk estimation. The application 
of -omics technologies to infer exposure to classes of 
stressors is expected to grow. Although the initial utility 
will probably be in qualitative exposure inference and in 
assembling evidence on biological pathways, applica­
tion should expand to more confident and more quanti ­
tative characterization of exposures to chemical classes 
or groups of stressors that produce the same biological 
effect, such as oxidation or inflammation. 

Novel Exposure Matrices for
 
Exposure Reconstruction
 

Assessment of occupational and environmental expo­
sures will continue to rely on matrices for which there are 
established methods of collection, analysis, and interpre­
tation. Those matrices include air, water, soil, food, blood, 
and urine. The expanding computational exposure-science 
infrastructure (Arnot et al. 2012; Shin et al. 2012, 2015; 
Wambaugh et al. 2013, 2014; Isaacs et al. 2014), which 
uses the traditional data streams to construct population-
level exposure assessments, will continue to drive the 
generation of data on the traditional exposure matrices. 

Growing emphasis on near-field exposures (Stapleton 
et al. 2008; Shin et al. 2012; Wambaugh et al. 2014) and 
on exposures during development, which is the focus of 
the Children’s Health Exposure Resource Centers of the 
National Institute of Environmental Health Sciences, is 
poised to drive exposure assessment toward new environ­
mental and biological matrices and new approaches. For 
example, population-level exposure to hundreds of chem­

icals was recently shown to be dominated by near-field 
exposures from consumer-product and household use, not 
by far-field exposures that take place after chemicals are 
released into the outdoor environment (Shin et al. 2012; 
Wambaugh et al. 2014). Increased focus on categoriz
ing chemicals in consumer products and on assembling 
exposure data for use in exposure assessment is one im
mediate outcome of the recent studies. Continued efforts 
to measure and estimate concentrations in multimedia 
sources—such as indoor air, indoor surfaces, dust, and 
consumer products—are required to address uncertainty 
in near-field exposures and pathways. 

­

­

Characterization of exposures during the toxicologi­
cally sensitive period of fetal development has historically 
been limited to drawing inferences about maternal expo­
sure through periodic maternal blood and urine measure­
ments. Responding to the need to improve the character­
ization of fetal exposures to chemicals, researchers have 
turned to novel biological matrices, such as teeth, hair, 
nails, placental tissue, and meconium. The growth prop­
erties (the sequential deposition or addition of tissue) and 
availability of these biospecimens offer the opportunity to 
extract a record of exposure. For example, laser-ablation 
inductively coupled mass spectrometry has been used to 
reconstruct the timing of shifts in primates’ diets that are 
associated with weaning by measuring calcium:barium 
ratios in tooth enamel (Austin et al. 2013). The same ap­
proach was recently shown to be promising for assessing 
in utero exposure to manganese. Arora et al. (2012) mea­
sured manganese concentrations in tooth dentine specific 
to the postnatal period and the second and third trimes­
ters and showed a statistically significant relationship be ­
tween house-dust manganese concentrations and dentine 
manganese concentrations during the second trimester. 
Those authors and others (Andra et al. 2015; Palmer et 
al. 2015) have extended the methods to measure organic 
chemicals, including phenols and phthalates. Like teeth, 
hair forms in utero (third trimester), continues to grow, 
and potentially provides a temporal record of exposure. 
Initially used widely for forensic analysis of exposure to 
illicit drugs, hair has emerged as an important matrix for 
biomonitoring of metals and organic chemicals, such as 
polybrominated diphenyl ethers (Aleksa et al. 2012; Liu 
et al. 2015a). Similar methods have been applied to fin ­
gernails (Liu et al. 2015a). 

Although the new matrices mentioned above have 
advantages and add valuable information to exposure as­
sessment, they pose challenges in interpretation and ap­
plication. A common challenge in the use of exposure 
measures based on the new biological and environmental 
matrices for quantitative exposure assessment is the need 
to understand how measured concentrations are related to 
measures of exposure traditionally used to assess chemi­
cal toxicity or risk. Ideally, the new biomonitoring data 
can be supported by information regarding how measured 
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concentrations in new matrices are related to convention­
al measures of internal exposure (serum concentrations, 
µM) or external exposures (mg/kg-day or mmol/kg-day). 
New experimental data, such as chemical half-life in the 
body, and data related to events and processes of expo­
sure, such as time since the exposure, that can inform 
various relationships and pharmacokinetic models will 
be useful in interpreting and reconstructing exposures by 
using the biomonitoring data (see, for example, Lorber 
and Egeghy 2011; Ritter et al. 2011; Quinn and Wania 
2012; Wambaugh et al. 2013; Aylward et al. 2014; Hays 
et al. 2015). The additional information regarding the ex­
posures provides confidence in using the measured bio­
monitoring data and supporting the exposure narrative. 

Physiologically Based Pharmacokinetic Models and 
Models for  Translating Exposure Between Systems 

Physiologically based pharmacokinetic (PBPK) 
models have made substantial contributions to exposure 
assessment for more than 30 years. PBPK models have 
been applied effectively to characterize target-tissue ex­
posure in test animals and humans, to characterize phar­
macokinetic variability, and to extrapolate across species, 
life stages, exposure routes, and, most recently, eco­
system elements (MacLachlan 2010; Weijs et al. 2012; 
Sonne et al. 2015). PBPK models now provide a common 
framework similar to environmental fate and transport 
models for more integrative exposure assessment and are 
applied more regularly to support aggregate (multiroute) 
exposure assessment (Esch et al. 2011; Abaci and Shuler 
2015), exposure reconstruction from biomonitoring data, 
and exposure translation between in vitro and in vivo test 
systems. 

The use of PBPK models for exposure reconstruc­
tion, known as reverse dosimetry (Liao et al. 2007; Tan 
et al. 2007; Bartels et al. 2012; Hays et al. 2012; McNal­
ly et al. 2012; Yang et al. 2012; Grulke et al. 2013), has 
led to important advances in the field of biomonitoring. 
Internal and external exposures can now be related and 
predicted on the basis of more limited sets of exposure in­
formation—for example, urine biomonitoring data (spot 
samples)—by applying principles of pharmacokinetics. 
The tools are used to calculate or estimate margins of ex­
posure to chemicals on the basis of blood or urine spot 
samples and can be used to inform regulatory levels. New 
methods offer the ability to evaluate the influence of be ­
havior and physiological variability on exposure distribu­
tions (Shankaran and Teeguarden 2014). 

The use of PBPK models to characterize the influence 
of biochemical and physiological variability, particularly 
the role of polymorphisms of metabolizing enzymes in 
estimates of metabolism and variability (Beaudouin et al. 
2010; Bois et al. 2010; Snoeys et al. 2016), has grown 
substantially and will continue to contribute to exposure 

assessment and risk assessment. Those advances help to 
predict pharmacokinetics of potentially sensitive popu­
lations, such as preterm infants (Claassen et al. 2015) 
and children (Yoon et al. 2012). Recently, PBPK models 
have been applied to disentangle the role of physiologi­
cal changes related to disease states from the effects of 
a chemical on disease and to examine the role of reverse 
causation in published epidemiological studies (Verner 
et al. 2015; Wu et al. 2015). Accordingly, PBPK models 
have emerged as new exposure tools capable of support­
ing inference in epidemiological studies. 

One of the major developments concerning PBPK 
models has been their use for translating exposures be­
tween test systems and human-exposure scenarios. In 
particular, the rapidly expanding use of high-throughput 
in vitro cell and cell-free systems to characterize the bio­
activity of chemicals and materials, such as nanomateri­
als, has led to a need to translate in vitro exposure data 
into corresponding in vivo exposures in test systems and 
humans. Various terms have emerged to describe the ap­
plications to do so—for example, in vitro–in vivo ex­
trapolation (IVIVE), reverse toxicokinetics (rTK), and 
reverse dosimetry. Each describes a kinetics-based and 
partitioning-based approach to translating exposures from 
one system of interest (in vitro) to another (in vivo animal 
or human), and all strive for mass balance. The use of 
PBPK models and similar biokinetic models of in vitro 
test systems has produced important methods that can ap­
ply PBPK-modeling principles to a broad set of test sys­
tems (Rostami-Hodjegan 2012; Yeo et al. 2013; Campbell 
et al. 2014; Teeguarden et al. 2014; Martin et al. 2015), in­
cluding microphysiological organ systems or human-on­
a-chip systems (Esch et al. 2011; Abaci and Shuler 2015). 
However, without clear understanding of how exposures 
in the systems are related to in vivo exposures or human 
occupational or environmental exposures, their utility 
will remain limited, as has been the case for standard in 
vitro cell-culture and cell-free systems. 

IVIVE models can be used to calculate human inter­
nal exposure concentrations of chemicals from data ob­
tained in high-throughput in vitro systems (Kesisoglou 
et al. 2015). That approach uses hepatocyte cultures and 
other biotransformation systems to measure metabolic 
rate constants that are used to estimate human intrinsic 
clearance by the liver, a dominant route of metabolic 
and total clearance in humans. Clearance values can be 
obtained for different life stages or for populations that 
are resistant or vulnerable because of polymorphisms of 
metabolic enzymes. Renal clearance, another major elim ­
ination pathway, is often estimated by using data on glo­
merular filtration rates and measures of protein binding in 
serum (Rule et al. 2004; Rotroff et al. 2010; Tonnelier et 
al. 2012; Wetmore et al. 2012). Other aspects of kidney 
function, such as tubular processing, can also influence 
clearance rates (Weaver et al. 2016) and various biomark­
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er concentrations. Metabolism in other tissues, which can 
be important, is not evaluated, and this is a limitation of 
the current state of these systems.6 Combining clearance 
with computational high-throughput methods for estimat
ing average daily contact and intake rates makes it possi
ble to predict internal concentrations expected in humans. 
Those concentrations can then be compared with effect 
levels or no-effect levels from toxicity-testing systems. 
Addressing some limitations—such as not accounting 
for metabolism by other tissues, for the potential role of 
transporters, or for human variability—will be important 
next steps toward higher confidence in the application of 
the models. New approaches for better understanding of 
metabolic and genetic determinants of exposure are de
tailed in the next section. 

­
­

­

Key challenges in interpreting and applying IVIVE 
data include the quantification of relevant concentrations 
that correspond to observed in vitro bioactivity from as
sumed nominal (administered) concentrations (see Box 
2-2 and Figure 2-3). A consistent approach for comparing 
and extrapolating results could be the use of the free (dis
solved aqueous) concentration  in the test system because 
this metric can be applied to cell-based or cell-free sys
tems. The limitations complicate chemical comparisons 
for potency and toxicity and reduce confidence in the ap
plication of in vitro bioassay data that are based only on 
nominal concentrations in risk-based assessments. Mod
els to calculate in vitro concentrations that cannot be read
ily measured with traditional sample extraction and ana
lytical techniques need to be developed, evaluated, and 
applied. Passive dosing and sampling techniques might 

­

­

­

­

­
­
­

6The committee notes that over-prediction of serum concentra­
tions of parent chemicals and under-prediction of potentially im­
portant metabolites is generally a possible outcome of underrepre­
senting metabolism. 

prove useful in addressing the current analytical challeng­
es and associated uncertainties in quantifying exposures 
in smaller in vitro test systems (Kramer et al. 2010). 

New Approaches for  Assessing Biochemical and 
Physiological Determinants of Internal Exposure 

Metabolism, cellular transport, and other processes 
that control elimination and distribution of chemicals in 
organisms are essential considerations and important chal­
lenges in exposure science, data interpretation, and risk 
assessment. Metabolism is a key determinant of chemical 
residence time in the body and can lead to more or less 
production of toxic chemicals; thus, it plays an impor­
tant role in the extent of exposure and chemical toxicity 
(Leung et al. 2012). Reliable measures of metabolic rates 
are essential for understanding and characterizing differ­
ences in metabolism among species and between in vitro 
and in vivo test systems and for understanding the extent 
of variability and its effect on susceptibility or resistance. 
Computational approaches (PBPK, rTK, and IVIVE) can 
be used to translate in vitro metabolic rates into estimates 
of chemical clearance (Wilk-Zasadna et al. 2015) and to 
quantify differences among species and systems for expo­
sure assessment. 

High-throughput in vitro assays can be used to in
vestigate metabolism; they now cover many enzymes 
and isoforms involved in chemical metabolism, includ
ing the phase I cytochrome P450 enzymes and a variety 
of phase II enzymes (admescope; Tolonen and Pelkonen 
2015). Direct measures of activity obtained from the as
says complement genomic approaches for characterizing 
the influence of polymorphisms on metabolism. New pro
teomic tools that use chemical probes can also be used to 
measure metabolic activity of specific enzymes directly 

­

­

­

­

BOX 2-2 Challenges in Estimating In Vitro Test Concentrations 

Evidence is accumulating that the prevailing view that stressor concentrations in the in vitro systems can be 
considered static and can be represented by nominal media concentrations is in many cases not valid (Gulden 
and Seibert 2003; Gulden et al. 2006; Teeguarden et al. 2007, 2014; Kramer et al. 2012; Armitage et al. 2014; 
Groothuis et al. 2015). For example, nanomaterials, an emerging class of poorly studied toxicants, undergo trans-
formations (agglomeration and dissolution) in liquid systems and size-dependent and density-dependent diffusion 
and sedimentation; each process affects delivery of particles to cells in culture. The processes have been shown 
repeatedly to affect cellular dose and can be expected to affect relative hazard ranking. Chemical concentrations 
in an in vitro test system can change as a function of the chemical properties, the test system, and time. Measured 
and estimated dissolved and cell concentrations can be orders of magnitude different from assumed (nominal) in 
vitro concentrations for various reasons, including chemical volatilization, differential distribution in the test system 
(Heringa et al. 2004; Kramer et al. 2012; Armitage et al. 2014), metabolism (Coecke et al. 2006; Groothuis et al. 
2015; Wilk-Zasadna et al. 2015), and the reasons noted above. 
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in tissue and cellular preparations (Cravatt et al. 2008; 
Sadler and Wright 2015). For example, recent publica
tions (Crowell et al. 2013; Sadler et al. 2016) demonstrate 
that activity-based probes provide better measures of rel
ative enzyme activity for individual enzymes than mea
sures of transcripts or proteins and thus complement con
ventional metabolism assays. Other in vitro metabolism 
test systems, such as ones that use hepatocytes and liver 
spheroids, and computational models to translate meta
bolic rates and pathways to in vivo clearance continue to 
evolve (Fitzgerald et al. 2015; Hutzler et al. 2015; Liu et 
al. 2015b). Higher-throughput systems for measuring and 
interpreting metabolic rates in hepatocytes have been suc
cessful in extending our knowledge from pharmaceuticals 
to environmental chemicals (Wetmore et al. 2014; Yoon 
et al. 2014). However, increasing capacity to synthesize 
chemical standards and test materials will be essential 
if these approaches are to be successfully applied to the 
many chemicals in commerce. 

­

­
­
­

­

­

As basic hepatic-metabolism data grow, other limi­
tations of the systems to predict chemical kinetics and 
internal exposures will become important. Extrahepatic 
metabolism—such as metabolism in the kidney, gastro­
intestinal tract, and lung—can be important but is not yet 

addressed in most extrapolations. Similarly, differences 
in metabolic competence between the cells used in vitro 
and the in vivo systems can affect the extent of metabo
lism, the metabolic pathways activated, and the metabo
lites produced (see, for example, Kolanczyk et al. 2012). 
Emerging tools that can evaluate potential metabolite pro
duction (Tolonen and Pelkonen 2015; Wilk-Zasadna et al. 
2015) and the use of multiple in vitro metabolism sys
tems of varied complexity (Zhang et al. 2012) that include 
more than one tissue or cell type are possible solutions 
to the challenges. QSAR models that can predict rates 
of metabolism and clearance in tissues, such as liver and 
plasma (Berellini et al. 2012; Hsiao et al. 2013), and in the 
whole body (Obach et al. 2008; Wishart et al. 2008; Arnot 
et al. 2014) are also promising approaches for obtaining 
information on metabolism. 

­
­

­

­

Pharmacogenomic profiling has emerged as a valu­
able approach for characterizing individual and popula­
tion variabilities in genes that influence absorption, dis ­
tribution, metabolism, and elimination (ADME) of drugs 
and environmental chemicals. Variations in ADME pro­
cesses are important sources of variability in internal ex­
posure. Recent advances in sequencing technologies (De 
Wit et al. 2015; Heather and Chain 2015; McGinn et al. 

FIGURE 2-3 (Left) Illustration of chemical distribution in an in vitro test system and (right) illustration of the chemical depletion factor  
(DF = Cnominal/Cdissolved) in a typical cell-based in vitro test system as a function of chemical partitioning properties. The octanol–water parti
tion coefficient (KOW) characterizes chemical partitioning  from water to nonaqueous constituents of the test system—such as cell membranes, 
proteins, plastic, and serum—and the air–water partition coefficient (KAW) characterizes chemical partitioning from water into air or head 
space. In this case, 10% fetal bovine serum (FBS) is assumed present in the test system. The dotted lines (right) are the DFs corresponding 
to the chemical-property combinations and indicate the order-of-magnitude differences that can occur between assumed (administered or 
nominal) test concentrations typically used for dose–response calculations and the estimated dissolved (free) concentration in the test system. 
Source: Armitage et al. 2014. 

­
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2016) now offer unprecedented potential for rapid indi
vidual and population-level identification of single-nu
cleotide polymorphisms that affect metabolic, transport, 
and clearance processes that together influence individual 
internal-exposure profiles. Recently, the frequencies of 
polymorphisms in 1,936 proteins that have documented 
clinical significance for ADME processes were measured 
and characterized in a Thai population and compared with 
findings in other ethnicities (Jittikoon et al. 2016). That 
and other recent analyses that show greater diversity in 
polymorphisms in American blacks and other ethnicities 
(Li et al. 2014; Ortega and Meyers 2014) demonstrate the 
potential for nearly comprehensive assessment of poly
morphisms of ADME-related genes in individuals and 
populations and for internal-exposure predictions on an 
individual basis. More comprehensive characterization 
of ADME-related and other polymorphisms in popula
tions and improved understanding of their function and 
relevance to exposure and toxicity will be valuable in 
addressing population variability for risk-based decision-
making. The committee notes that compartmental and 
PBPK models for predicting the resulting effects on pop
ulation distributions of serum concentrations have been 
used regularly but for only a few metabolic enzymes (EPA  
2010).  

­
­

­

­

­

Another important process to consider is cellular 
transport; transport proteins influence both tissue and in­
tracellular concentrations. Pharmaceuticals and environ­
mental chemicals are substrates for transporters (Fardell 
et al. 2011), and the importance of transporters in affect­
ing internal chemical exposure at target sites is recog­
nized (Wambaugh et al. 2014). QSAR models for predict­
ing chemical interactions with transporters (Sedykh et al. 
2013) and a variety of in vitro assays (Xie 2008) have 
been developed to support incorporation of transporters 
into determinations of internal exposure. 

Continued success in using the new tools described 
here for measuring and calculating biochemical and phys­
iological determinants of internal exposure will improve 
exposure assessment and ultimately will support the suc­
cessful integration of in vitro, computational, and in vivo 
approaches into risk assessment. 

CONFIDENCE LEVELS IN EXPOSURE 

INFORMATION AND ASSESSMENT
 

Exposure data from traditional and emerging meth­
ods discussed above can be placed in categories spanning 
the continuum from source to target-site exposure (NRC 
2012) (see Figure 2-4). Exposure measures biologically 
closer to the site of action of the stressor can under some 
conditions have greater value for linking exposures to ef­
fects. For example, the relationship between soil concen­
trations of a chemical and effects in a population exposed 
to the soil might be obscured by individual differences in 

exposure rate, activity patterns, and metabolism. In con
trast, individual blood or tissue measures of chemical ex
posure reflect the combined action of those processes and 
benefit from being more directly related to the event that 
initiates adverse effects: interaction of the chemical with a 
biological receptor (organelle, protein receptor, or DNA). 
However, soil and air measures of chemicals and biolog
ics can be less confounded sources of information for as
sessing source contributions to external exposure because 
fewer processes (absorption, metabolism, and human 
activity patterns) can obscure relationships between the 
measured exposure in blood or urine and the source. The 
committee cautions, however, that internal exposures are 
not universally better or universally more useful than ex
ternal exposures for purposes of relating exposures and 
effects, for example, in epidemiological studies. A long 
history shows the utility of measures of external expo
sure for epidemiology. In fact, external exposures might 
sometimes be superior to internal exposures, for example, 
when the two are proportional to one another and exter
nal measures are easier to acquire. Furthermore, external 
exposures might be the most biologically relevant when 
portal-of-entry effects, such as skin sensitization, are the 
focus. Exposure measures should be carefully selected by 
considering the strengths and limitations of external and 
internal measures of exposure and the purpose for which 
they will be used. Ideally, exposure data are available 
across the entire spectrum illustrated in Figure 2-4, and 
approaches for connecting them quantitatively have been 
developed to enable the use of exposures at any point on 
the continuum. 

­
­

­
­

­

­

­

There is a spectrum of quality of exposure data from 
screening-level assessments based on limited information 
to multiroute, multisource exposure assessments to pop-
ulation-scale longitudinal exposure assessments that use 
validated exposure biomarkers. Important considerations 
for the application of exposure data in decision-making 
are the quality of the data and the context in which the 
data will be used; data quality can be determined by 
evaluating accuracy, integrity, suitability, transparency, 
and concordance of multiple lines of data or evidence 
(WHO 2016). The degree of confidence that is required 
for exposure data or exposure assessment is balanced with 
the cost of data acquisition and determined by the deci­
sion context established in problem formulation. In some 
cases, screening-level exposure data that have greater un­
certainty might have sufficient accuracy to support impor­
tant screening-level decisions made by regulatory agen­
cies and might provide the most cost-effective approach 
(Wambaugh et al. 2013, 2014; WHO 2016). In those 
cases, transparency is essential for providing understand­
ing and confidence in decisions that stem from exposure 
assessment; transparency can be obtained by carefully 
documenting and reporting data quality, suitability, and 
integrity (WHO 2016). The use of computationally de­
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rived exposure estimates that are based on sparse data is 
an example of possible applications. That approach might 
be used to make initial decisions to set priorities among 
stressors for improved exposure assessment, toxicity as
sessment, or epidemiological assessment. The same data 
might also be useful for making initial decisions regard
ing new applications of a chemical or its inclusion in or 
removal from new or existing products. In some cases, 
extensive uncertainty, sensitivity, and variability analyses 
of exposure-assessment components might indicate that 
exposures of the magnitude necessary to cause effects fall 
outside the range of plausibility, in which case such expo
sure estimates might have sufficient certainty to support 
decision-making regarding potential risks. As the field 
moves toward obtaining exposure data on thousands of 
chemicals in commerce and wider use of cost-effective 
screening-level analyses, careful reporting of the quality 
of assessments and associated limitations—for example, 
through model evaluation and sensitivity analysis—will 
have high priority. As computational exposure-measure
ment tools are developed and used, their successful appli
cation in risk-based or exposure-based decision-making 
as described above will involve passing the same quality 
assessments applied to environmental measures of expo
sure, for example, by applying EPA or World Health Or

­

­

­

­
­

­
­

ganization (WHO) guidance to evaluate models (WHO 
2005; EPA 2009, 2016a). 

Guidance for evaluating exposure data and expo­
sure assessments developed by WHO and EPA and pub­
lished in the literature focuses more on determining data 
quality than on establishing confidence in integrating 
various data streams. For example, integrating emerging 
data streams (such as computational exposure data) with 
conventional data (such as those derived from blood and 
urine biomonitoring and air sampling) is not discussed. 
Figure 2-5 presents some general considerations for as­
sessing quality of exposure data and for integrating mul­
tiple data types. The four attributes for judging the quality 
of exposure data outlined by WHO—appropriateness, ac­
curacy, integrity and transparency—also apply to Figure 
2-5, but there is additional consideration of the strength 
of agreement between measures and of how each measure 
is related to the others in the overall exposure narrative. 
Although computationally derived exposure estimates 
might be perceived as warranting less confidence than 
direct measures, consideration of factors related to ap­
propriateness and accuracy might indicate that the com­
putational estimates are of higher quality. For example, 
direct exposure measures that are made with analytical 
methods that have not been validated, that are confounded 

FIGURE 2-4 Exposure measurements are made along multiple points in the source-to-outcome continuum. The value of exposure data for 
applications, such as source assessment and mitigation and assessment of public-health effects, might depend on location on the source-to­
outcome continuum. Careful consideration should be given to selection of exposure measures by balancing cost, invasiveness, and relevance 
for the study. For example, although internal exposures might be directly related to the event that initiates adverse effects, external measures 
of exposure might be more relevant to portal-of-entry effects and have the benefit of being more cost-effective to collect. Source: NRC 2012. 
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by sample contamination, that are determined without ac
counting for external-exposure intake rates and half-lives, 
or that lack temporal resolution necessary for their appli
cation in some decision-making contexts might ultimately 
be less valuable than indirect or proxy measures that are 
based on a validated exposure metric. Similarly, compu
tationally derived exposure estimates might be useful for 
some decision-making contexts, particularly when they 
are based on extensive experimental data—including 
pharmacokinetics, total external exposure, and patterns of 
external exposure—and show mass balance throughout 
the system. Confidence in any exposure assessment is in
creased when there is concordance, consistency, or agree
ment between multiple methods of exposure assessment 
and is greatest when directly measured exposures, indirect 
measures of exposure, and computationally derived expo
sure estimates or simulations agree (McKone et al. 2007; 
Cowan-Ellsberry et al. 2009; Mackay et al. 2011; Ritter 
et al. 2011; Teeguarden et al. 2013). Agreement between 
measured and predicted data streams builds confidence in 
each method of determination. Convergence between ex
posure measurements (external and internal) and model 
simulation results (for example, overlap of concentrations 
or probability distributions of concentrations) indicate 
higher confidence in an exposure estimate and in result
ing risk-based decisions. Although agreement between 
exposure measures might be a hallmark of quality and of 

­

­

­

­
­

­

­

­

the ideal, multiple concordant measures of exposure are 
not required to establish levels of quality required for all 
decision-making contexts. 

Consideration of the level of quality and confidence 
in exposure assessment in the decision-making context 
will continue to be important, particularly as new expo­
sure data streams emerge from personal sampling data 
and from use of new exposure matrices, such as bone, 
teeth, and hair. The potential for using emerging exposure 
data streams is high, but without careful evaluation, com­
parison with other types of exposure-assessment data, and 
a consistent effort to relate measurements to the appropri­
ate level of biological organization (for example, target 
site or source), confidence in their use or agreement on 
their best application might be difficult to obtain. 

Guidance has been developed to foster confidence, 
transparency, and reproducibility in calculated data used 
for exposure and risk assessment. Specific guidance has 
been developed for QSAR models for predicting chemi
cal properties and toxicity (OECD 2007), for environ
mental fate and exposure models (EPA 2009; Buser et 
al. 2012), and for pharmacokinetic models (McLanahan 
et al. 2012). As new exposure metrics emerge, it will be 
important to develop guidance for integrating the various 
exposure measures and to understand their value and rela
tionships with each other. 

­
­

­

FIGURE 2-5 Confidence increases with more complete characterization of the exposure pathway and associated exposure determinants. 
Confidence might be higher for direct measures of the stressor—for example, at the site of action—but if such measures do not consider 
important modifying factors, confidence might be higher for surrogate exposure measures or predicted exposure measures that do consider 
such factors. The greatest confidence occurs when there is concordance between multiple exposure-estimation approaches or between mul­
tiple exposure measures, especially when divergent exposure metrics are considered. The confidence that is required for exposure data and 
assessments should be determined by data-acquision costs and the decision context; the highest levels of confidence are not required for many 
decision contexts. 
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APPLICATIONS FOR EXPOSURE SCIENCE 

To provide practical guidance on the use of emerging 
exposure-science data streams for decision-making, the 
following sections describe applications expected to have 
near-term and lasting influence on exposure assessment 
and on risk-based decision-making (see Box 2-3). Each 
application uses one or more of the advances presented 
earlier in this chapter to provide a new basis for decision-
making, to refine exposure data, or to provide new forms 
of exposure data. 

Aligning Exposures Between 

Test Systems and Humans
 

Comparison of biological responses across diverse 
experimental systems is nearly always an essential step 
in risk assessment. For example, risk assessors are faced 
with aligning toxicity data that are based on disparate mea­
sures of exposure: nominal liquid concentrations or cell 
concentrations in in vitro systems and air concentrations, 
inhaled amounts, or administered doses in rodent studies 
and human biomonitoring studies. Specificity, sensitiv ­
ity, and concordance of observed effects across the test 
systems underlie the value and strength of evidence sup­
porting conclusions about hazard and risk associated with 
exposure. To compare the responses from different test 
systems adequately, the exposures (concentrations) need 
to be expressed in consistent (comparable) units and with 
due consideration for the matrix in which the chemical is 
present. For example, a chemical concentration in whole 
blood that corresponds to an in vivo response can differ 
from the total concentration in an in vitro test system that 
corresponds to a related response, although the free (dis­
solved) concentrations in the aqueous phases in each sys­
tem might be equal. Thus, the alignment of exposures in 
the systems is one important step in comparing exposure– 
response relationships across systems and evaluating con­
cordance and consistency. As in vitro systems, organotyp­
ic, or co-culture systems augment or replace traditional 

animal studies, biological effects are compared over a 
more diverse array of assay systems and, from an expo
sure standpoint, over more types of exposure. For exam
ple, the most biologically sound comparison of biological 
effects shown in a cell-free assay, a cell-based assay, and 
an inhalation-exposure rodent study would involve com
parisons of target-site exposures across all three systems: 
free-liquid concentrations in the cell-free assay, free cell 
concentrations in the cell-based assay, and free cell con
centrations in the target cells of the rodent. As a practical 
matter, measured free-liquid concentrations in the in vitro 
assays and serum concentrations in rodent assays or from 
human studies would typically be considered appropriate 
measures of exposure-based alignment of the biological 
effects. However, there are circumstances in which serum 
concentrations are not good surrogates for tissue dose— 
for example, when transport proteins facilitate the uptake 
to and efflux from the tissue (Koch and Brouwer 2012; 
Wambaugh et al. 2014). The committee emphasizes that 
for any metric used to align exposure concentrations be
tween systems, one should consider system conditions 
that might influence the value or interpretation of the data. 
For example, is the chemical concentration determined 
under steady-state or dynamic conditions or is the chemi
cal ionic, in which case pH must be considered? 

­
­

­

­

­

­

Each experimental system and human exposure situ­
ation has a unique set of processes that control or influ ­
ence the timing, duration, and extent of exposure at the 
site of action (see Figure 2-6). Many of the processes are 
biokinetic and measurable with conventional approaches. 
Characterizing the processes in each test system allows 
the measurement, calculation, or simulation of chemical 
exposure at a common site of action. Consistent metrics 
of exposure, such as free or cell concentration, represent 
a possible ideal for comparison across systems and do not 
have the limitations associated with nominal concentra­
tions. The chemical-activity approach has been proposed 
for ecological risk assessment (Mackay et al. 2011; Gobas 
et al. 2015) because it can integrate various multimedia 
exposure data streams (measured and predicted) and tox-

BOX 2-3 High-Value Applications for Exposure Sciences 

• Aligning exposures between test systems and humans 
• Improving exposure assessment for epidemiological studies 
• Exposure-based screening and priority-setting 
• Identifying new chemical exposures for toxicity testing 
• Predicting exposure to support registration and use of new chemicals 
• Identifying, evaluating, and mitigating sources of exposure 
• Assessing cumulative exposure and exposure to mixtures 
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icity data streams (in vitro and in vivo) into a framework 
with consistent units and might be useful for human health 
evaluations. Other exposure metrics might be suitable for 
some decision contexts if they are adequately justified on 
the basis of pharmacokinetics, physical chemistry, and bi
ology of the end point of interest. 

­

Alignment of exposures between systems can be 
completed under data-poor and data-rich conditions. 
High-throughput methods for estimating hepatic and renal 
clearance can provide data needed for estimating human 
serum concentrations of chemicals that can be compared 
with cell-culture concentrations. That approach reflects 
one extreme—the data-poor case—for which data limita­
tions can be overcome by focused, efficient in vitro and 
computational methods. Recently, an example of align­
ment of exposures under data-rich conditions—those with 
data from in vitro assays, whole-animal studies, and hu­
man biomonitoring—was published for systemic effects. 
Human urine and serum time-course concentration data 
from multiple studies provided empirical pharmacokinet­
ic data that showed a relationship between serum bisphe­
nol A (BPA) concentrations and urine BPA concentrations 
(Teeguarden et al. 2011, 2015; Thayer et al. 2015). The 
empirical relationships were used to calculate the range of 
human serum concentrations expected in a population of 

more than 28,000 people on whom there were published 
biomonitoring urine data. The resulting range of serum 
concentrations was compared directly with liquid concen­
trations in low-dose BPA cell-culture and aquatic studies 
(Teeguarden et al. 2013, 2015). Conclusions concern­
ing the probability of biological effects in humans were 
drawn by aligning exposures across human biomonitor­
ing and two divergent test systems—vertebrates and cell-
culture systems—that used a measure of exposure proxi­
mal to target-tissue exposure. Although the role of protein 
binding was not addressed in that example, the data and 
tools to do so for BPA and other estrogens have been de­
veloped for rodent test systems and humans (Plowchalk 
and Teeguarden 2002; Teeguarden et al. 2005) and in vitro 
test systems (Teeguarden and Barton 2004). 

A separate set of challenges has prevented widespread 
alignment of particle and nanoparticle exposures between 
in vitro and in vivo systems. The deposition of particles in 
the upper and lower airways of rodents and nonhuman pri­
mate toxicity-testing systems and of humans is governed 
by physical processes (gravity, diffusion, and impaction), 
breathing patterns, airway structure (size, branching pat­
tern, and geometry), and particle characteristics (size, 
shape, and density). Similar processes affect gravitational 
and diffusional transport and eventual particle deposition 
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FIGURE 2-6 Alignment of exposures across experimental toxicity-testing systems can be achieved by understanding, measuring, and 
applying this information on the processes that control the time course of concentrations and delivery of chemicals and particles to target 
cells in each system. Common target-cell exposure metrics could be total or free concentrations, peak concentrations, or area under the 
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on target cells in liquid cell-culture systems and include 
agglomeration capacity; particle size, shape, density, and 
agglomeration size and density; media height; and diffu
sion (Teeguarden et al. 2007; Hinderliter et al. 2010; Co
hen et al. 2014; DeLoid et al. 2014). Until recently, toxici
ty data on particles from in vivo and in vitro systems were 
compared on different exposure scales—for example, 
air concentrations and liquid cell concentrations (Sayes 
et al. 2007)—and this potentially obscured relationships 
between biological effects in the systems. More recently, 
direct measurement of target-cell doses has become more 
common. In addition, with the advent of computational 
tools that can capture the unique kinetics of particles in 
solution (Hinderliter et al. 2010) and of supportive experi
mental methods (Davis et al. 2011; Cohen et al. 2014), 
computational estimation of cellular doses in in vitro sys
tems is becoming more common. With similar tools for 
measuring or calculating lung-tissue doses of particles 
after inhalation exposure (Anjilvel and Asgharian 1995; 
Asgharian and Anjilvel 1998; Asgharian et al. 1999, 2001, 
2006, 2012; Asgharian 2004; Asgharian and Price 2007), 
approaches that allow comparison of in vitro and in vivo 
models of experimental particle toxicity have emerged 
(Teeguarden et al. 2014). The consistency of observed ef
fects between the in vitro and in vivo systems might be 
revealed by making comparisons with a consistent, bio
logically relevant measure of exposure. For example, iron 
oxide nanoparticles were shown to cause expression of 
the same cytokines in macrophages in vitro and in mouse 
lungs in vivo when exposures were compared on a par
ticle mass or cell basis. 

­
­
­

­

­

­

­

­

Research in and development of new methods and 
more frequent application of existing methods to produce 
consistent measures of biologically appropriate exposure 
for toxicity across various test and receptor systems is a 
potentially high-value application for exposure science. 

Improving Exposure Assessment 
for Epidemiological Studies 

Causal inference based on epidemiological evidence 
can be strengthened when information on health out­
comes is combined with clear measures of exposure at 
the biological site of action or a surrogate for the site of 
action (such as serum) that is temporally related to the 
causative biological events. Although that assertion is 
based on fundamental principles of pharmacology, it is 
not true that internal exposures are universally better than 
external exposure for purposes of assessing associations 
or inferring causation. External-exposure measures have 
been and will continue to be sufficient, and in some cas­
es superior to internal-exposure measures, for example, 
where portal-of-entry effects are involved or large pop-
ulation-scale exposure assessments are necessary and 
internal-exposure assessments are impractical. Reducing 

or eliminating exposure misclassification and broadening 
exposure assessment to identify new chemicals that might 
be causative agents or confounders of existing associa
tions would substantially strengthen the interpretation of 
epidemiological studies and improve their value for pub
lic-health decision-making. 

­

­

Several advances in the field of exposure science 
are particularly well suited for improving exposure as­
sessment for epidemiological studies. High-throughput 
targeted and nontargeted analytical-chemistry tools and 
new matrices for exposure assessment (such as hair, teeth, 
and nails) are together expected to offer more temporally 
relevant exposure assessment of many more chemicals 
and expand exposure assessment over the full life span. 
Emerging high-throughput computational-exposure mod­
els of external exposure will provide exposure estimates 
that complement those made through expanded biomoni­
toring programs. Personal biomonitors and sensor wrist­
bands (O’Connell et al. 2014a,b) offer an unparalleled 
opportunity to characterize individual exposures and 
provide temporally and spatially resolved data for under­
standing patterns of exposure, variability, and the role of 
behavior and activity levels on exposure. PBPK models 
could improve exposure assessment by 

• Reconstructing exposures from limited biomoni­
toring samples on the basis of pharmacokinetic under­
standing (Tan et al. 2006, 2012; Yang et al. 2012). 

• Translating external exposures or biomonitoring 
data into more biologically relevant internal exposures 
(Teeguarden et al. 2013). 

• Reducing the likelihood of reverse causation in 
epidemiological studies by more clearly delineating the 
sequences of chemical-induced physiological changes 
that lead to disease states (Verner et al. 2015; Wu et al. 
2015). 

• Accounting for population variability that is 
characterized directly or through the application of phar­
macogenomics approaches (Teeguarden et al. 2008; EPA 
2010; Ginsberg et al. 2010). 

The greater availability of internal-exposure infor­
mation obtained from direct biomonitoring of human 
populations or from a combination of computational tools 
would be of particular value by providing human expo­
sure concentrations at the site of action (tissue or blood). 
Such information could be compared with measurements 
in animal and cell-culture studies and might enhance 
causal inferences derived from epidemiological studies. 

Exposure-Based Screening and Priority-Setting 

Several exposure-based priority-setting approaches 
that benefit from the emerging exposure-science tools and 
data streams have been developed. In an exposure-based 
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approach, chemicals in the top exposure category are as
signed a higher priority for additional tiered toxicological, 
hazard, or risk assessment than those in the low exposure 
category; this provides a reproducible, transparent, and 
knowledge-based framework to inform decisions for test
ing priorities (Egeghy et al. 2011; Wambaugh et al. 2013, 
2014). The European Food Safety Authority and WHO 
have reviewed the threshold-of-toxicological-concern 
(TTC) approach as a screening and priority-setting tool 
that can be used for chemical assessments in cases where 
hazard data are insufficient and human exposure can be 
estimated (EFSA 2016). The TTC approach is used prin
cipally as a screening tool to assess low-dose chemical 
exposures and to identify those on which further data are 
necessary for assessing human health risk.7 In some cases 
following certain requirements, “exposure-based waiv
ing” for toxicity testing or “exposure-based adaptation of 

­

­

­

­

7The committee notes that TTC approach depends on the set 
of chemicals used to establish the toxicity distribution that is 
used to derive the TTC value. The ability of the TTC approach to 
screen chemicals properly will depend on whether the toxicities of  
the chemicals of interest are well represented by the toxicities of the 
chemicals used to establish the distribution. 

information requirements” approaches can be considered 
under the European Registration, Evaluation, Authorisa
tion and Restriction of Chemicals legislation (Vermeire 
et al. 2010; Rowbotham and Gibson 2011). Exposure-
based waiving has also been used to propose acceptable 
exposure levels  determined on the basis of generalized 
chemical-toxicity data and without chemical-specific 
toxicity data. Such approaches might be useful in mak
ing initial decisions about the public-health importance 
of chemical exposures in lieu of complete exposure and 
hazard data. Within the bounds of uncertainty and vari
ability of the data, some immediate decisions could be 
made about the low potential for risk posed by exposures 
below preselected “critical levels” (Vermeire et al. 2010; 
Rowbotham and Gibson 2011). Cumulative exposures to 
chemicals in specific classes might move some chemicals 
up in priority—an outcome of improved exposure data. 
Structure-based alerts and TTCs can be applied in such 
screening contexts to complement the exposure-based 
decision-making process. EPA recently demonstrated in
tegration of nontargeted and targeted chemical analysis of 
house-dust samples for exposure-based and bioactivity­
based ranking of chemicals for further biomonitoring or 
toxicity testing as shown in Figure 2-7 (Rager et al. 2016). 

­

­

­

­

FIGURE 2-7 Data from nontargeted and targeted analysis of dust samples were used with toxicity data to rank chemicals for further analysis 
and testing. Source: Rager et al. 2016. Reprinted with permission; copyright 2016, Environment International. 
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Biomonitoring data and environmental-monitoring 
data on most chemicals in commerce are missing or in­
sufficient for exposure-based decision-making. Applica ­
tion of advanced biomonitoring, personal monitoring, 
and computational exposure-science tools described in 
this chapter can support high-throughput screening-level 
exposure assessment and exposure-based priority-setting 
for later toxicity testing. Exposure models can be ap­
plied to screen large numbers of chemicals in commerce 
and set priorities among specific chemicals or chemical 
classes on which there are no or few toxicity-testing data 
(McLachlan et al. 2014). Chemicals that have predicted 
high concentrations in humans and environmental media 
can then be used to identify toxicity-data gaps and set pri­
orities for toxicity-testing for risk-based applications. The 
committee notes that priority-setting based only on expo­
sure might assign a lower priority to chemicals that might 
be given a higher priority on the basis of toxicity or risk. 

Translation of high-throughput data into risk-based 
rankings is an important application of exposure data 
for chemical priority-setting. Recent advances in high-
throughput toxicity assessment, notably the ToxCast and 
Tox21 programs (see Chapter 1), and in high-throughput 
computational exposure assessment (Wambaugh et al. 
2013, 2014) have enabled first-tier risk-based rankings 
of chemicals on the basis of margins of exposure—the 
ratio of exposures that cause effects (or bioactivity) to 
measured or estimated human exposures (Wambaugh et 
al. 2013, 2014; Wetmore et al. 2013, 2014; Shin et al. 
2015). Building on work by Wetmore et al. (2012) and 
Rotroff et al. (2010), Shin et al. (2015) demonstrated a 
high-throughput method for screening and setting priori­
ties among chemicals on the basis of quantitative com­
parisons of exposure data with in vitro bioactivity data 
(bioactivity quotients); this is similar to the margin-of-ex­
posure approach used in risk priority-setting. They used 
human intake rates estimated with computational expo­
sure models and toxicokinetic models for the in vitro–in 
vivo extrapolation of ToxCast toxicity data and identified 
38 of 180 chemicals for which total estimated exposures 
equaled or exceeded the estimated oral dose expected to 
result in blood concentrations that cause a 50% response 
in an in vitro toxicity-testing system. Population variabil­
ity due to differences in metabolic capacity was incorpo­
rated into the process (Wetmore et al. 2014). Screening-
level exposure assessment was used to establish margins 
of exposure for that group of chemicals for purposes of 
priority-setting. The committee notes, however, that limi­
tations of such analyses (see section “New Approaches 
for Assessing Biochemical and Physiological Determi­
nants of Internal Exposure” above) need to be taken into 
account. Although exposure estimates that exceed in vitro 
effect estimates might not be conclusive evidence of risk 
and exposures that fall below in vitro activities might not 
be conclusive evidence of no risk, the committee sees the 

potential for the application of computational exposure 
science to be highly valuable and credible for compari­
son and priority-setting among chemicals in a risk-based 
context. 

Human-exposure data on a much larger suite of 
chemicals than is now available would provide important 
new data for guiding selection of chemicals and exposure 
concentrations for hazard testing and mechanistic toxi ­
cology. The rapid expansion and use of high-throughput 
in vitro methods for hazard assessment and mechanistic 
studies presents a growing opportunity to test chemicals 
for bioactivity at human-exposure levels—levels lower 
than those typically used in traditional toxicity-testing 
studies. In vitro test systems—which are less subject to 
statistical-power limitations, are less expensive, and have 
fewer ethical considerations than whole-animal studies— 
might be better suited for testing exposures lower than 
those in traditional animal studies. Recent animal studies, 
however, provide useful examples of applying human ex­
posure information to in vivo test systems. For example, 
recent studies have included exposures at or near those 
experienced by humans in animal-testing protocols for 
genistein and synthetic estrogens (NTP 2008; Delclos et 
al. 2009, 2014; Rebuli et al. 2014; Hicks et al. 2016). For 
those animal studies, exposures were selected on the basis 
of measured serum concentrations obtained in pilot ani­
mal studies, values estimated with pharmacokinetic mod­
els, and measured or estimated serum concentrations in 
humans. The use of target-tissue exposures or biological­
ly relevant accessible proxies, such as serum, for selecting 
can in some cases be of greater relevance than the use of 
external exposure measures. Thus, there is an opportunity 
to apply many of the new tools described in this chap­
ter—expanded biomonitoring, new biological matrices, 
and high-throughput computational exposure models—as 
a guide for the selection of exposures for use in toxicity 
testing (Gilbert et al. 2015). 

Identifying New Chemical 

Exposures for Toxicity Testing 


The totality of exposure that makes up the exposome 
includes registered chemicals that are used in commerce, 
their environmental and metabolic degradation products, 
and endogenously produced chemicals. Traditionally, haz ­
ard-testing paradigms focus on satisfying regulatory needs 
for supporting product registration and contain guidelines 
for testing commercial chemicals, not their degradation 
products, metabolites, or similar chemicals produced en­
dogenously. Identification of chemicals that make up the 
latter groups of untested chemicals has become a key goal 
of federally funded exposure-science programs, such as 
the Children’s Health Exposure Analysis Resource. Ow­
ing to advances in high-throughput nontargeted analysis 
(Fiehn 2002; Park et al. 2012; Go et al. 2015; Mastrangelo 
et al. 2015; Sud et al. 2016), exposure science is in a more 
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effective position for discovery-based exposure assess
ment. Combined with environmental-degradation studies 
to identify novel chemicals, higher-throughput targeted 
analytical methods also contribute to overall exposure 
discovery for toxicity testing. For example, researchers 
in the Oregon State University Superfund Research Pro
gram recently discovered novel oxygenated and nitro
genated polycyclic aromatic hydrocarbons produced by 
conventional remediation methods and have subjected 
these environmental degradation products to toxicity test
ing (Knecht et al. 2013; Chibwe et al. 2015; Motorykin et 
al. 2015). In collaboration with academic scientists, EPA  
(Rager et al. 2016) recently demonstrated a workflow for 
nontargeted analysis of house dust with a transition to tar
geted analysis (measurement of specific target analytes) 
for ToxCast chemicals and use of frequency of detection 
information on chemicals as exposure data for priority-
setting shown in Figure 2-8. The committee sees the use 
of nontargeted and targeted analysis as one innovative ap
proach for identifying and setting priorities among chemi
cals for additional exposure assessment, hazard testing, 
and risk assessment that complements the current hazard-
oriented paradigm. 

­

­
­

­

­

­
­

Predicting Exposure to Support 

Registration and Use of New Chemicals
 

About 1,000–2,000 chemicals are introduced into 
commerce each year (EPA 2004). For newly introduced 
chemicals, exposure assessment means forecasting likely 
environmental concentrations or total daily human expo­
sures resulting from expected uses and is not a regular 
part of the decision-making process. The case of methyl 
tertiary-butyl ether, a gas additive introduced without fate 
and transport calculations and later found to be widely 
distributed in the environment, is a poignant example of 
the value of predictive exposure modeling (Davis and Far-
land 2001). A recent NRC report, A Framework to Guide 
Selection of Chemical Alternatives, found that despite the 
known importance of exposure, many frameworks for 
selecting chemical alternatives downplay its importance 
and focus on inherent hazards posed by chemicals (NRC 
2014). The committee that prepared the report recom­
mended an increased emphasis on comparative exposure 
assessment and stated that inherent hazard should be the 
focus only in cases where the exposure routes and con­
centrations of the chemical of concern and its alternatives 

FIGURE 2-8 Workflow for nontargeted and targeted analysis of the house-dust exposome for chemical priority-setting and testing. Abbre­
viations: DSSTox-MSMF, Distributed Structure-Searchable Toxicity Database-Mass Spectroscopy Molecular Formula; LC-TOF/MS, liquid 
chromatography time-of-flight mass spectroscopy; and MS, mass spectrometry. Source: Rager et al. 2016. Reprinted with permission; copy ­
right 2016, Environment International. 
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are not expected to differ substantially; that is, equivalent 
exposures should not be automatically assumed. And, it 
recommended greater reliance on physicochemical data 
and modeling tools, when high-quality analytical data on 
exposure are unavailable, to aid in predicting the parti
tioning of contaminants in the environment and the poten
tial for their persistence, bioaccumulation, and toxicity. 
Although approaches that are based on both hazard and 
exposure data are preferred, approaches that are based 
principally on exposure or hazard data will continue to be 
valuable depending on the decision context. 

­
­

Tools to predict chemical properties (environmental 
or tissue-partitioning properties), stability (degradation 
and metabolism half-lives), and proposed use scenarios 
can be used to set parameter values for exposure models 
that are used to predict concentrations in environmental 
media and humans, over life spans, and on local and na­
tional scales. The estimated concentrations can guide se­
lection of toxicity-testing exposures and can be compared 
with emerging toxicity data for risk-based assessments. 
Green-chemistry modeling initiatives can be applied to 
prescreen candidate chemicals according to the likelihood 
of biodegradation (Boethling 2011). Candidate chemicals 
can also be screened by applying more comprehensive 
methods that consider environmental fate and transport 
and various chemical use scenarios (release pattern and 
quantities) (see, for example, Gama et al. 2012). Confi­
dence in the prescreening methods will be greatest when 
the models and tools cover the applicability domain of 
the chemicals that are being evaluated and when the tools 
have already been shown to be effective in predicting fate 
and transport of chemicals that have similar properties 
(for example, structural similarity or similar use catego­
ries). Hence there is a need to test and evaluate exposure 
modeling tools and data streams systematically with ex­
isting commercial chemicals to foster confidence in ap ­
plying the same and emerging tools for new premarket 
chemicals. 

Identifying, Evaluating, and 

Mitigating Sources of Exposure
 

For chemicals that have multiple relevant exposure 
pathways, it can be challenging to identify and rank ex­
posure sources for mitigation. Exposure models can be 
used to reconstruct and identify the sources, behaviors, 
and pathways that are driving exposures to a particular 
stressor. Good examples of emerging computational ex­
posure tools that can be used to trace exposures to sources 
are exposure models for consumer products (Gosens et 
al. 2014; Delmaar et al. 2015; Dudzina et al. 2015) and 
exposure models and frameworks that combine far-field 
and near-field pathways for aggregate human exposure 
assessments (Isaacs et al. 2014; Shin et al. 2015). For ex­
ample, Shin et al. (2014) combined exposure models and 
human-biomonitoring data for nine chemicals to estimate 

the proportions of total production volumes that are used 
in selected use categories that correspond to exposure 
pathways. The models can be used to develop targeted 
strategies to reduce or virtually eliminate exposures to 
a particular stressor. For some chemicals, such as those 
used in pharmaceuticals and personal-care products, the 
dominant exposure pathways and chemical use rates are 
relatively obvious, and source mitigation, if necessary, 
might be relatively straightforward. 

The combination of sensor technologies, including 
personal sensors, with GIS data systems offers new ca­
pabilities to identify sources of exposure. Personal sen­
sors—for example, cell-phone–based sulfur oxide and 
nitrogen oxide sensors—use native GIS systems to col­
lect real-time exposure data, which can be used to iden­
tify locations with high exposures and the source loca­
tions that contribute to the exposures. Remote sensing can 
identify high-exposure locations and source locations on 
a regional or population scale by mapping pollutant con­
centrations and identifying exposure patterns that might 
be related to sources. 

Some chemicals and materials are poorly degraded 
and persist in the environment long after production and 
use are stopped. Some of the highly persistent chemicals 
also have long residence times in the human body. It can 
take years or decades for exposures to decline substantial­
ly after regulatory action is initiated. Accordingly, highly 
persistent chemicals that show unacceptable risk should 
have high priority for mitigation. Models and supporting 
experimental studies that screen for rates of chemical deg­
radation in environmental media and overall persistence 
in the environment and in humans can be used to identify 
persistent chemicals before commercial use and prevent 
or mitigate potential exposure by finding alternatives. 

Emerging exposure-assessment tools can also be used 
to mitigate sources of exposure to chemicals that cannot 
be identified confidently. Specifically, nontargeted analy­
sis of environmental samples—air, dust, water, and soil— 
can be combined with analysis of ecological or human 
biomonitoring samples to select analytical features that 
represent internal exposures of potential concern. Geo­
graphical mapping of relative concentrations or detection 
frequency in environmental and human samples can lead 
to source identification that might in turn help to identify 
the chemical classes. 

Assessing Cumulative Exposure 
and Exposure to Mixtures 

Humans, animals, plants, and other organisms are 
exposed to numerous stressors that vary in composition 
and concentration over space and time. For the most part, 
traditional toxicity testing has been conducted largely on 
single chemicals, so there are important uncertainties in 
assessing potential short-term and long-term effects of 
exposures to a mixture. That issue is a well-recognized 
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concern for chemical assessment. With advances in ex­
posure data streams and the potential for high-throughput 
toxicity screening, there are opportunities to address the 
uncertainty related to potential effects of mixture expo­
sures better. Measurements obtained from human tissue 
and from environmental media to which humans are 
exposed can be used directly or indirectly to formulate 
environmentally relevant concentrations of mixtures 
for toxicity screening and testing. For example, internal 
concentrations of persistent organic pollutants from in 
vivo exposure of humans (silicone implants) were used 
to determine and test mixture toxicity in in vitro assays 
(Gilbert et al. 2015). It is also possible to use environ­
mental-monitoring data (sampled water concentrations) 
to formulate exposure mixtures for toxicity testing (Allan 
et al. 2012), including approaches that consider popula­
tion variability in responses to environmentally relevant 
chemical-mixture concentrations (Abdo et al. 2015). The 
substantial advances in analytical chemistry noted in this 
report are producing more complete data on the extent of 
cumulative exposure to chemicals. Personal sampling de­
vices, such as wristbands and air-sampling devices, pro­
vide data on complex cumulative exposures of individu­
als. -Omics tools appropriate for measuring the aggregate 
biological response to cumulative exposures to chemical 
classes that act through similar mechanisms can be com­
bined with measures of real-world cumulative exposures 
to assess the effects of cumulative exposures more com­
prehensively. Aggregate-exposure model calculations for 
individual chemicals could be combined to obtain esti­
mates of cumulative exposures to mixtures, for example, 
by using models of exposure to consumer products that 
are supported by databases of chemical concentrations in 
the product and product-use rates. The exposure-model 
calculations could be used to address mixture exposures 
and potential toxicity; this approach would require mix-
ture-toxicity data or mixture-toxicity models for risk-
based assessment. For that case, estimating exposure to a 
mixture of chemical stressors for risk-based assessments 
is theoretically possible. The reliability of and confidence 
in the exposure calculations require further evaluation, 
and methods for including metabolites and nonchemical 
stressors in cumulative risk-based evaluations are also re­
quired. 

CHALLENGES AND RECOMMENDATIONS 

FOR ADVANCING EXPOSURE SCIENCE 


A principal objective of improving exposure science 
is to build confidence in exposure estimates by address­
ing or reducing uncertainty in the estimates used to sup­
port risk-based decision-making. That objective is best 
met by developing and further integrating monitoring, 
measurement, and modeling efforts and by harmonizing 
exposures among test systems, the multimedia environ­

ment, and humans. Incrementally increasing the number 
of chemicals included in monitoring programs can help in 
evaluating and refining exposure models and in develop
ing new approaches to integrate exposure data and con
stitutes an initial and pragmatic path. However, increased 
environmental monitoring alone will not be sufficient to 
improve exposure science. Interpreting the monitoring 
data and appropriately applying exposure data in risk-
based evaluations will require continued complementary 
development and evaluation of exposure-assessment tools 
and information, such as fate and transport models, PBPK 
models, and data on chemical quantity and use, partition
ing properties, reaction rates, and human behavior. 

­
­

­

In this section, challenges and recommendations 
to advance exposure science are discussed further. The 
points include some guidance initially presented in the 
ES21 report and some new, more pragmatic points, spe­
cifically related to the application of exposure science to 
risk-based evaluations. The points build on the advances 
and applications detailed in this chapter, which present 
key development opportunities for the field recommended 
by the committee. Generally, the recommendations and 
challenges cover a continuum: preparation of infrastruc­
ture, collection of data, alignment of exposures between 
systems, integration of exposure data, and use of data for 
priority-setting. The ES21 Federal Working Group (EPA 
2016b) is particularly well-positioned to coordinate and 
support the recommendations outlined below by further 
strengthening federal partnerships for the efficient devel­
opment of exposure-science research and by engaging 
with other stakeholders to address the challenges that face 
the development and application of exposure information 
for risk-based evaluations. The committee notes that sev­
eral recommendations below call for developing or ex­
panding databases. In all cases, data curation and quality 
evaluation should be a routine part of database develop­
ment and maintenance. 

Expand and Coordinate Exposure Science  
Infrastructure to Support Decision-Making 

Challenge: A broad spectrum of disciplines and insti­
tutions are participating in advancing exposure methods, 
measurements, and models. Given the many participants 
in exposure science, most information is fragmented, 
incompletely organized, and not readily available or ac­
cessible in some cases. Thus, the full potential of the ex­
isting and emerging information for exposure-based and 
risk-based evaluations cannot be realized. The commit­
tee emphasizes that the rapid growth in exposure science 
presents unprecedented opportunities for more efficient, 
complete, and holistic use of exposure information, es­
pecially if the information can be well organized into a 
readily accessible format. 
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Recommendation: An infrastructure for exposure in
formation should be developed to organize and coordinate 
better the existing and rapidly evolving components of 
exposure science and ultimately to improve exposure as
sessment. The infrastructure should be organized by using 
conceptual and systems-based frameworks that are com
monly used in exposure assessment and should facilitate 
the generation,  acquisition, organization, access, evalu
ation, integration, and transparent application and com
munication of exposure information. The infrastructure 
might best be comprised of an Internet-based network of 
databases and tools rather than one database and could ex
pand on existing infrastructure and databases. Guidance 
for generating, evaluating, and applying exposure infor
mation (WHO 2005; EPA 2009) should be expanded to 
enable inclusion of data in the databases. 

­

­

­

­
­

­

­

Recommendation: Coordination and cooperation 
should be encouraged among the large network of agen­
cies, institutions, and organizations that produce and use 
exposure information for different but ultimately connect­
ed and complementary objectives. Cooperation should 
increase the efficiency with which the infrastructure de­
scribed above is developed, and a common ontology of 
exposure science (Zartarian et al. 2005; Mattingly et al. 
2012; EPA 2016b) should continue to evolve to facilitate 
interdisciplinary communication in the development and 
application of exposure information. 

Identify Chemicals or Other Stressors 
and Quantify Sources and Exposures 

Challenge: Nontargeted analysis in environmental 
and human media indicates that there are many unknown 
chemicals in complex uncharacterized mixtures to which 
humans are exposed. Analytical methods and standards 
are not available for most chemicals and degradation 
products, and this hinders the capacity to identify and 
quantify chemical exposures. Furthermore, uncertainty 
in source information—product composition, chemical 
quantity, use, and release rate—is a major obstacle to ex ­
posure estimation for most chemicals. 

Recommendation: Current efforts to obtain and orga­
nize information on chemical quantities in and rates of re ­
lease from products and materials, particularly consumer 
products and materials in the indoor environment, should 
be expanded substantially. Curated databases that contain 
analytical features that can be used in chemical identifica ­
tion should be expanded, and increasing the availability 
of analytical standards for chemicals and their degrada­
tion products should have high priority. Ultimately, the 
capacity to conduct targeted and nontargeted analyses 
to identify and quantify new and existing chemicals and 
mixtures in environmental media and humans should be 
increased. 

Improve Knowledge of Processes That 
Determine Chemical Fate in Systems 

Challenge: Understanding the influence of processes 
that control the fate, transport, and ultimately concentra­
tion of chemicals in environmental compartments and in 
animal and cell-based test systems is essential for charac­
terizing and predicting exposures. Information on system 
properties, processes, and transformation pathways that 
contribute to chemical exposure is nonexistent, incom­
plete, and inconsistent, and this limits the capacity for 
more comprehensive, quantitative exposure-based and 
risk-based evaluations. 

Recommendation: Databases of chemical properties 
and information on rates and processes that control chem­
ical fate in vitro, in vivo, and in environmental systems 
should be developed. Information is needed, for example, 
on partitioning (distribution) coefficients, degradation and 
transfer rates, and metabolic and environmental transfor­
mation pathways. Information might be obtained through 
experiments or modeling. 

Recommendation: Methods for measuring and pre­
dicting chemical transformation pathways and rates in en­
vironmental media, biological media, and biological test 
systems should be developed and applied. The methods 
should be used to quantify human exposures to chemi­
cal mixtures (parent chemicals and metabolites) over time 
and to interpret results from test systems in the context 
of actual human exposures. In particular, knowledge of 
environmental, human, and test-system properties and 
conditions that influence exposures should be improved. 
Human pharmacokinetic data on metabolism, chemical 
transporters, and protein binding should be generated for 
chemicals in consumer products and food-related applica­
tions to improve the interpretation of human biomonitor­
ing data from urine, blood, and emerging matrices. 

Align Environmental and Test-System Exposures 

Challenge: Aligning environmental exposures and 
information obtained from experimental systems is a 
critical aspect of risk-based evaluation and is required for 
improving environmental epidemiology. Various units of 
quantification, such as administered or unmeasured dose, 
are often applied, and assumptions, such as steady-state or 
equilibrium conditions, are made. However, pharmacoki­
netic and fate processes and other factors often confound 
the interpretation and translation of exposure information 
between humans and the environment and experimental 
systems. 

Recommendation: Concentrations in the test-system 
components should be quantified over time by measure­
ment, which is preferred, or with reliable estimation 
methods. Methods and models that explicitly translate 
quantitative information between actual exposures and 
test-system exposures should be developed and evaluated. 
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Recommendation: Chemical concentrations that re
flect human exposures as derived from biomonitoring 
measurements or from predictive exposure models should 
be considered when designing testing protocols for bio
logical assays. Improving knowledge of processes that 
determine chemical fate in biological and test systems 
will be necessary to meet this recommendation. 

­

­

Integrate Exposure Information 

Challenge: Integration and appropriate application 
of exposure data from environmental media, biomonitor
ing samples, conventional samples (blood and urine), and 
emerging matrices (hair, nails, teeth, and meconium) is a 
scientific, engineering, and big-data challenge. The com
mittee emphasizes that integration of measured and mod
eled data is a key step in developing coherent exposure 
narratives, in evaluating data concordance, and ultimately 
in determining confidence in an exposure assessment. 

­

­
­

Recommendation: New interdisciplinary projects 
should be initiated to integrate exposure data and to gain 
experience that can be used to guide data collection and 
integration of conventional and emerging data streams. 
The projects might start as an extension of existing co
operative projects among federal and state agencies, 
nongovernment organizations, academe, and industry 
that focus on integrating measurements and models for 
improved quantitative exposure assessment. High prior
ity should be placed on extending existing (EPA, Centers 
for Disease Control and Prevention, and WHO) guidance 
on quality of individual exposure data and assessments to 
include weighing and evaluating the quality of integrated 
experimental and modeled information from multiple ma
trices and data streams. 

­

­

­

Determine Exposure-Assessment Priorities 

Challenge: All the many uses of exposure data— 
from selection of chemicals for use in new products to 
risk-based decision-making to exposure ranking—require 
exposure data, often for thousands of chemicals, over 
time and space. Whether or not analytical methods are 
available for the chemicals, the resources and time that 
are required for direct measures of exposure are not avail­
able, and resource-intensive, high-confidence exposure 
measurements might not be necessary in some cases. A 
key challenge for exposure science is how best to focus 
resources on the highest-priority chemicals, chemical 
classes, mixtures, and exposure scenarios. 

Recommendation: Continued development of compu
tational and experimental tools that maximize the value of 
existing knowledge for estimating exposure should have 
high priority. Those approaches might initially focus on 
selected near-field exposures that are known to be impor

­

­

tant, on chemical classes that are of high interest because 
of data on biological effects, or on other objectives, such 
as exposure ranking of members of a chemical class that 
are being investigated for use in new products. 

Recommendation: Continued development of ap
proaches for exposure-based priority-setting that use un
certainty analysis to establish and communicate levels of 
confidence to support decision-making should be encour
aged. The need to improve models or data that are used 
for priority-setting should be evaluated on the basis of the 
level of uncertainty and the tolerance for uncertainty in 
the decision-making context. Uncertainty and sensitiv
ity analyses should guide selection and priority-setting 
among data gaps to be filled. 

­
­

­

­
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Advances in Toxicology
 

The decade since the publication of Toxicity Testing 
in the 21st Century: A Vision and a Strategy (NRC 2007) 
has seen continued advances in an array of technological 
and biological tools used to understand human function 
and disease at the molecular level. Some advances were 
initially catalyzed by the Human Genome Project, which 
of necessity required technological innovations and large-
scale collaborations to reach the ultimate goal of mapping 
the sequence of DNA. Other developments came from ad­
vances made by the pharmaceutical industry to screen for 
chemicals that have specific biological functionality but 
minimal off-target effects. As a result of those advances, 
an era of big-data development and of public access and 
data-sharing has arrived with ever-increasing data-storage 
capacity, computational speed, and open-access software. 
Research has also become more multidisciplinary; project 
teams today often include geneticists, toxicologists, com­
puter scientists, engineers, and statisticians. 

A number of advanced tools can now be used in toxi­
cological and epidemiological research; some examples 
are listed below. 

• Large banks of immortalized cells that are de ­
rived from lymphocytes and collected from different 
populations worldwide are available for toxicological re­
search. 

• Genetically diverse mouse strains have been cre­
ated by a multi-institution collaboration (the Complex 
Trait Consortium; Threadgill and Churchill 2012) and are 
available for medical and toxicological research. They 
have been fully genotyped because of the relatively low 
cost of sequencing today, and the sequence information is 
publicly available. 

•  Microarrays and next-generation RNA sequenc­
ing can reveal postexposure changes in the simultaneous 
expression of large numbers of genes (the transcriptome). 
Technologies are also now available to profile the epig­
enome (epigenetic changes, such as methylation and his-
tone modifications), the proteome (proteins present in the 
cell), and metabolome (small molecules). 

•  Large compilations of a wide variety of biologi­
cal data are publicly available, as is software for data ac­
cess, interpretation, and prediction. Text-mining tools ap­
plied to scientific-literature databases provide approaches 
for developing hypotheses on relationships between 
chemicals, genes, and diseases. 

•  Automated systems that use multiwell plates pro­
vide a high-throughput platform for measuring a wide ar­
ray of effects in cells and cellular components in response 
to chemical exposures. Automated, multiwell testing can 
also be applied for rapid testing of zebrafish, vertebrates 
that are relatively genetically homologous with humans. 

•  Computational advances have enabled the devel­
opment of chemical structure–based methods for predict­
ing toxicity and systems-biology models for evaluating 
the effects of perturbing various biological pathways. 

Some of the advanced tools could be used to address 
issues in toxicology and ultimately risk assessment (see 
Chapter 1, Box 1-3). Some of the general risk-assessment 
questions to which the tools could be applied are the fol­
lowing: 

•  Planning and scoping: Which chemicals should 
undergo comprehensive toxicological evaluation first 
(that is, how should priorities be set among chemicals for 
testing)? 

•  Hazard identification: What adverse effects 
might a chemical have? For example, could it pose a car­
cinogenic risk or affect kidney or reproductive function? 
If a data-sparse chemical has a structure or biological ac­
tivity that is similar to that of a well-studied chemical, 
can the same types of toxicity be assumed and, if so, at 
similar exposures? Are cellular-assay responses adaptive 
(or inconsequential) or harbingers of adverse effects in 
humans? Does the chemical operate through the same 
pathways or processes that are associated with cancer, re­
productive toxicity, or other adverse human effects? 

•  Dose–response assessment: How does response 
change with exposure? At what exposures are risks of 

51
 



 

 








 

  


























Pharmacokinetic models 

Cheminformatics 

Docking models 

Systems biology models 

Virtual tissue models 

Read-across and structure-activity-relationship (SAR) models 

Population 
models 

Pharmacokinetic studies 

Cell-free assays 

Cell-culture assays 

Organotypic studies 

Studies in integrated systems and novel species 

Studies in genetically diverse integrated systems and molecular epidemiology 

Computational Models 

Assays and other studies 

M
et

ho
ds

 in
 T

ox
ic

ol
og

y

SAR Models 

52 Using 21st Century Science to Improve Risk-Related Evaluations 

harm inconsequential? Is there a threshold exposure at the 
population level below which there is no adverse effect? 

•  Mixtures: What are the hazards and dose–re ­
sponse characteristics of a complex mixture? How does 
the addition of a chemical to existing exposure contribute 
to risk? 

•  Differential susceptibility and vulnerability: Are 
some populations more at risk than others after exposure 
to a specific drug or environmental chemical? For exam­
ple, are some more susceptible because of co-exposures, 
pre-existing disease, or genetic susceptibility? Are expo ­
sures of the young or elderly of greater concern? 

Those risk-assessment questions provide the back­
drop for considering the recent advances in toxicological 
tools. Information obtained with the new tools can ad­
vance our understanding of the potential health effects of 
chemical exposures at various points along the exposure-
to-outcome continuum, shown in Figure 3-1 below. The 
starting point along the continuum is the transformation 
of external exposure to internal exposure, which was dis­
cussed in Chapter 2 of this report (see Figure 2-1). The 
ultimate goal is prediction of the response of the organism 
or population to exposure, and different tools can be used 

to probe or inform different places along that continuum. 
As noted in Chapter 2, although the continuum is depicted 
as a linear path, the committee recognizes that multiple 
interconnecting paths are typically involved in the con
tinuum. 

­

This chapter describes a variety of new assays and 
computational tools that are available for addressing risk-
based questions, but it is not meant to be comprehensive. 
The chapter organization follows the progression along 
the exposure-to-outcome continuum; the discussion be­
gins with assays and computational tools that are relevant 
for probing interactions of chemicals with cellular com­
ponents and ends with ones that are relevant for predicting 
population-level responses. Understanding of pharmaco­
kinetic relationships is critically important in toxicologi­
cal evaluations for many reasons—for example, to eval­
uate whether exposures in in vitro cultures and in vivo 
assays are similar in magnitude and duration to exposures 
that result internally in exposed humans; to extrapolate 
from high to low dose, from one exposure route to an­
other, and between species; and to characterize variability 
in internal human dose associated with a given exposure. 
Advances in pharmacokinetic analyses and models were 
discussed in Chapter 2 and are not elaborated on further 

FIGURE 3-1  Computational models and biological assays are shown with the exposure-to-outcome continuum to illustrate where the models 
and assays might be used to provide information at various points in the pathway. The clear portion of the bar for read-across and SAR mod
els reflects the fact that connections are typically made between analogous chemicals for either the initial biological effect or the outcome. 
However, biological tools can also probe the response at the cell or tissue level and provide support for read-across and SAR analyses. If 
sufficient data are available, read-across and SAR analyses can be performed at various points along the exposure-to-outcome continuum. 
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here. The chapter concludes with a discussion of chal­
lenges and offers recommendations that should help to 
address the challenges. 

The committee emphasizes that most Tox21 assays 
or systems were not developed with risk-assessment ap
plications as an objective. Therefore, understanding on 
how best to apply them and interpret data in a toxicology 
context is evolving. For example, assay systems that were 
designed to detect agents that have high affinity for or po
tency against a particular biological target might not be 
optimized to detect agents that  have moderate or low po
tency or that cause more than one effect. Some risk ques
tions are being addressed as data from high-throughput 
systems become more available. However, the usefulness 
or applicability of various assays will need to be deter
mined by continued data generation and critical analysis, 
and some assays that are highly effective for some pur
poses, such as pharmaceutical development, might not be 
as useful for risk assessment of commodity chemicals or 
environmental pollutants. 

­

­

­
­

­

­

PREDICTING AND PROBING 

INTERACTIONS OF CHEMICALS 

WITH CELLULAR COMPONENTS
 

Chemical interactions with specific receptors, en­
zymes, or other discrete proteins and nucleic acids and 
promiscuous interactions, such as those between an elec­
trophile and a protein or DNA, have long been known to 
have adverse effects on biological systems (NRC 2000, 
2007; Bowes et al. 2012). Accordingly, the development 
of in vitro assays that probe molecular-level interactions 
of chemicals with cellular components has been rapid, 
driven partly by the need to reduce high attrition rates 
in the drug-development process. Although various new 
assays have been developed, only a single assay—one 
that evaluates the human potassium channel (hERG 
channel1—has been integrated into new drug applica­

1The blockade of hERG channel has been directly implicated in 
prolongation of the QT interval, which is thought to play a role in 
the potentially fatal cardiac arrhythmia torsades de pointes. 

tions. Figure 3-2 illustrates some typical interactions with 
cellular components, and the following sections describe 
how the interactions are being investigated. 

Predicting Interaction by Using Chemical Structure 

In recent years, predicting chemical interactions with 
protein targets on the basis of chemical structure has be­
come much more feasible, particularly with the develop­
ment and availability of open-access data sources (Bento 
et al. 2014; Papadatos et al. 2015). There are many pub­
lished examples of computational models that have been 
developed to predict the interaction of a molecule with a 
single protein, most notably models for predicting hERG 
activity (Braga et al. 2014) and interaction with the estro­
gen receptor (Ng et al. 2015), but prediction of multiple 
interactions in parallel is now possible given available 
computational power. For example, Bender et al. (2007) 
used chemical similarity to predict the protein–chemical 
interactions associated with a novel chemical structure 
with a reported average accuracy of over 92% with some 
proteins and high selectivity; that is, only small numbers 
of active predictions were later shown to be negative in 
vitro. Although most of the activities were predicted cor­
rectly, it was at the expense of a high false-positive rate 
(that is, large numbers of inactive chemicals were predict­
ed to be active). Most of the models have been built by 
using pharmaceutical candidates that have a high affinity 
for the particular protein, but there are examples in the 
literature in which the same approaches have been applied 
to identify chemicals that bind a receptor with low affinity 
(see, for example, Hornung et al. 2014). 

Research to improve the prediction of protein–chemi­
cal interactions continues apace. Lounkine et al. (2012) 
used the similarity-ensemble approach—a method first 
published by Keiser et al. (2007)—and predicted the 
activity of 656 marketed drugs with 73 protein targets 
that were thought to be associated with clinical adverse 
events. The authors reported that about 50% of the predic­
tions of activity were later confirmed experimentally with 
binding affinities for the protein targets of 1 nM to 30 μM. 

FIGURE 3-2 Exposure-to-outcome continuum with examples of types of interactions between biological molecules and chemicals. 
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Cheng et al. (2012) evaluated chemical–protein interac
tion sets that were extracted from the ChEMBL database2 

by using a computational method, multitarget quantitative 
structure–activity relationship (QSAR), that evaluates G-
protein coupled receptors (GPCRs) and kinase protein 
targets. Sensitivities were reported to range from 48% 
to 100% (average, 84.4%), and specificity for the GPCR 
models (about 99.9%) and the kinases was high. 

­

Assessing Interactions with Cell-Free Assays 

Cell-free or biochemical assays have long been 
used to probe the interactions of chemicals with biologi­
cal molecules, such as enzymes and hormone receptors, 
and their activity with these specific targets (Bhogal et 
al. 2005). The assays can provide reliable and valid re­
sults with high agreement between laboratories and can 
be applied in low-, medium-, or high-throughput formats 
(Zhang et al. 2012a). 

The US Environmental Protection Agency (EPA) is 
exploring the use of the commercially available cell-free 
assays, run in high-throughput format, that were origi­
nally developed for preclinical drug evaluation to assess 
environmental chemicals (Sipes et al. 2013). The panel 
selected by EPA measures various activities, including 
binding to GPCRs, steroid-hormone and other nuclear 
receptors, ion channels, and transporters. The panel also 
covers activation of kinases, phosphatases, proteases, 
cytochrome P450, and histone deacetylases (Sipes et al. 
2013). Roughly 70% of the assays are derived from hu­
man cells, 20% from rat cells, and the remainder from 
other species. 

A wide variety of cell-free assays that evaluate oth­
er targets have been developed and are being used in 
pharmaceutical, biomedical, and academic laboratories 
(Xia et al. 2011; Mehta et al. 2012; Landry et al. 2015; 
McKinstry-Wu et al. 2015). They are being used to probe 
a wide array of protein types and functions, such as nod-
like receptors, which are involved in immune and inflam ­
matory responses (Harris et al. 2015), methyltransferases 
(Dong et al. 2015), and various membrane proteins (Wil­
cox et al. 2015). 

The potency of the chemical’s interaction in vitro— 
measured, for example, as an IC50 or KI3—provides infor­
mation on the likelihood of an in vivo concentration high 
enough to permit observation of the phenotypic response. 
The degree of inhibition or activation of the protein func­
tion that is required for a phenotypic response to be ob­

2ChEMBL is a chemical database of biologically active mole­
cules that is maintained by the European Bioinformatics Institute of 
the European Molecular Biology Laboratory. 

3IC50 is the concentration required to cause 50% of the maximal 
inhibitory effect in the assay, and KI is the inhibition constant for 
a chemical and represents the equilibrium constant of the dissocia­
tion of the inhibitor-bound enzyme complex. 

served can vary widely and will depend partly on the na
ture and function of the protein  or enzyme. For inhibitors 
of GPCRs, the anticipated pharmacological response has 
been observed in vivo at plasma concentrations less than 
or equal to three times the measured IC50 of the chemi
cal in question when corrected for plasma-protein binding 
(McGinnity et al. 2007). As a rule of thumb for pharma
ceuticals, a 100-fold margin between the measured IC50  
or KI in a cell-free assay and the circulating plasma un
bound Cmax has been considered adequate to represent 
minimal risk of toxicity (N. Greene, AstraZeneca, per
sonal commun., December 14, 2015). However, for envi
ronmental chemicals, which are not tested in clinical trials 
or followed up through medical surveillance, a different 
rule of thumb might be appropriate. And it is important 
to remember that toxicity is influenced by many factors, 
including the required degree of receptor occupancy, the 
ability of the chemical to reach the site of action (for ex
ample, to penetrate the blood–brain barrier), the nature of 
the modulatory effects (for example, inhibitor, agonist, or 
allosteric modulator), the kinetics of the binding of the 
interaction with the receptor, and exposure duration. 

­

­

­

­

­
­

­

CELL RESPONSE 

Cell-based in vitro assays have existed for nearly a 
century; the first publication of a dissociated cell culture 
was in 1916 (Rous and Jones 1916). Cell-culture tech
nology has evolved to the point where many cell lines 
are available and more can be produced with current 
techniques. Cell cultures provide easy measurement of 
gene and protein expression and a variety of potentially 
adverse responses (see Figure 3-3) and can be scaled to 
a high-throughput format (Astashkina et al. 2012). Ad
ditionally, cell-based assays derived from genetically dif
ferent populations can allow rapid assessment of some as
pects of variability in response to chemical exposures that 
depend on genetic differences (Abdo et al. 2015). 

­

­
­
­

Cell-based assays are being used to inform hazard 
identification and dose–response assessments, mostly as a 
complement to data from whole-animal or epidemiologi­
cal studies to address questions of biological plausibility 
and mechanisms of toxicity. For example, in evaluations 
of chemical carcinogenicity, the International Agency for 
Research on Cancer (IARC) gives weight to functional 
changes at the cellular level (IARC 2006) and consid­
ers the relevance of the mechanistic evidence with re­
gard to key characteristics of cancinogens (Smith et al. 
2016). Cell-based assays have been critical in the IARC 
assessments (IARC 2015a,b). Human-derived and ani­
mal-derived cell cultures have also been used to discern 
dose–response relationships and toxicogenomic profiles, 
for example, for ethylene oxide responses (Godderis et al. 
2012). The assays have potential use in addressing many 
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of the risk-based questions raised at the beginning of this 
chapter and as illustrated in Chapter 5. 

Cell cultures can be grown in a variety of architec­
tures, including monolayer and 3-D cultures of cell lines, 
and can be used as indicators of possible tissue, organ, 
and sometimes organism-level signs of possible toxicity, 
particularly in integrated systems that consider effects and 
signaling among cell types (Zhang et al. 2012a). They can 
be used to evaluate a number of cellular processes and re­
sponses, including receptor binding, gene activation, cell 
proliferation, mitochondrial dysfunction, morphological 
or phenotypic changes, cellular stress, genotoxicity, and 
cytotoxicity. Various techniques and measurements— 
such as impedance, gene transcription, direct staining, re-
porter-gene output, and fluorescence or bioluminescence 
resonance energy transfer—can be used to measure cellu­
lar responses and processes (An and Tolliday 2010; Song 
et al. 2011; Asphahani et al. 2012; Smith et al. 2012). Fur­
thermore, simultaneous measurements of multiple toxic 
phenotypes are possible with high-content imaging and 
other novel techniques. This section describes some of the 
recent developments in using cell-based assays to evalu­
ate cellular response and emphasizes advances that can 
improve toxicology and risk assessment. 

The committee notes that cell-based assays have some 
limitations; one key concern involves metabolic capabili­
ties. Specifically, do the assays capture how exogenous 
substances are metabolized in the body? That particular 
limitation might not be a concern for assays that are per­
formed with low-throughput methods in which it might 
be possible to determine a priori whether metabolism is 
important for toxicity and, if so, to find ways to test the 
metabolites in addition to the parent chemicals. However, 
little or no metabolic capacity is a particular concern for 
high-throughput systems that are used for priority-setting. 
Parent chemicals and metabolites can differ substantially 
in toxicity and potency. If the in vitro assays do not suf­
ficiently capture critical metabolites that form in humans, 
they might not give valid results for assessment because 

they are not testing the chemicals that potentially give rise 
to toxicity. Furthermore, although some assay systems 
might capture metabolism in the liver, extrahepatic me
tabolism might be the driver of some chemical toxicity, 
so the spectrum of relevant in vivo metabolic activation is 
an important consideration in understanding the validity 
of in vitro studies and interpreting the results from both 
in vitro and in vivo studies. EPA, the National Institute of 
Environmental Health Sciences, and the National Center 
for Advancing Translational Sciences are awarding re
search grants to make progress on the issue. For example, 
a multiagency collaborative announced in 2016 a $1 mil
lion competition  in the Transform Tox Testing Challenge: 
Innovating for Metabolism; the challenge called on in
novators to identify ways to incorporate metabolism into 
high-throughput screening assays (EPA/NIH/NCATS/ 
NTP 2016). EPA is also attempting to develop a system 
that encapsulates microsomal fractions of human liver ho
mogenate in a matrix, such as an alginate, that will allow 
diffusion of low-molecular-weight chemicals but retain 
the toxic lipid peroxides. As an alternative approach, EPA  
is attempting a method that would transfect cells with 
mRNAs of enzyme-encoding genes to increase metabolic 
transformation intracellularly. The committee views those 
initiatives as steps in the right direction and emphasizes 
the importance of addressing the issue of metabolic ca
pacity. 

­

­

­

­

­

­

Primary Cells 

Primary cells are isolated directly from fresh animal 
or human tissue. They can be obtained from a wide vari­
ety of tissues, such as liver, brain, skin, and kidney; and 
they are amenable to high-content screening and analy­
sis (Xu et al. 2008; Zhang et al. 2011; Thon et al. 2012; 
Raoux et al. 2013; Tse et al. 2013; Valdivia et al. 2014; 
Feliu et al. 2015). Although primary cells are more reflec ­
tive of in vivo cellular and tissue-specific characteristics 
than are immortalized cells (Bhogal et al. 2005), they can 

FIGURE 3-3 The exposure-to-outcome continuum with examples of cell responses. 
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be short-lived in culture and suffer from rapid dedifferen­
tiation within hours to days. 

Several approaches to adapt primary cell culture to a 
high-throughput format for chemical-toxicity testing have 
been made (Sharma et al. 2012; Berg et al. 2015). For 
example, EPA profiled over 1,000 chemicals (Houck et al. 
2009; Kleinstreuer et al. 2014) to identify activity in eight 
primary cell systems, including ones that used fibroblasts, 
keratinocytes, and endothelial, peripheral blood mono­
nuclear, bronchial epithelial and coronary artery smooth 
muscle cells. With proprietary software, chemicals were 
clustered by bioactivity profiles, and some possible mech­
anisms of chemical toxicity were identified. The lack of 
publicly available datasets with which to compare the re­
sults and the complexity of the resulting data precluded 
sensitivity and specificity calculations (Kleinstreuer et 
al. 2014). The standard by which to judge construct va­
lidity—that is, whether an assay system as a whole ade­
quately represents the target biological effect—still poses 
a challenge for these and other assays described in this 
chapter (see “Challenges and Recommendations for Ad­
vancing Toxicology” later in this chapter). 

A major advance in primary cell culture over the last 
decade is the development of 3-D cultures of cell lines.4 

3-D cell cultures have better behavior and function than 
the monolayer cultures (van Vliet 2011) and are of in­
creasing interest in the development of cancer drugs be­
cause they recapitulate the tumor microenvironment to 
a much greater extent than do conventional monolayer 
assays that use a flat layer of cells (Edmondson et al. 
2014; Lovitt et al. 2014). A number of assays that use 3-D 
cultures of primary cells from various tumors have been 
developed. Several studies (Arai et al. 2013; Chen et al. 
2014) have shown some degree of drug resistance to well-
characterized cancer drugs, depending on assay type; 3-D 
assays show greater drug resistance. 

Similarly, primary isolated hepatocytes are the most 
widely used for in vitro testing, and 3-D culture systems 
with added cofactors are being developed to overcome 
limitations of conventional monolayer systems (Solda­
tow et al. 2013), which notably include lack of sensitivity 
for detection of hepatotoxic drugs. The 3-D cultures that 
are used, for example, for enzyme induction or inhibi­
tion studies, maintain function for a relatively long period 
(1–3 days) and can be used to re-establish cellular polarity 
that is lost in monolayer cultures. Advances in liver-cul­
ture techniques and technology have led to improvements 
and greater complexity in 3-D liver-cell culture for use 
in toxicological evaluations, and the next step is devel­
opment of a bioartificial liver, commonly referred to as 
an organ-on-a-chip, discussed in greater detail in “Tissue-
Level and Organ-Level Response.” 

43-D culture is a generic term that is used to describe culture 
systems that are grown on some sort of support or scaffold, such as 
a hydrogel matrix. 3-D cultures often have two or more cell types. 

The examples of tumor-cell and liver-cell cultures 
discussed in this section highlight the movement from 
monolayer cultures to improved 3-D cultures of greater 
complexity and ultimately toward organotypic models for 
various tissues and organs (Huh et al. 2011; Bulysheva et 
al. 2013; Guiro et al. 2015). 

Immortalized Cell Lines 

Immortalized cell lines can be derived from isolated 
human cancer cells or from primary cells that have been 
genetically altered for enhanced longevity and resilience 
in tissue culture. Immortalized cell lines do not need to 
be isolated and harvested for each use, are relatively easy 
to maintain and propagate, are stable when replated mul­
tiple times, and can be easily frozen and shared between 
laboratories and grown in large quantities. Cloning im­
mortalized cells enables testing in genetically identical 
cells, and immortalized cell lines that are derived from 
diverse populations allow inquiry into the variability of 
chemical toxicity among populations (Abdo et al. 2015). 
However, more than the conventional monolayer cultures 
of primary cells, immortalized cell lines can lose native in 
vivo properties and functionality. They can have altered 
cellular polarity (Prozialeck et al. 2003; Soldatow et al. 
2013), non-native genetic content (Yamasaki et al. 2007), 
and decreased amounts of key cellular features (such as 
ligands, transporters, and mucin production); and they 
can be contaminated with other cell lines, such as HeLa 
and HepG2. Alterations in cellular phenotype can result 
in insensitivity to and mischaracterization of test chemi­
cals. For example, when testing the difference between 
mitochondrial toxicity observed in renal proximal tubule 
cells (primary cells) and that observed in immortalized 
human renal cells, researchers found that primary cells 
were capable of identifying more possible toxicants than 
were immortalized cell lines (Wills et al. 2015).  

Many of the assays in the federal government’s 
ToxCast and Tox21 programs use immortalized carci ­
noma-derived cell lines (T47D breast, HepG2 liver, and 
HEK293T kidney). The assays have shown potential 
for identifying chemical carcinogens found in rodents 
(Kleinstreuer et al. 2014) and for exhibiting some pre­
dictive ability in the preliminary classification of hepa­
totoxic chemicals in guideline and guideline-like animal 
studies (Liu et al. 2015). However, the assays have also 
been shown to be unable to predict some well-recognized 
hazards observed in humans or animals (Silva et al. 2015; 
Pham et al. 2016). 

ToxCast data have been proposed for use in pre­
dicting in vivo outcomes of regulatory importance (see 
Rotroff et al. 2013; Sipes et al. 2013; Browne et al. 2015), 
such as estrogenic properties of chemicals predicted by 
the uterotrophic assay, but their use as replacement as­
says has been the subject of research and discussion. For 
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example, EPA’s Federal Insecticide, Fungicide, and Ro
denticide Act (FIFRA) Science Advisory Panel recom
mended that the agency not replace the uterotrophic assay 
with a computational model of estrogen receptor agonist 
and antagonist activity derived from ToxCast data (EPA  
2014a). Although the panel noted a number of strengths 
of the model, it had concerns about diminished perfor
mance of the model for nonreference chemicals and the 
inability of the model to assess chemicals that had modi
fied toxicity because of pharmacokinetic factors or that 
had toxicity pathways different from those evaluated in 
the assays. Thus, the panel found that further research was 
needed. More recently, EPA  reconsidered the results of a 
high-throughput battery of estrogenicity assays, conclud
ed that the test battery is a satisfactory replacement of the 
uterotrophic assay for tier 1 endocrine-disrupter screen
ing, and intends to use the results of the test battery to 
evaluate and screen chemicals in the future (Browne et al. 
2015; EPA 2015). 

­
­

­

­

­

­

Because immortalized cell lines are limited in the de­
gree to which they can represent cells in intact tissues, 
alternative approaches of cell immortalization have been 
developed and are now being made commercially avail­
able. “Conditionally immortalized” cell lines that can un ­
dergo differentiation are increasingly available for use in 
biomedical research with potential applications in toxi­
cology (Liu et al. 2015). 

Stem Cells 

Advances in stem-cell research have allowed the 
generation of a wide array of cell types, some of which 
have metabolic competence, which makes them useful for 
studying the effects of chemicals on various tissues (Scott 
et al. 2013; Gieseck et al. 2015). Fit-for-purpose stem­
cell–based tests are becoming commercially available 
(Anson et al. 2011; Kolaja 2014), and research is under 
way to develop stem cells for application in toxicology 
(Sjogren et al. 2014; Romero et al. 2015). For example, an 
in vitro murine neural embryonic stem-cell test has been 
advanced as an alternative for a neurodevelopmental tox­
icity test (Theunissen et al. 2012; Tonk et al. 2013). The 
ability to grow rapidly, manipulate, and characterize an 
array of cell types makes stem cells potentially useful for 
chemical-toxicity evaluations. Furthermore, assays that 
use stem cells harvested from genetically diverse popula­
tions show considerable promise for providing informa­
tion that can help in addressing hazard and risk-assess ­
ment questions. 

Stem cells of potential use in toxicology research are 
of three primary types: embryonic, adult, and induced 
pluripotent stem cells. Embryonic stem cells are har­
vested from embryos that are less than 5 days old and 
have unlimited differentiation ability. Adult stem cells 
are isolated from adult bone marrow, skin, cord blood, 

heart tissue, and brain tissue. Induced pluripotent stem 
cells (iPSCs) are produced from adult somatic cells that 
are genetically transformed into a pluripotent state (Taka­
hashi et al. 2007). iPSCs are similar to embryonic stem 
cells (pseudoembryonic) and can be grown in monolayer 
and 3-D structures for multiple generations. They can 
take on a variety of cell types, including neuronal cells 
(Efthymiou et al. 2014; Malik et al. 2014; Sirenko et al. 
2014a; Wheeler et al. 2015), hepatocytes (Gieseck et al. 
2014; Sirenko et al. 2014b; Mann 2015), and cardiomyo­
cytes (Sinnecker et al. 2014; Karakikes et al. 2015). The 
ability to be derived from adult cells and the capacity to 
differentiate into multiple cell types also make iPSCs par­
ticularly promising for exploring human diversity. Cells 
can be created from specific individuals to produce per­
sonalized biomarkers, and iPSCs derived from large pa ­
tient populations (Hossini et al. 2015; Mattis et al. 2015) 
could help to identify pathways involved in disease and 
susceptibility (Astashkina et al. 2012). Because iPSCs are 
relatively cost-effective to produce on a large scale (Beers 
et al. 2015), they have the potential to improve cell-based 
toxicity testing substantially. 

There are some challenges to overcome in using 
stem cells. They can have different expression profiles, 
which indicate that they might have altered cellular pro
cesses, pathways, and functions. Stem cells generally can 
be difficult to culture and transfect, and the difficulties 
could limit their application in high-throughput formats. 
The lack of systematic approaches for characterizing and 
standardizing culture practices (such as characterizing 
cell types, sex origin, and cell function) also presents an 
obstacle for using stem cells in toxicology applications. 
Although stem cells (and other cells) have inherent limi
tations, they are still useful windows into biological pro
cesses at the cellular and molecular levels and remain use
ful for assessing chemical toxicity. A careful evaluation 
of cell phenotype and properties would help to determine 
the extent to which human biology is recapitulated in the 
cellular model. 

­

­
­
­

Modeling Cellular Response 

Over the last decade, numerous mathematical mod­
els and systems-biology tools have been advanced to de­
scribe various aspects of cell function and response. Con­
siderable progress has been made in describing feedback 
processes that control cell function. The development of 
cell-based modeling has benefited greatly from coordinat­
ed contributions from the fields of cell biology, molecular 
biology, biomedical engineering, and synthetic biology. 

A few simple structural units that have specific func­
tions and appear repeatedly in different species are re­
ferred to as network motifs (Milo et al. 2002; Alon 2007). 
Molecular circuits are built up from network motifs and 
carry out specific cellular functions, such as controlling 
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cell-cycle progression, xenobiotic metabolism, hormone 
function, and the activation of stress pathways—the ma­
jor pathways by which cells attempt to maintain homeo ­
stasis in response to chemical and other stressors, such 
as oxidative stress, DNA damage, hypoxia, and inflam ­
mation. Computational models are used to examine those 
circuits, the consequences of their activation, and their 
dose–response characteristics. 

Toxicity pathways defined in NRC (2007) as cel-
lular-response pathways can be thought of as molecular 
circuits that, when sufficiently perturbed, lead to adverse 
effects or toxicity. The circuits can be modeled with com
putational systems-biology approaches. The tools for de
scribing the circuits and function are developing rapidly 
(Tyson and Novak 2010; Zhang et al. 2010) and should 
enable study of the dose–response characteristics of the 
perturbation of toxicity pathways (Simmons et al. 2009; 
Zhang et al. 2014, 2015). Quantitative descriptions of 
the pathways hold the promise of characterizing differ
ences in individual susceptibility to chemicals at the cel
lular level but will require identification of components 
of signaling pathways that differ among individuals; sen
sitivity and other analyses can be applied to determine 
components that most affect human variability in adverse 
response. Confidence in the models will increase as they 
are applied to a more diverse suite of signaling pathways. 
Model refinement coupled with careful collection of data 
on detailed biological responses to chemical exposure 
will test model structures, refine experimental strategies, 
and help to chart new approaches to understanding of the 
biological basis of cellular dose–response behaviors at 
low doses. 

­
­

­
­

­

TISSUE-LEVEL AND ORGAN-LEVEL RESPONSE 

The last decade has seen advances in engineered 3-D 
models of tissue and computational models for simulating 
response at the tissue level (see Figure 3-4). This section 
describes organotypic models, organ-on-a-chip models, 
and virtual-tissue models that might be particularly ap­
plicable for toxicology research. 

Organotypic Models 

An organotypic model is a specific type of 3-D cul­
ture in which two or more cell types are put together in 
an arrangement intended to mimic, at least in part, an in 
vivo tissue and that therefore recapitulates at least some 
of the physiological responses that the tissue or organ ex­
hibits in vivo. Organotypic models of skin, which contain 
keratinocytes and fibroblasts, have been developed and 
validated for use as alternative models for testing skin ir­
ritation (Varani et al. 2007), and data from these models 
are now accepted in Europe for classification and labeling 
of topically applied products (Zuang et al. 2010). The skin 
model is being evaluated to improve the specificity of in 
vitro genotoxicity testing. Organotypic skin cultures ap­
pear to have reasonably good concordance with in vivo 
genotoxicity results (Pfuhler et al. 2014) probably be­
cause they retain the ability to metabolize and detoxify 
chemicals and because the rate of delivery of chemicals 
to the basal layer is more comparable with the kinetics 
of dermal absorption in vivo. Other organotypic models 
include eye, lung epithelium, liver and nervous system 
tissue (see NASEM 2015). The effects of environmental 
chemicals have been explored in mouse organoids by us­
ing proteomic tools (Williams et al. 2016). 

Organ-on-a-Chip Models 

An emerging scientific development is the organ-
on-a-chip model (see Figure 3-5), which is a 3-D culture 
grown in a multichannel microfluidic device (Esch et al. 
2015). The models are meant to have the same functional
ity as organotypic cultures but with the ability to manipu
late physiological and pharmacokinetic processes (that is, 
the rate  at which a chemical is introduced via the flow-
through channels). Several organ-on-a-chip models have 
been engineered, including ones for liver, heart, lung, in
testine, and kidney. The models allow the study of how 
chemicals can disrupt an integrated biological system and 
how the disruption might be influenced by the mechanical 

­
­

­

FIGURE 3-4 Exposure-to-outcome continuum with examples of tissue and organ effects. 
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forces at play in the intact organ, such as the stretching 
of the alveolar-capillary barrier in lungs due to the act of 
breathing. 

Attempts have been made to design platforms that 
have different organ mimics arranged in series or parallel 
that as a system can recapitulate aspects of tissue inter­
actions and in vivo pharmacokinetics (Sung and Shuler 
2010). A long-term goal is to introduce a parent chemical 
into the system and have it move through a liver com­
partment where it would be metabolized, flow to com­
partments that contain responsive cell types or to other 
compartments that contain hydrophobic materials that 
represent fat, and finally flow through a kidney compart­
ment where it could be eliminated. To date, microfluidic 
platforms that have that much complexity have not yet 
been introduced in practice and have not achieved a real­
istic metabolite distribution through the various tissues in 
the system (Andersen et al. 2014). 

Researchers face challenges in developing such ex­
perimental platforms, for example, with the synthetic 
materials used in the manufacture of the cell-culture 
substrates. They often are not good mimics of the extra­
cellular matrix and can even absorb small hydrophobic 
molecules (Wang et al. 2012); that absorption might exert 
an undue influence on the physiological system or alter 
chemical concentrations. Large-scale manufacture and 
high-throughput operation of organ chips also present 
challenges to the adoption of the technology. Similarly, 

access to sustainable sources of human cells presents a 
substantial hurdle for reproducibility and interpretation of 
the data produced. 

Microsystems that are composed of multiple syn­
thetic organ compartments are in the early stages of de­
velopment, and a number of initiatives are going on to 
validate model correlations with in vivo observations. For 
example, the National Center for Advancing Translation­
al Sciences has a number of efforts in this field (NCATS 
2016), and the European Union–funded initiative Mecha­
nism Based Integrated Systems for the Prediction of Drug 
Induced Liver Injury (EU 2015) has also been exploring 
the use of liver-chip models to predict adverse effects of 
drugs. Organ-on-a-chip models are promising, but they 
are not yet ready for inclusion in risk assessments. 

Virtual Tissues 

As discussed earlier, computational systems biology 
might be used to describe pathway perturbations that are 
caused by chemical exposures and the resulting cell re­
sponses. Such modeling can be applied to multiple pro­
cesses that operate in sequence or parallel and used to 
link cellular responses to tissue-level responses. Model­
ing feedforward and feedback controls through sequen­
tial dose-dependent steps also enable the examination 
of responses to toxicant exposure that require multiple 
cell types, such as Kupffer cell–hepatocyte interactions 

FIGURE 3-5 Generalized components of an organ-on-a-chip model. Source: Birnbaum 2011. 
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involved in hepatocyte proliferation. Feedback and feed-
forward control might also contribute to intercellular pat­
terns of response that require input from earlier pathway 
or cellular functions to activate or inhibit integrated mul­
ticellular responses. The cellular responses alter tissue 
function; the quantitative modeling then focuses on the 
interface between the cellular-level computation models 
and virtual-tissue models. 

EPA’s Computational Toxicology Program has devel­
oped mathematical models called virtual tissues for the 
embryo and the liver (Shah and Wambaugh 2010; Wam­
baugh and Shah 2010). EPA also has developed a model 
of blood-vessel development. Virtual-tissue models can 
use “agent-based” modeling of different cells in the tissue, 
which relies on and mathematically describes key aspects 
of cellular behavior or other tissue components to derive 
the properties of the tissue or organ of interest (Swat and 
Glazier 2013). The EPA models evaluate chemical expo ­
sures that alter growth and phenotypic characteristics of 
the agents in the models, which in this case are the cells. 
The models can describe cell growth or pattern formation 
of different structures in the virtual embryo or regional 
distribution of cell response in the virtual liver. 

As with any model, a critical consideration in devel
oping response models is fidelity of biology between the 
modeled outcome (virtual-tissue responses) and the apical 
and other responses observed experimentally. Assump
tions and predictions of the models can be tested by using 
information from human cells and co-cultures with differ
ent human cell types. Short-term targeted animal studies 
that use toxicogenomic tools and other approaches can be 
used to evaluate the model more broadly. Virtual-tissue 
models have the potential to help in conceptualizing and 
integrating current knowledge about the factors that affect 
key pathways and the degree to which pathways must be 
perturbed to activate early and intermediates responses in 
human tissues and, when more fully developed, to sup
port risk assessments based on studies of key events and 
how the key events combine to cause adverse responses 
at the organism level. 

­

­

­

­

ORGANISM-LEVEL AND 

POPULATION-LEVEL RESPONSE
 

The Tox21 report (NRC 2007) emphasized a future 
in which routine toxicity testing would rely on in vitro as­
says with human cells or assays that probe molecular re­
sponses of human toxicity pathways and pathway compo­
nents. But, the report also noted that in some cases testing 
in whole animals might be necessary, depending on the 
nature of the risk-assessment questions, although whole-
animal studies were not intended to provide routine infor­
mation for assessing risks. The need for different types 
of information related to the nature of the question posed 
was also emphasized in EPA’s report on next-generation 
risk assessment (EPA 2014b; Krewski et al. 2014; Cote 
et al. 2016). That report considered three types of assess­
ments: screening and priority-setting assessments, limit­
ed-scope assessments, and in-depth assessments. The last 
one would likely involve a wide array of toxicity-testing 
approaches, including whole-animal studies. Approaches 
for assessing variability could also benefit from rodent 
panels that capture population variability and panels of 
human cells derived from a group of diverse people. As 
is true of toxicity-testing tools at the molecular and cel­
lular levels, there has been continuing development of 
new methods for examining responses in whole animals 
that are likely to provide important information for the 
limited-scope and especially for the in-depth assessments. 
The approaches for assessments on different levels em­
phasize a fit-for-purpose orientation of designing the test­
ing assays or batteries that depend on the risk-assessment 
question. This section discusses novel animal models that 
provide opportunities for enhancing the utility and power 
of whole-animal testing. It also describes recent advances 
in structure-based computational models and read-across 
approaches that provide opportunities for predicting re­
sponse of data-poor chemicals at the organism level. Fig­
ure 3-6 highlights some organism-level and population-
level responses. 

FIGURE 3-6 Exposure-to-outcome continuum with examples of organism and population-level responses. 
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Novel Whole-Animal Models 

Advances in genetics, genomics, and model-organism  
development have led to genetically well-characterized  
whole-animal models, including transgenic rodent lines,  
isogenic mouse strains, and alternative species, such as ze
brafish and Caenorhabditis elegans, which can be studied  
in a high-throughput format. Those models coupled with  
toxicogenomics and novel imaging offer improvements  
over the traditional in-life rodent studies in that they offer  
new ways to explore chemical interactions at tissue and  
cellular levels. Isogenic strains also offer new opportuni
ties to identify determinants of human susceptibility, es
pecially when coupled with new interrogation tools, and  
to define new mechanisms of toxicity. Targeted testing,  
which is typically hypothesis-driven and more focused  
than historical testing strategies, can help to develop and  
enhance the value of the new animal models, as well as  
traditional ones. It can be used to explore the mechanisms  
by which a chemical causes toxicity, how outcomes might  
differ by age and sex, and how susceptibility might vary  
in the population. It can help to address specific knowl
edge gaps in risk assessment and can link in vitro observa
tions to molecular, cellular, or physiological effects in the  
whole animal. Targeted testing will be critically important  
in evaluating and validating the robustness and reliability  
of new computational models, in vitro assays, and test
ing batteries (Andersen and Krewski 2009; Krewski et al.  
2009). As this section shows, the new animal models and  
outcome-interrogation tools might provide broader assess
ment of hazards in whole organisms. 

­

­
­

­
­

­

­

Transgenic Rodents 

The development of transgenic mouse lines (such as 
knockin, knockout, conditional knockout, reporter, and 
humanized lines) advanced biomedical research; a few 
transgenic rat lines are also available now. Novel gene-
editing technologies, such as CRISPR/Cas9, have the po­
tential to generate inducible gene editing in adult animals 
and the creation of transgenic lines in nontraditional mam­
malian models (Dow et al. 2015). Gene editing permits the 
creation of experimental approaches that are more specifi­
cally suited for various tasks, including targeted testing of 
susceptible strains and exploration of gene–environment 
interactions. 

Although transgenic animals have been available for 
decades (Lovik 1997; Boverhof et al. 2011), testing in 
transgenic animals and incorporation of data from trans­
genic models into risk assessment has been limited, partly 
because of questions about applicability for risk assess­
ment and concerns about the cost to develop the models 
and evaluate a chemical in multiple strains. The National 
Toxicology Program (NTP) continues to evaluate and de­
velop such models. For example, NTP is using transgenic 

mice in the testing of the artificial sweetener aspartame, 
which generally tested negative in standard assays but 
showed a slight increase in brain tumors in a more sensi
tive transgenic-mouse strain. The transgenic p16 model 
was used because it was thought to be susceptible to brain 
glial-cell tumors. NTP is also testing aspartame in trans
genic strains with knocked-out tumor-suppressor genes 
and activated oncogenes to improve characterization of 
susceptibility and risk related to gene–environment inter
actions. Transgenic-rodent mutation data have been used 
by EPA to understand carcinogenic mechanisms of sev
eral agents, such as acrylamide (EPA 2010), but beyond 
those applications their incorporation into risk assessment 
has been limited. They have been somewhat more widely 
used to test specific hypotheses about mechanism, such 
as the mechanism of liver-cancer induction by phthalates 
(Guyton et al. 2009), and to evaluate the depth of biologi
cal understanding to apply fully organotypic, computa
tional systems-biology, physiologically based pharmaco
kinetic (PBPK), or other tools. 

­

­

­

­

­
­
­

Genetically Diverse Rodents 

Historically, toxicity testing has used only a few ro­
dent species and strains. Although there are advantages 
in using a well-characterized strain of mice or rats to test 
chemical toxicity, there are many shortcomings, includ­
ing concerns about inadequately accounting for profound 
strain differences in chemical sensitivity and metabolism 
(Kacew and Festing 1996; Pohjanvirta et al. 1999; De 
Vooght et al. 2010) and inadequate genetic and pheno­
typic diversity. High rates of spontaneous disease in some 
strains (outbred and inbred) can sometimes complicate 
the interpretation of results. For example, the incidence of 
background cardiomyopathy in the Sprague Dawley rat 
can be as high as 100% (Chanut et al. 2013), some strains 
are completely resistant to some toxicants (Shirai et al. 
1990; Pohjanvirta et al. 1999), and it is unclear a priori 
whether the standard strain has sensitivity that is adequate 
or too high for identifying a potential human hazard. 

Assessment in multiple strains that have known ge
netic backgrounds is one approach to address variable 
sensitivity among relatively homogeneous test strains and 
to address questions related to interindividual sensitivity 
to toxicants. Initiated in 2005, the Collaborative Cross 
(CC) is a large panel of novel recombinant mouse strains 
created from an eight-way cross of founder strains that in
clude three wild-derived strains. The CC has a level of ge
netic variation akin to that of humans and captures nearly 
90% of the known variation in laboratory mice (Churchill 
et al. 2004). Outbred progeny that have completely re
producible genomes can be produced through the genera
tion of recombinant inbred intercrosses (RIX) (Zou et al. 
2005). Because the CC strains and, by extension, the RIX 
lines have a population structure that randomizes exist
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ing genetic variation, these models provide the increased 
power that is required to explore the genetic underpin­
nings of interindividual susceptibility. For example, the 
CC mouse replicated human susceptibility, immunity, and 
outcome of West Nile virus infection more comprehen­
sively than the standard inbred model (C57BL/6J) (Gra­
ham et al. 2015). 

There are several examples of the value of the CC 
in toxicological evaluation. Trichloroethylene (TCE) me­
tabolism, for example, varies considerably among people 
and among mouse strains, and the metabolites differ in 
their mechanisms, toxicity, and organ-specific effects 
(NRC 2006). That variability has been a critical barrier to 
understanding of the risk that TCE poses to humans. To 
address the challenge in TCE-toxicity testing, a battery of 
mouse lines was used to assess interindividual variability 
in TCE metabolism and toxicity in the liver and kidney 
(Bradford et al. 2011; Yoo et al. 2015a,b). Significant 
differences in toxicity and metabolism were observed in 
the different strains. Population PBPK modeling was ap­
plied to the study results to illustrate how data on diverse 
mouse strains can provide insight into pharmacokinetic 
variability in the human population (Chiu et al. 2013). 

Multistrain approaches have also revealed fundamen­
tal mechanisms of hepatotoxicity of acetaminophen and 
biomarkers of this potentially fatal effect. Harrill et al. 
(2009) used a panel of 36 inbred mouse strains and found 
that liver injury induced by acetaminophen was associ ­
ated with polymorphisms in four genes, but susceptibility 
to hepatotoxicity was associated with yet another, CD44. 
Follow-up study of two healthy human cohorts showed 
that variation in the human CD44 gene conferred sus­
ceptibility to acetaminophen liver toxicity. This powerful 
example shows how a diverse animal population (in this 
case, mice) can be used to characterize and identify poten­
tial susceptibility in humans. 

The Diversity Outbred (DO) population is a het­
erogeneous stock seeded in 2009 from 144 independent 
lineages from the CC breeding colony. Each DO mouse 
is unique and has a high level of allelic heterozygosity 
(Churchill et al. 2012). Because they were derived from 
the same eight strains as the CC mice, their genome can 
be reconstructed with a high degree of precision—a fea­
ture that facilitates genome-wide association studies and 
other similar approaches. A 2015 NTP proof-of-concept 
study that used DO mice to capture variation in benzene 
susceptibility successfully identified two sulfotransfer­
ases that modify and eliminate benzene metabolites that 
confer resistance to benzene toxicity (French et al. 2015). 

One caveat in using genetically diverse rodent mod­
els is that their use potentially can increase animal use. 
The most effective use of such models in toxicology re­
quires acceptance of novel computational approaches, 
experimental designs, and statistical approaches that are 
specifically suited for the models and capable of handling 

the unprecedented amount of data that these studies gen
erate (Festing 2010). For example, factorial designs can 
maximize genetic diversity and reduce the risk of false 
negatives without necessarily requiring more animals 
than traditional rodent studies to address the central ques
tion. Additionally, using DO mice requires accepting that 
each individual is unique and that there is no way to in
corporate “biological replicates” in the traditional sense. 
Researchers and risk assessors need to be aware of and 
comfortable with the suite of data that results from these 
studies and to understand how to integrate the data with 
information from other sources, including more tradi
tional animal models (see Chapter 7). Computational 
tools uniquely suited for these emerging animal models 
are available and readily adaptable to toxicological test
ing (Zhang et al. 2012b; Morgan and Welsh 2015). Tools 
for data analysis, visualization, and dissemination are also 
available (Morgan and Welsh 2015). As with any model 
system, these rodent models should be used only for ques
tions that they are best suited to address. NTP  and other 
groups are developing frameworks and use cases to high
light when it is advantageous to use such models, and the 
committee supports further discussion on this issue. 

­

­

­

­

­

­

­

Other Whole-Animal Systems 

Advances in genomics, imaging, and instrumentation 
have made some alternative species—such as Caenorhab-
ditis elegans (a nematode), Drosophila melanogaster (a 
fruit fly), and Danio rerio (the zebrafish)—useful animal 
models for hazard identification and pathway discovery. 
Many technical advantages are shared among the three 
dominant nonmammalian species, but zebrafish have 
several useful characteristics not shared by the others. 
The genomes of zebrafish and humans display remark ­
able homology with an overall conservation of over 70%. 
Furthermore, 80% of the genes known to be involved in 
human disease are expressed in zebrafish (Howe et al. 
2013b). The signal-transduction mechanisms, anatomy, 
and physiology of zebrafish are homologous to those of 
humans (Dooley and Zon 2000), and zebrafish have all 
the classical sensory pathways, which are generally ho­
mologous to those of humans (Moorman 2001; Colley et 
al. 2007). 

Another important attribute that might make zebra-
fish particularly well suited for translational research is 
the capacity to generate transgenic reporter lines that 
express fluorescent genes in specific cells, tissues and 
organs. The large collection of transgenic fish lines are 
curated by the Zebrafish Model Organism Database and 
maintained by the Zebrafish International Information 
Network (Howe et al. 2013a). There is also a rich diver­
sity of zebrafish-disease models and drug screens to help 
to understand, prevent, and develop therapies for human 
diseases, including various cancers (Feitsma and Cuppen 
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2008; Nguyen et al. 2012; Gallardo et al. 2015; Gordon 
et al. 2015), diabetes and obesity (Gut et al. 2013; Dal-
gin and Prince 2015; Schlegel and Gut 2015), psychiatric 
conditions (Panula et al. 2010; Norton 2013; Jones and 
Norton 2015), heart disease (Arnaout et al. 2007; Chico et 
al. 2008; Arnaout et al. 2014; Asnani and Peterson 2014; 
Walcott and Peterson 2014), neurodegenerative syn
dromes (Bretaud et al. 2004; Chapman et al. 2013; Mah
mood et al. 2013; Da Costa et al. 2014; Martin-Jimenez 
et al. 2015; Preston and Macklin 2015), autism (Tropepe 
and Sive 2003), immunodeficiencies (Meeker and Trede 
2008; Cui et al. 2011), and blood disorders (Ablain and 
Zon 2013). Zebrafish have been used to investigate neuro
toxicants (Levin et al. 2007; Egan et al. 2009; Irons et al. 
2010), and Box 3-1 provides an example of using zebraf
ish for behavioral assessments. 

­
­

­

­

The Zebrafish Mutation Project hosted by the Sanger 
Institute is yet another major effort that will facilitate 
cross-species studies. The project aims to develop a 
knockout allele in every protein-coding gene in the ze­
brafish genome and characterize its morphological phe­
notype (Kettleborough et al. 2013). Mining of zebrafish 
gene or phenotype databases should provide powerful 
opportunities to identify genes involved in chemical-in­
duced phenotypes. 

An additional advantage of zebrafish is that the ze­
brafish genome is fully annotated, so transcriptomic and 
all other -omics approaches are possible. Repression of 
gene expression by antisense morpholinos, siRNA, and 
such gene-editing techniques as CRISPR/Cas9 is routine­
ly used to assess gene functions in the intact fish, and ze ­
brafish embryos and larvae are nearly transparent, so non ­
invasive observation is possible. Because larvae measure 
less than a few millimeters, they can be accommodated in 
multiwell plates, such as 384-well formats (Rennekamp 
and Peterson 2015). Only small quantities of test chemi­
cals are needed, so exposure–response relationships can 
be evaluated over a broad concentration range and testing 
can be replicated to increase data confidence. 

Although substantial research is going on with adult 
zebrafish for translational research (Phillips and Wester-
field 2014; Pickart and Klee 2014), early zebrafish life 
stages are particularly well suited for rapid screening. 
During the first 5 days of life, nearly all gene products 
and signal-transduction pathways are expressed (Pauli 
et al. 2012); thus, as in other vertebrates, development is 
a period of heightened sensitivity to chemical exposure. 
Early–life-stage zebrafish also express a full battery of 
phase I and phase II metabolism systems, whose activi­
ties are highly similar to those of humans (Goldstone et 
al. 2010). 

BOX 3-1 Using Zebrafish to Assess Behavior 

A limitation of current in vitro screening is the general paucity of assay coverage to identify neurotoxic chemi-
cals reliably. Observations of zebrafish embryonic and larval photomotor responses provide robust measures of 
nervous-system deficits based on well-established methods. For example, 18–24 hours after fertilization (embryo 
stage), the photomotor response is measured as tail flexions before and after a bright-light impulse. That assay 
has proved to be a highly sensitive chemical-toxicity screening tool (Kokel et al. 2010; Reif et al. 2016). At 5 days 
after fertilization (larval stage), the photomotor response can be assessed as a change in swimming activity in re-
sponse to a sudden light–dark transition. Both tasks can be digitally measured in individual wells, so these complex 
behavioral assays are highly amenable to high-throughput analysis (Padilla et al. 2012; Truong et al. 2014). The 
adult zebrafish is increasingly used to measure neurobiological end points affected by chemical exposures. An ar-
ray of behavioral tests have been designed to probe different domains involved in sensorimotor systems, cognition, 
and responses related to learning, memory, and anxiety. Indeed, zebrafish adults and juveniles display a variety 
of complex behaviors, such as kin recognition (Mann et al. 2003; Gerlach et al. 2008), shoaling and schooling 
(Engeszer et al. 2007; Miller and Gerlai 2012), territoriality (Spence and Smith 2005), associative learning (Al-Imari 
and Gerlai 2008; Fernandes et al. 2014), and nonassociative responses, such as habituation (Best et al. 2008). 
A number of neurobehavioral tests of anxiety and exploration have been modeled, and there is some evidence of 
conserved responses that resemble those of rodent models (Panula et al. 2006; Egan et al. 2009; Champagne et 
al. 2010; Steenbergen et al. 2011). Startle tests have been developed to understand sensorimotor responses in 
zebrafish exposed to environmental chemicals. Those assays have been used to test chemical effects on zebraf-
ish motor responses, including responses related to fluorinated organics (Chen et al. 2013), vitamin E deficiencies 
(Lebold et al. 2013), nanoparticles (Truong et al. 2012), and pesticides (Sledge et al. 2011; Crosby et al. 2015). 
Collectively, the sophisticated assays could be scaled to increase the throughput with which chemicals are as-
sessed for their effects on the nervous system. 
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Despite the advantages of incorporating the use of 
early–life-stage zebrafish as part of a strategy for making 
risk-based decisions, there are some noteworthy limita
tions. First, test chemicals typically are added directly to 
the aqueous media, not unlike cells in culture. However, 
the routes of exposure over the course of development, 
which can affect chemical uptake and metabolism, can be 
quite different. During the first 2 days of embryonic devel
opment, the primary route of exposure is passive dermal 
adsorption. Later in development, the gills and oral routes 
become available, and circulation plays a major role in 
chemical distribution. For the varied routes of exposure, 
there is little understanding of tissue concentrations, and 
this contributes to the challenges in comparing concen
tration–response results in zebrafish with dose–response 
studies in other systems directly. 

­

­

­

A related potential limitation is that despite metabolic 
similarities to other vertebrates, subtle differences in met­
abolic activity could lead to inaccurate toxicity predic­
tions, particularly if metabolic activation or inactivation 
is mechanistically important for specific test chemicals. 
Because the developing embryo constitutes a comprehen­
sive integrated system, all potential molecular initiating 
events are operational during testing. Thus, zebrafish are 
uniquely sensitive to chemical contaminants present in 
test solutions in that a contaminant could act on biologi­
cal targets and disrupt critical molecular events. Finally, 
as with any animal model, the primary sequences of in­
dividual pathway components are not necessarily highly 
conserved. For example, the zebrafish cyclin-dependent 
kinase 20 (cdc20) protein is 75% identical with the human 
protein at the amino acid level, and the zebrafish and hu­
man aryl hydrocarbon receptors are only 40% identical. In 
both cases, the homologous proteins are functionally con­
served. Although variable conservation of the genomes is 
a source for potential discordance between zebrafish and 
humans, the challenge is not unique to zebrafish inasmuch 
as individual allelic variations between humans can also 
result in marked differences in chemical susceptibility. 

Computational Structure-Based Models 
for Predicting Organism-Level Response 

It has long been recognized that chemicals that have 
similar chemical structures can elicit the same or similar 
toxicological effects and that, paradoxically, almost iden­
tical chemicals can cause dissimilar biological responses. 
The extent to which similar chemicals or their metabolites 
interact with critical biological molecules, such as target 
proteins, and operate by similar mechanisms is a critical 
element in determining structure–activity relationships. 
The last decade has seen advances in the development of 
structure-based computational methods to predict human 
health effects. Some are computational expert systems 
that consider structural alerts and underlying mecha­

nisms, others are QSAR models that rely on statistical 
correlations with molecular fragments, and still others 
are hybrids of these. Many advances have been supported 
by large curated databases and increased computational 
power. Health effects addressed include carcinogenicity 
(Contrera et al. 2005; Valerio et al. 2007), hepatotoxic
ity (Greene et al. 2010; Hewitt et al. 2013), reproductive 
and developmental effects (Matthews et al. 2007; Wu et 
al. 2013), and skin sensitization (Roberts et al. 2007a,b; 
Alves et al. 2015). 

­

The structure-based computational models that are 
probably the most advanced in model performance and 
regulatory acceptance are QSAR models for genotoxic­
ity or more specifically for mutagenicity as measured in 
the Ames assay, a reverse-mutation bacterial assay that is 
commonly used to evaluate the potential of chemicals to 
induce point mutations. The development of those models 
has benefited from the quantity and structural diversity of 
data available in the public domain on chemicals that have 
been tested in the Ames assay. As a result of performance, 
computational models are being accepted as surrogates 
for actual testing and have recently been incorporated into 
international guidelines for assessing mutagenic impuri­
ties in pharmaceuticals to limit potential carcinogenic risk 
(ICH 2014). Computational approaches for other human 
health effects are being considered for use in a regula­
tory setting (Kruhlak et al. 2012), and the Organisation 
for Economic Co-operation and Development has pub­
lished guidance that outlines the needed components of a 
QSAR model in regulatory settings (OECD 2004). They 
include “a defined end point; an unambiguous algorithm; 
a defined domain of applicability; appropriate measures 
of goodness of fit, robustness, and predictivity; and, if 
possible, a mechanistic interpretation” (Gavaghan 2007). 

The lack of wide use of QSAR models for end points 
other than mutagenicity might reflect predictive perfor­
mance that falls short of that required for practical appli­
cations. Most approaches predict only whether a chemical 
will cause the adverse effect. The inability to predict a 
plasma concentration that would be expected to elicit tox­
icity ultimately limits utility for differentiating between 
closely related structures on which little or no safety in­
formation is available for comparison. 

Read-Across Predictions 

Read-across is a process that uses two-dimensional 
chemical-structure information to identify chemicals (ana­
logues) that have been well studied toxicologically that are 
then used to predict the toxicity of a similar chemical that 
has inadequate toxicological data or to group chemicals 
for the purpose of evaluating their toxicity collectively. 
Structural similarity can be determined by atom-by-atom 
matching that results, for example, in a chemical-similar­
ity score or by identifying core molecular structures or 
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functional groups that are thought to be important in con
ferring toxicity potential. There should also be a consid
eration of physicochemical similarity among analogues 
because significant differences in, for example, partition 
coefficients (such as logKOW, a measure of lipophilicity) 
will have important effects on pharmacokinetic and often 
pharmacodynamic behavior of a chemical. Read-across 
approaches are receiving much attention because they can 
help to satisfy the information requirements under Euro
pean Union Registration, Evaluation, Authorisation and 
Restriction of Chemicals (REACH) regulations; the gen
eral concept has been accepted by the European Chemi
cals Agency (ECHA) and member-state authorities (Pa
tlewicz et al. 2013). When robust toxicological data are 
available on one or more structurally related chemicals, 
they can be used to infer the activity of a chemical that 
has not been adequately tested. ECHA (2015) has recently 
published a framework by which it evaluates read-across 
submissions under REACH. ECHA’s framework groups 
the read-across into six categories according to such fac
tors as whether the read-across is for a single analogue or 
an entire category, whether it is based on metabolism to a 
common product, and the relative potencies of members 
of a chemical series. 

­
­

­

­
­
­

­

Phthalate esters provide a well-studied example of 
the utility of read-across for male reproductive toxicity. 
Phthalate esters that have chain lengths of four to six car­
bons (more if branched) cause testicular toxicity (Foster 
et al. 1980) and adverse effects on male reproductive-sys­
tem development (Gray et al. 2000; NRC 2008) in rats. 
Studies of global gene expression in the fetal rat testis 
show comparable effects of all the developmentally toxic 
phthalates (Liu et al. 2005) and support a conclusion that 
these chemicals act via the same mechanism. Phthalate 
esters with shorter chains, such as dimethyl and diethyl 
phthalate, do not produce similar effects on gene expres­
sion or on testicular function or male reproductive-system 
development. Thus, well-studied phthalate esters in this 
group would serve as anchor chemicals for other phthal­
ates that have chains of four to six carbons in a read-
across approach. 

Read-across can be problematic, and caution is 
needed before its conclusions are relied on heavily. For 
example, thalidomide has two stereoisomers, (S)-thalid­
omide and (R)-thalidomide, that are virtually identical 
from a structural perspective in all aspects except for the 
3-D orientation of the two ring systems in relation to one 
another (see Figure 3-7). Their physical characteristics 
are also identical, so read-across analysis might conclude 
that the chemicals will have similar or identical safety 
profiles. However, (S)-thalidomide causes birth defects, 
embryo death or altered development, growth retardation, 
and functional defects, whereas (R)-thalidomide does not. 
Still, the enantiomers are capable of interconverting in 
vivo, so it is impossible to eliminate the teratogenic ef­
fects by administering only the (R)-enantiomer. 

Despite the limitations, read-across remains a screen­
ing approach for assessing the safety of a molecule in the 
absence of data on which to base an assessment. The 2015 
ECHA framework provides guidance on how protein 
binding, metabolism, and other data can be used in read-
across analyses and potentially overcome the limitations. 
Furthermore, a recent European study team proposed 
evaluation of read-across for four basic chemical-group 
scenarios (Berggren et al. 2015): chemicals that do not 
undergo metabolism to exert toxicity, that exert their tox­
icity through the same or structurally similar metabolites, 
that have low toxicity, or that are structurally similar but 
have variable toxicity on the basis of their hypothesized 
mechanism. They have selected chemical groups for case 
studies in each of the four categories. 

Low et al. (2013) extended the concept of similar­
ity in read-across from chemical structure to bioactivity, 
specifically responses in a variety of in vitro and genomic 
assays. They proposed a hazard classification and visual­
ization method that draws on both chemical structure and 
biological features to establish similarity among chemi­
cals in read-across. The approach incorporates mechanis­
tic data to increase the confidence of read-across. 

In addition to serving as a screening approach, read-
across can be regarded as a hypothesis-generating exer­
cise. The hypotheses can be lumped into two broad cat-

FIGURE 3-7 Molecular structures of 
(S)-thalidomide and (R)-thalidomide. 
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egories: the new chemical is metabolized to a chemical 
that has already been tested (or it and its analogue are 
metabolized to the same chemical), or the new chemi
cal and its analogues are sufficiently similar in chemical 
structure and properties that their biological activity is 
the same (that is, they have the same mechanism). In the 
former case, there are long-standing methods for assess
ing chemical metabolism that can be applied to support 
or refute the hypothesis that the new chemical is metabo
lized to something that has already been tested. In the lat
ter case, if the mechanism of the analogous chemicals is 
known, it is reasonably straightforward to test for effects 
on the initial events of the mechanism (for example, re
ceptor occupancy or enzyme inhibition). In most cases, 
however, mechanisms are not known; in such cases, it 
is still possible to compare the responses of the chemi
cal and its analogues in screening systems that globally 
assess toxicological responses. Global gene-expression 
analysis is likely to provide universal coverage of pos
sible mechanisms. Gene expression in an animal model 
in which the target tissues (for the tested analogues) are 
known or in an in vitro system that represents the tar
get tissue is a reasonable way to test the hypothesis of a 
comparable mechanism among analogues. It still might 
be possible to use gene expression in in vitro models to 
identify a mechanism when target tissue is not known, but 
it will probably require testing in more than one cell type. 
Lamb et al. (2006) evaluated the gene-expression chang
es elicited in four cell types by a large number of drugs; 
they clearly showed the connections between agents that 
have the same pharmacological action and demonstrated 
that this approach has high potential for toxicology. High-
throughput screening batteries, such as ToxCast, might 
also have utility for that purpose, but it will need to be de
termined whether the current battery covers the universe 
of known toxicity mechanisms. Higher-order models, 
such as organ-on-a-chip or zebrafish, might also be used 
for testing hypotheses of biological similarity if it can be 
shown that these models have the biological machinery 
that is critical for the mechanism in question. As data 
streams are added more systematically to the read-across 
process, integrated approaches, such as Bayesian models, 
that provide for a more agnostic evaluation and promote 
consistency in output could be developed. Figure 3-8 il
lustrates several scenarios for read-across and how it can 
be used to infer hazard and dose–response relationships. 

­

­

­
­

­

­

­

­

­

­

­

INCORPORATING DATA STREAMS 

Various chemicals will have multiple data streams 
along the exposure-to-outcome continuum that can be 
used to characterize hazard or risk. For example, pharma ­
cokinetic studies might point to tissues that have particu­
larly high concentrations of a chemical that are potentially 
increased by active transport as indicated in in vitro stud­

ies. Cell-free assays might suggest a set of key receptors, 
with cell-response assays indicating response; the results, 
when considered in the context of high concentrations of 
a chemical in tissues, might indicate particular hazards, 
such as particular cancers or reproductive toxicity. Target
ed studies might show early markers of effect histopatho
logically, and gene expression in the studies might show 
consistency with the findings of cell-based assays. The 
results might be supported by findings on similar chemi
cals that predict the activity through structure–activity 
analyses. Robust assessments will identify the more in
fluential data streams with which to develop an integrated 
assessment. Some streams will be more information-rich 
than others. The integration of multiple data streams is 
discussed further in Chapter 7. 

­
­

­

­

CHALLENGES AND RECOMMENDATIONS 

FOR ADVANCING TOXICOLOGY
 

This chapter shows how emerging scientific tools 
generate toxicological evidence on hazard and dose–re ­
sponse relationships of chemicals and other risk issues. It 
emphasizes how the tools apply to different components 
in the exposure-to-outcome continuum. Some tools, such 
as PBPK and systems-biology models, provide a basis for 
linking components along the continuum. Others, such as 
high-throughput assays or targeted testing, provide a di­
rect readout of chemical effect within a single component 
or in multiple components. The tools vary in their ma­
turity for application, their scope of applicability among 
chemical classes, and the questions that they can address. 
The committee emphasizes that the level of performance 
required for the various tools will depend on the question 
that is being addressed (context) and on agency policies. 

There are specific technical and research challenges. 
Some have been mentioned in preceding sections of this 
chapter; the challenges related to molecular and cell-
based assays are particularly notable. Some important 
challenges in advancing the tools for risk-assessment 
application are described below, and some recommenda­
tions are offered. 

Advancing the New Testing Paradigm 

Challenge: Obtaining the vision described in the 
Tox21 report in which traditional whole-animal testing is 
replaced with a broad toxicity-testing strategy that uses 
primarily in vitro assays, computational methods, and tar­
geted animal testing for assessing the biological activity 
of chemicals is a complex and labor-intensive task that 
requires focus, commitment, and resources (NRC 2007). 
The strategy for achieving the vision involves research to 
understand the spectrum of perturbations that could result 
in human toxicity and the nature and extent of the toxicity 
caused by the perturbations and research to understand 
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Read-Across Scenarios: 
Characteristics of Anchor 

and Data-Sparse (DS) 
Chemicals 

Anchor and DS chemicals are all 
metabolized to same toxic 

metabolites. 

Hazard: Assume same 
Dose Response: Adjust for pk 
in metabolite formation 

Anchor and DS chemicals have 
highly similar metabolic activation. 

Anchor chemicals show same 
hazards. 

Hazard: Assume same 
Dose Response: Adjust for pk 
and bioactivity of metabolites 

Anchor and DS chemicals have 
highly similar patterns of upstream 

biological effect. 
Anchor chemicals show same 

hazards. 

Anchor and DS chemicals have 
similar patterns of biological 

activity. 
Anchor chemicals show similar and 

related but not identical hazards 

Hazard: Assume same 
Dose Response: Adjust for pk 
and differences in levels of 
bioactivity 

Inferring Hazard and Dose-
Response Relationships for 
Data-Sparse (DS) Chemicals 

from Anchor Chemicals 

Hazard: Assume hazard based 
on upstream testing 
Dose Response: Adjust for pk 
and bioactivity after testing 

Examples 

Dyes that metabolize to 
dimethoxybenzidine 

Various glycol ethers 
metabolized to alkoxyacids, 

sets of nitrosoamines 

Dioxin like compounds 
(dioxins, furans, co planar 

PCBs), PBDEs 

Sets of ortho Phthalates, 
PAHs 

how determinants of human variability (for example, un
derlying nutritional, genetic, or disease state or life stage) 
and exposure duration might affect biological responses 
or toxicity. The scientific community needs to recognize 
that the current approach to toxicity testing and data anal
ysis is often compartmentalized, and this prevents a ho
listic approach in trying to determine toxicity of chemical 
exposure. 

­

­
­

Recommendation: Broad consideration of research 
that is needed to advance the development of a suite of 
tests that essentially achieves the vision in the Tox21 re­
port is beyond the present committee’s charge, but the 
committee notes that the research described above in the 
challenge statement should have high priority so that the 
vision can be achieved. The committee expresses its con­
currence with the Tox21 committee and emphasizes that 
testing should not be limited to the goal of one-to-one re­
placement but rather should extend toward development 
of the most salient and predictive assays for the end point 
or disease being considered. 

Optimizing Tools to Probe Biological Response 

Challenge: Developing a comprehensive in vitro 
system that covers the important biological responses 
to chemical exposure that contribute to human adverse 
health effects is a considerable challenge. Most assays 
used in the ToxCast program were developed to meet the 

FIGURE 3-8 Scenarios for conduct­
ing read-across. 

needs of the pharmaceutical industry and were not de
signed to cover the full array of biological response, given 
the extensive testing in whole animals and humans that 
is conducted for drug development. Thus, not all major 
forms of toxicity are captured in the current assays, and 
correlating tested activities with toxicity-hazard traits has 
been limited. For example, few or no ToxCast or Tox21 
assays test for several of the key characteristics of carci
nogenesis (Smith et al. 2016). There is also the question 
of how short-term assay exposures are related to chronic 
exposure or developmental exposures in vivo. Responses 
that depend on higher levels of biological complexity 
could be missed by cell-based assays. A number of issues 
for assay development acknowledged in NRC (2007) 
remain, including coverage of the necessary biological 
space to ensure that human sensitivity and susceptibility 
to toxicants are adequately captured. 

­

­

Recommendation: Whole-animal testing should move 
beyond standard approaches, including those associated 
with experimental design and statistical methods, to maxi­
mize their utility. An array of whole-animal tools are now 
available, and their adoption could address knowledge 
gaps in risk assessment more comprehensively and begin 
to address the breadth of genetic sensitivity in response 
to chemical exposure and other contributors to human 
variability in response. Guidance for incorporating these 
whole-animal tools into risk assessment would likely 
speed their adoption and use. 
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Recommendation: Use of targeted rodent tests that 
incorporate the use of -omics technologies, such as sen-
tinel-tissue transcriptomics, should be encouraged. The 
experimental design should include strategies for data in­
terpretation and analysis, such as Bayesian approaches, 
that are specifically developed for these studies. Strategic 
whole-animal testing could help to identify the broader 
suite of pathways that are beyond the scope of current 
molecular and cell-based tests, guide the development of 
in vitro assays that could enhance confidence in extrapo ­
lating from in vitro tests to whole-animal responses, and 
provide a stronger basis of hazard identification and dose– 
response assessment. 

Recommendation: Tools for probing genomic, epigen­
etic, transcriptomic, proteomic, and metabolomic changes 
in cells should be advanced because they provide an op­
portunity to assess cellular changes in a nontargeted and 
non–pathway-specific manner. Because virtually all toxic­
ity is accompanied by specific changes in gene expression 
(and presumably changes in protein expression and meta­
bolic profile), continued exploration of these in vivo and in 
vitro approaches as standalone screens or as complements 
to in vitro screens might be a way to cover more biological 
space.5 

Understanding and Addressing 

Limitations of Cell Systems
 

Challenge: Substantial progress has been made in de­
veloping and adapting a wide array of assays for screening 
environmental chemicals, but cell cultures have several 
important limitations. There are challenges in incorporat­
ing metabolic capacity into the assays to ensure that assay 
conditions generate chemical exposures that are represen­
tative of the exposures in humans that could lead to tox­
icity. Cell cultures also tend to be extremely sensitive to 
environmental conditions; changes in microenvironments 
can alter cellular phenotypes and responses and result in 
skewed results of toxicity screens. Furthermore, conven­
tional monolayer cultures are less sensitive than 3-D cul­
tures, and the response obtained from an in vitro assay can 
depend on the cell type that is used—a liver cell versus a 
neuron or a primary cell versus an immortalized cell. Cur­
rent in vitro assays evaluate only chemicals that have par­

5If in vitro methods are used for this purpose, it will be impor­
tant to identify the minimum number of cell types necessary for 
full coverage. Identifying the cell types will require a combination 
of statistical approaches that retrospectively analyze the available 
transcriptomic data and prospective experimentation to determine 
the number of cell types that are responsive to a broad array of 
mechanisms. High-content imaging techniques that capture effects 
on multiple cellular-toxicity indicators simultaneously—including 
mitochondrial integrity, cell viability, lipid accumulation, cytoskel­
etal integrity, and formation of reactive oxygen species (Grimm et 
al. 2015)—can also be used for nontargeted screening and offer the 
potential to integrate multiple aspects of cell function. 

ticular properties; chemicals typically must be soluble in 
dimethyl sulfoxide, have low volatility, meet molecular-
weight cutoffs, and be available in high enough quantity 
and purity. 

Recommendation: Formalized approaches should be 
developed to characterize the metabolic competence of as­
says, to determine for which assays metabolic competence 
is not an essential consideration, and to account for the 
toxicity of metabolites appropriately. Approaches could 
include the development and application of better in silico 
methods for predicting metabolism and elimination and 
the development of methods for including metabolic capa­
bility without compromising other aspects of assay perfor­
mance. Federal agencies have initiated some research to 
address the metabolic-capacity issue, and the committee 
recommends that the research have high priority. 

Recommendation: Research should be conducted to 
understand the breadth of cell types needed to capture tox­
icity that might occur only with specific cell lines. It is pos­
sible to identify common pathways of toxicity that exist in 
all cell types, but biology specific to cell types could be of 
great use in identifying organ-specific toxicities. 

Recommendation: Cell batches—even those from es
tablished cell lines—should be characterized sufficiently  
before, during, and after experimentation. Genetic vari
ability, phenotypic characteristics, and purity should be  
reported in published literature or on publicly accessible  
Web sites or interfaces. 

­

­

Recommendation: Assay development should be co­
ordinated with development of computational models of 
cellular responses involved in pathway perturbations to 
promote deeper understanding of shapes of dose–response 
curves at the cellular level. 

Addressing the Whole Human 
and the Human Population 

Challenge: The exposure-to-outcome continuum in 
reality can be complex. Chemicals can perturb multiple 
pathways and lead to various forms of toxicity. Further­
more, toxicity can be influenced by genetics, diet, lifestyle 
choices, social factors, sex, life stage, health status, and 
past and present exposures. All those factors can influence 
responses at different points in the exposure-to-outcome 
continuum and occur in the exposure milieu and context 
of human experience. 

Recommendation: Efforts to capture human variabil­
ity better in in vitro and in vivo toxicity tests should be ex­
plored. Broader testing of multiple cell lines from diverse 
human populations could find idiosyncratic sensitivity of 
some populations, as has been seen in in vivo testing of 
panels of isogenic mouse strains, although this approach 
addresses only variability due to genetic factors for a sin­
gle upstream end point. Approaches for better character­
ization of the variety of possible responses to chemicals 
in food, drugs, or the environment are needed. Experi­
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mental approaches could be coupled with computational 
approaches for better characterization. 

Recommendation: Relatively low-cost, rapid molecu­
lar and cellular assays should be used to investigate the 
toxicity of chemical mixtures. Furthermore, humans are 
not exposed to single chemicals in isolation but instead 
are constantly exposed to myriad chemicals in their envi­
ronment, endogenous chemicals produced in the body or 
modulated as a consequence of social and behavioral fac­
tors, and complex chemical mixtures. Cell-based assays 
can be used to explore at the molecular and pathway level 
how the addition of a chemical exposure to existing exog­
enous and endogenous exposures might contribute to risk. 
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Advances in Epidemiology
 

Epidemiology is the study of health and disease in 
populations. Standard definitions of epidemiology em­
phasize a descriptive component that captures patterns of 
disease by person, place, and time and an etiological com­
ponent that identifies causes of disease (Gordis 2013). The 
descriptive element of epidemiology comprises tracking 
of health and disease indicators and population risk fac­
tors (surveillance). The etiological activities—searching 
for the causes and determinants of disease—involve pri­
marily case-control and cohort studies. The span of epi­
demiological research also includes intervention studies, 
both randomized and nonrandomized in the assignment 
of preventive measures, such as vaccinations, or other in­
terventions. 

This chapter addresses the evolving approaches 
used by epidemiologists to investigate the associations 
between environmental factors and human disease and 
the role of epidemiology in the context of the commit­
tee’s charge regarding 21st century science related to 
risk-based decision-making. It does not give an overall 
introduction to the science of epidemiology; such mate­
rial is readily available in textbooks and elsewhere. It 
briefly discusses, however, the role of epidemiology in 
risk assessment, the evolution of epidemiology, data op­
portunities now available, and types of biases to consider 
given the use of Tox21 and ES21 tools and methods. The 
chapter then focuses on the use of -omics technologies 
in epidemiology and concludes with some challenges and 
recommendations. 

RISK ASSESSMENT AND EPIDEMIOLOGY 

The role of epidemiological evidence has long been 
established within the risk-assessment paradigm original­
ly described in the report Risk Assessment in the Federal 
Government: Managing the Process (NRC 1983) and in 
various later reports (Samet et al. 1998). Identification of 
risk factors for disease and inference of causal associations 
from epidemiological studies provide important informa­
tion for the hazard-identification component. Evidence 
on hazard obtained from epidemiological studies is given 

precedence in evidence-evaluation guidelines, including 
those of the US Environmental Protection Agency and 
the International Agency for Research on Cancer (IARC). 
Convincing epidemiological evidence that indicates a 
hazard is considered sufficient to establish causation, for 
example, in the IARC carcinogen classification scheme. 
However, human data are available on only a relatively 
small number of agents, particularly in comparison with 
the large number of environmental agents to which people 
are potentially exposed. In the absence of natural experi
ments, observational epidemiological studies are the only 
scientific approach available and ethically acceptable for 
studying possible effects of potentially harmful agents di
rectly in human populations. 

­

­

In addition to providing evidence for hazard identifi ­
cation, epidemiological studies can provide understanding 
of the exposure–response relationship. For some agents, 
the effects of exposure have been investigated primarily 
in particular groups of workers, such as asbestos workers, 
at exposure magnitudes typically much higher than those 
of the general population, and exposure–response rela­
tionships are extrapolated downward, introducing uncer­
tainty. If the needed exposure data on a general population 
are available, epidemiological studies can provide key 
information on risk at exposure concentrations relevant 
to the population at large. For example, air-pollution ex­
posures of participants in large cohort studies, including 
the American Cancer Society’s Cancer Prevention Study 
2 and the multiple studies involved in the European Study 
of Cohorts for Air Pollution Effects (ESCAPE 2014), 
have been estimated. Although some exposure misclassi­
fication is inherent in the case of most environmental and 
occupational exposures, there are numerous examples 
of successful incorporation of epidemiologically based 
exposure–response relationships into risk assessments: 
ionizing radiation and cancer, particulate-matter air pol­
lution and mortality, arsenic exposure and cancer, and 
childhood lead exposure and neuropsychological devel­
opment. Methods of addressing or correcting for mea­
surement error have been developed; such corrections 
generally lead to exposure-response curves with steeper 
slopes (Hart et al. 2015). 
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Epidemiological studies can also contribute to un­
derstanding the exposure–response relationship by iden­
tifying determinants of susceptibility if information on 
characteristics of study participants (such as their age, 
sex, and now genomes) is available. Data collected for 
epidemiological research or for population surveillance 
can be useful for describing exposure distributions on the 
basis of questionnaires, monitoring, models, and analyses 
of biological specimens. 

Epidemiological research might also provide infor­
mation on overall population risk that fits into the risk-
characterization component of risk assessment. The pop ­
ulation attributable risk statistic, originally developed to 
estimate the burden of lung cancer caused by smoking, 
provides an estimate of the burden of disease resulting 
from a causal factor (Levin 1953). Thus, data on human 
populations can contribute to all four components of the 
risk-assessment paradigm described in Chapter 1. 

EPIDEMIOLOGY IN THE 21st CENTURY 

The Evolution of Epidemiology 

The methods of epidemiological research have not 
been static. Initially, epidemiological research on the 
etiology of noncommunicable diseases—primarily can­
cer, cardiovascular diseases, pulmonary diseases, and 
metabolic diseases—focused on particular risk factors; 
exposure assessment was accomplished largely by using 
self-report questionnaires, measurement and estimation 
methods in the case of occupational studies, and relatively 
crude indicators in the case of environmental exposures. 
Some studies incorporated measurements from biologi­
cal samples, such as lead or cadmium concentrations, and 
some estimated exposures with models that used exten­
sive data. For example, in the study of survivors of the 
Hiroshima and Nagasaki atomic bombings, radiation dose 
was estimated with an elaborate algorithm that incorpo­
rated such information as location and body position at 
the time of the blast. Epidemiological studies of noncom­
municable disease, carried out beginning in the 1950s, 
focused on risk factors at the individual level; some later 
studies began to incorporate risk determinants at higher 
levels of social or organizational structure, including the 
family, the places of residence and work, and the state 
and country. Efforts were made to build the studies 
around conceptual frameworks that reflected understand ­
ing of structural, sociological, and cultural factors driving 
health status and disease risk, and recent decades have 
seen increasing emphasis on life-course approaches that 
acknowledge the importance of early life exposures, even 
in utero and transgenerational, for disease risk. Further­
more, many later studies of the environment and health 
have been designed to reflect the variation in environmen­
tal exposures among and within communities. 

Most recently, epidemiological research has been 
greatly affected by advances in other fields. The start of 
the 21st century was characterized by rapid advances in 
technology, medical sciences, biology, and genetics perti­
nent to epidemiology (Hiatt et al. 2013). Enhanced com­
puting and data-storage capacity have been critical. The 
advent of genomics and genome-wide association studies 
(GWASs), for example, has played an important role in 
promoting the transformation of the practice of epidemi­
ology. 

The need to achieve samples large enough to provide 
studies that have adequate statistical power and the need 
to replicate novel findings in independent study popula­
tions facilitated the evolution of large epidemiological 
research teams, multicenter studies and consortia, meta-
analytical tool development, and data-sharing etiquette. 
Recent decades have seen an evolution from single inves­
tigative teams that have proprietary control of individual 
datasets and specimens to the establishment of research 
consortia that have adopted a team-based science and a 
reproducibility culture through greater sharing of data, 
protocols, and analytical approaches (Guttmacher et al. 
2009; Tenopir et al. 2011). Indeed, some funding agen­
cies have sought to catalyze the transformation further by 
supporting the development and dissemination of validat­
ed state-of-the-science protocols designed to ascertain a 
broad array of phenotypic measures so that individual re­
search teams (when designing new studies) might be posi­
tioned better to share and harmonize data among multiple 
studies (PhenX Toolkit NHGRI). 

Case-control and cohort studies—the traditional 
workhorses of epidemiology—will continue to make 
strong contributions. Case-control studies, in particular, 
will continue to contribute to timely in-depth examination 
of people that have specific rare outcomes, such as rare 
cancers or reproductive outcomes, including specific birth 
defects. Cohort studies will continue to play an impor­
tant role in aiding in the delineation of early antecedents 
of disease and the identification of preclinical biomark­
ers and risk factors and contribute to the foundation for 
translational research and precision medicine. Cohort 
studies, if started early enough, can be informative on 
the importance of early life exposures and their influence 
throughout the life course. The committee anticipates an 
increasing number of cohort studies that integrate treat­
ment and health-outcome information from multiple 
sources, including information from health-care deliv­
ery systems. Studies that incorporate analysis of samples 
from companion biobanks will become key resources for 
connecting mechanisms identified in -omics and other 
assessments to pathogenesis in humans. Availability of 
more extensive geographical location information would 
allow incorporation of new and emerging data streams 
that document physical and social environments of popu­
lations on small scales into existing and new studies. 
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In summary, the factors reshaping the field of epi­
demiology in the 21st century include expansion of the 
interdisciplinary nature of the discipline; the increasing 
complexity of scientific inquiry that involves multilevel 
analyses and consideration of disease etiology and pro­
gression throughout the life course; emergence of new 
sources and technologies for data generation, such as 
new medical and environmental data sources and -omics 
technologies; advances in exposure characterization; and 
increasing demands to integrate new knowledge from ba­
sic, clinical, and population sciences (Lam et al. 2013). 
There is also a movement to register past and present da­
tasets so that on particular issues data can be identified 
and combined. There are already models for data aggre­
gation across studies (for example, National Cancer Insti­
tute Cohort Consortium and Agricultural Health cohorts), 
and researchers recognize the need for harmonizing data 
collection to facilitate future dataset aggregation (PhenX 
Toolkit NHGRI; Fortier et al. 2010). They are also consid­
ering how to create global biobanks (Harris et al. 2012). 

New Data Opportunities 

Epidemiology has always been a discipline that uses 
large quantities of information with the goal of identify­
ing risk factors that can be targeted in individuals or popu­
lations ultimately to reduce disease morbidity and mor­
tality. Today, modern technologies—including genomic, 
proteomic, metabolomic, epigenomic, and transcriptomic 
platforms and sophisticated sensor and modeling tech­
niques—facilitate the generation and collection of new 
types of data. The data can be used to generate hypoth­
eses, but they can also be used to supplement data from 
legacy studies to strengthen their findings (see Box 4-1). 
New data opportunities have arisen from changes in how 
medicine is practiced, how health care is delivered, and 
how systems store and monitor health-care data (AACR 

2015). Biobanks are being constructed by a variety of in
stitutions that provide clinical care and potentially con
stitute new data sources.1  They typically include collec
tions of biological specimens (blood, urine, and surgical 
and biopsy specimens), clinical patient information that 
provides demographic and lifestyle information, perhaps 
a questionnaire on lifestyle and environmental and occu
pational exposures, and ascertainment of health outcomes 
from clinical records. Thus, human data and biosamples 
potentially available for application of various -omics and 
other technologies might come from opportunistic stud
ies that rely on data sources that might have been col
lected and stored for nonresearch purposes. However, 
evidence from studies that use human tissue and medical 
data gained through convenience sampling from special 
populations might not be readily generalized. Further
more, such studies carry the same potential for bias as 
other nonexperimental research data, but there is no op
portunity with these studies to address some biases via a 
well-thought out study design, data collection, and proto
cols for obtaining biospecimens. Thus, new data streams 
and technologies, although promising, raise important 
methodological concerns and challenges and are driv
ing the need to develop new study designs and analytical 
methods to account for technology-specific peculiarities 
(Khoury et al. 2013). Investigators have cautioned about 
the increasing possibility of false leads and dead ends 
with each new assay and have called for careful evalu
ation of analytical performance, reproducibility, concept 

­
­
­

­

­
­

­

­

­

­

­

1The committee notes that biobanks are not a new creation. For 
example, the National Health and Nutrition Examination Survey, 
which is conducted for surveillance purposes, collects and analyzes 
specimens, and the data generated have proved invaluable for ex­
posure assessment. Many other population-based biobanks have 
been created, usually by enrolling healthy subjects; the largest ones 
include the European Prospective Investigation into Cancer and 
Nutrition (IARC 2016) and the UK Biobank (2016). 

BOX 4-1 Using Legacy Studies 

“Legacy” studies have accumulated substantial information on various environmental exposures, such as to-
bacco use, occupational exposures, and air pollution; personal factors, including genetic data; and disease events 
that have occurred over decades of follow-up. Some include biological-specimen banks and measures of disease 
phenotype and intermediate outcomes that were obtained by imaging, physiological testing, and other assessment 
methods. Some studies have already been used for application of -omics technologies (EXPoSOMICS 2016). 
Various cohorts have been used to address the association of ambient air pollution with disease incidence and 
mortality by adding estimates of air pollution at residence locations that were generated by new exposure models 
that have sufficient spatial resolution. Combining data from multiple studies provides an opportunity to gain statisti-
cal power and make results more precise while increasing the variety of exposures and the heterogeneity of study 
participants. 
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validity, and ethical and legal implications (Alsheikh-Ali 
et al. 2011; Khoury et al. 2013). 

The tsunami of data spanning the spectrum of genom­
ic, molecular, clinical, epidemiological, environmental, 
and digital information is already a reality of 21st century 
epidemiology (Khoury et al. 2013). There are challenges 
in using current methods to process, analyze, and interpret 
the data systematically and efficiently or to find relevant 
signals in potential oceans of noise. To address those is­
sues, the US government in 2012 announced the “Big 
Data” Initiative and committed funds to support research 
in data science in multiple agencies (Mervis 2012). Epi­
demiologists are poised to play a central role in shaping 
the directions and investment in building infrastructures 
for the storage and robust analysis of massive and com­
plex datasets. Given experience with multidisciplinary 
teams, epidemiologists are also equipped to direct the in­
terpretation of the data in collaboration with experts in 
clinical and basic health sciences, biomedical informat­
ics, computational biology, mathematics and biostatistics, 
and exposure sciences. Adaptation of technological ad­
vances, such as cloud computing, and strategic formation 
of new academic–industry partnerships to facilitate the 
integration of state-of-the-art computing into biomedical 
research and health care (Pechette 2012) are only some of 
the initial challenges that must be confronted before new 
data opportunities can be properly and effectively inte­
grated into future epidemiological studies. 

Types of Biases and Challenges 

Related to External Validity
 

As noted, contemporary epidemiology is faced with 
an unprecedented proliferation of clinical and health-care 
administrative data, -omics data, and social and environ­
mental data. The biases that generally affect epidemiolog­
ical evidence can be grouped into three broad categories: 
information bias that arises from error in measurements 
of exposure or outcome variables and co-variates, selec-
tion bias that arises from the ways in which participants 
are chosen to take part in epidemiological studies, and 
confounding that arises from the mingled effects of ex­
posures of interest and other exposures. External validity 
refers to the generalizability of findings and is a key con ­
sideration in risk assessment. Understanding the selection 
processes, measurement accuracy, and interpretation of 
analyses is critical for using epidemiological data in risk 
assessment, including the new and perhaps large cohorts 
that will be created from health-care databases and com­
bined with exposure estimates. 

The multiplicity, diversity, and size of data sources 
have generated widespread enthusiasm in researchers 
about the new possibilities (Roger et al. 2015a,b). There 
will, however, be some challenges in using the data. For 
example, reliance on electronic medical records as a sole 

basis for assembling cohorts might accentuate sample-
selection biases because of health-care–seeking behav
iors of patients; promote misclassification or incomplete 
documentation of phenotypes, clinical diagnoses, and 
procedures because of vagaries in clinical coding incen
tives and practices; and lead to confounding because key 
factors needed to evaluate confounding are not routinely 
collected in medical records, particularly those associ
ated with environmental exposures. Although electronic 
record systems might support the generation of large co
horts for investigations, having a large sample size does 
not mitigate the potential for biases, and it increases the 
likelihood of statistically significant false-positive find
ings. Furthermore, electronic medical records typically 
contain little information on occupational and environ
mental exposures, linkage to exposure databases might be 
problematic, and information on important potential con-
founders, such as tobacco use, might be sparse and not 
collected in the standardized fashion needed for research. 

­

­

­

­

­

­

In evaluating risks posed by environmental agents, 
epidemiologists and exposure scientists typically work 
together to enhance exposure estimates used in epidemi­
ological studies by broadening the variety of exposures 
considered, increasing precision of exposure measures, 
and providing insights into errors that inevitably affect 
exposure estimates. The full array of advances in expo­
sure science that are described in the ES21 report (NRC 
2012) and in Chapter 2 of the present report have applica­
tion in epidemiological studies. When exposure methods 
are appropriately incorporated into the study design, they 
facilitate exploration of measurement error in exposure 
variables and covariates. Such error has long been con­
sidered a serious limitation of epidemiological evidence 
in risk-assessment contexts; nonrandom errors can bias 
apparent effects upward or downward, and random error 
generally obscures associations and dose–response rela­
tionships. Measurement-error corrections can be made by 
using data from validation studies and statistical models 
that have been developed over the last 2 decades and ap­
plied, for example, to studies on diet and disease risk, ra­
diation and cancer, and air pollution and health (Li et al. 
2006; Freedman et al. 2015; Hart et al. 2015). 

EPIDEMIOLOGY AND -OMICS DATA 

Historically, epidemiological research has incorpo­
rated emerging technologies into new and current stud­
ies. The need to incorporate new science, however, ac­
celerated several decades ago with the introduction of the 
paradigm of molecular epidemiology. The new paradigm 
emerged as a replacement of “black box” epidemiology, 
an approach that examined associations of risk factors 
with disease while not addressing the intervening mecha­
nisms. The molecular-epidemiology paradigm opens the 
black boxes through the incorporation of biomarkers of 



 

 

    
 

    
 

 
 

  
  

   

83 Advances in Epidemiology 

exposure, susceptibility, and disease. It stresses the im
portance of pathways and their perturbation, which is 
highly relevant to the opportunities provided by 21st cen
tury science and specifically -omics technologies. The 
approach also strengthens the evidence base for one of 
Bradford Hill’s guidelines for causality: understanding 
of biological plausibility (see Chapter 7). For example, 
carcinogenesis is thought to be a multifactorial process 
in which mutations and selective microenvironments play 
critical roles, and key steps of the process can be explored 
with biomarkers. The molecular-epidemiology paradigm 
is a general one and conceptually accommodates emerg
ing methods for generating biomarker data. 

­

­

­

As indicated, molecular-epidemiology research is fo­
cused on underlying biology (exposure and disease patho­
genesis) rather than on empirical observation. Thus, as 
-omics technologies have emerged, they have been inte­
grated into current studies and have affected study design, 
particularly specimen collection and management. The 
incorporation of -omics approaches dates back about 2 
decades, beginning with the genomic revolution. In some 
of the current cohort studies, blood samples that had been 
appropriately stored were analyzed for single-nucleotide 
polymorphisms (SNPs) and other markers to search for 
genes associated with disease risk, including those modi­
fying risk associated with environmental agents. 

The utility of bringing -omics technologies into epi
demiological research is already clear as exemplified by 
many studies that have incorporated genomics. One well-
known starting point for exploring the genetic basis of 
disease has been GWAS, which involves the comparison 
of genomic markers in people who have and people who 

­

do not have a disease or condition of interest. The list of 
-omics approaches applied in epidemiological research 
has now expanded beyond genomics to include epig
enomics, proteomics, transcriptomics, and metabolomics 
(see Box 1-1). Table 4-1 lists advantages and disadvantag
es of their use. Examples of their use in a specific context 
are provided in Appendix B, which describes the mean
ing and limitations of -omic approaches in the context of 
epidemiological research on air pollution. Although the 
new methods have the potential to bring new insights 
from epidemiological research, there are many challenges 
in applying them. Some new studies are being designed 
with the intent of prospectively storing samples that can 
be used for existing and future -omics technologies, for 
example, in the case of the EU-funded projects Helix and 
EXPOsOMICS described in Chapter 1. Obtaining data 
from human population studies that are parallel to data 
that can be obtained from in vitro and in vivo toxicity as
sessments is already possible and offers the possibility of 
harmonizing comparisons of exposure and dose. 

­

­

­

­

In principle, the -omics approaches now support non-
targeted explorations of genes with genomics, mRNA 
with transcriptomics, proteins with proteomics, and me­
tabolites with metabolomics. With the exception of ge­
nomics, the measurements usually reflect changes within 
cells at one or a few points in time only, and the tissues 
that are used in humans are primarily surrogates, such 
as blood, urine, and saliva. Combining different -omics 
tools, however, increases the possibility for a better un­
derstanding of how different external exposures interact 
with internal molecules, for example, by inducing muta­
tions (genomics), causing epigenetic changes (epigenom-

TABLE 4-1 Advantages and Limitations of -Omics Technologies 
Advantages	  Use in large, hypothesis-free investigations of the whole complement of relevant biological molecules. 

Better understanding of phenotype–genotype relations.  

Might provide insights into the effects of interactions between environmental conditions and genotypes 
and mechanistic insights into disease aetiology. 

Limitations  There are limitations arising from cost of assays, quality of biological material available (such as 
instability of RNAs), and the amount of labor needed. 

Techniques that are still in their discovery state and new leads need to be carefully investigated and  
compared with existing biological information from in vivo and  in vitro tests.  

New leads in the discovery of novel intermediate markers need to be confirmed in other independent 
studies preferably with different platforms. 

Moving from promising techniques to successful application of  biomarkers in occupational and 
environmental medicine  requires  not  only  standardizing  and validating  techniques,  but  also appropriate  
study designs and sophisticated  statistical analyses for interpreting study results especially for  
untargeted approaches (the issue of multiple comparisons and false positives).  

Source: Adapted from Vineis et al. 2009. 
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FIGURE 4-1 The meet-in-the-middle approach centers on investigating (A) the association between exposure and disease, (B) the relation­
ship between exposure and biomarkers of exposure or effect, and (C) the relationship between disease and biomarkers of exposure or effect. 

ics), or modifying the internal cell environment in more 
complex ways. The latter changes might be monitored 
with proteomics, transcriptomics, or metabolomics. 

Meet-in-the-Middle Approach 

One informative strategy for the integration of -omics 
technologies into epidemiological research is the meet-in­
the-middle approach (Vineis et al. 2013). The approach 
provides insights into biological plausibility that can bol­
ster causal inference. In the context of a population study, 
the approach generally involves a prospective search for 
intermediate biomarkers that are linked to the underlying 
disease and are increased in those who eventually develop 
disease, and a retrospective search that links the interme­
diate biomarkers to past exposures of the environmental 
agent of concern. As illustrated in Figure 4-1, the approach 
can be considered as three steps: an investigation into the 
association between exposure and disease, an assessment 
of the relationship between exposure and biomarkers of 
exposure and early effects, and an assessment of the re­
lationship between the disease outcome and intermediate 
biomarkers. Inference of a causal relationship between 
exposure and disease is strengthened if associations are 
documented for each of the three key relationships in Fig­
ure 4-1, corresponding to A, B, and C. 

A recent study of epigenetics and lung cancer 
(Fasanelli et al. 2015) is illustrative. The biomarkers are 
methylation status of the AHRR gene and the F2RL gene, 
which are hypomethylated in smokers (exposure in Fig­
ure 4-1B) (Vineis et al. 2013; Guida et al. 2015). Hypo­
methylation of the genes is also associated with lung can­
cer (disease in Figure 4-1C). The question is, Are those 
biomarkers on the causal pathway for lung cancer caused 
by smoking? Fasanelli et al. (2015) showed by using the 

statistical technique of mediation analysis that 37% of 
lung cancers could be explained by the methylation status 
of the two genes. Thus, the two genes are biomarkers that 
are likely to be on the causal pathway and illustrate the 
“meeting in the middle” of the exposure and the disease, 
the middle being the biomarker. The committee notes, 
however, that fully assessing causality requires additional 
steps beyond statistical analysis. 

Exposome-Wide Association Studies 

As defined in Chapter 1, exposome refers to the to­
tality of exposures from conception to death. Some have 
questioned whether the exposome as defined defies prac ­
tical measurement and is therefore not amenable to sci­
entific methods (Miller and Jones 2014). In an attempt to 
define the exposome as a measurable entity, Rappaport 
and Smith (2010) proposed to consider first the body’s 
internal chemical environment and how the body re­
sponds to these chemical exposures.2 They referred to the 
exposures as the internal exposome and distinguished it 
from the external exposome—exposures external to the 
body—and suggested that the internal and external expo­
somes are complementary. For example, internal assess­
ment might identify environmental health associations 
(that is, generate new hypotheses on disease etiology), 
but external exposure assessments are needed to identify 
sources, consider exposure routes, and address spatial and 

2The inclusion of biological response in the concept helps to ex­
pand beyond external chemical exposures to many types of expo­
sures—including psychological or physical stress, infections, and 
gut flora—that produce endogenous chemicals, such as oxidative 
molecules, and disease-producing responses, such as inflammation, 
oxidative stress, and lipid peroxidation. 
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temporal variability of exposures (Turner et al. in press). 
Consequently, an external-exposome assessment can take 
place after hypotheses have been generated, and the envi
ronmental sources of internal changes can be sought. The 
two study designs—one that looks for internal changes 
starting from external measurements (external-exposome 
assessment) and one that looks for external sources on 
the basis of internal signals (internal-exposome assess
ment)—are complementary and have been defined as 
“bottom-up” and “top-down” approaches, respectively. 

­

­

The -omics tools that can be used to capture the in­
ternal exposome make nontargeted analyses that parallel 
GWASs in concept and approach possible. Studies of that 
design have been referred to as exposome-wide associa­
tion studies (EWASs).3 Specifically, the EWAS approach 
involves the investigation of associations of a large num­
ber of small molecules, proteins, or lipids with disease or 
intermediate phenotypes to identify biomarkers of expo­
sure or disease. One general EWAS approach to generate 
new hypotheses on disease causation has been described 
by Rappaport and Smith (2010). Figure 4-2 shows a study 
design that can lead to the generation of new hypotheses 
about chemical hazards in the context of a case–control 

3The committee notes that the acronym EWAS was originally 
proposed by Patel et al. (2010) to refer to environment-wide as­
sociation studies, but others, such as Rappaport (2012), have used 
EWAS to refer more specifically to exposome-wide association 
studies, as used here by the committee. 

study. Targeted and nontargeted metabolomics approach
es are used to compare exposures of cases that have a spe
cific disease with exposures of ones that do not (controls). 
After the initial discovery phase, the experimental design 
can be improved by a testing (replication) phase with a 
prospective context (a case-control study that is nested 
in a prospective cohort). That approach takes temporality 
into account by using biological samples collected before 
disease manifestation to avoid or to reduce the potential 
for reverse causation. Unidentified features that are sig
nificantly associated with the outcomes of interest would 
next be chemically identified by using methods described 
in Chapter 2, for example, by using NMR, IMS-MS/MS, 
or cheminformatics or by synthesizing and evaluating 
chemical standards for candidate chemicals. In the next 
step, validation  of the association and a final causal as
sessment would be attempted through replication in more 
than one cohort, and biological plausibility would be 
evaluated. 

­
­

­

­

Biological plausibility could be evaluated with a tar­
geted analysis of available human tissues by using pro­
teomics, metabolomics, or other methods to search for 
biological responses related to the disease. Alternatively, 
novel animal models or high-throughput in vitro assays 
described in Chapter 3 could be used to test candidate 
chemicals and generate biological-response data that 
could be compared with responses related to the EWAS-
identified association with disease. Evaluation of biologi-

FIGURE 4-2 A study design for developing new hypotheses on causation of disease by exposure. The committee notes that the approach 
and tools used to investigate exposures and biological pathways for “causality and prevention” are not necessarily different from those used 
to investigate biological pathways relevant for drug development. Source: Rappaport 2012. 
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cal plausibility would ideally also include refinement of 
exposure, if necessary, and a systematic comparison of 
human exposures to exposures in test systems that are 
used to produce the supporting biological-response data. 
If similar toxicity data and models are used, responses to 
exposures in cohort members could be directly compared 
with those in test systems; the comparison would provide 
additional evidence on the likelihood of biological plau
sibility, which would be greater if responses to exposure 
were similar, and smaller if they were not. An example of 
the approach described was used to investigate colon can
cer. The research began with three cross-sectional case– 
control studies and found an association between an un
identified metabolomic feature (analyte) and colon cancer 
(Ritchie et al. 2013). The association was later confirmed 
prospectively in the European Prospective Investigation 
into Cancer and Nutrition cohort, and the metabolic fea
ture was identified as belonging to a group of ultra–long-
chain fatty acids (Perttula et al. 2016). 

­

­

­

­

The EWAS approach offers exciting opportunities, 
but there are challenges that need to be addressed. The 
challenges in using tools that produce “big data” are simi­
lar to those encountered in all multiexposure studies. The 
study design and analysis have to be chosen carefully and 
assessed in terms of all classic biases to establish causal­
ity, that is, using principles that apply to targeted designs 
that focus on a single exposure and outcome. The EWAS 
approach adds the challenge of determining which expo­
sures among many correlated ones have a causal role and 
which reflect a biological perturbation caused by other 
agents. The temporal dynamics of the exposures need to 
be addressed with the stability of media concentrations. 
An additional premise of the EWAS approach is that 
useful, biologically informative biomarkers can be iden­
tified, that is, that the chemicals in question are not too 
short-lived and exposure not too sporadic to be captured 
by only one or a few biospecimens obtained in a cross-
sectional survey or cohort study. 

The committee notes that use of retrospective case– 
control design for EWAS makes it impossible to be cer­
tain if associations observed reflect a causal relationship 
between exposures and the outcome investigated or if 
the associations are a consequence of the disease or its 
treatment. As summarized by Thomas et al. (2012), the 
technique of Mendelian randomization (Davey Smith et 
al. 2004) is one way to address reverse causation and un­
controlled confounding; a gene is used as an instrumental 
variable (Greenland 2000) to evaluate the causal effect 
of a biomarker on disease risk. In an approach that par­
allels the meet-in-the-middle approach, a novel two-step 
extension of this idea has been proposed for methylation 
studies that uses two genes as instrumental variables: one 
estimates the exposure–methylation association, and the 
other the methylation–disease association (Cortessis et al. 
2012; Relton and Davey Smith 2012). There is an inher­

ent assumption in that approach that the instrumental vari­
able is indeed an appropriate instrument for exposure. 

New Analytical Challenges 

There are formidable challenges in integrating the 
-omics technologies and data into epidemiological re
search, and robust high-dimensional analytical tech
niques will be required to integrate and analyze all the 
data. For example, statistical analyses that consider many 
exposure variables simultaneously without strong priors, 
such as in EWASs, greatly increase the risk of observ
ing random associations (false positives) because of mul
tiple testing. Therefore, statistical tools for the analysis of 
multiple exposures have motivated investigators to draw 
on important lessons learned from the analysis of GWAS 
data (Shi and Weinberg 2011; Thomas et al. 2012); some 
are described below. In general, statistical techniques for 
high-dimensional data—such as those noted and others, 
including machine learning, dimension reduction, and 
variable-selection techniques—must be adapted to the 
longitudinal-data-accrual context to account for such is
sues as time-varying exposure and delayed effects (Buck 
Louis and Sundaram 2012). 

­
­

­
­

­

Multistep analytical approaches have been used to 
estimate health risks associated with different types or 
combinations of exposures. For example, estimates from 
EWAS analytical approaches with no a priori information 
might be quantified by using classical regression models 
while controlling for false discovery rate, as is done in 
GWASs (Patel et al. 2010, 2013; Vrijheid et al. 2014). 
Furthermore, flexible and smoothing modeling techniques 
(Slama and Werwatz 2005) might be used to identify and 
characterize possible thresholds or exposure–response re
lationships. 

­

Pathway analytical approaches are increasingly 
used for integrating and interpreting high-dimensional 
data generated by multiple -omics techniques; these ap
proaches have enabled analyses of relationships between 
multiple exposures and multiple health outcomes. It is 
noteworthy that pathway analytical approaches have been 
used to identify molecular signatures associated with 
environmental agents through exploratory analyses of 
metabolites, proteins, transcripts, and DNA methylation 
in biological samples (Jennen et al. 2011; Vrijheid et al. 
2014). As summarized by Vrijheid et al. (2014), once bio
markers have been identified, available libraries of bio
logical pathways—such as Gene Ontology (Ashburner 
et al. 2000), Kyoto Encyclopedia of Genes and Genomes 
(Kanehisa and Goto 2000), Reactome (Fabregat et al. 
2016), and Comparative Toxicogenomics Database (Da
vis et al. 2015)—can be searched and used to identify rel
evant biological pathways affected by exposures whether 
alone or in combination. Furthermore, biological path
ways can be grouped and described using available soft

­

­
­

­
­

­
­
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ware, such as Ingenuity Pathway Analysis (Krämer et al. 
2014), Cytoscape (Saito et al. 2012), and Impala (Kambu
rov et al. 2011). For example, those analytical approaches 
have been applied to several types of -omics data from 
systems that respond to 2,3,7,8-tetrachlorodibenzo-p  
dioxin and to a broader set of environmental and phar
macological agents (Jennen et al. 2011; Kamburov et al. 
2011). 

­

­
­

Other methods are also available to address the new 
analytical challenges. First, analysis of covariance tech
niques has been used to integrate individual exposures 
(obtained, for example, from personal wearable devices) 
and outdoor exposures (obtained, for example, from en
vironmental monitoring) by exploring the variance com
ponents of key exposures arising from multiple sources 
before creating exposure groups or clusters. Second, fac
tor analysis and latent class analysis have proved useful 
for creating reduced sets of exposure indexes on the basis 
of commonly occurring exposures while allowing people 
who share similar exposure profiles to be grouped. Third, 
to address the high-dimensional nature of epigenetic data, 
cluster-analysis techniques developed by Siegmund et 
al. (2006) can be applied to exposome-wide association­
genomic studies; these techniques treat the cluster rather 
than individual epigenetic marks as a latent risk factor for 
disease (Cortessis et al. 2012). Fourth, structural equation 
modeling approaches might be used to define combined 
exposure variables on the basis of knowledge summarized 
by directed acyclic graphs (Budtz-Jørgensen et al. 2010). 

­

­
­

­

Bayesian profile regression models might be used 
to identify groups of people who have a similar expo-
some but show marked differences in the health-outcome 
variable of interest (Molitor et al. 2010; Papathomas et 
al. 2011; Vrijheid et al. 2014). Model-based clustering 
would be applied to the exposure data while allowing 
the outcome of interest to influence cluster membership. 
The Bayesian model–based clustering technique has been 
used, for example, to identify a cluster in a high-risk set 
for lung cancer—a group who has the characteristics of 
living near a main road, having high exposure to PM10 
(particulate matter with aerodynamic diameter ≤10 μm) 
and to nitrogen dioxide, and carrying out manual work 
(Papathomas et al. 2011; Vrijheid et al. 2014). 

The general need for caution in contending with the 
potential for false-positive associations that arise from 
analysis of large datasets is generally recognized among 
those handling such data. In addition to analytical ap
proaches, such as correcting p values for multiplicity 
and using such parameters as the false-discovery rate, 
the committee notes that epidemiological findings are 
interpreted holistically in the context of other relevant 
evidence. In the context of risk assessment, hazard iden
tification would rarely, if ever, be based on an association 
found in a single epidemiological study, absent additional 
evidence. 

­

­

CHALLENGES AND RECOMMENDATIONS 

FOR ADVANCING EPIDEMIOLOGY
 

With the emergence of Tox21 and ES21 approaches, 
the committee anticipates new connections between bio­
markers and human health outcomes. Epidemiological 
studies have an implicit role in providing the population 
counterpart that is needed to interpret biomarkers mea­
sured in laboratory studies through the general paradigm 
of molecular epidemiology and the meet-in-the-middle 
approach. For that purpose, epidemiologists need to gen­
erate human data (1) to harmonize doses used in in vitro 
high-throughput assays with those associated with the 
exposures experienced in the population setting, (2) to 
explore the relevance of pathways identified in assay sys ­
tems to human responses to the same agents and validate 
the predictive value of pathways detected in vitro assays 
for the occurrence of human disease, (3) to develop and 
validate models of human susceptibility, and (4) to com­
pare and corroborate exposure–response relationships ob­
tained from in vitro assays and in human populations. 

The overall goal of gaining new insights by connect­
ing -omics data generated in laboratory with data gathered 
in population contexts will not be achieved without con­
sideration of the needed research infrastructure and the 
logistical barriers to bringing together datasets from dis­
parate sources. The committee concludes by highlighting 
some challenges that face epidemiological research and 
recommendations for addressing them. The committee 
notes that several recommendations below call for devel­
oping or expanding databases. In all cases, data curation 
and quality evaluation should be routine in database de­
velopment and maintenance. 

Developing the Infrastructure and Methods 
Needed to Advance the Science 

Challenge: When used in epidemiological studies, 
particularly ones with large biobank cohorts that might 
reach a million or more participants, -omics assays can 
generate large databases that need to be managed and 
curated in ways that will facilitate access and analysis. 
There is an additional challenge of analyzing extremely 
large datasets by using a hypothesis-driven or exploratory 
approach. 

Recommendation: Resources should be devoted to ac­
celerating development of database management systems 
that will accommodate extremely large datasets, support 
analyses for multiple purposes, and foster data-sharing 
and development of powerful and robust statistical tech­
niques for analyzing associations of health outcomes with 
-omics data and exploring such complex problems as 
gene–environment interactions. Such efforts are already 
under way in a number of fields, such as clinical research 
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that involves health-care data, and should be extended to 
epidemiological research. 

Challenge: Standard methods are needed to describe 
the data that have been generated and that are shared 
among disciplines. The problem has been recognized in 
genomics and has led to the development of annotated 
gene ontologies, and similar approaches could be extend­
ed to other types of -omics data. 

Recommendation: Ontologies should be developed 
and expanded so that data can be harmonized among 
investigative groups, internationally, and among -omic 
platforms. Such ontologies generally do not incorporate 
data collected by epidemiologists. Such tools as STROBE 
should be expanded and adapted to the new generation of 
epidemiological studies; STROBE has already been ex
panded to encompass molecular epidemiology (Gallo et 
al. 2011). The Framework Programme 7 EU Initiative— 
coordination of standards in metabolomics (COSMOS)— 
is developing “a robust data infrastructure and exchange 
standards for metabolomics data and other metadata” 
(Salek et al. 2015); this type of approach should be ex
tended to other -omics data. 

­

­

Data-Sharing 

Challenge: Data-sharing involves many complexi­
ties, particularly when the data are from human studies. 
However, data-sharing could be particularly beneficial 
if data could be accessed in a way that would support 
uniform analyses and integration through hierarchical 
analyses or meta-analysis. Data-sharing could also lead 
to more powerful assessments of hazard and of exposure– 
response relationships. One useful example is the pool­
ing of data from studies of radon-exposed underground 
miners that supported the development of risk models for 
indoor radon (Lubin et al. 1995). 

The same issues surrounding data-sharing arise in 
other domains in which big-data approaches are emerg­
ing, and a general culture of data-sharing will be needed. 
Regarding genomics, posting of sequencing data has be­
come the norm but with attention to anonymity. Similar 
sharing will ideally extend to other -omics data and lead 
to the development of a culture of data-sharing, pragmatic 
solutions to the inherent ethical problems, and standard­
ized ontologies and databases. The committee notes that 
discussion around data-sharing is moving rapidly with re­
gard to clinical trials; similar efforts around observational 
data are needed (Mascalzoni 2015). 

Recommendation: Steps should be taken to ensure 
sharing of observational data relevant to risk assessment 
so that, for example, biomarkers can be validated among 
populations. As noted above, to achieve that goal, stan­
dard ontologies should be developed and used for cap­
turing and coding key variables. There is also a need for 

systematic exploration of possible logistical and ethical 
barriers to sharing potentially massive datasets drawn 
from human populations. 

Collaborating and Training the 

Next Generation of Scientists
 

Challenge: New research models based on biobanks 
and large cohorts derived from clinical populations will 
become a valuable resource for applying -omics and other 
biomarker assays, but there are intrinsic limitations relat­
ed to biases and the scope of data available in electronic 
records. There are also complicated issues related to ac­
cess to private and confidential medical records and to 
sharing of such data. 

Recommendation: As biobanks and patient-based co­
horts are developed, those developing them should engage 
with epidemiologists and exposure scientists on the col­
lection of exposure data to ensure that the best and most 
comprehensive data possible are collected in this context. 
Finding ways to capture exposure information will be par­
ticularly challenging and will likely require ancillary data 
collection in nested studies. 

Challenge: A wide array of biospecimens is being 
collected and stored on the assumption that they will be 
useful in the future for a variety of purposes, including 
assays that cannot be anticipated. Storage methods and 
consent procedures need to support future use. 

Recommendation: Epidemiologists should antici­
pate future uses of biospecimens that are collected in the 
course of epidemiological research or other venues, such 
as screening or surveillance, and ensure that the array of 
specimens and their handling and storage will support 
multiple assays in the future. Such future-looking collec­
tions should be a design consideration, and input should be 
obtained from scientists who are developing new assays. 

Challenge: A new generation of researchers who 
can conduct large-scale population studies and integrate 
-omics and other emerging technologies into population 
studies is needed. The next generation also needs suffi ­
cient multidisciplinary training to be able to interact with 
exposure and data scientists. 

Recommendation: The training of epidemiologists 
should be enriched with the addition of more in-depth 
understanding of the biological mechanisms underlying 
human diseases and of the biomarker assays used to probe 
them. 

Challenge: The landscape of epidemiological re­
search is changing quickly with a move away from the 
fixed legacy cohorts of the past, such as the Nurses’ 
Health Study, to pragmatically developed cohorts that are 
grounded in new and feasible ways of cohort identification 
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and follow-up. There are also likely to be large national 
cohorts, such as the cohort already under development 
for the Precision Medicine Initiative. Those cohorts are 
intended as platforms for a wide array of research ques­
tions; they are designed as large banks of biospecimens 
but will have inherent limitations regarding the exposure 
information available. 

Recommendation: Epidemiologists, exposure scien
tists, and laboratory scientists should collaborate closely 
to ensure that the full potential of 21st century science 
is extended to and incorporated into epidemiological re
search. Multidisciplinarity should be emphasized and 
sought with increasing intensity. As the new cohorts are 
developed, the opportunity to ensure that they will be in
formative on the risks posed by environmental exposures 
should not be lost. 

­

­

­
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5
 

A New Direction for Risk Assessment and 

Applications of 21st Century Science
 

The scientific and technological advances described 
in Chapters 2–4 offer opportunities to improve the as
sessment or characterization of risk for the purpose of 
environmental and public-health decision-making. To fa
cilitate appreciation of the new opportunities, this chapter 
first discusses the new direction envisioned for risk as
sessment and then highlights applications (see Box 1-3) of 
21st century science that can be used to improve decision-
making. It provides concrete examples of pragmatic ap
proaches for using 21st century science along with long­
standing toxicological and epidemiological approaches to 
improve the evidence used in decision-making. The chap
ter next addresses communication of the new approaches 
to stakeholders. It concludes with a brief discussion of the 
challenges that they pose and recommendations for ad
dressing the challenges. 

­

­

­

­

­

­

A NEW DIRECTION FOR RISK ASSESSMENT 

The seminal 1983 National Research Council (NRC) 
report Risk Assessment in the Federal Government: Man-
aging the Process (NRC 1983) defined risk assessment 
as “the use of the factual base to define the health effects 
of exposure of individuals or populations to hazardous 
materials and situations.” The report noted that risk as­
sessment had four components—hazard identification, 
exposure assessment, dose–response assessment, and 
risk characterization—and that risk assessments contain 
some or all of them. It stated that various data streams 
from, for example, toxicological, clinical, epidemiologi­
cal, and environmental research need to be integrated to 
provide a qualitative or quantitative description of risk to 
inform risk-based decisions. It recognized explicitly the 
uncertainty that arises when information on a particular 
substance is missing or ambiguous or when there are gaps 
in current scientific theory, and it called for inferential 
bridges or inferential guidelines to bridge such gaps to al­
low the assessment process to continue. Risk assessment 
then (as now) relied heavily on the measurement of api­
cal responses, such as tumor incidence and developmental 

delays, in homogeneous animal models, often with little 
exposure or epidemiological information. 

Although today’s risk assessments generally support 
the same types of decisions as those in 1983, the tools 
available for asking and answering relevant risk-based 
questions have evolved substantially. As outlined in Chap­
ters 2–4 of the present report, modern tools in exposure 
assessment, toxicology, and epidemiology have increased 
the speed at which information can be collected and the 
scope of the data available for risk assessment. The focus 
has also shifted from observing apical responses to un­
derstanding biological processes or pathways that lead to 
the apical responses or to disease. The tools are designed 
to investigate or measure molecular changes that give in­
sight into the biological pathways. Thus, a “factual base” 
is being created that is increasingly upstream of the ad­
verse health effects that federal agencies seek to prevent 
or minimize. 

The Tox21 report (NRC 2007) fixed the new direc­
tion for risk assessment with its focus on discerning tox­
icity pathways, which were defined as “cellular response 
pathways that, when sufficiently perturbed in an intact 
animal, are expected to result in adverse health effects.” 
Since publication of that report, the understanding of 
biological processes underlying disease has increased 
dramatically and has provided an opportunity to under­
stand the biological basis of how different environmental 
stressors can affect the same pathway, each potentially 
contributing to the risk of a particular disease. To opera­
tionalize a risk-assessment approach that relies on mecha­
nistic understanding, it will be necessary to understand 
the critical steps in the pathways, but beginning to apply 
the approach does not require knowing all pathways. For 
example, the results of a subchronic rat study might indi­
cate a failure of animals to thrive, which is manifested as 
decreased weight gain and some deaths over the course of 
the study, but no obvious target-organ effects. Studies on 
the molecular effect of the chemical indicate that it is an 
uncoupler of oxidative phosphorylation. Epidemiological 
studies could then focus on biological processes that are 
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energy-intensive, such as heart muscle under stress. Ex
posure science could be used to measure or estimate pop
ulation exposure to the stressor over space and time and 
could align toxicity data with environmental exposures 
for use in epidemiological studies. Assays to screen for 
the perturbation along with chemical-structure consider
ations might help to characterize risks posed by similarly 
acting chemicals, and exposure estimates could be gener
ated for other chemicals hypothesized to exert a similar 
response. 

­
­

­

­

Today, there is an appreciation of the multifactorial 
nature of disease, that is, a recognition that a single ad­
verse outcome might result from multiple mechanisms 
that can have multiple components. (See further discus­
sion in Chapter 7.) Thus, the question shifts from whether 
A causes B to whether A increases the risk of B. Figure 
5-1 provides an illustration of that concept, and Box 5-1 
provides a concrete example. In the figure, four mecha ­
nisms (M1–M4) and various combinations of six compo­
nents (C1–C6) are involved in producing two outcomes 
(O1 and O2). For example, three components (C1, C2, 
and C3) are involved in activating mechanism M1, which 
leads to outcome O1, and C1 is a component in several 
mechanisms. Here, a component is defined as a biological 
factor, event, or condition that when present with other 
components produces a disease or other adverse outcome; 
mechanism is considered to be comprised of one or more 
components that cause disease or other adverse outcomes 
when they co-occur; and pathways are considered to be 
components of mechanisms. The model can incorporate 
societal factors that drive exposure or susceptibility, such 
as poverty, and that might ultimately lead to cellular re­
sponses that activate various mechanisms. For example, 
in mechanism M1, societal factors could perturb compo­
nent C1, the same one that the chemical under consider­
ation perturbs. Alternatively, societal factors could per-

FIGURE 5-1 Multifactorial nature of disease illustrated with four 
mechanisms (M) that have various components (C) and lead to two 
outcomes (O). 

turb components C2 and C3 of mechanism M1, which in 
combination with the chemical’s direct perturbation of 
component C1 could fully activate the mechanism. The 
ability to identify the contribution of various components 
of a given mechanism and to understand the significance 
of changes in single components of a mechanism is criti
cal for risk-based decision-making based on 21st century 
science. 

­

In the challenging context of multifactorial diseases, 
the 21st century tools allow implementation of the new 
direction for risk assessment that acknowledges the com­
plexity of the determinants of risk. They can enable the 
identification of multiple disease contributors and ad ­
vance understanding of how identified mechanisms, path ­
ways, and components contribute to disease. They can 
be used to probe specific chemicals for their potential to 
perturb pathways or activate mechanisms and thereby in­
crease risk. And the new tools provide critical biological 
information on how a chemical might add to a disease 
process and how individuals might differ in response; 
thus, they can provide insight on the shape of the popula­
tion dose-response curve and on individual susceptibility 
to move toward the risk characterizations envisioned in 
the report Science and Decisions: Advancing Risk Assess-
ment (NRC 2009). As noted by the NRC (2007, 2009), 
people differ in predisposing factors and co-exposures, 
so the extent to which any particular chemical perturbs 
a pathway and contributes to disease varies in the popu­
lation. A challenge for the dose–response assessment is 
to characterize the extent to which the whole population 
and sensitive groups might be affected or, at a minimum, 
whether the perturbation exceeds some de minimis level. 

Although the discussion above focuses primarily on 
the toxicological and epidemiological aspects of the new 
direction, exposure science will play a critical role. The 
exposure data arising from the technological advances in 
exposure science will provide much needed and increas­
ingly rich information. For example, comprehensive ex­
posure assessments that use targeted and nontargeted 
analyses of environmental and biomonitoring samples 
or that use computational exposure methods will help to 
identify chemical mixtures to which people are exposed. 
Such comprehensive assessments will support evaluating 
risks of groups of similarly acting chemicals for single end 
points or investigating chemical exposures that might acti­
vate multiple mechanisms that contribute to a specific dis­
ease. Advancing our understanding of the pharmacokinet­
ics will further the ability to translate exposure-response 
relationships observed in in vitro systems to humans, char­
acterize susceptible populations, and ultimately reduce 
uncertainty in risk assessment. Personalized exposure as­
sessment will provide critical information on individual 
variability in exposure to complement pharmacodynamic 
variability assessed in pathway-based biological test sys­
tems. Ultimately, these and other advances in exposure 
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BOX 5-1 Example of Multifactorial Nature of Disease
	

Sonic hedgehog (shh) is a signaling protein that is synthesized in mammalian embryos by the notochord and 
floor plate of the neural tube. Its function is to establish the ventral midline for the developing central nervous 
system. Interference with shh signaling during early embryonic development leads to the birth defect holopros-
encephaly, in which the cerebrum fails to develop into two hemispheres. A number of events (“components” in 
Figure 5-1) can interfere with shh functioning. They include point mutations in the shh gene that lead to a partial 
loss of function (Roessler et al. 1997); mutations in the 7-dehydrocholesterol reductase gene that prevent the post-
translational modification of shh in which cholesterol is added to the protein (a step that is essential for signaling— 
the mutation can lead to a condition described as the Smith-Lemli-Opitz syndrome) (Battaile and Steiner 2000); 
cholesterol synthesis-inhibiting drugs, such as BM15,766, that act on the same enzyme (Kolf-Clauw et al. 1997); 
and some plant alkaloids, such as cyclopamine, that inhibit the post-translational modification of shh (Incardona 
et al. 1998). Any component at a high enough dose or rate is sufficient to cause holoprosencephaly, but there are 
probably cases in which the dose or rate of one or more of the components is insufficient to disrupt shh signaling, 
but added together can perturb function. 

In this example, all the components are acting on the same target, shh, but in different ways: some affect 
the integrity of the protein (point mutations in the gene), some affect its post-translational modification, and some 
affect its ability to interact with its receptor. Regardless, the result is the same: signaling by shh secreted by the 
notochord or ventral neural tube that is insufficient to establish a ventral field. The disruption of shh signaling is the 
“mechanism” in Figure 5-1. 
Shh is expressed elsewhere in the embryo where it has a role in limb development and tooth development. 

Limb abnormalities, such as extra digits or fused digits, are often observed in the Smith-Lemli-Opitz syndrome. 
In Figure 5-1, that syndrome would represent a second outcome of the same mechanism. As indicated in Fig-
ure 5-1, different mechanisms can produce the same outcome. For example, retinoic acid is also an important 
morphogenetic factor in limb development, and retinoic acid excess or deficiency can produce limb defects. That 
would represent a separate mechanism that would involve other components (for example, nutritional vitamin A 
deficiency and inhibition of the enzyme that converts retinol to retinoic acid) but lead to the same adverse outcome 
(digit defects). The figure below illustrates this example in terms of Figure 5-1. Abbreviations: CSI, cholesterol 
synthesis-inhibiting; DHCR7, 7-dehydrocholesterol reductase; R, retinol; RA, retinoic acid; shh, sonic hedgehog. 
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science in combination with advances in toxicology and 
epidemiology will provide an even stronger foundation 
for the new direction for risk assessment. 

APPLICATIONS 

Full implementation of the new direction for risk 
assessment or the visions described in the NRC report 
Science and Decisions and the Tox21 and ES21 reports 
(NRC 2007, 2009, 2012) is not yet possible, but the data 
being generated today can be used to improve decision-
making in several areas. As noted in Chapter 1 (see Box 
1-3), priority-setting, chemical assessment, site-specific 
assessments, and assessments of new chemistries are 
risk-related tasks that can all benefit from incorporating 
21st century science. The methods and data required to 
support the various tasks will probably differ, and confi­
dence in them will depend to some extent on the context. 
For example, scientists have a great deal of experience in 
using laboratory data to support biological plausibility in 
epidemiology studies, and the new data can be relatively 
easily applied in that context. In contrast, methods used to 
support definitive chemical assessments will likely need 
extensive evaluation, and risk assessors will need to be 
trained in how to use them. In the following sections, the 
committee describes approaches that can use the new sci­
entific approaches in specific applications. 

Priority-Setting 

Tens of thousands of chemicals are used in commerce 
in the United States (Muir and Howard 2006; Egeghy et 
al. 2012) in various items—including building materials, 
consumer products, and craft supplies—and can cause ex­
posure through product use and environmental releases 
associated with manufacture and disposal. Although the 
number of chemicals in the environment is large, the 
number of chemicals for which toxicity, exposure, and 
epidemiology datasets are complete remains small. Giv­
en the finite resources of government agencies and other 
stakeholders for investigating the risks associated with 
the wide array of chemicals present in people, places, 
and goods, mechanisms for setting priorities for chemical 
evaluation and determining appropriate risk-management 
strategies—reduction of use, replacement, or removal— 
are essential. 

Some categories of chemicals that are intended to 
have biological activity, such as drugs and pesticides, are 
routinely subjected to a suite of toxicity tests as required 
by law. However, extensive toxicity testing of most chem­
icals is not required, and the need for testing is determined 
by priority-setting schemes. For example, the National 
Toxicology Program (NTP 2016) sets testing priorities 
on the basis of the extent of human exposure, suspicion 
of toxicity, or the need for information to fill data gaps 
in an assessment, and the European Union’s Registration, 

Evaluation, and Authorization of Chemicals (REACH) 
testing requirements are based predominantly on produc
tion volume (chemical quantity produced per annum) and 
the potential for widespread exposure or human use, such 
as would occur with a consumer product (NRC 2006; Ru
dén and Hansson 2010). Considerations of potential tox
icity have generally been limited to alerts based on the 
presence of specific chemical features, such as a reactive 
epoxide moiety, or similarity to known potent toxicants. 
Using only those considerations to set priorities is clearly 
limited; additional hazard information that covers more 
biological space and exposure information that provides 
more detailed estimates of exposure from multiple sourc
es and routes would improve the priority-setting process. 

­

­
­

­

As Tox21 tools—such as high-throughput screening, 
toxicogenomics,1 and cheminformatics—have become 
available, priority-setting has been seen as a principal 
initial application. High-throughput platforms, such as 
the US Environmental Protection Agency (EPA) ToxCast 
program described in Chapter 1, have produced data on 
thousands of chemicals. Toxicogenomic analyses have 
the potential to increase the biological coverage of in vitro 
cell-based assays and might be a useful source of data for 
priority-setting. For example, efforts are under way to as­
sess transcriptomic responses in a suite of human cells by 
using positive control chemicals ultimately to determine 
whether biological pathways can be identified on the basis 
of select patterns of gene expression (Lamb et al. 2006) 
or whole-genome transcriptomics (de Abrew et al. 2016). 
Mismatches between in vitro and in vivo results might 
occur for several reasons, such as a lack of metabolism 
in the in vitro assays. As discussed in Chapter 3, lack of 
or low-level metabolic activation of an agent is widely 
recognized as a potential problem in in vitro studies, and 
development of methods to introduce metabolic systems 
into assays that can be run in high-throughput format is 
under active research. 

Cheminformatic approaches can also be used to set 
priorities for chemical testing by evaluating series of 
chemicals for the presence of chemical features that are 
associated with toxicity—for example, through the use 
of such proprietary tools as DEREK2—or by using deci­
sion trees that evaluate whether there are precedents in the 
literature for specific chemical features to be associated 
with a particular toxicity outcome, such as developmen­
tal toxicity (Wu et al. 2013). Those methods have been 
automated and allow for rapid identification of chemicals 
that have specific chemical features that have been iden­
tified as potentially problematic, such as reactive func­
tional groups, or that have a reasonably high similarity to 
chemicals that are potent toxicants, such as steroid-like 
substances (Wu et al. 2013). 

1Toxicogenomics is transcriptomic analysis of responses to 
chemical exposure. 

2See http://www.lhasalimited.org/. 

http://www.lhasalimited.org/
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Several new high-throughput methods—for example, 
ExpoCast (Wambaugh et al. 2013) or ExpoDat (Shin et 
al. 2015)—have been developed to provide quantitative 
exposure estimates for exposure-based and risk-based 
priority-setting. The new technologies can estimate expo­
sures more explicitly than older simpler models by taking 
into account chemical properties, chemical production 
amounts, chemical use and human behavior (likelihood 
of exposure), potential exposure routes, and possible 
chemical intake rates. Information produced via high-
throughput exposure calculations could be used to refine 
priority-setting schemes. 

Depending on the context, hazard and exposure infor­
mation could be used in various ways for priority-setting. 
For example, screening based only on hazard could be 
particularly useful in situations, such as those involving 
changes in product composition, in which exposure infor­
mation is unknown or evolving and there is an assump­
tion that the product would be used in the same way with 
roughly the same exposure. Methods have been proposed 
for risk-based priority-settting that use a combination 
of high-throughput exposure and hazard information in 
which the highest estimated exposure and the lowest-
measured-effect concentration are identified, and margins 
of exposure (differences between toxicity and exposure 
metrics) are calculated (see Figure 5-2). Refinement of 
the margins of exposure by using reverse pharmacokinet­
ic techniques to estimate exposure has also been proposed 
(Wetmore et al. 2013). Confidence in the approach should 
increase with broader biological coverage of the in vitro 
assays, innovations that add metabolic activation to the 
assays, methods that take into account toxicity that is as­
sociated with a particular route of exposure (such as in­
halation), and improved accuracy of computational expo­
sure models to predict human and ecosystem exposures. 

Chemical Assessment 

Chemical assessments encompass a broad array of 
analyses, from Integrated Risk Information System as­
sessments that include hazard and dose–response assess ­
ments to ones that also incorporate exposure assessments 
to produce risk characterizations. Moreover, chemical 
assessments performed by the federal agencies cover 
chemicals on which there are few data to use in decision-
making (data-poor chemicals) and chemicals on which 
there is a substantial database for decision-making (data­
rich chemicals). The following sections address how 21st 
century data could be used in the contrasting situations. 

Assessments of Data-Poor Chemicals 

Assessments of some data-poor chemicals might 
begin by evaluating outcomes whose mechanisms are 
known. That is, mechanisms of a few toxicity outcomes, 

such as genotoxicity and skin sensitization, are suffi
ciently well known for it to be possible to rely on mecha
nistically based in vitro assays—for example, the Ames 
assay and direct peptide reactivity assay—for which the 
Organisation for Economic Co-operation and Develop
ment guidelines already exist as the starting point for 
hazard assessment. For such well-defined outcomes for 
which in vitro assays are sufficient for characterization, 
the process of hazard assessment is relatively straightfor
ward. Rather than using animal data as the starting point 
for establishing hazard, one replaces the animal data with 
data from the alternative method. In most cases, conclu
sions are qualitative and binary—for example, the chemi
cal is or is not a genotoxicant. However, efforts are under 
way to provide quantitative ways of using in vitro test 
information to describe the dose–response characteristics 
of chemicals and ultimately to calculate a health reference 
value, such as a reference dose or a reference concentra
tion (see Figure 5-3). In the approach that uses animal 
data and in the approach that relies on in vitro results, 
uncertainty factors (UFs) are typically included to address 
interindividual differences in human response and the un
certainty associated with extrapolating from a test system 
to people. Alternatively, a model can be used to extrapo
late to low doses. Box 5-2 provides further discussion on 
uncertainty, variability, UFs, and extrapolation. 

­
­

­

­

­
­

­

­

­

Most toxicity outcomes involve multiple pathways by 
which chemicals can exert an adverse influence, and not 
all pathways have been determined for many outcomes, 
such as organ toxicity and developmental toxicity. For 
those outcomes, simple replacement of animal-derived 
information with in vitro information might not be pos
sible. Another possible approach to evaluating chemicals 
is to use toxicity data on previously well-tested chemi
cals that are structurally similar to the chemical of inter
est (see Figure 5-4). Analogues are selected on the basis 
of similarities in chemical structure, physical chemistry, 
and biological activity in in vitro assays. Comparisons of 
analogues with the chemical of interest are based on the 
premise that the chemical of interest and its analogues 
are metabolized  to common or biologically similar me
tabolites or that they are sufficiently similar in structure to 
have the same or similar biological activity (for example, 
they activate receptors similarly). The similarity supports 
the inference that the chemical will induce the same type 
of hazard as the analogues although not necessarily at 
similar doses. 

­

­
­

­

The method described in Figure 5-4 depends on 
having a comprehensive database of toxicity data that is 
searchable by curated and annotated chemical structure 
(such as ACToR or DSSTox) and a consistent decision 
process for selecting suitable analogues. Wu et al. (2010) 
published a set of rules for identifying analogues and cat­
egorizing them as suitable, suitable with interpretation, 
suitable with precondition (such as metabolism), or un­
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suitable for analogue-based assessment. The rules consid­
er physical chemistry, potential chemical reactivity, and 
potential metabolism of the chemical. 

In many cases, a close similarity based on atom-by­
atom matching is sufficient to classify two or more chemi ­
cals as suitable analogues for each other. However, atom-
by-atom matching is not sufficient in every case. Small 
differences can sometimes alter the chemical activity in 
such a way that one metabolic pathway is favored over 
another or the chemical reactivity with various biologi­
cal molecules changes. In practice, analogue-based as­
sessment can be greatly facilitated by expert-rule–based 
considerations with molecular similarity. The approach 
was tested in a case study that used a blinded approach 
and found to be robust (Blackburn et al. 2011). Given 
that the total dataset for traditional animal toxicity data 
is large (millions of entries in ACToR and probably tens 
of thousands of entries for each toxicity outcome), the 
analogue-based approach could have great utility. Similar 
approaches are being developed and used for read-across 
assessment of chemicals submitted under the European 
REACH regulation. 

A structure–activity assessment can be thought of as 
a testable hypothesis that can be addressed with a variety 
of methods, such as those described in Chapter 3. Com­
parable metabolism can be assessed by using established 
methods for testing xenobiotic metabolism in vivo and in 
vitro with the recognition that metabolism can be com­
plex for even simple molecules, such as benzene (McHale 
et al. 2012). Testing for similar biological activity can be 

based on what is understood about the primary pathways 
by which the chemicals in the class exert toxicity. If the 
mechanisms are not known, it is possible to survey some 
(for example, using ToxCast assays) or all (for example, 
by using global gene-expression analysis) of the universe 
of possible pathways that are affected by the chemical to 
determine the extent to which the biological activities of 
the chemical of interest and its analogues are comparable. 
Toxicogenomic analyses have been found to be useful 
for identifying a mechanism in both in vivo and in vitro 
models (see, for example, Daston and Naciff 2010). With 
lower-cost methods now available, large datasets of gene-
expression responses for small molecules have become 
available (for example, the National Institutes of Health’s 
Library of Network-based Cellular Signatures, LINCS), 
and these data can support determination of the extent to 
which chemicals of similar structure are sufficiently com ­
parable for read-across (Liu et al. 2015). 

Combining cheminformatic and rapid laboratory-
based approaches makes it possible to arrive at a surrogate 
point of departure for risk assessment that uses analogue 
data. The surrogate can then be adjusted for pharmaco­
kinetic differences and bioactivity (see Figure 5-5). The 
committee explored that approach in a case study on al­
kylphenols (see Box 5-3 and Appendix B). 

Eventually, it might be possible to conduct similar as­
sessments of chemicals without adequate analogue data. 
Cheminformatic and laboratory methods could be used to 
generate hypotheses about the possible activities of a new 
chemical, and the hypotheses could be tested virtually in 
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FIGURE 5-2 Screening assessments could be used to estimate toxicity or predict exposure to rank chemicals for further testing or assess­
ment. Chemicals that have the smallest margins of exposure (that is, upper bounds of exposure that are closest to or overlap with effect con­
centrations of toxicity) would be given the highest priority for further evaluation. 
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systems-biology models and verified in higher-order in 
vitro models. As discussed in Chapter 3, computational 
models, such as the cell-agent-based model used in the 
EPA  virtual-embryo project, have done a reasonable job 
of predicting the effects of potent antiangiogenic agents 
on blood vessel development by using high-throughput 
screening data and information on key genes in the an
giogenic pathway as starting points for model develop
ment (Kleinstreuer et al. 2013). The model can be run 
thousands of times—the virtual equivalent of thousands 
of experiments—and adjusted on the basis of the simula
tion results. The outcome of the model was evaluated in 
in vitro vascular-outgrowth assays and in zebrafish (Tal et 
al. 2014) and was found to be a good predictor of outcome 
in the assays. Such an approach clearly depends on a deep 
understanding of the biology underlying a particular pro
cess and how it can be perturbed and on sophisticated lab
oratory models that will support evaluation of the virtual 
model. This approach will require some knowledge of the 
key events that connect the initial interaction of an exog
enous chemical with its molecular target and the ultimate 
adverse outcome. 

­
­

­

­
­

­

Regardless of whether the risk assessment is conduct­
ed with the read-across approaches depicted in Figures 
5-4 and 5-5 or the pathway approach just described, there 
will be circumstances in which the uncertainty in the as­
sessment needs to be reduced to support decision-making. 
That situation can arise because the margin of exposure 
is too small, the possible mechanisms have still not been 
adequately defined, or the quantitative relationship be ­
tween effects measured at the molecular or cellular level 
and adverse outcome have not been adequately defined. 
In such cases, one might use increasingly complex mod-
els—for example, zebrafish or targeted rodent testing—to 
assess biological activity and the outcomes of a chemical 
exposure. 

Assessment of Data-Rich Chemicals 

Some chemicals are the subjects of substantive data­
bases that leave no question regarding the causal relation­
ship between exposure and effect; that is, hazard identifi­
cation is not an issue for decision-making. However, there 
might still be unanswered questions that are relevant to 
regulatory decision-making, such as questions concerning 
the effects of exposure at low doses, susceptible popula­
tions, possible mechanisms for the observed effects, and 
new outcomes associated with exposure. The advances 
described in Chapters 2–4 have the potential to reduce 
uncertainty around such key issues. The committee ex­
plores how 21st century science can be used to address 
various questions in a case study that uses air pollution as 
an example (see Box 5-4 and Appendix B). 

Cumulative Risk Assessment 

Cumulative risk assessment could benefit from the 
mechanistic data that are being generated. It is well un­
derstood that everyone is exposed to multiple chemicals 
simultaneously in the environment, for example, through 
the air we breathe, the foods we eat, and the products we 
use. However, risk assessment is still conducted largely 
on individual chemicals even though chemicals that have 
a similar mechanism for an outcome or that are associated 
with similar outcomes are considered as posing a cumula­
tive risk when they are encountered together (EPA 2000; 
NRC 2008). Cumulative risk assessment of carcinogens 
is somewhat common in agencies, but cumulative risk 
assessment of noncarcinogens is not so common. One 
example of cumulative assessment is that of organophos­
phate pesticides whose mechanism is known to be acetyl­
cholinesterase inhibition. 

FIGURE 5-3  A comparison of the animal-
based approach to derive reference values 
compared with an approach under devel-
opment that uses in vitro batteries where a 
biological pathway for a specific outcome 
has been elucidated. The UFs (or models) 
for the approaches would differ but are 
used to make adjustments on the basis of 
uncertainty or variability or to extrapolate 
across doses. Abbreviations: PD, pharma-
codynamics; PK, pharmacokinetics; POD, 
point of departure; UF, uncertainty factor. 
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BOX 5-2 Uncertainty and Variability in Assessment 

Risk assessment involves the estimation of risk associated with a particular exposure and characterization 
of the inherent uncertainties associated with the estimate. For human risk estimates based on animal data, the 
uncertainties include ones associated with possible species differences (between laboratory animals and humans) 
in pharmacokinetics and sensitivity, human population variability, and prediction of lifetime exposures from less-
than-lifetime testing protocols, and others. Although the magnitude of each uncertainty can be approached ex-
perimentally (given enough resources and time), they have typically been addressed in noncancer assessment 
by assigning uncertainty factors (UFs) that have a specific value (usually 1, 3, or 10) to derive a toxicity or risk 
estimate. Using 21st century science will require new thinking about the uncertainties associated with risk as-
sessment and their magnitude. Some aspects of uncertainty will be eliminated; for example, using human-derived 
cells and receptors will eliminate the need to account for interspecies differences in pharmacodynamic sensitivity. 
However, using an in vitro approach introduces new uncertainties, such as how an in vitro concentration is related 
to an exposure scenario in an intact human or how an upstream molecular-level response is related quantitatively 
to a downstream disease outcome. Quantitative methods of combining information from multiple assays or data 
streams into integrated testing strategies (see, for example, Jaworska et al. 2013; Rovida et al. 2015) have been 
used to represent the key steps of diseases to overcome the uncertainty associated with using molecular-level 
responses. 
It might also be possible to use biologically based dose–response modeling or other empirical modeling to 

replace a UF-based approach for extrapolation; this would agree with the NRC (2009) recommendation that dose– 
response modeling be based on a “formal, systematic assessment of background disease processes, possible 
vulnerable populations, and modes of action.” A modeling approach has been used to determine a dose–response 
relationship for a toxicity pathway that involves DNA damage and repair (Bhattacharya et al. 2011) that could be 
developed further to address human heterogeneity in response. Another approach to estimating interindividual 
variability is large-scale in vitro profiling of multiple human cell lines (Abdo et al. 2015a,b; Eduati et al. 2015), but 
this addresses only variability due to genetic differences, which are expected to be a minor contributor in many 
cases. The range of human population variability in exposure and response is poorly understood, but new tech-
nologies should improve our ability to quantify some uncertainties, including human heterogeneity in vulnerability 
to exposures. Characterizing the new uncertainties and estimating their magnitude will be important as the new 
approaches are integrated into risk assessment. 

Testing systems that evaluate more fundamental lev
els of biological organization (effects at the cellular or 
molecular level) might be useful in identifying agents that 
act via a common mechanism and in facilitating the risk 
assessment of mixtures. Identifying complete pathways 
for chemicals (from molecular initiating events to indi
vidual or population-level disease) could also be useful 
in identifying chemicals that result in the same adverse 
health outcome through different molecular pathways. 
High-throughput screening systems and global gene- 
expression analysis are examples of technologies that 
could provide the required information. The techniques 
applied in support of cumulative risk assessment will also 
support multifactorial risk evaluations discussed further 
in Chapter 7. 

­

­

Site-Specific Assessments 

Understanding the risks associated with a chemical 
spill or the extent to which a hazardous-waste site needs 

to be remediated depends on understanding exposures to 
various chemicals and their toxicity. The assessment prob
lem contains three elements: identifying and quantifying 
chemicals present at the site, characterizing their toxicity, 
and characterizing the toxicity of chemical mixture. Thus, 
one might consider this situation to be an exposure-initiat
ed assessment in which exposure information is a starting 
point as illustrated in Figure 5-6. In this context, exposure 
information  means information on newly identified chem
icals and more complete characterization of exposure to 
chemicals previously identified at a site. Box 5-5 provides 
two specific examples of exposure-initiated assessments. 

­

­

­

The advances described in Chapters 2–4 can address 
each element involved in site-specific assessments. Tar­
geted analytical-chemistry approaches, particularly ones 
that use gas or high-performance liquid chromatography 
coupled with mass spectrometry, can identify and quan­
tify chemicals for which standards are available. Nontar­
geted analyses can help to assign provisional identities 
to previously unidentified chemicals. The committee ex ­
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FIGURE 5-4 Approach to deriving health reference values when data on structurally similar chemicals are available. Similarity can be based 
on such characteristics as chemical structure, physicochemical properties, metabolism, key events in biological pathways, or gene expression; 
similarity of several characteristics increases confidence in the analogy. The point of departure (POD) of the appropriate analogue would be 
adjusted on the basis of pharmacokinetic differences between the chemical of interest and the analogue and other important biological factors, 
such as receptor activation; relevant uncertainty factors would then be applied or models would be used. Accounting for uncertainty could 
include a determination of the degree of confidence in the read-across, including the number of analogues identified, the degree of similarity 
of the analogues to the chemical of interest, and the extent of the dataset on the analogues. 

BOX 5-3 Case Study: Alkylphenols 

This case study illustrates the use of read-across for derivation of a health reference value. As detailed in Ap-
pendix B, a data-poor alkylphenol (p-dodecylphenol) is compared with two data-rich alkylphenols (p-octylphenol 
and p-nonylphenol). Comparisons are made on the basis of two-dimensional chemical structure and physicochem-
ical properties. High-throughput in vitro data from ToxCast are used to add confidence to the selection of the ana-
logues. Data from in vivo rat multigeneration studies of the data-rich alkylphenols are used as a starting point for 
derivation of a health reference value and adjustments are suggested on the basis of the ToxCast data. Limitations 
of the analysis are discussed, and information that would add confidence to the results of the analysis is identified. 

plored the application of advances in exposure science to 
a case study of a large historically contaminated site (see 
Box 5-6 and Appendix C). 

As for toxicity characterization, assessments of waste 
sites and chemical releases often involve chemicals on 
which few toxicity data are available. In the case of waste 
sites, EPA assigns provisional reference values for a num­
ber of chemicals by using the Provisional Peer Reviewed 
Toxicity Value (PPRTV) process. However, because of 
the amount or quality of the data available, the PPRTV 
values tend to entail large uncertainties. Analogue-based 
methods coupled with high-throughput or high-content 
screening methods have the potential to improve the 
PPRTV process. Identification of well-tested appropriate 
analogues to an untested chemical at clean-up sites can 
provide more certain estimates of the hazard and potency 

of the chemical, and the appropriateness of the analogues 
can be confirmed with high-throughput screening or high-
content data that show comparability of biological tar
gets or other end points and relative potency. Although 
the high-throughput or high-content models still require 
validation, the read-across approach could be applied im
mediately. 

­

­

In the case of chemical releases, few data might be 
available on various chemicals—a situation similar to 
waste sites—but decisions might need to be made quick­
ly. The committee uses the scenario of a chemical release 
as a case study to examine how Tox21 approaches can be 
used to provide data on a data-poor chemical quickly (see 
Box 5-6 and Appendix C). 

As for understanding the toxicity of chemical mix­
tures, high-throughput screening methods provide infor­
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FIGURE 5-5 Approach for deriving acceptable values when an appropriate analogue cannot be identified solely through comparisons of 
structure and physicochemical data. In such a case, data from high-throughput in vitro assays of the chemical of interest can be used as an 
additional source of information to identify the best analogue that can then be used to derive acceptable values. 

FIGURE 5-6 Overview of approach and decisions for an exposure-initiated assessment. Abbreviations: Epi, epidemiological; EWAS, expo-
some-wide association study. 

mation on mechanisms that can be useful in determining 
whether any mixture components might act via a common 
mechanism, affect the same organ, or cause the same out
come and thus should be considered as posing a cumula
tive risk (EPA 2000; NRC 2008). High-throughput meth
ods can also be used to assess the toxicity of mixtures 
that are present at specific sites empirically rather than 
assessing individual chemicals. Such real-time generation 
of hazard data was conducted on the dispersants that were 
used to treat the crude oil released during the Deepwater 
Horizon disaster (Judson et al. 2010) to determine wheth
er some had greater endocrine activity or cytotoxicity 
than others. Endocrine assays were the focus because of 
the known estrogenic activity of nonylphenol ethoxylates; 
nonylphenol (the degradation product of nonylphenol eth
oxylates) is known to be estrogenic. 

­
­
­

­

­

It is possible to use high-throughput assay data as the 
basis of a biological read-across for complex mixtures. 
For example, an uncharacterized mixture could be evalu­
ated in high-throughput or high-content testing, and the 
results could be compared with existing results for in­
dividual chemicals or well-characterized mixtures. That 
process is similar to the connectivity mapping approach 
(Lamb et al. 2006) in which the biological activity of a 
single chemical entity is compared with the fingerprint 
of other chemicals in a large dataset, and it is assumed 
that chemicals with like biological activity have the same 
mechanism. That approach for single chemicals can be 
used for uncharacterized mixtures. One would still not 
know whether the biological activity was attributable to 
a single chemical entity or to multiple chemicals, but it 
would not matter if one were concerned only about char­
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BOX 5-4 Case Study: Air Pollution 

The consequences of exposure to air pollution have been extensively investigated, the evidence concerning 
a causal relationship between air pollution and lung cancer is strong, and various agencies, including the Interna-
tional Agency for Research on Cancer, have concluded that outdoor air pollution is carcinogenic. However, there 
are still unanswered questions, such as which components are primarily responsible for carcinogenicity, whether 
there are interactions or synergies among the various components, what effects might occur at low exposures, and 
which groups might be at greater risk because of particular characteristics, such as smoking tobacco. As detailed 
in Appendix B, the first part of this case study describes advances in exposure science and toxicology, specifically 
-omics technologies that can help to characterize adverse effects, refine exposure further, and identify mecha-
nisms and groups at risk. 
The second part of the case study (see Appendix B) examines the situation in which a new outcome is associ-

ated with a well-studied substance. In this case, recent evidence has emerged concerning an association between 
neurodevelopmental outcomes in children and air-pollution exposure. Here the question concerns mainly hazard 
identification because causal associations between air pollution and any specific neurodevelopmental outcome 
are not yet established. Advances in exposure science that could augment or improve new or continuing epide-
miological investigations are described. Advances in toxicology that could be used to assess the developmental 
neurotoxicity risk associated with air pollution are also described. 

acterizing the risk associated with that particular mixture. 
The committee notes that it is possible that a mixture will 
exhibit more than one biological activity, particularly at 
high concentrations, but it should be possible to gain a 
better understanding of the biological activity by testing 
multiple concentrations of the mixture. The committee 
explores a biological read-across approach for complex 
mixtures further in a case study that considers the hypo
thetical site imagined in the first case study (see Box 5-6 
and Appendix C). 

­

Finally, new methods in exposure science, -omics 
technologies, and epidemiology provide another approach 
to generate hypotheses about the role of chemicals and 
chemical mixtures in specific disease states and to gather 
information about potential risks associated with specific 
sites. Information generated on chemical mechanisms, 
particularly of site-specific chemical mixtures, might be 
useful for identifying highly specific biomarkers of effect 
that can be measured in people who work or reside near 
a site of concern. Measurement of biomarkers has advan­
tages over collection of data on disease outcome because 
many diseases of concern, such as cancer, are manifested 
only after chronic exposure or after a long latency period. 
Such measurement could also be of value in determin­
ing the effectiveness of remediation efforts at the site if 
biomarkers can be measured before and after mitigation. 
Real-time individualized measurements of exposure of 
people near a site are also possible and could provide 
richer data about peak exposures or exposure durations. 

Assessment of New Chemistries 

Green chemistry involves the design of molecules 
and products that are optimized to have minimal toxicity 
and limited environmental persistence, are (ideally) de
rived from renewable sources, and perform comparably 
with or better than the chemicals that they are replacing. 
The green-chemistry approach often involves synthesis of 
new molecules on which there are no toxicity data and 
that might not have close analogues. Green-chemistry de
sign is another case in which the use of modern in vitro 
toxicology methods could have great utility by providing 
guidance on which molecular features are associated with 
greater or less toxicity and by identifying chemicals that 
do not affect biological pathways that are known to be 
relevant for toxicity (Voutchkova et al. 2010). There are a 
few examples of the use of in vitro toxicity methods to de
termine whether potential replacement chemicals are less 
toxic. For example, Nardelli et al. (2015) evaluated the 
effects of a series of potential replacements for phthalate 
plasticizers on Sertoli cell function, and high-throughput 
testing has been used to evaluate alternatives to bisphe
nol A  in the manufacture of can linings (Seltenrich 2015). 
Using high-throughput methods in this context is not 
conceptually different from screening prospective thera
peutic agents for maximal efficacy and minimal off-target 
effects. Box 5-7 and Appendix D describe a case study of 
assessment of new chemistries. 

­

­

­

­

­
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BOX 5-5 Two Examples of Exposure-Initiated Assessment
	

In the first example of exposure-initiated assessment, scientists who were investigating Superfund sites around 
the Portland Harbor in Oregon recently found novel environmental degradation products of common polycyclic aro-
matic hydrocarbons (PAHs) (O’Connell et al. 2013). Thirty-eight oxygenated PAHs were identified as toxicologically 
uncharacterized members of a PAH mixture at the site. Given the urgent need for testing, novel high-throughput 
toxicity testing in zebrafish has been conducted on representative mixtures of PAHs that were found in soil and 
water media of Portland Harbor (Knecht et al. 2013), and passive sampling devices have been deployed to char-
acterize concentrations in species of the aquatic ecosystem that are used as human food (Paulik et al. 2016). 
In the second example, nontargeted chemical analysis of dust samples that were collected as part of the US 

American Healthy Homes Survey was conducted (Rager et al. 2016). Nontargeted analysis revealed a spectrum 
of chromatographic features (elution time, exact mass, and isotopic signature) that could not initially be assigned 
to distinct chemicals. Some features were later identified by using analytical standards that were selected on the 
basis of probable matches to chemical structures in EPA’s Distributed Structure-Searchable Toxicity database. Ini-
tial screening of the group of identified chemicals—including pesticides, nicotine, and perfluorooctanoic acid—was 
completed by using exposure and bioactivity estimates from ExpoCast and ToxCast, respectively, and information 
on detection frequency and abundance; the information was presented in ToxPi format. The authors also reported 
the presence of large numbers of features that remain unidentified and untested. The approach could be applied 
to other environmental media, such as soil and water at Superfund sites or water streams that are used as public 
drinking-water supplies but have been tested only for small numbers of chemicals. 

One could use the same methods as described above 
to evaluate the toxicity of newly discovered chemicals in 
the environment, for example, from unexpected break­
down products of a widely used pesticide. If breakdown 
products are chemically related to their parent molecules, 
cheminformatics (read-across) methods could also be ap­
propriate for estimating their toxicity. 

COMMUNICATING THE NEW APPROACHES 

Many of the approaches introduced in this chapter 
will be unfamiliar to some stakeholder groups. Commu­
nicating the strengths and limitations of the approaches 
in a transparent and understandable way will be neces­
sary if the results are to be applied appropriately and will 
be critical for the ultimate acceptance of the approaches. 
The information needs and communication strategies will 
depend on the stakeholder group. The discussion here 
focuses on four stakeholder groups: risk assessors, risk 
managers and public-health officials, clinicians, and the 
lay public. 

Risk-assessment practitioners who are responsible 
for generating health reference values need to have infor­
mation on the details of the new approaches and on how 
to apply their results to predict human risk. They probably 
need formal training in the interpretation and application 
of new data streams emerging from exposure science, 
toxicology, and epidemiology. Read-across, for example, 
is perhaps the most familiar of the alternative approaches 

described in this chapter, but most risk assessors still need 
a great deal of training in identifying appropriate chemical 
analogues on which to base a read-across and in account
ing for decreased confidence in the assessment if there 
are few analogues or less than perfect structural matches. 
They also need to develop new partnerships that can help 
them with their tasks, for example, with computational 
and medicinal chemists who develop strategies for ana
logue searching, gauge the suitability of each analogue, 
or determine the likely metabolic pathway of a chemical 
of interest and its analogues to see whether they become 
more or less alike as they are biotransformed. 

­

­

Most risk assessors are already familiar with the in­
tegration of traditional data for risk assessment, but they 
will need help in understanding how to integrate novel 
data streams and how much confidence they can have in 
the new data. One approach will be to compare the re­
sults from new methods with more familiar data sourc­
es, particularly in vivo toxicology studies. For example, 
EPA recently concluded that a high-throughput battery 
of estrogenicity assays is an acceptable alternative to the 
uterotrophic assay for tier 1 endocrine-disrupter screen­
ing (Browne et al. 2015; EPA 2015). The communication 
strategy in this case involved a description of the purpose 
of the assay battery, an explanation of the biological space 
covered by the battery (that is, the extent of the estrogen-
signaling pathway being evaluated and the redundancy of 
the assays), a description of a computational model that 
integrates the data from all the assays and discriminates 
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between a true response and noise, and a comparison with 
an existing method that showed the new way working in 
most cases. Papers like the one cited provide useful mod­
els for further technical communication to risk assessors. 

Risk managers and public-health officials do not need 
information that provides details on the assays or how 
they are applied to risk assessment; they do need to know 
the uncertainty associated with risk estimates and the con­
fidence that they should place in them. Communication 
to this group will need to address those issues. There will 
be cases in which the new approaches will provide in­
formation that was heretofore unavailable to them, and 
the new information will assist them in making decisions 
about site remediation or acceptable exposure levels. 
This chapter discussed the possibility of using read-
across to increase the number of chemicals evaluated in 
the PPRTV process, and Appendix C highlights a case 
study that uses cheminformatic approaches to address 
the developmental-toxicity potential of 4 methylcyclo­
hexanemethanol, a chemical for which there was no ex­
perimental data on that outcome. Both examples illustrate 
how new approaches can provide information that would 
not have been available in any other way. However, the 
uncertainties associated with the new approaches need to 
be communicated. 

As scientists advance the vision of identifying the 
many components that are responsible for multifactorial 
diseases, it will be necessary to communicate with cli­
nicians and the public about how the factors have been 
identified, how each is related to others, and whether it is 
possible to reduce exposure to one or more factors to de­
crease disease risk. Physicians are beginning to embrace 
new methods as genomic information on individual pa­
tients becomes more available and personalized medicine 

becomes more of a reality, but there will still need to be 
communication to physicians in venues that they are like­
ly to read and with diagnostic and treatment approaches 
that they are likely to be able to implement. 

As for the general public, although many people get 
their health information from their doctors, some are far 
more likely to get medical information from the Internet 
and the popular press. The information that those media 
outlets require about new approaches is not qualitatively 
different from what clinicians need, but it needs to be pre­
sented in a format that is digestible by educated laypeople. 

Finally, enhanced communication among the scien­
tific community both nationally and internationally is vi­
tally important for fully achieving the goals outlined in 
the Tox21 and ES21 reports and for gaining consensus 
regarding the utility of the new approaches and their in­
corporation into decision-making. The communication 
should include enhanced and more transparent integration 
of data and technology generated from multiple sources, 
including academic laboratories. Universities could serve 
as a communication conduit for multiple stakeholders, 
particularly clinicians and the lay public; thus, their en­
gagement should be strategically leveraged. Ultimately, 
a more multidisciplinary and inclusive strategy for sci­
entific discourse will help attain broad understanding and 
confidence in the new tools. 

CHALLENGES AND RECOMMENDATIONS 

As noted earlier in this report, there are challenges 
to achieving the new direction for risk assessment fully. 
Some, such as model and assay validation, are addressed 
in later chapters. Here, the committee highlights a few 
challenges that are specific to the applications and ap-

BOX 5-6 Case Studies: Site-Specific Assessments 

The committee created three case studies related to site-specific assessment that explore each element of 
the problem and how to incorporate 21st century science into the evaluations. Appendix C provides the details of 
the case studies described below. 

•	 Identifying chemicals present. The committee considers a large historically contaminated site with land 
and surface water near a major population center and describes how targeted and nontargeted analyses of chemi-
cals can be used at the site. 

•	 Characterizing toxicity. The committee considers the release of 4-methylcyclohexanemethanol into the Elk 
River about 1 mile upstream of a water intake facility for the city of Charleston, West Virginia, in 2014 and describes 
exposure and toxicity screening tools that help to understand the human risk. 

•	 Characterizing mixture toxicity. The committee considers a toxicity assessment of complex mixtures ob-
served in environmental samples, tissues, and biofluids and illustrates how a biological read-across approach 
could be used to conduct an assessment. 
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proaches described in the present chapter and offers some 
recommendations to address them. 

Challenge: For risk assessment of individual chemi­
cals, various approaches, such as cheminformatics and 
read-across, are already being applied because exist­
ing approaches are insufficient to meet the backlog of 
chemicals that need to be assessed. However, methods 
for grouping chemicals, assessing the suitability of ana­
logues, and accounting for data quality and confidence in 
assessment are still being developed or are being applied 
inconsistently. 

Recommendation: Read-across and cheminformatic 
approaches should be developed further and integrated 
into environmental-chemical risk assessments. High-
throughput, cell-based assays and high–information­
content approaches, such as gene-expression analysis, 
provide a large volume of data that can be used to test 
the assumptions made in read-across that analogues have 
the same biological targets and effects. Read-across and 
cheminformatics approaches depend on high-quality da­
tabases that are well curated; data curation and quality as­
surance should be a routine part of database development 
and maintenance. New case studies that use cheminfor­
matic and read-across approaches could demonstrate new 
applications and encourage their use. 

Challenge: Approaches that use large data streams to 
evaluate the potential for toxicity present a challenge in 
synthesizing information in a way that supports decision-
making. 

Recommendation: Statistical methods that can inte­
grate multiple data streams and that are easy for risk as­
sessors and decision-makers to use should be developed 
further and made transparent and user-friendly. 

Challenge: Measuring biological events that are far 
upstream of disease states will introduce new sources of 
uncertainty into the risk-assessment process. Using data 
on those events as the starting point for risk assessment 
will require new approaches for risk assessment that are 
different from the current methods, which identify a point 

of departure and apply default uncertainty factors or ex­
trapolate by using mathematical models. 

Recommendation: New types of uncertainty will arise 
as the 21st century tools and approaches are used, and re
search should be conducted to identify these new sources 
and their magnitude. Some traditional sources of uncer
tainty will disappear as scientists rely less on animal mod
els to predict toxicity, and these should also be identified. 

­

­
­
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Model and Assay Validation and Acceptance
 

Models and test systems for toxicity testing have 
evolved over past decades. Their strengths and weakness­
es have been debated, and most agree that no inherently 
perfect model could exist (Cunningham 2002). Gradually, 
however, regulatory agencies in the United States and 
elsewhere have come to accept data from mathematical 
models and from assay systems that use mammalian and 
other experimental organisms, cultured cells, and bacte­
ria for evaluating potential hazards and quantifying risks 
posed by chemical exposures. Some model systems have 
become nearly indispensable for risk assessment even 
though inherent shortcomings and imperfections have 
been widely acknowledged. Such systems include rodent 
cancer bioassays, multigeneration tests of reproductive 
and developmental outcomes in rodents, and bacterial 
mutagenicity tests. Such tests and resulting data have be­
come commonly accepted for use in human-health assess­
ments and often serve as a benchmark or comparator for 
new assays and data types that are emerging (Thomas et 
al. 2012). 

Before new assays are used in particular regulatory-
decision contexts, such as pesticide registration, their 
relevance, reliability, and fitness for purpose are estab ­
lished and documented. Such characterization of assays 
has evolved into elaborate processes that are commonly 
referred to as validation of alternative methods. Formal 
mechanisms for validation have been established in the 
United States, Europe, and many Asian countries. In 
addition, an international standardization of validation 
methods is emerging to ensure reciprocity and uniformity 
of outcomes (Burden et al. 2015). According to the Or­
ganisation for Economic Co-operation and Development 
(OECD), validation is “the process by which the reliabil­
ity and relevance of a particular approach, method, pro­
cess or assessment is established for a defined purpose” 
(OECD 2005). In that context, the term reliability refers 
to the reproducibility of the method “within and between 
laboratories over time, when performed using the same 
protocol.” The term relevance is meant to ensure the sci­
entific underpinning of the test and of the outcome that it 
is meant to evaluate so that it tests “the effect of interest 

and whether it is meaningful and useful for a particular 
purpose.” The Institute of Medicine (IOM 2010) defined 
the process of validation as “assessing [an] assay and its 
measurement performance characteristics [and] determin
ing the range of conditions under which the assay will 
give reproducible and accurate data.” 

­

In plain language, a validation process is used to es­
tablish for developers and users of an assay that it is ready 
and acceptable for its intended use. Although the purpose 
and principles of validation remain generally constant, the 
underlying process must evolve to reflect scientific ad­
vances. Indeed, the availability of new tests has increased 
dramatically; many are attractive in cost, time, or use of 
animals and animal-welfare considerations. The number 
of chemicals that have been evaluated with new test meth­
ods has also increased dramatically (Kavlock et al. 2009; 
Tice et al. 2013). The reliability of the new tests is of gen­
eral concern given that existing validation processes can­
not match the pace of development of new tests. 

The new tests are being developed by scientists in 
academe, private companies, and government laborato­
ries; sometimes, the utility of a particular marker, assay, 
or model for decision-making is not immediately recog­
nized by the original developer. Likewise, the resources, 
time, and effort that are invested in the development can 
be vastly different and not reflect the ultimate utility of a 
particular test. Thus, the original developers might not be 
involved in determining whether a test is fit for purpose 
for a particular application or provides the degree of cer­
tainty that is required to provide information necessary in 
a particular decision-making context. 

In this chapter, the committee describes existing 
frameworks and efforts for validation of new alternative 
or nontraditional methods, assays, and models and pro­
vides recommendations on the key elements of validation 
for toxicity testing. The committee emphasizes that vali ­
dation, although important, is not the only factor involved 
in achieving regulatory acceptance of new alternative test 
methods. Furthermore, the committee notes that although 
assay and model validation for toxicity testing is already 
an established process, other important disciplines, such 
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as exposure science, have yet to develop formal criteria 
and processes for validation, although some have devel­
oped approaches to establish best practices. 

GUIDANCE ON THE VALIDATION OF
 
IN VITRO AND OTHER NEW TEST METHODS
 

United States
 

The Interagency Coordinating Committee on the 
Validation of Alternative Methods (ICCVAM) was es­
tablished by the National Institute of Environmental 
Health Sciences (NIEHS) in 1997 as an ad hoc federal 
interagency committee to address the growing need for 
obtaining regulatory acceptance of new toxicity-testing 
methods (NIEHS 1997). The National Toxicology Pro­
gram (NTP) Interagency Center for the Evaluation of 
Alternative Toxicological Methods (NICEATM) was also 
established in NIEHS to support ICCVAM in “the devel­
opment and evaluation of new, revised, and alternative 
methods to identify potential hazards to human health and 
the environment with a focus on replacing, reducing, or 
refining animal use” (Casey 2016). Since 2000, ICCVAM 
activities have been governed by the ICCVAM Authoriza ­
tion Act (2000), which specifies that 15 agencies of the 
federal government—including the US Food and Drug 
Administration, the US Environmental Protection Agen­
cy, the Consumer Product Safety Commission, the US 
Department of Transportation, the Occupational Safety 
and Health Administration, and the US Department of 
Agriculture—be represented on ICCVAM. 

ICCVAM established the Guidelines for the Nomina-
tion and Submission of New, Revised, and Alternative Test 
Methods (NIEHS 2003) and has successfully evaluated 
and recommended numerous alternative test methods for 
regulatory use. Test methods that have been evaluated and 
recommended for use by NICEATM and ICCVAM are 
aimed at acute systemic toxicity, dermal corrosivity and 
irritation, developmental toxicity, endocrine disruption, 
genetic toxicity, immunotoxicity (allergic contact der­
matitis), biologics and nanomaterials, pyrogenicity, and 
ocular toxicity. The evaluation process includes not only 
individual test methods but computational and integrated 
testing strategies (Pirone at al. 2014). 

ICCVAM-recommended methods, however, have not 
always been implemented, and this has caused increasing 
concern. A potential solution for the near term has been 
to integrate some activities of NICEATM with those of 
the federal government’s Tox21 consortium (Birnbaum 
2013). Specifically, the revised charge to NICEATM 
now consists of supporting ICCVAM; providing bioin­
formatics and computational toxicology support to NTP 
and NIEHS projects, especially those related to Tox21; 
conducting and publishing analyses of data from new, re­
vised, and alternative testing approaches; and providing 

information to test-method developers, regulators, and 
regulated industries (Casey 2016). 

Another highly relevant activity that was conducted 
under the auspices of IOM was the report of the Com­
mittee on the Evaluation of Biomarkers and Surrogate 
Endpoints in Chronic Disease (IOM 2010). Specifically, 
that committee recommended a three-part framework for 
biomarker evaluation consisting of analytical validation 
(Is the biomarker able to be accurately measured?), quali­
fication (Is the biomarker associated with the clinical end 
point of concern?), and use (What is the specific context 
of the proposed use?). Although the primary users of the 
IOM framework are stakeholders that are concerned with 
evidence-based decision-making in medicine and public 
health, the framework has great relevance to the process 
for validating any new test method (see Box 6-1). 

European Union 

In the European Union, formal activities for validat­
ing alternative approaches to animal testing started in 1991 
with creation of the European Centre for the Validation of 
Alternative Methods (ECVAM). Since 2011, ECVAM’s 
tasks have been subsumed by the European Union 
Reference Laboratory for Alternatives to Animal Testing 
(EURL ECVAM), part of the European Commission’s 
Joint Research Centre. The general aims and approaches 
of EURL ECVAM are similar to those of ICCVAM and 
include activities to advance the scientific and regulatory 
acceptance of nonanimal tests that are important to bio­
medical sciences through research, test development, and 
validation and maintaining databases (Gocht and Schwarz 
2013) and to co-ordinate at the European level the inde­
pendent evaluation of the relevance and reliability of tests 
for specific purposes. The guiding principles of the EURL 
ECVAM work are based on ECVAM recommendations 
concerning the practical and logistical aspects of validat­
ing alternative test methods in prospective studies (Balls 
1995; Hartung et al. 2004; EC 2016a); the recommenda­
tions are in internal guidelines and strategy papers, for ex­
ample, ECVAM Guidance on Good Cell Culture Practice 
(Coecke et al. 2005), the OECD guidelines (see Box 6-2), 
and relevant parts of the EU Test Methods Regulation 
(EC 2008). ECVAM and the European Partnership for 
Alternative Approaches to Animal Testing (Kinsner-
Ovaskainen et al. 2012) have also made conclusions and 
offered recommendations on the validation of integrated 
approaches. 

International 

At the international level, OECD has been active, 
especially in the last 5 years, in coordinating the devel­
opment of formal guidelines for validation of individual 
tests, alternative methods, and computational models (see 
Box 6-2). The 1981 Mutual Acceptance of Data Deci­
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BOX 6-1 Summary of the Institute of Medicine Recommendations for Effective Biomarker Evaluation
	

1. The biomarker evaluation process should consist of the following three steps: 
a. Analytical validation: analyses of available evidence on the analytical performance of an assay; 
b. Qualification: assessment of available evidence on associations between the biomarker and disease states, 
including data showing effects of interventions on both the biomarker and clinical outcomes; and 

c. Utilization: contextual analysis based on the specific use proposed and the applicability of available evi-
dence to this use. This includes a determination of whether the validation and qualification conducted 
provide sufficient support for the use proposed. 

2a. For biomarkers with regulatory impact, the Food and Drug Administration (FDA) should convene expert panels 
to evaluate biomarkers and biomarker tests. 

2b. Initial evaluation of analytical validation and qualification should be conducted separately from a particular 
context of use. 

2c. The expert panels should reevaluate analytical validation, qualification, and utilization on a continual and a 
case-by-case basis. 

Source: IOM 2010. 

sion for the Assessment of Chemicals including Pesti­
cides C(81)30(Final) stipulated that “data generated in 
the testing of chemicals in an OECD Member country in 
accordance with OECD Test Guidelines and OECD Prin­
ciples of Good Laboratory Practice shall be accepted in 
other Member countries for purposes of assessment and 
other uses relating to the protection of man and the en­
vironment.” It created an impetus for establishing a for­
mal international process for validating test methods. A 
formal process now exists for development and adoption 
of OECD test guidelines, part being a formal validation, 
where the nomination usually begins at the national level, 
proceeds through the expert committees (from the Work­
ing Group of National Coordinators of the Test Guide­
lines Programme to OECD Chemicals and Environmen­
tal Policy Committees), and ultimately is approved by the 
OECD Council. 

Opinions of the Broader Scientific 
Community on Validation 

Because of the importance of validating novel 
toxicity-testing methods and the reality of the rapid pro­
liferation of new tests, many opinions have been voiced 
in the last decade on how the validation process needs to 
evolve. Although there are various degrees of formality 
in the suggested changes, all authors agree that the exist­
ing frameworks are not optimal and could be improved. 
Hartung (2007) argued for a move away from validating 
by comparison with existing “gold standards,”1 a com­

1A gold standard is defined as a reference standard that is re­
garded as the best available to determine a particular condition. 

mon testing approach that might not reflect molecular and 
physiological realities of the human body and argued that 
tests should be developed to provide more mechanistic 
information and thus help to establish causality. 

Judson and colleagues (Judson et al. 2013) suggested 
the following general principles: follow current validation 
practice to the extent possible and practical, increase the 
use of reference compounds to demonstrate assay reliabil­
ity and relevance better, de-emphasize the need for cross-
laboratory testing, and implement a Web-based, transpar­
ent, and expedited peer-review process. 

Patlewicz and colleagues (Patlewicz et al. 2013) ar­
gued that standard steps of validation practice should still 
apply and that the validation process for any new test 
must articulate the scientific and regulatory rationale for 
the test, the relationship between what the test measures 
and the resulting biological effect of interest, a detailed 
protocol for the test, the domain of applicability, criteria 
for describing the results of the test, known limitations, 
and standards for determining good performance (posi­
tive and negative standards). 

Finally, the International Life Sciences Institute Health 
and Environmental Sciences Institute, an industry-funded 
nonprofit organization, has recently begun a new project 
on developing a “Framework for Intelligent Non-Animal 

The gold standard is the benchmark with which a new procedure 
is compared. Data from clinical trials and epidemiological studies 
provide the best examples of benchmarks for the potential effects 
of drugs or chemicals on the human body. In toxicology, there are 
cases in which the currently used methods are regarded as inad­
equate to predict human toxicity. In such cases, other validation 
methods need to be considered. 
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BOX 6-2 Sources of OECD Guidance on Validation of Alternative Test Methods and Models 

• Guidance Document on the Validation and International Acceptance of New or Updated Test Methods for 
Hazard Assessment (OECD 2005) 

• Guidance Document on the Validation of (Quantitative) Structure–Activity Relationships [(Q)SAR] Models 
(OECD 2007) 

• Guidance Document for Describing Non-Guideline In Vitro Test Methods (OECD 2014) 

Methods for Safety Assessment.”2  This activity is pursu
ing a mission to bring together the collective knowledge  
of scientists from academe, industry, and government with  
an eye to the development of criteria to establish confi
dence in using nonanimal methods to support regulatory  
decisions and to develop a framework organized around  
IOM (2010) principles noted above. 

­

­

CHALLENGES AND RECOMMENDATIONS 

The following sections describe what the committee 
views as the most important aspects of the validation pro­
cess and challenges associated with them. The commit­
tee provides some recommendations for overcoming the 
challenges and for moving the validation process forward 
to meet the needs of assessing novel test methods. 

Defining the Scope and Purpose of 
New Assays as an Essential Element in the 


Process of Validation and Acceptance
 

Most of the existing guidance deals with the technical 
aspects of the process for assay validation, but it is equal­
ly important to determine whether a new assay or test bat­
tery is meant to replace an existing one or is a novel ap­
proach that aims to improve decision-making and provide 
information that is critical but previously unavailable. 

Recommendation: A clear definition of the purpose of 
the new test should be considered before a specific valida­
tion process is defined. One must establish the fitness of 
the test for a particular decision context, select appropri­
ate comparators (for example, a gold standard, mechanis­
tic events, or biomarkers), and delineate the scope of the 
validation exercise to be commensurate with the proposed 
use. For example, can a new assay or test battery be used 
to characterize subchronic or chronic adverse health end 
points? Test performance characteristics (specificity, sen ­
sitivity, and coverage) might need to be adjusted, depend­
ing on the decision type and context. Ultimately, it should 
be clear whether the validation process is aimed at testing 
reliability, validity, or both. 

2See http://old.hesiglobal.org/i4a/pages/index.cfm?pageid=3687. 

Enabling Fit-for-Purpose Validation 

The challenge of finding an appropriate comparator 
to enable fit-for-purpose validation of new test methods is 
considerable because disagreements about the quality of a 
gold standard or about whether there is one are common. 
If it is the case of validating a new assay as a replacement 
for an existing one, one must determine what gold stan­
dard is to be used as a comparator. Expert judgment will 
be needed to determine the validity of an existing method 
or model to be used as the comparator. If it is the case 
of validating a novel approach, the decision context for 
which the information can be used and the availability of 
other data need to be clearly defined. Statisticians have 
addressed the question of how to assess the validity of 
test methods when there is no gold standard (Rutjes et 
al. 2007). Some of the methods involve correction of im­
perfect reference standards through the use of additional 
information or imputed values. Other methods construct 
a reference standard by using the results of multiple test 
methods. Each approach has merits for the purpose of re­
placing animal tests for toxicity. 

Two important issues on which there is still no con
sensus in the scientific community are evaluation of the 
validity of assays that are not intended as one-to-one 
replacements for in vivo toxicity assays and assessment 
of the concordance of data from assays that use cells or 
proteins of human origin and toxicity data that are virtu
ally all derived from animal models. Judson et al. (2013) 
have provided ideas on how to validate assays that are 
intended to be used in a high-throughput context and to 
be interpreted only in the context of the results of many 
other assays that evaluate the same biological effect or 
pathway. Those ideas need to be debated, modified, and 
tested. As to the concordance issue, it is likely that lack of 
concordance among species is due not to large differences 
in the function of highly conserved proteins, such as ste
roid receptors, but to differences in pharmacokinetics and 
metabolism. Selected investigation of interspecies con
cordance at a molecular level will prove or disprove that 
hypothesis. Data already exist in the literature that will 
allow comparisons, and the results will support decisions 

­

­

­

­

http://old.hesiglobal.org/i4a/pages/index.cfm?pageid=3687
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on what modifications, if any, are needed to accommodate 
species differences in validation efforts. 

Recommendation: Workshops or other mechanisms 
that can be used to develop consensus opinions among 
scientific experts on defining appropriate reference stan­
dards should be considered. Appropriate disclaimers 
about author affiliations should be included in any reports 
or opinions that might result from the activities; conflicts 
of interest need to be carefully managed. 

Establishing the Utility and Domain of New Assays 

Another important aspect of validation is establish
ing the assay utility and clearly defining its domain of 
applicability,3 its capacity for chemical biotransformation, 
its ability to establish a concentration–response relation
ship, its mechanistic relevance, and the applicability of its 
results. It is necessary to ensure that negative test results 
are not negative because of the lack of chemical metabo
lism, insufficient concentration tested, chemical volatility, 
chemical binding to plastic, or other factors. Determining 
the validity of negative results is an important challenging 
issue because the stakeholders inherently weigh positive 
data more than negative data or vice versa, depending on 
the decision context. Likewise, understanding the mecha
nistic relevance of a result of a new assay is important; it 
should be clear whether the test is assessing an initiating 
event, a key event, or an adverse outcome. 

­

­

­

­

Recommendation: A description of the utility and do­
main of the test should be provided to inform the valida­
tion process and the ultimate use and interpretation of the 
data. There should be a clear statement concerning what 
a positive response or a negative (no) response from the 
assay means and what controls are appropriate or should 
be used. 

Establishing Performance Standards 

Data quality is a key determinant of acceptance of any 
test method. Assay performance guidelines that include 
quality-assurance metrics and quality control of day-to­
day operation are well defined (for example, OECD Per­
formance Based Test Guideline TG455), and it is widely 
recognized that such information needs to be documented. 
Performance standards4 are critical in a validation context 

3The domain of applicability defines what substances can be re­
liably tested in the assay. For example, can substances that have 
limited solubility or are volatile be tested using the assay? 

4Performance standards “provide a basis for evaluating the com­
parability of a proposed test method that is mechanistically and 
functionally similar. Included are (1) essential test method com­
ponents; (2) a minimum list of reference chemicals selected from 
among the chemicals used to demonstrate the acceptable perfor­
mance of the validated test method; and (3) the comparable lev­
els of accuracy and reliability, based on what was obtained for the 

and are a step toward regulatory acceptance, such as de
velopment into an OECD test guideline; however, perfor
mance standards are not equally well defined for all types  
of assays. For example, OECD provides performance  
standards primarily on estrogen-receptor activity and skin  
irritation, corrosion, and sensitization.5 

­
­

Recommendation: Performance standards should be 
developed for all types of assays that evaluate relevant 
adverse health outcomes with relevance being determined 
by a particular decision context. 

Another important part of testing assay performance 
is establishing reference-chemical lists. A validation ref­
erence-chemical list for a number of end points to guide 
assay developers should help to mitigate disagreements 
among stakeholders. Engagement of stakeholders—such 
as regulatory-agency staff, nongovernment organizations, 
and industry—in establishing the lists will contribute to 
acceptance of the data produced by assays that are vali­
dated using the lists. Some effort has been invested in 
addressing this challenge, and some valuable lists have 
been created (Brown 2002; Eskes et al. 2007; Casati et 
al. 2009; Pazos et al. 2010; EC 2016b). However, there 
are few molecular targets for which there is a diverse set 
of specifically defined reference chemicals that can aid in 
determining both positive and negative performance of a 
test. 

Recommendation: Common chemical lists that are fit 
for different purposes and can evolve should be defined 
and used for validation of assays and models where pos­
sible. That will help the scientific community to establish 
specificity and potential redundancy among new assays. 

Validation or testing in multiple laboratories is one 
common element of current practice; however, it is rec­
ognized that ring trials6 take too long and are difficult to 
accomplish if the assays are proprietary, use ultrahigh 
throughput, or require specialized equipment or exper­
tise. There might not be enough qualified laboratories in 
the world to perform the test. In the European Union, a 
network of vetted laboratories that can conduct valida­
tion reliably has been established as one way to address 
the challenge (European Union Network of Laboratories 
for the Validation of Alternative Methods). Judson et al. 
(2013) offered another possible solution and proposed 
performance-based validation: one validates the perfor­
mance of a new test against the results of previously vali­
dated tests for the same end point (for example, a “gold­

validated test method, that the proposed test method should demon­
strate when evaluated using the minimum list of reference chemi­
cals” (OECD 2005). 

5See http://www.oecd.org/chemicalsafety/testing/performance­
standards.htm. 

6 In a ring trial, a given assay is tested in established laboratories 
to determine its reliability. 

http://www.oecd.org/chemicalsafety/testing/performance-standards.htm
http://www.oecd.org/chemicalsafety/testing/performance-standards.htm
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standard” test that might have undergone the formal 
OECD-like validation). Yet another alternative is to use 
a consensus resulting from multiple tests as a benchmark 
against which each test is evaluated and to assess varia
tion about the consensus by using resampling techniques 
or meta-analysis (see Chapter 7). However, there is a real 
challenge in that many protocols that are used by contract 
research laboratories to conduct guideline tests are pro
prietary. Patlewicz et al. (2013) emphasize that any new 
validation approaches need to allow proprietary tests. In 
one solution for validating proprietary tests, an outside 
body provides blinded samples to the testing laboratory 
and then independently evaluates the accuracy of the test. 

­

­

Recommendation: Government agencies should pro­
vide explicit incentives to academic, government, or com­
mercial laboratories to participate in validation. 

An alternative (or additional consideration) to techni­
cal ring trials is peer review of the methods and of data 
from new assays. However, more accessible and consis­
tently formatted data are needed for validation through 
peer review. Data transparency and current agency-spe­
cific practices for releasing data to the public pose many 
challenges. For example, although ToxCast and Tox21 
programs have established practices for releasing data in 
various formats, other agencies in the United States and 
abroad are not as advanced. Legal challenges involved in 
data access are many; not only might assays be propri­
etary but data from nonproprietary assays might be con­
sidered confidential business information. 

Recommendation: Data collected through coordinat­
ed validation or screening programs in government labo­
ratories or under contract to government agencies, espe­
cially with respect to novel test methods, should be made 
publicly available as soon as possible, preferably through 
user-friendly Web-based dashboards. If data are subject 
to human-subject protections or raise privacy concerns, 
appropriate measures should be taken to de-identify the 
information that is being released. 

Establishing Clear Reporting Standards for 
Assay Results and Testing Conditions 

It is widely recognized that the level of detail on 
methods and experimental conditions reported in scien
tific publications can be limited by manuscript length 
restrictions and other factors. It is critical, however, that 
sufficient information be included in the documentation 
of assay- or model-validation exercises. It might appear to 
assay or model developers that some details are obvious 
and not needed in the documentation, but reproducibil
ity and validity of results might be critically affected by 
the omission or incompleteness of information. Results 
might also be misinterpreted in application if incorrect in
ferences are drawn. 

­

­

­

Recommendation: Government agencies and orga
nizations involved in assay and model validation should 
develop clear guidance documents and training materials 
to support validation, such as training materials that cover 
various technical aspects of good in vitro method devel
opment and practices and cover reporting of methods. 
All technical aspects of the assay—such as number of 
cells; media, serum, or additives used; incubation length; 
readout description; equipment needed; and positive and 
negative controls—should be described as completely as 
possible and with the degree of detail needed for repli
cation. The committee acknowledges that for proprietary 
reasons some information might need to be withheld, but 
best practice should include disclosure of the nature of 
and reason for withholding information. 

­

­

­

Recommendation: Because the chemical or particle 
concentrations can be different from the administered 
(nominal or assumed) concentrations, depending on the 
chemical or particle properties (such as partitioning coef­
ficients and metabolic rates) and the assay system (test 
materials), efforts should be made to quantify the con­
centrations in the test system that correspond with the 
response in the assays either through measurement or 
through mass-balance model estimation. 

Establishing Clear Guidelines for Evaluating 

Data Integration and Computational Predictive 


Modeling in a Common Framework
 

In the 21st century toxicity-testing paradigm, the re­
sults of particular assays are likely to be integrated with 
data from other sources to obtain the most confident as­
sessment of risk possible. Such integration is the topic of 
Chapter 7. In anticipation of that chapter, the committee 
addresses performance issues around models here. 

The integrated analysis of data from multiple sources 
will be increasingly required for making regulatory deci­
sions, and the collective use of these data can be viewed as 
a new, comprehensive “assay.” However, the multiple as­
pects of an integrated decision process present challenges 
in reliability and evaluation. The framework underlying 
integrated approaches to testing and assessment (OECD 
2008) provides one example of a structured strategy for 
combining information for hazard identification and as­
sessment. Here, the focus is on the quality and reliability 
of the computational aspects of data integration, which 
are often used in concert with traditional assays. Many 
of the validation principles of relevance and reliability 
that were developed for quantitative structure–activity 
relationship (QSAR) models by OECD (2007) apply to 
any statistical and integrated model (see Chapter 7 for fur­
ther discussion). The OECD principles for QSAR model 
development call for (a) a defined end point, (b) an un ­
ambiguous algorithm, (c) a defined domain of (chemical) 
applicability, (d) measures of goodness of fit, robustness, 
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and predictivity, and ideally (e) a mechanistic interpreta
tion. Items (b) and (d) often pose the greatest challenge 
for QSAR or any statistical model, in that complicated 
modeling schemes are often difficult to reproduce pre
cisely. It has also been recognized and confirmed through 
systematic reviews of external validation studies of mul
tivariable prediction models that most studies report key 
details poorly and lack clarity on whether validation was 
truly external to the information on which the model was 
based (Collins et al. 2014). Recent efforts by the Trans
parent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) initiative 
resulted in recommendations for the reporting of stud
ies that develop, validate, or update a prediction model, 
whether for diagnostic or prognostic purposes (Collins et 
al. 2015). 

­

­

­

­

­

Integrated assessment strategies can also benefit from 
redundancies and weighting of similar assays because a 
single in vitro assay will probably not provide a “perfect” 
result. Even assays that are similar mechanistically will 
likely have some degree of discordance because biologi­
cal processes are complex, and some test chemicals might 
be unsuitable for certain assays. In addition, many envi­
ronmental chemicals are likely to have low potency. As a 
result, there will be variation from assay to assay in what 
would be considered a positive response. Multiple as­
says for critical targets are likely to be needed and can be 
combined by using computational models (Browne et al. 
2015). Any weighting scheme that is data-driven should 
be carefully cross-validated to avoid optimistic or over-
fitted final schemes. 

As noted, data from assays might be combined with 
other lines of data to guide decision-making, and issues 
of documentation and transparency that arise when assay 
data are combined are similar to those involved when data 
from a single assay are used. 

Recommendation: Technical aspects of a statistical 
predictive model should be described with enough detail 
for all major steps to be independently reproduced and 
to ensure the utility and reliability of the predictive mod­
els. Statistical predictive models often result in implicit 
weighting schemes for various features, such as chemical 
descriptors in QSAR models. Where possible, the final 
features used and relative model contributions should be 
published to open the “black box” for future investigators. 

Recommendation: Weighting schemes for combin­
ing assays should be cross-validated if predictive perfor­
mance or another criterion is driven by the current data 
and is used in developing a scheme. 

Recommendation: A culture of independent repro­
duction of statistical and integrative models should be 
fostered, ideally with reliability of models assessed by 
multiple computational groups working independently. 

Recommendation: Software tools and scripts should 
be validated by duplicative review by multiple investiga­

tors, and where possible software should be made avail­
able by open-source mechanisms for continual quality 
control. 
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Interpretation and Integration of Data and 

Evidence for Risk-Based Decision-Making
 

Chapters 2–4 highlighted major advances in expo­
sure science, toxicology, and epidemiology that will en­
able a better understanding of pathways, components, and 
mechanisms that contribute to disease. As described in 
those chapters, the new tools and the resulting data will 
improve the assessment of exposures that are associated 
with incremental increases in risk and will enhance the 
characterization of the spectrum of hazards that can be 
caused by chemicals. Chapter 5 described the new direc­
tion of risk assessment that is based on biological path­
ways and processes. That approach acknowledges the 
multifactorial and nonspecific nature of disease causa ­
tion—that is, stressors from multiple sources can con­
tribute to a single disease, and a single stressor can lead 
to multiple adverse outcomes. The new direction offers 
great promise for illuminating how various agents cause 
disease, but 21st century science—with its diverse, com­
plex, and potentially large datasets—poses challenges re­
lated to analysis, interpretation, and integration of the data 
that are used in risk assessment. For example, transparent, 
reliable, and vetted approaches are needed to analyze tox­
icogenomic data to detect the signals that are relevant for 
risk assessment and to integrate the findings with results 
of traditional whole-animal assays and epidemiological 
studies. Approaches will also be needed to analyze and in­
tegrate different 21st century data streams and ultimately 
to use them as the basis of inferences about, for example, 
chemical hazard, dose–response relationships, and groups 
that are at higher risk than the general population. Agen­
cies have systems of practice, guidelines, and default as­
sumptions to support consistent and efficient approaches 
to risk assessment in the face of underlying uncertainties, 
but their practices will need to be updated to accommo­
date the new data. 

In this chapter, the committee offers some recom­
mendations for improving the use of the new data in 
reaching conclusions for the purpose of decision-mak­
ing. Steps in the process include analyzing the data to 
determine what new evidence has been generated (data­
analysis step), combining new data with other datasets in 
integrated analyses (data-integration step), and synthesiz ­

ing evidence from multiple sources, for example, for mak
ing causal inferences, characterizing exposures and dose–  
response relationships, and gauging uncertainty (evi
dence-integration step). The three steps should be distin
guished from each other. The purpose of data analysis is 
to determine what has been learned from the new data, 
such as exposure data or results from individual toxicity 
assays. The new data might be combined with similar or 
complementary data in an integrative analysis, and the re
sulting evidence might then be integrated with prior evi
dence from other sources. Because the terminology in the 
various steps has varied among reports from agencies and 
organizations, the committee that prepared the present re
port adopts the concepts and terminology in Box 7-1. 

­

­
­

­
­

­

The committee begins by considering data interpre­
tation when using the new science in risk assessment 
and next discusses some approaches for evaluating and 
integrating data and evidence for decision-making. The 
committee briefly discusses uncertainties associated with 
the new data and methods. The chapter concludes by de­
scribing some challenges and offering recommendations 
to address them. 

DATA INTERPRETATION AND 

KEY INFERENCES
 

Interpreting data and drawing evidence-based infer­
ences are essential elements in making risk-based deci­
sions. Whether for establishing public-health protective 
limits for air-pollution concentrations or for determining 
the safety of a food additive, the approach used to draw 
conclusions from data is a fundamental issue for risk as­
sessors and decision-makers. Drawing inferences about 
human-health risks that are based on a pathway approach 
can involve answering the following fundamental ques­
tions: 

•  Can an identified pathway, alone or in combina­
tion with other pathways, when sufficiently perturbed, 
increase the risk of an adverse outcome or disease in hu­
mans, particularly in sensitive or vulnerable individuals? 

117
 



 

 

 
 

118 Using 21st Century Science to Improve Risk-Related Evaluations 

•  Do the available data—in vitro, in vivo, compu­
tational, and epidemiological data—support the judgment 
that the chemical or agent perturbs one or more pathways 
linked to an adverse outcome? 

• How does the response or pathway activation 
change with exposure? By how much does a chemical or 
agent exposure increase the risk of outcomes of interest? 

• Which populations are likely to be the most 
affected? Are some more susceptible because of co-
exposures, pre-existing disease, or genetic susceptibility? 
Are exposures of the young or elderly of greater concern? 

To set the context for the discussion of inference and 
data interpretation to address the above questions, the 
committee begins by considering a useful causal model 
of disease. As discussed in Chapter 5, the focus of toxi­
cological research has shifted from observing apical re­
sponses to understanding biological processes or path­
ways that lead to the apical responses or disease. There is 
also the recognition that a single adverse outcome might 
result from multiple mechanisms, which can have mul­
tiple components (see Figure 5-1). The 21st century tools, 
which can be used to determine the degree to which expo­
sures perturb pathways or activate mechanisms, facilitate 
a new direction in risk assessment that acknowledges the 
multifactorial nature of disease. 

One way in which to consider the multifactorial na
ture of disease is to use the sufficient-component-cause 
model (Rothman 1976; Rothman and Greenland 2005). 
The sufficient-component-cause model is an extension of 
the counterfactual notion1  and considers sets of actions,  
events, or states of nature that together lead to the outcome 
under consideration. The model provides a way to account 

­

1The counterfactual is the state that is counter to the facts; for 
example, what would the risk of lung cancer have been if cigarette-
smoking did not exist? 

for multiple factors that can combine to result in disease 
in an individual or population. It addresses the question, 
What are the various events that might have caused a par
ticular effect? For example, a house caught fire because 
of a constellation of events—fire in the fireplace, wooden 
house, strong wind, and alarm not functioning—that to
gether formed a sufficient causal complex, but no com
ponent was sufficient in itself (Mackie 1980). The model 
leads to the designation of causes or events as necessary, 
sufficient, or neither. 

­

­
­

Figure 7-1 illustrates the sufficient-component-cause 
concept and shows that the same outcome can result from 
more than one causal complex or mechanism; each “pie” 
has multiple components and generally involves the joint 
action of multiple components. Although most compo
nents are neither necessary (contained in every pie) nor 
sufficient (single-component-cause pie) to produce out
comes or diseases, the removal of any one component 
will prevent some outcomes. If the component is part of 
a common complex or part of most complexes, remov
ing it would be expected to result in prevention of a sub
stantial amount of disease or possibly of all disease (IOM 
2008). It is important to note that not every component in 
a complex has to be known or removed to prevent cases 
of disease. And exposures to each component of a pie do 
not have to occur at the same time or in the same space, 
depending on the nature of the disease-producing process. 
Relevant exposures might accumulate over the life span 
or occur during a critical age window. Thus, multiple ex
posures (chemical and nonchemical) throughout the life 
span might affect multiple components in multiple mech
anisms. Moreover, variability in the exposures received 
by the population and in underlying susceptibility and the 
multifactorial nature of chronic disease imply that mul
tiple mechanisms can contribute to the disease burden in 
a population. 

­

­

­
­

­

­

­

BOX 7-1 Data Analysis and Integration Terminology Used in This Report
	

Data: the quantitative or qualitative values generated by a measurement process or modeling.
	

Evidence: the accumulated body of knowledge on a particular topic. 


Data analysis: the application of mathematical and statistical techniques to a dataset to investigate hypotheses, 

perform estimation, and assess the evidence.
	

Data integration: analytical processes that combine data from multiple sources.
	

Evidence integration: the consideration, whether qualitative or quantitative, of evidence from multiple sources.
	

Causal inference: the evaluation of evidence from all relevant sources to judge whether an association is causal.
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The definitions of component, mechanism, and path­
way are the same as those provided in Chapter 5 in the 
discussion of the new direction in risk assessment. Box 
7-2 provides the definitions in the context of the sufficient-
component-cause model and is a reminder of the general 
definitions provided in Chapter 1. Given Figure 7-1 and 
Box 7-2, a mechanism of a disease will typically involve 
more than one component or pathway; multiple pathways 
will likely be involved in the production of disease. 

The sufficient-component-cause model is a useful 
construct for considering methods for interpreting data 
and drawing inferences for risk assessment on the basis of 
21st century data. It can be used to interpret mechanistic 
data for addressing the four critical questions above. And 
it is useful for considering whether a mechanism is com­
plete (that is, whether all the necessary components are 
present or activated sufficiently to produce disease) and 
for considering the degree to which elimination or sup­
pression of one component might be preventive. 

FIGURE 7-1 Multifactorial nature of disease illustrated by the 
sufficient-component-cause model in which various overall mecha­
nisms (I, II, and III) of a disease are represented as causal pies of 
various components (A–J). 

Identifying Components, Mechanisms, and 

Pathways That Contribute to Disease
 

Research on the causes of cancer provides a concrete 
example of the uses of the multifactorial disease concept 
and consideration of upstream biological characteristics. 
Ten characteristics of carcinogens have been proposed 
(IARC 2015; Smith et al. 2016) on the basis of mecha­
nisms associated with chemicals that are known to cause 
cancer in humans (see Table 7-1). The International Agen­
cy for Research on Cancer (IARC) is using the charac­
teristics as a way to organize mechanistic data relevant 
to agent-specific evaluations of carcinogenicity (IARC 
2016a). The committee notes that key characteristics for 
other hazards, such as cardiovascular and reproductive 
toxicity, could be developed as a guide for evaluating the 
relationship between perturbations observed in assays, 
their potential to pose a hazard, and their contribution to 
risk. 

The IARC characteristics include components and 
pathways that can contribute to a cancer. For example, 
“modulates receptor-meditated effects” includes activa­
tion of the aryl hydrocarbon receptor, which can initiate 
downstream events, many of which are linked to cancer, 
such as thyroid-hormone induction, xenobiotic metabo­
lism, pro-inflammatory response, and altered cell-cycle 
control. Ones that are linked often fall under other IARC 
characteristics—for example, “cell-cycle control” falls 
under “alters cell proliferation”—and therefore are com­
ponents of other characteristics. At the molecular level, 
some specific pathways that are ascribed to particular can ­
cers (for example, the “chromosome unstable pathway” 
for pancreatic cancer) and fall within the IARC charac­
teristics of carcinogens have been curated in the Kyoto 
Encyclopedia of Genes and Genomes2 databases. 

2See http://www.genome.jp/kegg/disease/. 

BOX 7-2 Definitions of Component, Mechanism, and Pathway for This Report 

Component: In the sufficient-component-cause model, a biological factor, event, or condition that when present 
with other components produces a disease or other adverse health outcome. 

Mechanism: Generally, a detailed description of the process by which an agent causes an effect. In the sufficient-
component-cause model, the committee considers mechanisms to be comprised of components that cause dis-
ease or other adverse health outcome when they co-occur. 

Pathway: The sequence of events or network of biological processes that make up mechanisms. In applying the 
sufficient-component-cause model, the committee considers pathways to be components of mechanisms. 

http://www.genome.jp/kegg/disease/
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TABLE 7-1  Characteristics of Carcinogens  
Characteristica Example of Relevant Evidence 
Is electrophilic or can be metabolically activated Parent compound or metabolite with an electrophilic structure 

(e.g., epoxide or quinone), formation of DNA and protein adducts 

Is genotoxic DNA damage (DNA-strand breaks, DNA-protein crosslinks, or 
unscheduled DNA synthesis), intercalation, gene mutations, 
cytogenetic changes (e.g., chromosome aberrations or 
micronuclei) 

Alters DNA repair or causes genomic instability Alterations of DNA replication or repair (e.g., topoisomerase II, 
base-excision, or double-strand break repair) 

Induces epigenetic alterations DNA methylation, histone modification, microRNA expression 

Induces oxidative stress Oxygen radicals, oxidative stress, oxidative damage to 
macromolecules (e.g., DNA or lipids) 

Induces chronic inflammation Increased white blood cells, myeloperoxidase activity, altered 
cytokine, or chemokine production 

Is immunosuppressive Decreased immunosurveillance, immune-system dysfunction 

Modulates receptor-mediated effects Receptor activation or inactivation (e.g., ER, PPAR, AhR) or 
modulation of endogenous ligands (including hormones) 

Causes immortalization Inhibition of senescence, cell transformation 

Alters cell proliferation, cell death, or nutrient supply Increased proliferation, decreased apoptosis, changes in growth 
factors, energetics and signaling pathways related to cellular 
replication or cell cycle 

aAny characteristic could interact with any other (such as oxidative stress, DNA damage, and chronic inflammation), and a
 
combination provides stronger evidence of a cancer mechanism than one would alone.
 
Sources: IARC 2016; Smith et al. 2016. 
 

One challenge is to evaluate whether a component 
or specific biological pathway contributes to a particular 
adverse outcome or disease. The challenge is not trivial 
given that inferences must be drawn from evidence that is 
far upstream of the apical outcome. The ability to identify 
the contributions of various components and pathway per
turbations to disease and to understand the importance of 
changes in them can be critical to 21st century risk-based 
decision-making. However, the need for such an under
standing will be specific to the decision context. In some 
contexts, the lack of any observable effect on biological 
processes in adequate testing at levels much above those 
associated with any human exposure might be sufficient; 
thus, there is not always the need to associate biological 
processes directly with potential human health effects. 
In other cases, it will be critical to understand whether a 
pathway contributes to disease, for example, in conduct
ing a formal hazard identification or in deciding which 
whole-animal assays should be used when a chemical 

­

­

­

is highly ranked in a priority-setting exercise for further 
testing. 

The committee proposes a possible starting point 
for linking components, pathways, and, more generally, 
mechanisms to a particular disease or other adverse out­
come. The question is whether the components or path­
ways and other contributing factors cause the disease. 
The committee draws on and adapts a causal-inference 
approach to guide the evaluation of the new types of data. 
Causal inference refers to the process of judging whether 
evidence is sufficient to conclude that there is a causal 
relationship between a putative cause (such as a pathway 
perturbation) and an effect of interest (such as an adverse 
outcome). The causal guidelines that were developed by 
Bradford Hill (1965) and by the committee that wrote the 
1964 Surgeon General’s report on smoking and health 
(DHEW 1964) have proved particularly useful for inter­
preting epidemiological findings in the context of experi­
mental and mechanistic evidence. Those guidelines have 
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been proposed by others for evaluating adverse-outcome 
pathways (OECD 2013). Box 7-3 presents the Hill– 
Surgeon General guidelines and suggests how they can 
be used to evaluate causal linkages between health effects 
and components, pathways, and mechanisms. 

Only one element of the guidelines, that cause pre­
cedes effect (temporality), is necessary, although not 
sufficient. The remaining elements are intended to guide 
evaluation of a particular body of observational evidence 
(consistency and strength of association) and to assess the 
alignment of that evidence with other types of evidence 
(coherence). The guidelines were not intended to be ap­
plied in an algorithmic or check-list fashion, and opera­
tionalizing the guidelines for various applications has not 
been done (for example, defining how many studies are 
needed to achieve consistency). Use of the guidelines in­
herently acknowledges the inevitable gaps and uncertain­
ties in the data considered and the need for expert judg ­
ment for synthesis. Guidance and best practices should 
evolve with increased experience in linking pathways, 
components, and mechanisms to health effects. 

Other approaches have been proposed to link out­
comes to pathways or mechanisms. The adverse-out­
come-pathway and network approaches represent efforts 
to map pathways that are associated with various out­
comes (see, for example, Knapen et al. 2015), and they 
are based on general guidance (OECD 2013) similar to 
that described above. A complementary approach that 
deserves consideration is the meet-in-the-middle concept 
described in Chapter 4, in which one tries to link the bio­
markers of exposure and early effect with the biomark­
ers of intermediate effect and outcome (see Figure 4-1). 
Different scientific approaches—traditional epidemiol­
ogy at the population level, traditional toxicology at the 
organism level, and 21st century tools at the mechanistic 
level—will be used to address the challenge of linking 
effects with pathways or mechanisms. The multiple data 
streams combined with expert-judgement–based systems 
for causal inference (see Box 7-3; DHEW 1964; EPA 
2005, 2015; IARC 2006) will probably serve as bridges 
between effects seen in assay systems and those observed 
in animal models or in studies of human disease. Expert 
judgments should ultimately involve assessments by ap ­
propriate multidisciplinary groups of experts, whether ex­
ternal to or in an agency. 

Linking Agents to Pathway Perturbations 

For drawing conclusions about whether a substance 
contributes to disease by perturbing various pathways or 
activating some mechanism, the committee finds the prac­
tice of IARC to be a reasonable approach. In evaluating 
whether an agent has one or more of the 10 characteris­
tics of carcinogens noted above, IARC (2016) conducts a 
broad, systematic search of the peer-reviewed in vitro and 

in vivo data on humans and experimental systems for each 
of the 10 characteristics and organizes the specific mech ­
anistic evidence by these characteristics. That approach 
avoids a narrow focus on specific pathways and hypoth ­
eses and provides for a broad, holistic consideration of the 
mechanistic evidence (Smith et al. 2016). IARC rates the 
evidence on a given characteristic as “strong,” “moder­
ate,” or “weak” or indicates the lack of substantial data to 
support an evaluation. The evaluations are incorporated 
into the overall determinations on the carcinogenicity of a 
chemical. More recently, after providing the evidence on 
each of the 10 characteristics, IARC summarized the find ­
ings from the Tox21 and ToxCast high-throughput screen­
ing programs related to the 10 characteristics with the ca­
veat that “the metabolic capacity of the cell-based assays 
is variable, and generally limited” (IARC 2015, 2016a). 

Integrative approaches are being developed to evalu­
ate high-throughput data in the Tox21 and ToxCast data­
bases for the activity of a chemical in pathways associated 
with toxicity. Qualitative and quantitative approaches for 
scoring pathway activity have been applied. For example, 
scoring systems have been developed for “gene sets” of 
assays that are directed at activity in receptor-activated 
pathways, such as pathways involving androgen, estro­
gen, thyroid-hormone, aromatase, aryl-hydrocarbon, and 
peroxisome proliferator-activated receptors (Judson et al. 
2010; Martin et al. 2010, 2011; EPA 2014) and for “bio­
activity sets” that are directed at activity in other general 
pathways, such as acute inflammation, chronic inflam­
mation, immune response, tissue remodeling, and vascu­
lar biology (Kleinstreuer et al. 2014). Chemical mecha­
nisms that are inferred from high-throughput findings 
do not always match the knowledge of how a chemical 
affects biological processes that is gained from in vivo 
and mechanistic studies (Silva et al. 2015; Pham et al. 
2016). That discordance underscores the importance of 
a broad review in associating chemicals to pathways or 
mechanisms that contribute to health effects. Appendix B 
provides a case study for a relatively data-sparse chemi­
cal that appears to activate the estrogenicity pathway as 
shown in high-throughput assays; a read-across inference 
could be drawn by comparing the data-sparse chemical 
to chemicals in the same structural class that have been 
studied better. 

The causal-guidance topics provided in Box 7-3 
can be adapted to guide expert judgments in establish ­
ing causal links between chemical exposure and pathway 
perturbations on the basis of broad, systematic consider­
ation of the evidence from the published literature and 
government databases. Temporality often is not an issue 
in the context of experimental assays because the effects 
are measured after exposure. For epidemiological studies, 
temporality might be a critical consideration inasmuch 
as biological specimens that are used to assess exposure 
might have been collected at times of uncertain relevance 
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BOX 7-3 Causal Guidelines for Evaluating Associations of 

Health Effects and Components, Pathways, and Mechanisms
	

Temporality: Interpretation of evidence on temporality is essential for causal inference: cause must come before 
effect. Assessment of temporality might be complicated by uncertainty because the full sequence of events that 
leads to health effects is typically not known, and the suite of possible pathways or components involved in the 
mechanism is rarely completely understood. 

Strength of association: The size of an effect related to the exposure in question can be important in identifying 
causality, although a strong signal in single or multiple assays is not a prerequisite for concluding that a true causal 
association exists. Nonetheless, strong associations of pathway-perturbation measures (such as thyroid-hormone 
status) with outcome (such as IQ deficit) weigh against other factors that might have led to the association. 

Consistency: In the original causal-inference guidelines, consistency referred to the reproducibility of a finding, that 
is, whether findings from multiple observational studies conducted by different investigators in different populations 
were comparable. Replication is the basis for scientific progress, and replication in multiple studies increases con-
fidence in the new findings. Another consideration of consistency in the context of 21st century data is related to 
outcomes that have been linked to suites of chemicals tested in assays that evaluate the same perturbations. Do 
chemicals that affect similar pathways and mechanisms lead to related outcomes and provide consistent results? 
Can differences in outcome be explained by population or context differences? Variability in assay performance 
and in domain applicability can result in inconsistent results that do not necessarily exclude the possibility of a 
causal relationship. 

Plausibility: The question here is whether activation of a proposed mechanism or perturbation of a pathway can be 
plausibly linked to a health effect. Is the association consistent with what is known generally about the chemicals or 
conditions that perturb various pathways and the outcome of concern? The concept of meet-in-the-middle that was 
described in Chapter 4 is useful in addressing this question. How are the data related to what has been observed 
in human populations (if studied) regarding some intermediate biomarker that in turn predicts the probability of 
disease? A cautionary note in incorporating that criterion into guidelines is that plausibility is intrinsically grounded 
in the state of knowledge, and mechanisms that lead to health effects might act in ways that reside outside of cur-
rent biological understanding. 

Specificity: Specificity—generally interpreted as a singular relationship between an exposure and a disease—is 
often set aside. For example, tobacco smoke, a complex mixture, causes multiple malignancies, cardiovascular 
diseases, and respiratory diseases, and these conditions have other causes. With the powerful 21st century tools, 
the specificity could be explored by answering this question: Does the interference or blocking of a pathway (for 
example, by using knockout mice) block or otherwise change the occurrence of the outcome? 

Coherence: Coherence, an element of plausibility, generally refers to the complementarity of different lines of 
evidence of cause and effect. With 21st century tools, coherence acquires a new dimension. Vertical coherence 
would be related to consistency over several levels of biological organization; for example, one might consider 
the effect of an inhibitor of histone deacetylation at different levels of organization. Horizontal coherence would be 
related to the presence of more than one effect at the same level of organization; for example, one might consider 
the increased rate of apoptosis and the decreased proliferative rate at the cellular level in the case of inhibition of 
histone deacetylation. 
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to the underlying disease pathogenesis and biomarkers of 
effect, and the development of disease might influence 
exposure patterns. Regarding strength of outcome in the 
context of Tox21 data, strong responses in multiple assays 
that are designed to evaluate a specific pathway or mech
anism would provide greater confidence that the tested 
chemical has the potential to perturb the pathway or ac
tivate the mechanism. Assessment of the relative potency 
of test chemicals in activating a mechanism or perturb a 
pathway will be informed by running assays with care
fully selected and vetted positive and negative reference 
chemicals that have known in vivo effects. As discussed 
further below, methods or technologies that produce enor
mous datasets pose special challenges. Procedures to sift 
through the data to determine signals of importance are 
needed. As the scientific community develops experi
ence, quantitative criteria and procedures that reflect best 
practices can be incorporated into guidelines for judg
ing the significance of signals from such data. Regard
ing consistency, consideration should be given to findings 
from the same or similar assays in the published literature 
and government programs and from assays that use ap
propriately selected reference chemicals. Caution should 
be exercised in interpreting consistency of results from 
multiple assays and chemical space because assays might 
vary in the extent to which they are “fit for purpose” (see 
Chapter 6). Regarding plausibility and coherence, there 
are considerations regarding consistency between what is 
known generally about a chemical or structurally similar 
chemicals and the outcome of concern and between find
ings from different types of assays and in different levels 
of biological organization. In considering the possible 
applicability of practices adapted from the Bradford Hill 
guidelines for evaluating the evidence of pathway pertur
bations by chemicals, the committee emphasizes that the 
guidelines are not intended to be applied as a checklist. 

­

­

­

­

­

­
­

­

­

­

Assessing Dose–Response Relationships 

Chapter 5 and the case studies described in the ap­
pendixes show how some of the various 21st century data 
might be used in understanding dose–response relation­
ships for developing a quantitative characterization of 
risks posed by different exposures. As noted in Chapter 
5, it is not necessary to know all the pathways or com­
ponents involved in a particular disease for one to begin 
to apply the new tools in risk assessment, and a number 
of types of analyses that involve dose–response consider­
ations can incorporate the new data. Table 7-2 lists some 
of those analyses and illustrates the type of inferences or 
assumptions that would typically be required in them. 

Given that most diseases that are the focus of risk as
sessment have a multifactorial etiology, it is recognized 
that some disease components result from endogenous 
processes or are acquired by the human experience, such 

­

as background health conditions, co-occurring chemical 
exposures, food and nutrition, and psychosocial stressors 
(NRC 2009). Those additional components might be in­
dependent of an environmental stressor under study but 
nonetheless influence and contribute to the risk and inci ­
dence of disease (NRC 2009; Morello-Frosch et al. 2011). 
They also can increase the uncertainty and complexity of 
dose–response relationships—a topic discussed at length 
in the NRC (2009) report Science and Decisions: Advanc-
ing Risk Assessment, and the reader is referred to that re­
port for details on deriving dose–response relationships 
for apical outcomes by using mechanistic and other data. 
The 21st century tools provide the mechanistic data to 
support those deviations. 

The committee emphasizes the importance of being 
transparent, clear, and, to the greatest extent appropriate, 
consistent about the explicit and implicit biological as­
sumptions that are used in data analysis, particularly dose– 
response analysis. Best practices will develop over time 
and should be incorporated into formal guidance to ensure 
the consistent and transparent use of procedures and as­
sumptions in an agency. The development and vetting of 
such guidance through scientific peer-review and public-
comment processes will support the best use of the new 
data in dose–response practices. The guidelines should 
address statistical and study-selection issues in addition to 
the assumptions that are used in the biological and physi­
cal sciences for analyzing such data. For example, studies 
that are used to provide the basis of the dose–response 
description should generally provide a better quantitative 
characterization of human dose–response relationships 
than the studies that were not selected. Some issues re­
lated to statistical analyses in the context of large datasets 
are considered below. Various dose–response issues pre­
sented in Table 7-2 involve integration of information in 
and between data domains, and tools for such integration 
and the possible implicit biological assumptions needed 
for their use are discussed later in this chapter. 

Characterizing Human Variability 
and Sensitive Populations 

People differ in their responses to chemical exposures, 
and variability in exposure and response is a critical con­
sideration in risk assessment. For example, protection of 
susceptible populations is a critical aim in many risk-mit­
igation strategies, such as the setting of National Ambient 
Air Quality Standards for criteria air pollutants under the 
Clean Air Act. Variability in response drives population-
level dose–response relationships (NRC 2009), but char­
acterizing variability is particularly challenging given the 
number of sources of variability in response related to 
such inherent factors as genetic makeups, life stage, and 
sex and such extrinsic factors as psychosocial stressors, 
nutrition, and exogenous chemical exposures. Genetic 



 

 
  

  
 

   
  

   
  

 
 

  

       
  

 
          

 

  
 

  

 
 

        

   
  

    
  

       
 

 
 

  
  

  

 
 

 

   
  

  
 

 
  

 

      
  

    
 

124 Using 21st Century Science to Improve Risk-Related Evaluations 

makeup has often been seen as having a major role in de
termining variability, but research indicates that it plays 
only a minor role in determining variability in response 
related to many diseases (Cui et al. 2016). Thus, in con
sidering use and integration of 21st century science data, 
the weight given to data that reflect genetic variability 
needs to be considered in the context of the other sources 
of human variability. 

­

­

Figure 7-2 illustrates how a wide array of factors— 
each potentially varying in a population—can combine to 
affect the overall degree of interindividual variability in 
a population (Zeise et al. 2013). Variability is shown in 
the context of the source-to-outcome continuum that has 
been expanded and elaborated on in Chapters 2 and 3. 
As described in Chapter 2, environmental chemical expo­

sure at particular concentrations leads to an internal ex
posure that is modified by pharmacokinetic elements. As 
described in Chapter 3, internal exposure results in some 
molecular changes that progress in later steps to out
comes. Figure 7-2 shows how variability in other expo
sures and in biological factors can affect different points 
along the source-to-outcome pathway and lead to differ
ent outcomes in individuals. Modern exposure, toxicol
ogy and epidemiology tools—including biomarkers and 
measures of physiological status—can all provide indica
tions of susceptibility status. The same indicators can be 
observed experimentally and used in models to help in 
drawing inferences about variability that are relevant to 
humans. 

­

­
­

­
­

­

TABLE 7-2  Examples of Inferences or Assumptions Needed to Use 21st Century Data in  Various  Analyses  
Analysis That Involves Dose–Response  
Considerations  Examples of Inferences or Assumptions Needed 
Read-across: health reference values 
derived from structurally or biologically 
similar anchor chemicals 

Toxicogenomic screening to determine 
whether environmental exposures are of 
negligible concern or otherwise 

Extrapolation of effect or benchmark doses 
in vitro to human exposures to establish 
health reference valuesa 

Priority-setting of chemicals for testing 
on the basis of in vitro screens 

Clarification of low end of dose–response 
curve (for rich datasets) 

Construction of dose–response curve 
from population variability characteristics 
(NRC 2009) 
Selection of method or model for 
dose–response characterization 

•	 Sufficiency of chemical similarities for read-across on the basis, for example, 
of biological, chemical-structure, metabolic, or mechanistic similarities 

•	 Comparison of chemical activity on the basis, for example, of 
pharmacokinetics and biological activity in assays 

•	 Generalizability of results to susceptible and general human populations 
•	 Consequence or importance of toxicogenomic effects seen at exposures 

greater than environmental exposures 
•	 Sufficiency of procedure to filter and analyze genomics data; assumptions as 

to which pathway-related indicators are important 

•	 Sufficiency of understanding about human pharmacokinetic and 
pharmacodynamic variability 

•	 Generalizability of results to susceptible and general human populations. 

•	 Sufficiency of metabolic capacity and biological coverage of cell systems in 
domains of interest for chemicals that are being ranked 

•	 Adequacy of pharmacokinetic adjustments in the context of human exposures 
and population variability 

•	 Sufficiency of understanding of mechanisms 
•	 Extent to which sensitive elements of involved pathways have been evaluated 

by mechanistic studies 

•	 Sources of pharmacokinetic and pharmacodynamic variability sufficiently 
captured and integrated into a population-variability characterization 

•	 Choice of a low-dose linear model or a low-dose non-linear or threshold 
model on the basis of consideration of mechanisms, population vulnerability, 
and background exposures (NRC 2009) 

aFor most outcomes, it is not possible simply to replace a value derived from a whole-animal assay with a value derived from an 
in vitro assay. The lack of understanding of all the pathways involved makes such direct replacement premature. The lack of 
metabolic capacity in cell systems and the limitations of biological coverage pose further challenges to the free-standing use of in 
vitro approaches for derivation of guidance values in most contexts (see Chapters 3 and 5). 
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Chapter 2 describes pharmacokinetic models of vari­
ous levels of complexity that can be used to evaluate hu­
man interindividual variability in an internal dose that re­
sults from a fixed external exposure. Chapter 3 describes 
relatively large panels of lymphoblastoid cell lines derived 
from genetically diverse human populations that can be 
used to examine the genetic basis of interindividual vari­
ability in a single pathway. The chapter also describes how 
genetically diverse panels of inbred mice strains can be 
used to explore variability and how various studies that 
use such strains have been able to identify genetic factors 
associated with liver injury from acetaminophen (Harrill et 
al. 2009) and tetrachloroethylene (Cichocki et al. in press). 
The combination of such experimental systems with addi­
tional stressors can be used to study other aspects of vari­
ability. Chapter 4 covers epidemiological approaches used 
to observe variability in human populations. 

Data-driven variability characterizations have been 
recommended as a possible replacement for standard de
faults used by agencies, in specific cases and in general. 
Data-driven variability factors can be considered in light 
of the guidance for departure from defaults provided in 

­

NRC (2009), the degree to which the full array of sources 
of variability have been adequately explored, and the reli
ability of the evidence integration. The modified causal 
guidance provided in Box 7-3 can be used to assess the 
emerging qualitative and quantitative evidence on human 
variability, and the analysis and integration approaches 
described later in the chapter are also relevant here. 

­

APPROACHES FOR EVALUATING AND 
INTEGRATING DATA AND EVIDENCE 

The volume and complexity of 21st century data pose 
many challenges in analyzing them and integrating them 
with data from other (traditional) sources. As noted ear
lier, the necessary first step is the analysis of the toxicity-
assay results and exposure data. That stage of analysis is 
followed by the data-integration step in which the new 
data are combined with other datasets (the combination of 
similar or complementary data in an integrative analysis). 
The results of such analyses might then be integrated with 
prior evidence from other sources (evidence integration). 
The discussion below first addresses the issues associated 

­

FIGURE 7-2 Determinants of variability in human response result from inherent and extrinsic factors that influence propagation of dose and 
responses along the source-to-outcome continuum. Source: Zeise et al. 2013. 
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with analyzing individual datasets and studies—that is, 
evaluating individual study quality and tackling the chal
lenge of big data. Next, approaches for interpreting and 
integrating data from various studies, datasets, and data 
streams are described, and some suggestions are provided 
for their use with 21st century data. The committee notes 
that recent reports of the National Research Council and 
the National Academies of Sciences, Engineering, and 
Medicine have dealt extensively with the issues of data 
and evidence integration (see, for example, NRC 2014 
and NASEM 2015). The committee notes that although 
formal methods receive emphasis below, findings could 
be sufficiently compelling without the use of complex an
alytical and integrative methods. In such cases, decisions 
might be made on direct examination of the findings. 

­

­

Analyzing Individual Datasets and Studies 

Evaluating Individual Studies 

Several NRC reports have emphasized the need to 
use standardized or systematic procedures for evaluat­
ing individual studies and described some approaches for 
evaluating risk of bias and study quality (see, for example, 
NRC 2011, Chapter 7; NRC 2014, Chapter 5). Those re­
ports, however, acknowledged the need to develop meth­
ods and tools for evaluating risk of bias in environmen­
tal epidemiology, animal, and mechanistic studies. Since 
release of those reports, approaches for assessing risk of 
bias in environmental epidemiology and animal studies 
have been advanced (Rooney et al. 2014; Woodruff and 
Sutton 2014; NTP 2015a). Approaches for assessing risk 
of bias in mechanistic studies, however, are still not well 
developed, and there are no established best practices spe­
cifically for high-throughput data. The committee empha­
sizes the need to develop best practices for systematically 
evaluating 21st century data and for ensuring transparency 
when a study or -omics dataset is excluded from analysis. 
There is also a need for data-visualization tools to aid in 
interpreting and communicating findings. The committee 
notes that evaluating the quality of an individual study is 
a step in systematic review, discussed below. 

Tackling the Challenge of Big Data 

The emerging technologies of 21st century science 
that generate large and diverse datasets provide many 
opportunities for improving exposure and toxicity as­
sessment, but they pose some substantial analytical chal­
lenges, such as how to analyze data in ways that will iden­
tify valid and useful patterns and that limit the potential 
for misleading and expensive false-positive and false-
negative findings. Although the statistical analysis and 
management of such data are topics of active research, 
development, and discussion, the committee offers in Box 

7-4 some practical advice regarding several statistical is
sues that arise in analyzing large datasets or evaluating 
studies that report such analyses. 

­

To illustrate one of the statistical issues, the winner’s 
curse correction, consider an in vitro assay that is used to 
measure chemicals in a class for a particular activity, such 
as binding to the estrogen receptor alpha. The application 
might call for identifying the least or most potent chemi­
cal or the range of activity for the class. Figure 7-3 shows 
how a group of chemicals can appear to differ consider­
ably in an assay—by more than two orders of magnitude 
in this example. However, if the results of the assay are 
measured with a comparable degree of error, conclusions 
can be misleading. After correction for error by using a 
simple Bayesian approach with a hierarchical model for 
variation of true effects, chemicals in the group differ 
from one another in potency by less than 1 order of mag­
nitude, and the chemical that originally was observed to 
have the highest potency in the assay moves to the second 
position. 

Another illustration is offered by the case study for 
4-methylcyclohexanemethanol (MCHM, the chemical 
spilled into the Elk River in West Virginia) that is dis­
cussed in Appendix C. In addition to a number of in vitro 
and in vivo studies, the National Toxicology Program per­
formed 5-day toxicogenomic studies in rats on MCHM 
and other chemicals spilled into the river. Initial findings 
of toxicogenomic signals—referred to as “molecular bio­
logical processes” that were indicative of liver toxicity— 
were made at around 100 mg/kg, which was a dose just 
below the apical observations of liver toxicity at 300 and 
500 mg/kg, for example, for increased triglycerides (NTP 
2015b). However, a refined analysis that sought to limit 
false discovery and maximize reproducibility (S. Auer­
bach, National Toxicology Program, personal communi­
cation, November 1, 2016) found changes in measures of 
dose-related toxicogenomic activity—activity of at least 
five genes that are associated with, for example, choles ­
terol homeostasis by the liver—at doses lower by nearly 
a factor of 10 (median benchmark dose of 13 mg/kg-day; 
NTP 2016) than doses previously thought to be the low­
est doses to show activity. The example illustrates the 
challenge of developing approaches to evaluate toxicoge­
nomic data that, while not excluding important biologi­
cal signals, address the issue of false positives. With the 
increasing generation and analysis of toxicogenomic data 
in animal experiments, the additional experience should 
facilitate the development of best practices. Similar con­
siderations apply to the use of toxicogenomic data from in 
vitro and epidemiological studies. 

Aside from the statistical approaches used for data 
analysis, other considerations are involved in judging the 
quality and potential bias of studies that use 21st century 
data, particularly regarding applicability or generalizabil
ity of a study for addressing the question at hand. Such 

­
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BOX 7-4 Development of Best Statistical Practices for Analyzing Large Toxicity Datasets
	

The following topics are applicable to large datasets, such as activity measurements from high-throughput 
screening (HTS) assays for chemicals. Some are applicable for analyzing associations of single-nucleotide poly-
morphisms (SNPs) with disease or exposure conditions or for analyzing dose–response relationships of gene 
expression in HTS studies. 

Multiple comparisons: The total number of statistical tests performed and the false-negative and false-positive 
(error) control procedures should be clearly stated. Error-control procedures include ones that control the 
family-wise error rate, the false-discovery rate, or a Bayesian posterior probability of the null hypothesis (Efron 
2011; Gelman et al. 2012). Overly conservative approaches for controlling family-wise error, such as Bonfer-
roni control, can hide important biological signals. 

Filtering: Assays or chemicals might be excluded before comparisons are made. For example, assays might 
be dropped if they show no activity for any chemical, lack statistical power to detect an association, or are 
otherwise uninformative. Care should be taken to avoid bias in the assessment of an association when the 
associations are themselves used for filtering 

Covariate correction: Correction for covariates unrelated to the primary hypotheses improves statistical power 
and reduces the potential for confounding. For high-throughput platforms, the data are often rich enough to 
provide evidence of latent variation due to technical or batch artifacts (Leek and Storey 2007); failure to ac-
count for this variation can result in spurious findings, often dramatically (Leek et al. 2010). Known confound-
ers can be controlled for by regression or stratified analysis, and unobserved confounders can be controlled 
for by latent or surrogate variable analysis. 

Feature or pathway enrichment: These methods attempt to identify features that together have stronger or 
more biologically interpretable results than individual features alone. For example, collections of assays for 
a receptor target associated with an in vivo end point can be grouped. Ideally, the group tests use methods 
to address the correlation in the data to control false-positive findings (Hosack et al. 2003; Gatti et al. 2010). 

Network and module analysis: Networks or modules of predictors or features might be identified by using cor-
relation or co-expression analyses (Langfelder and Horvath 2008). The methods are still being developed to 
identify how networks change in response to a measured exposure or a toxicity end point. One approach is 
to derive a summary measure from the network and then to measure the correlation of the summary measure 
with the end point. 

Integration of hypothesis testing: When aggregating multiple assays or replicated studies, one might use meta-
analysis or empirical Bayes approaches if the assays are on the same scale and are measuring the same 
quantities. Independent p values might be combined by using Fisher’s combined p-value or other method 
(Zaykin et al. 2007) to test, for example, that a chemical has no effect on any of a large number of -omics 
outcomes. However, an integrated analysis of multiple separate datasets violates independence assumptions 
when some portions of the data are shared in conducting analyses. For example, comparison of genome-wide 
association studies for two or more diseases might use the same set of controls (Wellcome Trust Case Control 
Consortium 2007), and this could bias the integrated analysis (Zaykin and Kozbur 2010). 

Shrinkage and winner’s curse correction: Measurement error can affect output from multiple assays or condi-
tions in such a way that the measured outcome values are more varied than the underlying true variation. The 
same principle applies to multiple effect-size estimates; for example, in a genome-wide association study of 
numerous SNPs, the apparent association of the most significant SNPs with a trait or disease might tend to be 
greater than the true association. Correction by shrinkage techniques or by winner’s curse correction methods 
will provide more realistic estimates. 
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FIGURE 7-3 Correction for assay measurement error. Left, observed values (circle) for 20 chemicals in an in vitro assay ± 2 standard errors 
(error bar). Right, values corrected for measurement error. 

considerations raised in earlier chapters include the meta­
bolic competence of in vitro assays, the nature of the cells 
used in in vitro assays, and the representativeness of the 
nominal dose in in vitro systems. 

Approaches for Integrating Information 
from Studies, Datasets, and Data Streams 

Systematic Review 

As defined by the Institute of Medicine (IOM 2011, p. 
1), systematic review “is a scientific investigation that fo ­
cuses on a specific question and uses explicit, prespecified 
scientific methods to identify, select, assess, and summa ­
rize the findings of similar but separate studies.” Specifi ­
cally, it is an approach that formulates an a priori question 
that specifies a population or participants (the exposed 
group under study), an exposure (the substance and ex­
posure circumstance), a comparator (subjects who have 
lower exposures), and outcomes of interest; conducts a 
comprehensive literature search to identify all relevant ar­
ticles; screens the literature according to prespecified ex ­
clusion and inclusion criteria; evaluates study quality and 
study bias according to prespecified methods; and sum ­
marizes the results. The summary might or might not pro­
vide a quantitative estimate (see meta-analysis discussion 
below), and transparency is emphasized in the overall ap ­
proach. Systematic review has been used extensively in 
the field of comparative-effectiveness research in which 
one attempts to identify the best treatment option in the 
clinical setting. In that field, the systematic-review pro­
cess is relatively mature (Silva et al. 2015); guidance is 
provided in the Cochrane handbook (Higgins and Green 
2011). Although there are some challenges in using sys­

tematic review in risk assessment, such as formulating a 
sufficiently precise research question and obtaining ac
cess to primary data, its application in human health risk 
assessments is a rapidly developing field in which frame
works (Rooney et al. 2014; Woodruff and Sutton 2014) 
and examples (Kuo et al. 2013; Lam et al. 2014; Chappell 
et al. 2016) are available. The report Review of EPA’s In-
tegrated Risk Information System  (IRIS) Process (NRC 
2014) provides an extensive discussion of systematic re
view as applied to the development of IRIS assessments 
(hazard and dose–response assessments). As indicated in 
that report, systematic review integrates the data within 
one data stream (human, animal, or mechanistic), and 
other approaches are then used to integrate the collective 
body of evidence. As noted above, one challenge for sys
tematic reviews that address environmental risks to hu
man health has been in developing methods to assess bias 
in mechanistic studies and their heterogeneity. Practical 
guidance for systematic review focused on human health 
risk has recently been developed (NTP 2015a). 

­

­

­

­
­

Meta-Analysis 

Meta-analysis is a broad term that encompasses sta­
tistical methods used to combine data from similar stud­
ies. Its goal is to combine effect estimates from similar 
studies into a single weighted estimate with a 95% confi­
dence interval that reflects the pooled data. If there is het­
erogeneity among the results of different studies, another 
goal is to explore the reasons for the heterogeneity. Two 
models—the fixed-effect model and the random-effects 
model—are typically used to pool data from different 
studies; each model makes different assumptions about 
the nature of the studies that contributed the data and 
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therefore uses different mechanisms for estimating the 
variance of the pooled effect. As noted in NRC (2014), 
“although meta-analytic methods have generated exten­
sive discussion (see, for example, Berlin and Chalmers 
1988; Dickersin and Berlin 1992; Berlin and Antman 
1994; Greenland 1994; Stram 1996; Stroup et al. 2000; 
Higgins et al. 2009; Al Khalaf et al. 2011), they can be 
useful when there are similar studies on the same ques­
tion.” 

As one might expect, meta-analyses are often applied 
to epidemiological studies to assess hazard (for example, 
does the pooled relative risk differ significantly from 
1.0?) or to characterize dose–response relationships (for 
example, relative risk per unit concentration). They have 
not seen much use for evaluating animal datasets because 
of difficulty in assessing and identifying sources of het­
erogeneity of the data. Similarly, their application to 21st 
century data streams is expected to be uncommon given 
the heterogeneity of the data and the need to integrate data 
from different types of measures even when evaluating 
the same mechanisms or pathways. 

Bayesian Approaches 

Bayesian methods provide a natural paradigm for in­
tegrating data from various sources while accommodating 
uncertainty. The method is based on the Bayes theorem 
and involves representing the state of knowledge about a 
variable or phenomenon, such as the slope of a dose–re­
sponse curve or how people differ from one another in 
their ability to metabolize a chemical, as captured by a 
probability distribution. As further information is generat­
ed about the variable, the “prior” probability distribution 
is “updated” to a new “posterior” probability distribution 
that reflects the updated state of knowledge. 

Early applications of Bayesian approaches were by 
DuMouchel and Harris (1983) to evaluate the carcinoge­
nicity of diesel exhaust by combining evidence from hu­
man, animal, and mechanistic studies, and by DuMouchel 
and Groer (1989) to estimate the rate of bone cancer 
caused by deposited plutonium from data on humans and 
dogs. Those examples involved strong assumptions about 
relevance and equivalence of different data streams (for 
example, human versus animal). Hierarchical, popula­
tion Bayesian methods have been used to integrate dif­
ferent lines of evidence on metabolism and its variabil­
ity in risk assessments of tetrachloroethylene (Bois et al. 
1996; OEHHA 2001) and trichloroethylene (EPA 2011; 
Chiu et al. 2014). Bayesian approaches have been used to 
estimate values of model parameters for physiologically 
based pharmacokinetic models and to characterize uncer­
tainty and variability in exposure estimates (Bois 1999, 
2000; Liao et al. 2007; Wambaugh et al. 2013; Dong et al. 
2016). They have also been applied to fate and transport 
modeling of chemicals at contaminated sites, of natural 

estrogens from livestock operations, and of bacteria from 
nonpoint sources (Thomsen et al. 2016) and have been 
shown to be broadly applicable for evidence integration 
(NRC 2014; Linkov et al. 2015). 

The starting point for a Bayesian analysis is the de­
termination of a prior probability distribution that char­
acterizes the uncertainty in the variable of interest (or 
hypothesis) before observation of new data. The prior 
might be elicited on the basis of general knowledge in 
the literature and the state of scientific knowledge in the 
field. The process of summarizing information into a prior 
probability distribution is referred to as prior elicitation. 
It can be difficult, particularly when little information is 
available, and it is inherently imperfect in many kinds of 
applications; there is no best way to obtain and summa­
rize potentially disparate information from the literature 
and from related studies. Some examples of prior elici­
tation in environmental risk assessment are provided in 
Wolfson et al. (1996). 

Several strategies have been used to manage the un­
certainty in prior elicitation. One involves choosing a prior 
that is vague. Vague priors can lead to posteriors that are 
erratic, including posterior densities that have many local 
bumps and might oscillate as data accumulates between 
widely divergent values. Gelman et al. (2008) provide 
some concrete examples of defining probability distribu ­
tions with weakly informative priors. Another strategy is 
to estimate parameter values in a prior on the basis of data 
from related studies. For example, one might be study­
ing a new chemical for which there is not much direct 
information on mechanism or exact dose–response shapes 
for different end points; however, there might be much to 
learn from a collection of the same type of data for similar 
chemicals. Learning from past data is a version of “em­
pirical Bayes” and can be more easily justified than “sub­
jective Bayes” methods articulated earlier. Potentially, a 
panel of experts could provide their own priors, which 
could be combined into a single prior (Albert et al. 2012). 
However, any one expert tends to be over confident about 
his or her knowledge and to choose a prior with a variance 
that is too small. Methods for addressing the over con­
fidence of experts and other deficiencies in expert elici­
tation are important to consider (NRC 1996, Chapter 4; 
Morgan 2014). Regardless of the method of elicitation, it 
is important to assess the plausibility of a selected prior 
and to conduct sensitivity analyses to understand changes 
in priors. 

Once the prior distribution has been defined, the prior 
can be updated with information in the likelihood func­
tion for each data source. Each time a data source is add­
ed, the prior is updated to obtain a posterior distribution 
that summarizes the new state of knowledge. The poste­
rior distribution can then be used as a prior distribution 
in future analyses. Bayesian updating can thus be viewed 
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as a natural method for synthesizing data from different 
sources. 

Sensitivity analysis provides a valuable approach to 
identify which data uncertainties are the most important 
in the Bayesian analyses. As noted by NRC (2007), sensi­
tivity analysis can help to set priorities for collecting new 
data and contribute to a process for systematically manag­
ing uncertainties that can improve reliability. 

The development of general-purpose, robust, and in­
terpretable Bayesian methods for 21st century data is an 
active field of research, although hybrid approaches that 
reduce dimensionality before applying the Bayesian para­
digm for synthesis of evidence from different data sourc­
es are favored at this point for risk-assessment purposes. 
The committee provides an example of using Bayesian 
approaches in a high-dimensional setting in Appendix E. 

Guided Expert Judgment 

Guided expert judgment is a process that uses the 
experience and collective judgment of an expert panel to 
evaluate what is known on a topic, such as whether the 
overall evidence supports a hazard finding on a chemi­
cal (for example, whether a chemical is a carcinogen). 
Predetermined protocols for judging evidence gener­
ally guide the expert panel. The panel might be asked to 
judge whether the evidence falls into one of several broad 
categories, such as strong, moderate, or weak. Such ap­
proaches are used by the US Environmental Protection 
Agency (EPA) in its process for evaluating the evidence 
gathered for the Integrated Science Assessments for the 
evaluation of National Ambient Air Quality Standards 
for selected pollutants. Expert-judgment approaches are 
often criticized because they can lack transparency and 
reproducibility in that the processes used to synthesize 
evidence and the resulting judgments made by the experts 
might be obscured and because different groups of ex­
perts can come to different conclusions after reviewing 
the same data. Furthermore, because modern risk assess­
ments increasingly involve complex, diverse, and large 
datasets, the use of a guided-expert-judgment approach 
can be challenging. 

The IARC monograph program (IARC 2006; Pearce 
et al. 2015) uses guided expert judgment for its causal as ­
sessment of carcinogenicity that integrates observational 
human studies, experimental animal data, and other bio­
logical data, such as in vitro assays that contribute mecha­
nistic insights. For several agents on which there are few 
or no human data to assess carcinogenicity, complemen­
tary experimental animal data and mechanistic data have 
been used to support an overall conclusion that a chemical 
is carcinogenic in humans. The carcinogenicity assess­
ment of ethylene oxide (EO) for which studies in humans 
are limited by the use of small cohorts of exposed workers 
is one example. The high mutagenicity and genotoxicity 

of EO, clear evidence of such activity in humans, and the 
similarity of the damage induced in animals and humans 
led IARC working groups (IARC 1994, 2008, 2012) to 
classify it as a human carcinogen (Group 1) in spite of the 
limited epidemiological evidence. The most recent review 
(IARC 2012) noted that “There is strong evidence that the 
carcinogenicity of ethylene oxide, a direct-acting alkylat­
ing agent, operates by a genotoxic mechanism…. Ethyl­
ene oxide consistently acts as a mutagen and clastogen at 
all phylogenetic levels, it induces heritable translocations 
in the germ cells of exposed rodents, and a dose-related 
increase in the frequency of sister chromatid exchange, 
chromosomal aberrations and micronucleus formation in 
the lymphocytes of exposed workers.” Box 7-5 provides 
details on the current IARC process. 

Some have advocated quantitative approaches to 
weighting evidence from different sources even if any 
such weighting approaches can be criticized. A funda ­
mental challenge in evaluating such approaches is that 
there is often no gold-standard weighting scheme; that is, 
there are no consensus approaches that are recognized as 
state-of-the-practice for optimally weighting results ob­
tained from observational epidemiology, laboratory ani­
mal studies, in vitro assays, and computational systems 
for human health risk assessment. Within each of those 
lines of evidence are studies that vary widely in quality 
and relevance, and a priori weights established by experts 
on the basis of general characteristics (for example, ani­
mal versus human) fail to account for the scientific nu­
ances. Experts differ as to the best weighting strategy, and 
formal decision-theory methods do not avoid the need for 
subjective choices and judgments. Thus, the committee 
declines to advance quantitative weighting schemes as an 
approach to integrating evidence from different sources. 

Weighting in some cases, however, might be useful in 
a given data stream or evidence class, such as data from 
high-throughput assays or in vivo assays with common 
end points. Weighting typically would follow principles 
based on statistics and expert judgment. For example, in 
the absence of additional information, assays that are in­
tended to interrogate the same pathway, mechanism, or 
end point and are on similar scales can be weighted by 
using the inverse of sampling variation; this is essentially 
the approach used in meta-analysis. Assays that evaluate 
the same end point can be weighted on the basis of predic­
tion accuracy. 

Given the current practices, the committee recom
mends that guided expert judgment be the approach used 
in the near term to integrate diverse data streams for draw
ing causal conclusions. Guided expert judgment is not as 
easily applied to other elements of the risk-assessment 
process because of the variety of data types and the com
plexity of decision points in the analyses. Considerable 
expert review and consultation are recommended for de

­
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BOX 7-5 Integrating and Evaluating Mechanistic Data in the 

International Agency for Research on Cancer
	

Evaluation of mechanistic information in IARC begins with a systematic search of the mechanistic literature (IARC 
2016b). The literature is screened for relevance and organized by mechanistic topic, guided by the 10 key characteristics 
of carcinogens and data type (human or experimental systems and in vivo or in vitro). There is no expectation that most 
or all key characteristics are operative for any specific carcinogen. 
The working group evaluates data from relevant sources and pays special attention to data gaps and evidence that 

suggests that multiple mechanisms might be operating (IARC 2006). It evaluates evidence of changes in cell, tissue, or 
organ physiology after exposure, including alterations in inflammation, hyperplasia, and cell adhesion ability. The work-
ing group evaluates functional changes at the cellular level, such as shifts in the abundance of various components 
of key cellular machinery, increases or decreases in post-translational protein modifications, and effects on xenobiotic 
metabolism. The working group also evaluates modifications of molecular architecture (changes at the molecular level), 
including global DNA methylation, the formation of DNA adducts, and gene mutations. 
Mechanistic information obtained from in vitro and nonmammalian in vivo systems (such as prokaryotes, cell cul-

tures, and lower eukaryotes) can strengthen the biological plausibility of links to cancer. In addition, high-throughput 
assays that measure the effects for a single end point, high-content assays that measure multiple end points for a 
single agent or mixture, and structure–activity relationship information can support consistency among study types, 
populations, and species. High-throughput assays, especially ones that have metabolic capacity and native cellular en-
vironments, can be useful in analyzing plausible mechanisms for chemical classes, as can consistent changes among 
multiple genes in high-content assays, such as microarrays. 
The absence of an effect in narrowly created datasets (such as ones that use specific tissues or cell types) does 

not necessarily support a finding that there is no effect (IARC 2006). For example, substances can act through multiple 
mechanisms and pathways, and cell type, developmental stage, genetic background, and co-exposures make null find-
ings difficult to interpret. 
For each of the 10 characteristics, the evidence can be labeled strong, moderate, weak, or insufficient to evaluate. 

The mechanistic evidence is then integrated with the evidence from other data streams to support conclusions about 
carcinogenicity. As cited in IARC (2016b), the conclusions are as follows: 

Group 1: Carcinogenic to humans 
•		Sufficient evidence in humans OR 
•		Sufficient evidence in animals AND strong evidence in exposed humans that the agent acts through a relevant 

mechanism OR 
•	 Clearly belongs, based on mechanistic considerations, to a class of agents for which one or more members have 
been classified in Group 1 

Group 2A: Probably carcinogenic to humans 
•		Limited in humans AND sufficient in animals OR 
•		 Inadequate in humans AND sufficient in animals AND strong evidence that the carcinogenesis is mediated by a 

mechanism that also operates in humans OR 
•	 Clearly belongs, based on mechanistic considerations, to a class of agents for which one or more members have 
been classified in Group 2A 

Group 2B: Possibly carcinogenic to humans 
•		Limited in humans AND less than sufficient in animals OR 
•		 Inadequate in humans BUT sufficient in animals OR 
•		 Inadequate in humans AND less than sufficient in animals AND supporting evidence from mechanistic and other 

relevant data 

Group 3: Not classifiable as to its carcinogenicity to humans 
•		 Inadequate in humans AND inadequate/limited in animals OR 
•		 Inadequate in humans AND sufficient in animals AND strong evidence that the mechanism of carcinogenicity in 

animals does not operate in humans 
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velopment of guidance for those activities to be followed 
by expert scientific peer review of the final product. 

UNCERTAINTIES 

Uncertainty accompanies all methods used to gener­
ate data inputs for risk assessments. In the case of data 
from new testing methods, there is the inherent variability 
of the assays and the qualitative uncertainty associated 
with their use (see Chapter 3). Such uncertainty arises 
with other types of assays, such as rodent bioassays, for 
which standard uncertainty factors are in place and ac­
cepted. The Tox21 report acknowledged the need to eval­
uate “test-strategy uncertainty,” that is, the uncertainty 
associated with the introduction of a novel series of test­
ing methods. For new assay methods, the quantification 
of uncertainty and its handling in practice remain to be 
addressed. 

With regard to dealing with analytical uncertainties, 
the committee notes that the 1983 NRC report Risk As-
sessment in the Federal Government: Managing the Pro-
cess remains enlightening. As discussed in Chapter 5, that 
report laid out the iconic four steps in risk assessment: 
hazard identification, dose–response assessment, expo ­
sure assessment, and risk characterization. The report 
noted that in each step a number of decision points occur 
in which “risk to human health can only be inferred from 
the available evidence.” For each decision point, the 1983 
committee recommended the adoption of predetermined 
choices or inference options ultimately to draw inferences 
about human risk from data that are not fully adequate. 
The preferred inference options were also called default 
options and were to be based on scientific understanding 
and risk-assessment policy and to be used in the absence 
of compelling evidence to the contrary. Other NRC com­
mittees have reiterated the importance of what have been 
come to be known simply as defaults and have noted that 
those used by EPA typically have a relatively strong sci­
entific basis (NRC 1994, 2009). The 1983 committee also 
called for the establishment of uniform inference guide­
lines to ensure uniformity and transparency in agency 
decision-making and called for flexibility in providing 
for departure from defaults in the presence of convinc­
ing scientific evidence. EPA developed a system of guide ­
lines that cover a wide array of risk-assessment topics. 
The 1983 recommendations have also been reinforced in 
other NRC reports (NRC 1994, 2009), and the present 
committee reiterates the importance of establishing uni­
form guidelines and a system of defaults in the absence 
of clear scientific understanding and the importance of 
enhancing the default system as described in Science and 
Decisions: Advancing Risk Assessment (NRC 2009). The 
enhancements include making explicit or replacing miss­
ing and unarticulated assumptions in risk assessment and 
developing specific criteria and standards for departing 

from defaults. The current committee notes, however, that 
the volume and complexity of 21st century data and the 
underlying science pose particularly difficult challenges. 
Systems of defaults and approaches to guide assessment 
should be advanced once best practices develop, as elabo
rated in the dose–response section above. 

­

The Tox21 report used test-strategy uncertainty to 
refer to the overall uncertainty associated with the test­
ing strategy and commented that “formal methods could 
be developed that use systematic approaches to evaluate 
uncertainty in predicting from the test battery results the 
doses that should be without biologic effect in human 
populations.” Until such methods are developed, judg­
ments as to the strength of evidence on pathway activa­
tion will continue to be based on expert judgment that 
draws on such guidelines as discussed above. 

CHALLENGES AND RECOMMENDATIONS 

The new direction for risk assessment advanced in 
this report is based on data from 21st century science on 
biological pathways and approaches that acknowledge 
that stressors from multiple sources can contribute to a 
single disease and that a single stressor can lead to multi­
ple adverse outcomes. The new techniques of 21st century 
science have emerged quickly and have made it possible 
to generate large amounts of data that can support the 
new directions in exposure science, toxicology, and epi­
demiology. In fact, the technology has evolved far faster 
than have approaches for analyzing and interpreting data 
for the purposes of risk assessment and decision-making. 
This chapter has addressed the challenges related to data 
interpretation, analysis, and integration; evidence synthe­
sis; and causal inference. The challenges are not new but 
are now amplified by the scope of the new data streams. 
The committee lists some of the most critical challenges 
below with recommendations to address them. 

A Research Agenda for Data 

Interpretation and Integration
 

Challenge: Insufficient attention has been given to 
data interpretation and integration as the development of 
new methods for data generation has outpaced the devel­
opment of approaches for interpreting the data that they 
generate. The complexity was recognized in the Tox21 
and ES21 reports, but those reports did not attempt to de­
velop an approach for evidence integration and interpre­
tation to make determinations concerning hazards, expo­
sures, and risks. 

Recommendation: The committee recommends great­
er attention to the problem of drawing inferences and pro­
poses the following empirical research agenda: 
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(1) The development of case studies that reflect vari­
ous scenarios of decision-making and data availability. 
The case studies should reflect the types of data typically 
available for interpretation and integration in each element 
of risk assessment—hazard identification, dose–response 
assessment, exposure assessment, and risk characteriza­
tion—and include assessing interindividual variability 
and sensitive populations. 

(2) Testing of the case studies with interdisciplinary 
and multidisciplinary panels, using best practices and the 
guided-expert-judgment approaches, such as described 
above. There is a need to understand how such panels of 
experts will evaluate the case studies and how various 
data elements might drive the evaluation process. Fur­
thermore, communication between people from different 
disciplines, such as Bayesian statisticians and mechanis­
tic toxicologists, will be essential for successful and reli­
able use of new data; case studies will provide a means 
of testing how interactions might best be accomplished 
in practice. 

(3) A comprehensive cataloging of evidence evalua­
tions and decisions that have been taken on various agents 
so that expert judgments can be tracked and evaluated and 
the expert processes calibrated. The cataloging should 
capture the major gaps in evidence and attendant uncer­
tainty that might have figured into evidence evaluation. 

(4) More intensive and systematic consideration of 
how statistically based tools for combining data and in­
tegrating evidence, such as Bayesian approaches, can be 
used for incorporating 21st century science into hazard, 
dose–response, exposure, and interindividual-variability 
assessments and ultimately into the overall risk charac­
terization. 

Advancing the Use of Data on Disease Components 
and Mechanisms in Risk Assessment 

Challenge: Data generated from tools that probe 
components of disease are difficult to use in risk assess ­
ment partly because of incomplete understanding of the 
linkages between disease and components and because 
of uncertainty around the extent to which mitigation of 
exposure changes expression of a component and conse­
quently changes the associated risk. 

Recommendation: The sufficient-component-cause  
model should be advanced as an approach for conceptu
alizing the pathways that contribute to disease risk.  

­

Recommendation: The committee encourages the 
cataloging of pathways, components, and mechanisms 
that can be linked to particular hazard traits, similar to the 
IARC characteristics of carcinogens. This work should 
draw on existing knowledge and current research in the 
biomedical fields related to mechanisms of disease that 
are outside the traditional toxicant-focused literature that 
has been the basis of human-health risk evaluations and 

of assessments and toxicology. The work should be ac­
companied by research efforts to describe the series of 
assays and responses that provide evidence on pathway 
activation and to establish a system for interpreting as­
say results for the purpose of inferring pathway activation 
from chemical exposure. 

Recommendation: High priority should be given to 
the development of a system of practice related to infer­
ences for using read-across for data-sparse chemicals; that 
practice area provides great opportunities for advancing 
various tools and incorporating their use into risk assess­
ment. High priority should also be given to using multiple 
data streams to evaluate low-dose risk, as elaborated on 
in NRC (2009). 

Developing Best Practices for Data 

Integration and Interpretation
 

Challenge: The emergence of new data streams clear­
ly has complicated the long-standing problem of integrat­
ing data for hazard identification, which the committee 
views as analogous to inferring a causal relationship be­
tween a putative causal factor and an effect. The com­
mittee considers that two challenges are related to data 
integration and interpretation for hazard identification: 
(1) using the data from the methods of 21st century sci­
ence to infer a causal association between a chemical or 
other exposure and an adverse effect, particularly if it is 
proximal to an apical effect, and (2) integrating new lines 
of evidence with those from conventional toxicology and 
epidemiological studies. Although much has been written 
on this topic, proposed approaches rely largely on guided 
expert judgment. 

Recommendation: The committee sees no immediate 
alternative to the use of guided expert judgment as the ba­
sis of judgment and recommends its continued use for the 
time being. Expert judgment should be guided and cali ­
brated in interpreting data on pathways and mechanisms. 
Specifically, in these early days, the processes of expert 
judgment should be documented to support the elabora­
tion of best practices, and there should be periodic re­
views of how evidence is being evaluated so that the ex­
pert-judgment processes can be refined. Those practices 
will support the development of guidelines with explicit 
default approaches to ensure consistency in application 
within particular decision contexts. 

Recommendation: In the future, pathway-modeling 
approaches that incorporate uncertainties and integrate 
multiple data streams might become an adjunct and per­
haps a replacement. Methodological research to advance 
those approaches is needed. 

Challenge: The size of some datasets and the num­
ber of outcomes covered complicate communication of 
findings to the scientific community and to those who use 
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results for decision-making. There might be distrust be­
cause of the need to use methods that are complex and 
possibly difficult to understand for the large datasets. 

Recommendation: Data integration should be com­
plemented by visualization tools to enable effective com ­
munication of analytical findings from complex datasets 
to decision makers and other stakeholders. Transparency 
of the methods, statistical rigor, and accessibility to the 
underlying data are key elements for promoting the use 
and acceptance of the new data in decision-making. 

Challenge: Given the complexities of 21st century 
data and the challenges associated with their interpreta­
tion, there is a potential for a decision to be based ul­
timately on a false-positive or false-negative result. The 
implications of such an erroneous conclusion are substan­
tial. The challenge is to calibrate analytical approaches to 
optimize their sensitivity and specificity for identifying 
true associations. If public-health protection is the under­
lying goal, an approach that generates more false-positive 
than false-negative conclusions might be appropriate in 
some decision contexts. A rigid, algorithmic approach 
might prove conservative but lead to false-negatives or 
at least to a delay in decision-making because more evi­
dence is required. 

Recommendation: This challenge merits the develop­
ment of guidelines and best practices that use processes 
that involve direct discussion among researchers, deci­
sion-makers, and other stakeholders who might have dif­
ferent views as to where the balance between sensitivity 
and specificity should be placed. 

Addressing Uncertainties in Using 21st Century 
Tools in Dose–Response Assessment 

Challenge: There are multiple potential complica­
tions in moving from in vitro testing and in vivo toxi­
cogenomic studies to applying the resulting dose–re­
sponse estimates to human populations. Uncertainties are 
introduced that parallel and might exceed those associ­
ated with extrapolation from animal studies to humans. 
Sources of uncertainty include chemical metabolism, the 
relevance of pathways, and the generalizability of dose– 
response relationships that are observed in vitro. There 
is also the challenge of integration among datasets and 
multiple lines of evidence. 

Recommendation: The challenges noted should be 
explored in case studies for which the full array of data 
is available: high-throughput testing, animal studies, and 
human studies. Bayesian methods need to be developed 
and evaluated for combining dose–response data from 
multiple test systems. And a system or practice and de­
fault-data integration approaches need to be developed 
that promote consistent, transparent, and reliable applica­
tion that explain and account for uncertainties. 

Developing Best Practices for Analyzing Big Data 
for Application in Risk Assessment 

Challenge: Enormous datasets that pose substantial 
analytical challenges are being generated, particularly in 
relation to identifying biologically relevant signals given 
the possibility of false-positives resulting from multiple 
comparisons. 

Recommendation: Best practices should be devel
oped through consensus processes to address the statisti
cal issues listed in Box 7-4 that complicate analyses of  
very large datasets. Those practices might differ by de
cision context or data type. Adherence to best practices  
sets a consistent approach for weighing false positives  
against false negatives and maintaining high integrity in  
reporting. Analyses should be carried out in transparent  
and replicable ways to ensure credibility and to enhance  
review and acceptance of findings for decision-making.  
Open data access might be critical for ensuring transpar
ency.  

­
­

­

­
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University. His research interests include Bayesian sta
tistics, complex hierarchical and latent variable model
ing, and nonparametric statistical modeling. His method
ological research focuses on nonparametric Bayes, latent 
variable methods, big data, scalable Bayesian inferences, 
functional and object data, and dimensionality reduction. 
He is a member of the International Society for Bayes
ian Analysis, the Institute of Mathematical Statistics, the 
American Statistical Association, and the International 
Biometrics Society. Dr. Dunson received his PhD in bio
statistics from Emory University. 
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Nigel Greene is the director of predictive compound 
ADME and safety at AstraZeneca and specializes in the 
application of computational and in vitro approaches to 
assess compound liabilities. His specific duties include 
establishing and managing a group of PhD scientists that 
profile chemicals for off-target pharmacology. His group 
uses computational modeling and analysis of chemical 
properties and in vitro assay profiles to help to predict the 
safety profile of chemicals in early discovery programs 
and to aid in chemical series and compound selection 
before in vivo studies are conducted. Dr. Greene’s other 
activities include mining internal and public databases of 
gene-expression data to explore biological mechanisms of 
toxicity and developing new in vitro assays for safety pro
filing on the basis of findings from the mining exercises. 

­

He recently served as a member of the National Research 
Council Committee on the Design and Evaluation of Saf­
er Chemical Substitutions. Dr. Greene received his PhD in 
organometallic chemistry from the University of Leeds. 

Heather B. Patisaul is an associate professor in the 
Department of Biology of North Carolina State Univer­
sity. Her research examines the steroid-dependent mecha­
nisms through which sexually dimorphic behaviors and 
brain circuits arise. She also explores the mechanisms by 
which sexually dimorphic systems and behaviors can be 
disrupted by environmental estrogens. Her laboratory is 
interested in the mechanisms by which exposure to envi­
ronmental estrogens can advance puberty and impair fer­
tility in females. Dr. Patisaul served on the World Health 
Organization expert panel that assessed the risks associ ­
ated with bisphenol A in 2010 and recently served on the 
National Research Council Committee to Review EPA’s 
Draft, State of the Science Paper on Nonmonotonic Dose 
Response. She received her PhD in population biology, 
ecology, and evolution from Emory University. 

Kristi Pullen Fedinick  is a staff scientist with the Natu
ral Resources Defense Council (NRDC) Health and En
vironment Program. Her multidisciplinary training spans 
nearly 20 years and includes work in molecular biology, 
biochemistry, structural biology, computational biology, 
and population health. Dr. Pullen Fedinick’s work at 
NRDC has focused on the application of high-throughput 
technologies in predictive toxicology and chemical risk 
assessment. Before joining NRDC, she worked at a small 
environmental nonprofit in Chicago where she focused 
on air and drinking-water quality, science communica
tion, and environmental-justice projects. Dr. Pullen Fed
inick received a PhD in molecular and cell biology from 
the University of California, Berkeley, and was a Robert 
Wood Johnson Foundation Health and Society Scholar at 
the Harvard T.H. Chan School of Public Health. 

­
­

­
­

Beate R. Ritz  is a professor in the Department of Epi
demiology of the University of California, Los Angeles 
(UCLA), Fielding School of Public Health. Her research 
focuses on the health effects of occupational and environ
mental toxicants, such as pesticides, ionizing radiation, 
and air pollution; on chronic diseases, including neuro
degenerative and neurodevelopmental disorders, and can
cers; on adverse birth outcomes; and on asthma. In her 
research, she uses geographic information system (GIS) 
modeling of environmental exposures, including pesti
cide use and traffic-related air pollution in California, and 
investigates links between genetic susceptibility factors 
and environmental exposures in populations. Dr. Ritz is 
a member of the Center for Occupational and Environ
mental Health and the Southern California Environmental 
Health Science Center and co-directed the UCLA Center 
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for Gene-Environment Studies of Parkinson’s disease, 
funded by the National Institute of Environmental Health 
Sciences. She received her MD and a PhD in medical so­
ciology from the University of Hamburg, Germany, and 
an MPH and a PhD in epidemiology from UCLA. 

Ivan Rusyn is a professor in the Department of Veterinary 
Integrative Biosciences of the College of Veterinary Med
icine and Biomedical Sciences of Texas A&M University. 
Before joining the university, he was a professor of envi
ronmental sciences and engineering at the University of 
North Carolina at Chapel Hill. Dr. Rusyn’s laboratory has 
an active research portfolio with a focus on the mecha
nisms of action of environmental toxicants, the genetic 
determinants of susceptibility to toxicant-induced injury, 
and computational toxicology. His studies on health ef
fects of environmental agents have resulted in more than 
150 peer-reviewed publications. He has served on several 
National Research Council committees and was a mem
ber of the Standing Committee on Use of Emerging Sci
ence for Environmental Health Decisions and the Com
mittee on Toxicology. Dr. Rusyn received his MD from 
Ukrainian State Medical University in Kiev and his PhD 
in toxicology from the University of North Carolina at 
Chapel Hill. 
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Robert L. Tanguay is Distinguished Professor of Molec
ular Toxicology in the Department of Environmental and 
Molecular Toxicology of Oregon State University. His re
search interests include exploiting the advantages of the 
zebra fish (Danio rerio) model to improve human and en
vironmental health; evaluating biological interactions and 
responses to environmental chemicals, pharmaceuticals, 
and nanoparticles by using rapid-throughput approaches; 
and understanding the mechanisms underlying the toxic
ity of chemicals, such as 2,3,7,8-tetrachlorodibenzo-p  
dioxin, polycyclic aromatic hydrocarbons (PAHs), etha
nol, pharmaceuticals, and pesticides. Dr. Tanguay directs 
the Oregon State’s Superfund Research Program as the 
project leader for an investigation into PAH-induced 
developmental toxicity, as a co-investigator in work in
volving biological response indicator devices, and as a 
research coordinator in the program. He received his PhD 
in biochemistry from the University of California, Riv
erside. 
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Justin G. Teeguarden is a staff scientist and chief ex
posure scientist in the Environmental and Biological Sci
ences Directorate of the Pacific Northwest National Labo
ratory (PNNL). He holds a joint faculty position with the 
Oregon State University (OSU) Department of Environ
mental and Molecular Toxicology, where he serves as the 
director of the OSU–PNNL–Superfund Center Research 
Translation Core. Dr. Teeguarden’s research focuses on 
computational and experimental exposure assessment in 
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humans, animals, and cell-culture systems. Over the last 
decade, his research teams have focused on using emerg
ing technologies, novel experimental data, and computa
tional methods for solving public-health challenges re
lated to human exposure to chemicals. He is the director 
of the PNNL Exposure Surveillance and Health Optimi
zation Consortium in which he leads efforts to develop 
nontargeted analytical methods for characterizing the 
exposome. Dr. Teeguarden has received several awards 
from the Society of Toxicology for his work in computa
tional and experimental exposure science as they are re
lated to translating exposures across cell-culture, human, 
and animal test systems. He has served as the president 
of the Dose–Response Specialty Section of the Society 
for Risk Analysis and as president of the Nanotoxicology 
Specialty Section of the Society of Toxicology. Dr. Tee
guarden served on the National Research Council Com
mittee on Human and Environmental Exposure Science in 
the 21st Century. He received his PhD in toxicology from 
the University of Wisconsin–Madison. 
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James M. Tiedje is the University Distinguished Profes
sor of Microbiology and Molecular Genetics and of Plant, 
Soil and Microbial Sciences and is director of the Center 
for Microbial Ecology of Michigan State University. His 
research focuses on ecology, physiology, and genetics un
derlying important microbial processes in nature, includ
ing biodegradation of pollutants. He has made notable 
contributions to the use of genomics and metagenomics 
to understand ecological functions, speciation, and niche 
adaptation. He has served as editor-in-chief of Applied 
and Environmental Microbiology and as editor of Micro-
bial and Molecular Biology Reviews. He has more than 
500 refereed papers, including seven in Science and Na
ture. He shared the 1992 Finley Prize of UNESCO for 
research contributions of international significance in 
microbiology; is a fellow of the American Association 
for the Advancement of Science, of the American Acad
emy of Microbiology, and of the Soil Science Society of 
America; and is a member of the US National Academy 
of Sciences. He was president of the American Society for 
Microbiology in 2004–2005. He received his PhD from 
Cornell University. 
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Paolo Vineis is professor and chair of environmental epi
demiology at Imperial College London, School of Public 
Health. He is a leading researcher in the field of molecu
lar epidemiology and his latest research focuses on ex
amining biomarkers of disease risk, complex exposures, 
and intermediate biomarkers by using  omic platforms in 
large epidemiological studies. He also studies the effects 
of climate change on noncommunicable diseases. Dr. Vi
neis is coordinating the European Commission–funded 
Exposomics Project and is a principal investigator or co- 
investigator on numerous international projects. He has 
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more than 700 publications, including papers in Nature, 
Nature Genetics, Lancet, and Lancet Oncology. He is 
a member of various international scientific and ethics 
committees and vice-chair of the Ethics Committee of the 
International Agency for Research on Cancer. Dr. Vineis 
received his MD from the University of Torino, Italy. 

Michelle Williams is dean of the faculty and professor of 
epidemiology of the Harvard T.H. Chan School of Public 
Health. Her research interests lie principally in reproduc
tive and perinatal epidemiology, in which she focuses on 
integrating epidemiological, biological, and molecular 
approaches into rigorously designed clinical epidemiol
ogy research projects. Her overarching goal is to use bio
logical and molecular biomarkers as objective measures 
of exposure and as validated preclinical proximal deter
minants (such as oxidative stress, systemic inflamma
tion, and endothelial dysfunction) of discrete outcomes of 
clinical, public, and global health importance. She is the 
principal investigator on three large projects funded by 
the National Institutes of Health and previously served on 
the National Research Council Committee on Evaluation 
of Children’s Health: Measures of Risks, Protective and 
Promotional Factors for Assessing Child Health in the 
Community. Dr. Williams received her ScD in epidemiol
ogy from Harvard University. 
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Fred Wright is professor of statistics and biological sci­
ences and director of the Bioinformatics Research Center 
of North Carolina State University. He is an internation­
ally known statistical geneticist who has wide-ranging 
research interests, including genomics, bioinformatics, 
toxicogenomics, and the statistical principles underly­

ing high-dimensional data analysis. Dr. Wright has been 
principal investigator on numerous grants with activities 
ranging from development of new methods of gene map­
ping to expression-quantitative trait mapping for multiple 
tissues. He was principal investigator of a US Environ­
mental Protection Agency–funded STAR Center to apply 
genomics principles to long-standing problems in toxicol­
ogy. He is an elected fellow of the American Statistical 
Association and of the Delta Omega Honor Society for 
Public Health. Dr. Wright received his PhD in statistics 
from the University of Chicago. 

Lauren Zeise is director of the California Environmen
tal Protection Agency’s Office of Environmental Health 
Hazard Assessment. She oversees the department’s activi
ties, which include the development of risk assessments, 
hazard evaluations, toxicity reviews, cumulative impact 
analyses, frameworks and methods for assessing toxicity 
and cumulative effects of vulnerability and environmen
tal exposures on communities, and the department’s ac
tivities in the California Environmental Contaminant Bio
monitoring Program. Dr. Zeise was the 2008 recipient of 
the Society for Risk Analysis’  Outstanding Practitioners 
Award. She has served on advisory boards and commit
tees of the US Environmental Protection Agency (EPA), 
the Office of Technology Assessment, the World Health 
Organization, and the National Institute of Environmental 
Health Sciences. Dr. Zeise has served on numerous Na
tional Research Council and Institute of Medicine com
mittees, including the Committee on Toxicity Testing and 
Assessment of Environmental Agents and the Committee 
on Improving Risk Analysis Approaches Used by EPA. 
Dr. Zeise received a PhD from Harvard University. 
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Case Studies on Chemical Assessments
 

This appendix provides case studies that show how 
21st century science can be used for chemical assess­
ment, including any component of the risk-assessment 
process (hazard identification, dose–response assessment, 
exposure assessment, or risk characterization). The first 
case study illustrates the use of read-across methods to 
address gaps in information on a data-poor chemical. The 
second uses air pollution as a topic to illustrate how 21st 
century science can be used to address unanswered ques­
tions about well-defined hazards or data-rich chemicals 
and to evaluate emerging concerns about those hazards 
or chemicals. 

APPLICATIONS OF READ-ACROSS 

FOR A DATA-POOR CHEMICAL
 

As discussed in Chapters 3 and 5, read-across in­
volves the assessment of a chemical on the basis of its 
structural similarities to chemicals that have already been 
tested and takes into account any differences that might 
influence pharmacokinetics, metabolism, or toxicody­
namics. The approach can be coupled with computational 
and high-throughput data to support or refute the read-
across results (see Figure 5-5). Alkylphenols are used as 
example chemicals for this case study. 

Alkylphenols are metabolites or persistent environ­
mental breakdown products of alkylphenol ethoxylates, 
chemicals that were formerly used in detergents. A few of 
the more widely used alkylphenols, particularly p-octyl­
phenol and p-nonylphenol, have a rich toxicology dataset. 
In this case study, p-octylphenol and p-nonylphenol are 
used as analogues to support the assessment of p-dodecy­
lphenol, a data-poor chemical that has been tested in Tox-
Cast. Both p-octylphenol and p-nonylphenol have weak 
affinity for estrogen receptors in vitro (Laws et al. 2000). 
In vivo reproductive-toxicity data on the two chemicals 
have conflicting results. Multigeneration studies run un­
der good-laboratory-practice (GLP) conditions by Na­
tional Toxicology Program (NTP) indicate a few effects 
on reproduction with lowest observed-adverse-effect lev­
els in the oral-intake range of about 30–100 mg/kg-day 
(p-nonylphenol, Chapin et al. 1999; p-octylphenol, Tyl et 

al. 1999). Other studies show effects on the reproductive 
system, although by different routes, such as parenteral 
injection, or at higher oral doses (see, for example, Hos ­
saini et al. 2003; Mikkilä et al. 2006). Thus, the critical 
end point for the read-across is reproductive toxicity with 
estrogenicity as the presumed mechanism. 

p-Dodecylphenol is a related chemical on which 
there are few in vivo toxicity data. The KOW for 
p-dodecylphenol is higher than those of the other alkyl-
phenols, but all are very hydrophobic (see Table B-1). The 
chemical structure of p-dodecylphenol is similar to those 
of p-octylphenol and p-nonylphenol; the difference is that 
it has four or three more carbons, respectively, on the al­
kyl chain. Chemical-similarity scores for straight-chain 
p-octylphenol or p-nonylphenol are in the range of 55– 
65%. The chemical similarity score is a measure of mo­
lecular similarity that is based on atom-by-atom matching 
and is a good starting point for molecular comparisons. 
However, there is no bright-line chemical-similarity score 
for analogue suitability; it should be considered with other 
factors, such as physical chemistry and specific molecular 
features that can dramatically change potential reactivity 
or biological activity. Wu et al. (2010) provide a series 
of heuristics for determining the suitability of analogues 
for read-across. The committee notes that the chemical-
similarity scores in Table B-1 suggest that the branched 
p-nonylphenol might be inappropriate for read-across for 
p-dodecylphenol. However, it is included here because 
most models of estrogenicity would consider para-substi­
tuted phenol moieties to have a potential to interact with 
the estrogen-receptor binding site—see, for example, the 
decision-tree scheme of Wu et al. (2013). 

ToxCast has data on the chemicals in Table B-1. In 
each case, the most sensitive assay (the assay that has the 
lowest AC50

1) was one that measured estrogenic activ­
ity, and all chemicals were active in several estrogen– 
response assays at concentrations below 10 μM. Estrogen 
response (such as binding to the receptor or activation of 
an estrogen response element) was by far the most preva­

1AC50 is the concentration at which a 50% response is elicited in 
an in vitro assay. 
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lent response to all four chemicals in ToxCast. Those re­
sults are consistent with the predictions from a qualitative 
structure–activity relationship (SAR) program developed 
by the US Environmental Protection Agency (EPA) that 
classifies all the chemicals as having weak estrogenic ac­
tivity on the basis of the presence of a para-substituted 
phenol and the known estrogenic activity of p-alkylphe­
nols as a class. A few other assays had a strong positive 
concentration response and an AC50 at or below 10 μM 
(see Table B-2). Activity also included interactions with a 
retinoid X receptor (RXR) isoform, pregnane X receptor 
(PXR), a vitamin D receptor, and peroxisome prolifera­
tor-activated receptor gamma (PPAR-γ), and mitochon ­
drial toxicity (see Table B-2). 

In summary, the SAR and ToxCast data support group­
ing p-dodecylphenol with the other phenols as chemicals 
that appear to have a common mechanism, weak estro­
genicity. The minor bioactivity observed with the other 
receptors (RXR, PXR, vitamin D receptor, and PPAR-γ) 
is not unexpected and emphasizes that the toxicant activ­
ity is typically multimodal. Even endogenous hormones 
that are considered to have high specificity for a particu­
lar receptor have comparable nonspecificity (Kelce and 
Gray 1997), and high-throughput assays provide the basis 
for evaluating other potential or unsuspected toxicities. 

The interactions at higher concentrations are probably 
not involved in toxicity. The overall in vitro potency of 
p-dodecylphenol as an estrogen appears to be higher by a 
factor of roughly 15 than that of the p-octyl and p-nonyl 
analogues, and it was active in 3 times as many estrogen-
receptor assays. Because p-dodecylphenol is the most hy­
drophobic of the alkylphenols, its lower AC50 could be 
inaccurate (see references and discussion in Chapter 2 on 
challenges in interpreting in vitro test data), but the data 
indicate that its estrogenicity in vitro is in the range of the 
other alkylphenols tested. 

Estrogenic responses of p-octylphenol and p-nonyl­
phenol have been reported in numerous studies, includ­
ing in vivo rat multigeneration studies conducted by NTP 
(Chapin et al. 1999; Tyl et al. 1999). For the present case 
study, the no-observed-adverse-effect levels (NOAELs)2 

identified by the two NTP studies could be used as a start­
ing point to derive a reference dose of p-dodecylphenol, 
although it should be noted that other published studies re­
ported effects at lower doses. The studies were both feed­
ing studies in which a dietary concentration of 200 mg/kg 
had no reproductive effects. Because the animals’ growth 
and food consumption changed over time, a range of doses 

2The committee notes that a point of departure identified through 
benchmark-dose modeling could also be used. 

TABLE B-1 Octanol–Water Partition Coefficients (KOWs) and Chemical Similarity Scores (CSSs) of Selected 
Alkylphenols 
Chemical  CAS Number  Log K a

OW  CSSb 

p-Octylphenol 1806-26-4 5.5 0.55 

p-Nonylphenol 104-40-5 5.76 0.64 

Branched p-nonylphenol 84852-15-3 5.77 0.15 
p-Dodecylphenol 104-43-8 7.91 – 
aLog KOWs are from EPA’s EPI Suite database and prediction program (EPA 2011).
 
bThe CSSs of analogues to test chemical (p-dodecylphenol) were calculated by using the Tanimoto coefficient from an online 

source (http://chemmine.ucr.edu). CSSs provide another line of evidence (quantitative) for using (or not using) visual read-across
 
(qualitative) data.
 

TABLE B-2  Activity in ToxCast Assays  for Selected  Alkylphenols  
Protein Interactions; AC50  values  in  μMa  

Chemical  ER  RXR  PXR  Vitamin D Receptor  PPAR-γ  

p-Octylphenol  1.44 (4)  –  1.71  –  –  

p-Nonylphenol  1.35 (3)  8.19  –  –  7.36  

Branched  p-nonylphenol  0.517 (14)  1.4  2.29  1.98  –  
p-Dodecylphenol  0.084 (13)  2.74  1.45  –  –  
aNumber in parentheses is the number of estrogen-responsiveness assays with an AC50 less than 10 μM.
	
Abbreviations: ER, estrogen receptor;  PPAR-γ,  peroxisome  proliferator-activated receptor gamma;  PXR, pregnane  X receptor; 
 
RXR, retinoid  X receptor.
   

http://chemmine.ucr.edu


 

 

 
 

Appendix B 145 

(9-36 mg/kg-day) was associated with that concentration.  
Using the NOAELs as surrogates for p-dodecylphenol  
could require an adjustment for potency: the lowest AC50  
for p-dodecylphenol was about one-twentieth of the low
est AC50 for p-octylphenol and p-nonylphenol, and this  
could require a comparable revision of the NOAEL. 

­

Several limitations were identified in this read-across 
exercise. Improved estimations of the AC50 data by us­
ing in vitro mass-balance models could be prudent before 
adjusting the NOAEL. Adjustments of the NOAEL on the 
basis of possible differences in the pharmacokinetics of 
the chemicals should also be considered. Differences in 
logKOW of 2 orders of magnitude are likely to be impor­
tant in the rate and extent of absorption and clearance, al­
though in this case the hydrophobicity of all the chemicals 
is high enough that one would expect high oral absorption 
of all chemicals. Predicted estimates of absorption and 
clearance and NOAELs for estrogenic effects could be 
obtained from targeted testing or similarly focused stud­
ies to corroborate the inferences based on read-across. Fi­
nally, the uncertainty in read-across should be assessed to 
ensure consistency and appropriate conservatism (Black­
burn and Stuard 2014). 

An outcome of this read-across exercise could be clas­
sification of p-dodecylphenol as an estrogenic compound 
potentially more potent than the other alkylphenols. Es­
tablishment of a reference dose would be plausible, but 
additional information on metabolism, absorption, and 
developmental effects on estrogen-sensitive organs would 
improve confidence. 

AIR-POLLUTION CASE STUDY 

There is long-standing concern that exposure to air 
pollution might lead to chronic health effects, but only 
in the last several decades have epidemiological studies 
convincingly linked air-pollution exposure to premature 
mortality and increased risk of cardiovascular disease 
and cancer (EPA 2009). Beyond demonstrating hazard, 
recent studies have refined the characterization of the 
exposure–response relationship (Beelen et al. 2014). The 
new evidence reflects the increasing computing power 
that has enabled refinements in epidemiological methods, 
especially data-intensive exposure assessment that com­
bines large-scale ambient monitoring of pollutants with 
advanced geographic information system (GIS) applica­
tions, dispersion models, and land-use regression (LUR) 
models to estimate exposures of large populations. Those 
methods—and decades of investment in nationwide air-
pollution surveillance networks—have allowed research­
ers to establish long-term exposure models for large 
prospective cohort studies and to investigate long-term 
consequences of air pollution, such as cancer and car­
diovascular disease, while controlling for major potential 
confounders. Studies based on those advances—exempli­

fied by recent publications from the European Study of 
Cohorts for Air Pollution Effects (ESCAPE) consortium 
(Beelen et al. 2014)—have led a working group of the 
International Agency for Research on Cancer (IARC) to 
conclude that there is “sufficient” evidence to conclude 
that ambient air pollution is carcinogenic to humans and 
that the evidence is “sufficient” to conclude that airborne 
PM is carcinogenic to humans (IARC 2015). 

The evidence on the causal relationship of air pol­
lution with lung cancer (IARC 2015) is strong, and haz ­
ard identification is not at issue with regard to regulatory 
decision-making, at least in high-income countries with 
well-established evidence-based air-quality standards. 
However, there are a number of unanswered scientific 
questions concerning air pollution and cancer that are still 
relevant to regulatory decision-making; for these ques­
tions, 21st century science has the potential to reduce 
uncertainty around key issues relevant to tightening and 
targeting air-quality regulation. This particular case study 
illustrates how new and emerging science can be used to 
address lingering questions about well-defined hazards or 
data-rich chemicals and considers the following key is­
sues: 

•	 Identifying critical air-pollution sources and 
components.  (1) Air pollution is a mixture that reflects its 
many sources; its composition varies by time and space. 
(2) The composition of the pollutant mix is not fully char
acterized, and research suffers from the “lamp-post syn
drome” (that is, it has focused on a few target or indicator 
pollutants, such as EPA’s criteria pollutants, including PM 
and nitrogen dioxide). (3) There is potential for interac
tion and synergy among different components of the air 
pollution mixture with implications for overall mixture 
toxicity. 

­
­

­

•	 Characterizing the exposure–response relation-
ship. (1) On the basis of available epidemiological evi
dence, there is no apparent threshold for the long-term ef
fects of air pollution at current levels in the United States 
and elsewhere, particularly on total mortality and on can
cer (Raaschou-Nielsen et al. 2013; Beelen et al. 2014; 
Hamra et al. 2014). (2) The power to detect effects and 
characterize risks precisely at low exposures is difficult 
even in large cohorts, such as the ESCAPE and American 
Cancer Society cohorts. (3) There are various hypotheses 
about the possible mechanisms by which air pollution 
causes long-term adverse effects at current exposures, and 
the mechanisms are likely to vary by outcome and pollut
ant mixture. (4) Specific groups might be at greater risk 
because of particular characteristics, such as genetics, life 
stage, disease status, or co-exposure to other agents. 

­
­

­

­

•	 Addressing emerging concerns. There is an ex
panding list of possible adverse health effects of long-term 
exposure to air pollution. For example, some evidence 
indicates possible adverse effects on neurodevelopment 

­
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in children and decline of cognitive function in adults 
(Calderon-Garciduenas et al. 2014; Chen et al. 2015). 

This case study develops two parallel examples. One 
is based on lung cancer, and the main concerns are esti­
mating the exposure–response relationship, especially at 
low exposures, as experienced in the United States and 
much of Europe and identifying mechanisms involved 
and key mixture components that might drive cancer risk. 
The second example, neurodevelopment in children, has 
been chosen for different reasons. The questions concern 
mainly hazard identification because causal associations 
with air pollution for any specific neurodevelopmental 
outcome are far from well-established. The uncertainties 
in a number of neurodevelopmental outcomes reflect the 
challenges in investigating rare but severe outcomes, such 
as autism, that require large pregnancy cohorts that have 
detailed air-pollution assessments and the difficulties in 
comparing results among studies that evaluate a large ar­
ray of neuropsychological effects and cognitive function 
at different developmental ages in children exposed to 
various pollutant mixtures. 

Lung Cancer: Characterizing the 

Exposure–Response Relationship and 

Identifying Key Mixture Components
 

Current epidemiological tools are unlikely to offer 
direct answers to the related problems of characterizing 
risk precisely at low doses and determining the shape 
of the exposure–response curve partly because there are 
limits to the size of cohorts that can be assembled and 
because exposure-measurement error is unavoidable with 
the available tools. However, those problems can be ad
dressed with new and emerging approaches and tools 
described below that help to characterize exposure more 
precisely and to probe mechanisms more deeply. 

­

External Exposome 

One critical issue in characterizing the exposure–re­
sponse relationship is defining exposures more precisely, 
particularly at low levels of exposure. New exposure-
assessment approaches centered around the concept of 
the exposome can help to address that issue. As defined 
in Chapter 1, the term exposome refers to the totality of 
a person’s exposure. It is discussed here because of the 
emergence of new tools that provide time-integrated mea­
surements of multiple pollutants at the individual level 
with greater spatial and temporal resolution than could 
be achieved previously (see Chapter 2). Such measure­
ments potentially will help to characterize the exposure– 
response relationship better by reducing exposure-mea­
surement error and by providing the needed inputs for 
measurement-error correction models. 

Using 21st Century Science to Improve Risk-Related Evaluations 

The new exposure approaches contrast sharply with  
those used in past studies. Originally, epidemiological  
studies of air pollution relied on exposure classifications  
that were based on a few measurements in a few loca
tions. Even the well-known Harvard Six Cities Study  
(Dockery et al. 1993), initiated in 1974, relied on central  
site measurements in the six selected cities. The wave of  
time-series studies that began about 3 decades ago fully  
incorporated the temporal detail of exposure measures but  
still used monitoring data that were limited spatially, such  
as central site monitors. Later cohort studies also incorpo
rated more temporally refined measures, such as hourly or  
daily ambient monitoring station values, but again were  
spatially limited, often taken at one or a few stations per  
city. Citywide average exposures during specified periods  
were then applied to all residents in a design that would  
now be recognized as ecological or semiecological (that   
is, population-level assignment of exposure but with   
individual-level covariate information) (Künzli and Tager  
1997). That approach, reflected in the Six Cities Study,  
ignores within-city variation and implicitly assumes that  
there is little spatial heterogeneity of air pollutants or that  
residents moved around cities enough to be similarly ex
posed to various pollutant sources. Neither assumption is  
correct in practice. Thus, measurement error was implicit  
in those studies, which nonetheless found associations  
with indicators of PM exposure, most likely because it  
was possible to exploit the high temporal resolution and  
fluctuations in air pollutants, especially in assessing short-
term effects, such as in the time-series studies of mortality. 

­

­

­

New tools are being developed to capture spatial 
variation in effects better (Coker et al. 2015). Early 21st 
century advances—such as GIS applications, dispersion 
models, and LUR models—have added a major refine
ment of capturing spatial variation in exposure assess
ment. Before those advances, exposures were generally 
assigned on the basis of residential location, and that 
practice accounted for some of the within-city variation. 
Reliance on residential location, however, did not fully 
capture or integrate exposures from multiple sources on 
larger geographic scales. For example, in Europe and the 
United States, investigators used tailored measurements 
of PM2.5 in a number of cities with multiple land-use char
acteristics of each area (traffic, ports, population density, 
and factories) to predict concentrations at individual ad
dresses with reasonably good performance by using LUR 
models and sometimes adding a temporal component to 
the estimates with data from routine ambient monitoring 
(Raaschou-Nielsen et al. 2013). However, those measure
ments were affected by measurement error as suggested 
by comparisons with, for example, personal-exposure 
monitoring campaigns. The latter are based on the use 
of backpacks or similar devices containing instruments 
that measure exposure at the individual level with great 
temporal and spatial resolution; such campaigns are gen

­
­

­

­

­

­
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erally conducted for shorter periods, such as 2–4 weeks, 
for feasibility. The external exposome measures showed 
the complexity of capturing the entirety of personal ex
posure to PM. For example, cooking was shown to be an 
important source of exposure to ultrafine particles. Such 
studies added to earlier understanding that personal ex
posure to air pollution can vary widely in time and space 
and be driven by specific time–activity patterns, such as 
time spent at home, in traffic, at work, and in restaurants. 
Without an understanding of such variation, exposure 
estimates can be quite inaccurate and bias risk estimates 
(Nieuwenhuijsen et al. 2015). New personal devices that 
will measure a large variety of pollutants are under devel
opment, as reported in Chapter 2. 

­

­

­

However, none of the new sensor technologies is 
likely to be feasibly implemented (in terms of data han­
dling and security) at the individual level in large cohorts 
over the extended periods (decades) necessary to inves­
tigate risks of chronic disease outcomes. Studies that are 
sufficiently large and have the detailed exposure informa ­
tion needed to address the key questions related to lung 
cancer and air pollution are not likely to be undertaken. 
Crowd sourcing or anonymous data collection using sen­
sors might be a feasible alternative if implemented within 
existing or new general cohorts. The resulting data would 
then be used to refine exposure models and estimates as­
sociated with participants in such cohorts. Possible limi­
tations of such data-collection methods include sampling 
bias and measurement error in the devices that might 
feasibly be deployed (see NRC 2012 for a more detailed 
discussion of possible limitations). The committee an­
ticipates further refinements of exposure estimates within 
cohort studies. The refinements might be achieved by in ­
cluding extensive time–activity data in sophisticated spa­
tiotemporally refined pollution models and by controlling 
measurement error better, which would reduce one major 
contributor to uncertainty in the burden of lung cancer at­
tributable to air pollution. 

New and emerging approaches also will be helpful 
for addressing the other challenge noted above that is re­
lated to characterizing the specific mixture components 
and the corresponding sources that drive lung-cancer risk. 
Most evidence on the health effects of PM air pollution 
from epidemiological studies—for example, on lung can­
cer—is based on estimated PM mass as the indicator of 
exposure. But PM is a complex mixture, and particles of 
different size and compositions might differ in toxicity 
and carcinogenic potential. Furthermore, PM exists with­
in the broader air-pollution mixture. 

New modeling approaches can provide estimates of 
concentrations of various PM components and charac­
teristics and facilitate the exploration of the relationships 
between specific PM components and health risk. Recent 
studies have comprehensively characterized sources of 
outdoor air pollution and incorporated LUR models for 

estimating ambient PM10, PM2.5, and nitrogen dioxide 
(Raaschou-Nielsen et al. 2016). Models have then been 
developed for elemental composition (x-ray fluorescence), 
elemental and organic carbon, polycyclic aromatic hydro
carbons (PAHs), benzene, and ultrafine particles, which 
have been studied little because of difficulties in exposure 
assessment (Chang et al. 2015). Exposure estimation for 
ultrafine PM is now possible with, for example, an inno
vative mobile monitoring design that has been shown to 
be reliable and cost-effective (Hudda et al. 2014). 

­

­

There are opportunties to use new in vitro and in vivo 
assays to evaluate and compare toxicity of PM samples. 
One of the properties of particles likely to reflect toxicity 
is oxidative potential, a property for which novel assays 
have been developed that measure the reduction of an­
tioxidants in lung-lining fluid (Kelly and Fussell 2015). 
By analyzing the spatial and temporal variability of the 
oxidative potential of PM in filters, one can characterize 
the determinants of that variation and develop new spa­
tially resolved air-pollution models for oxidative potential 
(Yang et al. 2015). 

The air-pollution models alone, however, provide in­
formation only on ambient outdoor-pollutant concentra­
tions and do not incorporate data on locations of members 
of the population needed for an exposure-assessment ap­
proach that would integrate data on various spaces. The 
models do not specifically take into account indoor ex ­
posure sources or indoor exposures to outdoor pollutants 
that have penetrated indoors. Recent advances in GIS (for 
example, route modeling) and microenvironmental mod­
els (for example, indoor-to-outdoor exposures) have led 
to the development of more detailed personal-exposure 
models that can be fed by rich sources of detailed data 
on population time–activity patterns, which should re­
flect time spent indoors. Regarding outdoor exposures, 
many cities hold information on origin and destination 
travel details from prepaid card systems or survey data 
on travel. Combined with regional or national surveys on 
time-use, those data constitute a rich additional source for 
personalized exposure models. Detailed data on personal 
and population-wide air-pollution exposures and space– 
time activity patterns from monitoring campaigns are re­
quired to evaluate new exposure models and thus support 
their use in providing improved exposure estimates for 
epidemiological studies and risk assessment. 

Internal Exposome 

The internal exposome can be investigated with two 
broad approaches: directly with analytical chemistry (as 
described in Chapter 2) and indirectly with several -omics 
technologies. Direct measurement focuses on the exog­
enous chemicals that can be found in internal fluids and 
measured with great sensitivity given current analytical-
chemistry methods. Indirect measurements are based on 
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changes in DNA, RNA, proteins, or metabolites from 
which exposure to particular exogenous chemicals can 
be inferred. Genomics, transcriptomics, epigenetics, and 
proteomics allow only indirect inferences on exposures, 
and metabolomics and adductomics might allow direct 
measurements. 

The use of -omics technologies described in this 
appendix allows the study of changes—for example, in 
blood or urine—that can help to characterize adverse 
effects of air pollutants, to refine exposure, to identify 
mechanisms, and to identify groups at risk. Here, the 
committee describes the potential contributions of the dif­
ferent -omics technologies in relation to the regulatory is­
sues raised above and provides a few examples intended 
to show the potential of the rapidly developing science. 
A systematic review on the topic was not possible, given 
the scope of the relevant literature and the rapid develop­
ment of this field. See Chapter 1 for definitions of -omics 
technologies. 

Genomics 

Carcinogenesis is understood to be a multistep pro
cess to which genetic and nongenetic changes contribute 
(see Smith et al. 2016). For lung cancer and air pollution, 
information on genetic determinants of risk would be use
ful for public-health protection. Genomics can be based 
on the systematic investigation of genetic (inherited) vari
ants that lead to or increase susceptibility to air-pollution– 
related disease or can be based on the study of somatic 
mutations induced by air pollution in cells. Concerning 
inherited susceptibility, several genetic variants (such as 
GSTM1) have been investigated in the candidate gene 
era; more recently, variants have been identified thanks 
to genome-wide association studies (see, for example,
Kachuri et al. 2016). The associations of genetic vari
ants with lung cancer are mostly weak, but the findings of 
some variants associated with lung-cancer risk have iden
tified groups in the population that are potentially more 
susceptible to carcinogens. 

­

­

­

 
­

­

A potentially fruitful approach for identifying suscep
tible groups is to develop profiles of susceptibility that 
are based on genetic pathways. For example, Bind et al. 
(2014) used a pathway-analysis approach to investigate 
whether gene variants that are associated with such path
ways as oxidative stress, endothelial function, and metal 
processing modified the association of PM exposure and 
fibrinogen, C-reactive protein, intercellular adhesion mol
ecule-1, or vascular-cell adhesion molecule-1. 

­

­

­

Concerning somatic (acquired) mutations, the se
quencing of several types of cancer tissues has shown that 
mutational patterns can reflect environmental mutagens 
(Nik-Zainal et al. 2015). For example, lung cancer has a 
mutational pattern that strongly resembles that induced by 

­
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benzo[a]pyrene (B[a]P) in in vitro assays that use immor
talized mouse embryo fibroblasts (Nik-Zainal et al. 2015). 
The results revealed that B[a]P induces a characteristic 
mutation signature: predominantly G→T  mutations for 
B[a]P  as opposed to C→T  and CC→TT  for ultraviolet 
radiation and A→T  for aristolochic acid, a carcinogenic 
and mutagenic compound. Thus, the study suggests that 
the carcinogenicity caused by smoking (and possibly air 
pollution) could be due to the PAH component in smoke 
(or ambient air). Mechanistically, that information is of 
great importance. 

­

Genomics could thus prove useful in two ways. First, 
genetic (inherited) variants that contribute to modulat
ing the cancer risk associated with air-pollution exposure 
could be identified. Identification of populations at greater 
(or less) risk would refine understanding of the exposure– 
response relationship and point to a susceptible popula
tion. Second, if a molecular signature in tumor tissue (so
matic mutations) were linked specifically to air-pollution 
exposure, burden could be more effectively quantified 
and exposure–response models developed for particular 
phenotypes defined by etiology. The committee notes that 
substantial research indicates differences in mutational 
spectra of lung cancers between smokers and never smok
ers, although markers that are definitive for any specific 
type of environmental exposure have not yet been identi
fied. Third, even if signatures are not identified, mecha
nistic insights that support biological plausibility further 
and perhaps provide insights concerning mixture compo
nents could be gained. 

­

­
­

­

­
­

­

Epigenomics 

Environmental exposures are able to change epigen­
etic signatures, for example, the methylation pattern of 
DNA or chromatin. DNA methylation and the associated 
repressed or activated transcription of genes might affect 
carcinogenesis (Vineis et al. 2010). Changes in methyla­
tion of the aryl-hydrocarbon receptor (AHR) repressor 
gene show that methylation can be used as a marker of 
exposure to smoking (Shenker et al. 2013) and to monitor 
the effect of cessation of exposure (Guida et al. 2015). 
Some authors have used AHR repressor methylation as 
a marker for in utero exposure of the fetus to tobacco-
smoke components from maternal smoking (Joubert et 
al. 2012). Epigenetic markers in cord blood and placental 
tissue could also be used to detect possible effects of air-
pollution exposure on the fetus and might be useful in 
addressing the question of whether maternal exposure to 
air pollution leads to developmental effects (Novakovic 
et al. 2014). And epigenetic markers might provide infor­
mation on exposure to air pollution and even particular 
components. 
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How informative epigenetics is in studying risks of 
disease or health outcomes depends on whether the mark­
ers are permanent, whether they develop during a critical 
age window, and whether the right tissue can be inves­
tigated; methylation markers are tissue-specific. A few 
studies have investigated the effects of air-pollution ex­
posure on DNA-methylation patterns (see, for example, 
Baccarelli et al. 2009) and focused on methylation of 
long interspersed element-1 (LINE-1) and Alu elements 
as measures of whole-genome methylation in blood cells. 
LINE-1 and Alu elements are retrotransposons, that is, 
repetitive and mobile sequences in the genome. LINEs 
comprise a substantial proportion of the genome, and 
LINE-1 and Alu methylation correlates with overall cellu­
lar levels of DNA methylation. Air pollution was found to 
alter LINE-1 methylation (Baccarelli et al. 2009; Deme­
triou et al. 2012). 

Epigenetic changes might also be integral to carcino­
genesis, perhaps to the same extent as genetic mutations. 
Fasanelli et al. (2015) showed that the same genes (in­
cluding the AHR respressor gene) for which methylation 
changes are associated with smoking predict lung-cancer 
risk. Similar studies are not available for air pollution and 
lung cancer. 

Given the substantial current emphasis on the epig­
enome and the environment, the committee anticipates 
that the utility of epigenetics in risk assessment will be 
determined over the next decade. Studies that span the life 
course are in progress, and there is opportunity for marker 
validation over longer times, although this research would 
require multiple biological samples from well-character­
ized large cohorts. 

Transcriptomics 

Transcriptomics can lead to the identification of per­
turbations in gene expression relevant to lung carcinogen­
esis due to environmental exposures, including exposure 
to air pollution. Thus, transcriptomics is expected to be a 
key tool in research, for example, for identifying which 
specific components of an air-pollution mixture are bio­
logically active and might have a role in causing lung can­
cer. Transcriptomics might also help to reveal interactions 
of mixture components by showing that the overall effect 
of a mixture on gene expression is greater than the sum of 
gene expression of the individual components. 

Gene-expression changes have been linked to air-
pollution exposures in in vitro and animal experiments. 
Specifically, exposure to air pollution leads to increased 
or decreased expression of genes that are relevant to im­
mune or inflammatory actions. Although few observa ­
tions have been made in humans, Wittkopp et al. (2016) 
performed an exploratory analysis and tested whether 
gene expression was associated with air-pollution ex­

posures in a Los Angeles area  cohort of elderly subjects 
who were exposed to PM2.5  at an average of 10-12 μg/m3. 
The authors found positive associations of traffic-related 
pollutants (including nitrogen oxides and PAH content in 
PM0.25–2.5 or PM0.25) with the expression of several can
didate genes, particularly Nrf2-mediated genes, which 
indicated involvement of oxidative stress pathways. A  
number of genes have been found to be dysregulated by 
using transcriptomics tools in studying lung cancer (see, 
for example, Amelung et al. 2010). 

­

Proteomics 

As noted in Chapter 1, proteomics refers to the mea­
surement of the whole compartment of proteins in a bio­
logical sample with high-throughput techniques. Like 
transcriptomics, it might be useful in characterizing tox­
icity of individual air-pollution components, identifying 
interactions of air-pollution components, and identify­
ing pathways that might be involved in a response to air 
pollution and possibly related to lung carcinogenesis For 
example, the association between long-term exposure to 
air pollution and inflammatory markers was investigated 
with a proteomic approach (Mostafavi et al. 2015), and 
immune–inflammatory perturbations were observed at 
high exposures. Little work has been conducted on the 
proteome in relationship to air pollution. 

Adductomics 

DNA and protein adducts have long been measured in 
relation to air-pollution exposure (Demetriou et al. 2012; 
Demetriou and Vineis 2015). Specific adducts, such as 
PAH–DNA adducts, have been measured. Adductomics 
is a new approach to identifying exposure biomarkers 
with a systematic, high-throughput search of all potential 
adducts resulting from external exposures or internally 
generated compounds. As part of the exposome concept, 
adductomics typically involves an untargeted investiga­
tion that analyzes hydrolysis products of albumin by us ­
ing mass spectrometry. Electrophilic chemicals or their 
metabolites that bind to albumin are also likely to bind 
to DNA. Thus, protein-based adductomics can potentially 
be used to identify genotoxic, electrophilic components 
in a mixture. Adductomics might also be helpful in refin­
ing exposure–response relationships, including the shape 
of the exposure–response curve for lung cancer, because 
the high sensitivity of adductomics reduces misclassifica­
tion and uncertainty. That research would require repeat 
samples from prospective cohorts, and one of the pil­
lars of modern epidemiology is the availability of large 
prospective cohorts with multiple samples that create an 
opportunity to study the stability of signals. Some of the 
markers integrate exposures over relatively long periods 
and would thus be useful for exposure estimation. 
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Metabolomics 

Metabolomics can be performed on plasma, serum, 
or urine samples by several methods, including high-
resolution mass spectrometry coupled to ultra-high­
performance liquid chromatography for untargeted analy­
ses. Metabolic features that characterize exposed groups 
are identified by multivariate statistics with appropriate 
correction for false discovery rate. Metabolites unique 
to exposed groups are then identified with more targeted 
investigations. However, metabolomics data are subject 
to high intraindividual variability, and many metabolites 
have short lives, which might limit their utility in estimat­
ing longer-term exposures. Annotation is another limiting 
factor; researchers are unable to characterize features de ­
tected with, for example, mass spectrometry without ad­
ditional chemical analyses. In principle and with likely 
future technical developments, however, metabolomics 
could become a useful tool for achieving several goals, 
as suggested in Table B-3: the identification of specific 
metabolites related to mixture components and their in­
teractions, better characterization of exposure by linking 
metabolites to external measurements, and reconstruction 
of molecular and biochemical pathways, which would 
contribute to mechanistic knowledge and identification of 
pathways. 

Concluding Remarks 

Early and still evolving findings from epidemiologi­
cal research that uses -omics techniques are starting to 

suggest that air pollutants might act via pathways that in
volve inflammation and oxidative stress. In addition, there 
might be mutational signatures that are characteristic of 
air-pollution exposure vs, for example, smoking, although 
air pollution and cigarette smoke have several common 
components, such as PAHs. The small samples of early 
studies, however, do not allow sound quantitative estima
tion of pathway perturbations at low doses. Although the 
evidence is limited, some consistency is emerging among 
different -omics platforms, such as transcriptomics, epig
enomics, and proteomics. The consistency among plat
forms can be investigated by using statistical techniques 
known as cross-omics (Vineis et al. 2013). The long-term 
goal is to couple external exposome approaches to reduce 
measurement error at the individual level with a suite of 
-omics investigations that characterize the various steps 
involved in carcinogenesis by investigating, for example, 
mutational spectra, epigenetic changes, inflammation, 
and cell proliferation in human samples. That research is 
expected to lead to more accurate quantitative risk assess
ment. 

­

­

­
­

­

Overall, -omics technologies will facilitate explora­
tion of all the characteristics of carcinogens and the path­
ways that lead from exposure to diseases. The main chal­
lenges are related to the variability of measures due to 
technical reasons and biological intraindividual variation, 
the long latency of cancer with decades between exposure 
and disease onset and the multiple steps involved, and the 
lack of access to precursor lesions—there is access only 
to surrogate tissues, such as blood—to study molecular 
changes that take place in target cells. Regardless of the 

TABLE B-3 Relevant Regulatory Questions and How -Omics Technologies Might Help to Answer Them in the 
Case of Lung Cancera 

-Omics Technologies 
Regulatory Question Genomics  Epigenomics Transcriptomics  Proteomics Adductomics  Metabolomics 
Identifying Critical Air-Pollutions Sources and Components 

Characterize toxicity 
and long-term effects 
of mixture components 

    

Investigate interaction 
potential of mixture 
components 

  

Characterizing the Exposure–Response Relationship 
Characterize exposure 
better 

 

Identify mechanisms      

Identify groups at 
greater risk 



aThis table is related to the current knowledge and uses of -omics in the field of lung carcinogenesis. Assignment of checkmarks 
in the table is likely to change with advances in the science of -omics and in the understanding of lung carcinogenesis. 
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challenges, the -omics technologies offer opportunities to 
identify critical components of air-pollution mixtures and 
to refine the exposure–response relationship as illustrated 
in Table B-3. 

Neurodevelopmental Effects and Particulate 

Air Pollution: Determining Whether
 

a Causal Relationship Exists
 

Determining whether there is a causal relationship 
between neurodevelopmental effects and PM is poten­
tially of great public-health importance. It has long been 
known that fetuses, infants, and young children are more 
sensitive than adults to diverse environmental toxicants 
because of the vulnerability accompanying developmen­
tal, growth, and maturation processes (WHO 1986; NRC 
1993; Anderson et al. 2000; Perera et al. 2004; Grand-
jean and Landrigan 2006). One topic of particular con ­
cern is neural development. A large body of research has 
addressed the influences of air pollution on fetal growth, 
including head circumference (Vrijheid et al. 2011; 
Stieb et al. 2012; van den Hooven et al. 2012; Backes 
et al. 2013; Proietti et al. 2013; Smarr et al. 2013). More 
recently, epidemiologists have become interested in po­
tential effects of PM air pollutants because some combus­
tion components of PM, such as PAHs and their deriva­
tives, have shown neurodevelopmental toxicity in some 
experimental and small pathology studies (Calderon-
Garciduenas et al. 2002; Takeda et al. 2004). In this sec­
tion, the committee briefly discusses the epidemiological 
studies that have linked air-pollution exposures to neu­
rodevelopmental effects and offers some suggestions on 
how ES21 and Tox21 tools and methods could be used to 
strengthen or improve the epidemiological studies. The 
committee notes that epidemiological studies that address 
neuropsychological effects of air pollution have been 
summarized by Guxens and Sunyer (2012) and Suades-
González et al. (2015) and are not discussed here. The 
section concludes with some general considerations re­
lated to developmental neurotoxicity (DNT) and possible 
approaches for studying DNT. 

Epidemiological Evidence of Associations Between 
Air Pollution and Neurodevelopment in Children 

Epidemiological studies have begun to investigate 
the association between various air pollutants and neu­
rodevelopmental effects in children. The characteristics 
and designs of the key studies are summarized in Table 
B-4. Several small cohort studies in the United States, Po­
land, and China have shown adverse neurodevelopmen­
tal effects in children exposed in utero to PAHs (Perera 
et al. 2006, 2009; Tang et al. 2008, 2014; Edwards et al. 
2010; Lovasi et al. 2014). PAH exposure in the studies 
was measured through short-term (48-hour) personal-ex­
posure measurements during pregnancy or as PAH–DNA 

adducts in cord blood. The adverse effects reported were 
decreases in mental function or IQ and motor develop
mental delays early in childhood, but these effects were 
not observed consistently at all ages at which the children 
were examined. An additional cohort study in the United 
States linked adverse neuro-developmental effects (IQ 
and attention disorders) in children with increases in chil
dren’s lifetime exposure to black carbon, which is related 
to traffic (Suglia et al. 2008; Chiu et al. 2013); however, 
only in boys was black-carbon exposure associated with 
attention disorders, and this suggests possible sex-specific 
vulnerability. A large European study combined six birth 
cohorts (Guxens et al. 2014) and reported that nitrogen 
dioxide, but not other air pollutants, was associated with 
delayed psychomotor development in children 4 years old 
and younger; no associations with cognitive or language 
development were seen. In addition, several Asian studies 
and a Polish study reported associations of different types 
of air pollutants and exposure periods with various devel
opmental outcomes (see Table B-4 below). Most of the 
studies were small, tested children at different develop
mental ages and for different functions or disorders, and 
measured exposures prenatally or postnatally, focusing on 
different pollutants and sources. Thus, additional studies 
are needed to replicate or confirm some of the reported 
findings before conclusions about associations of air pol
lution with adverse neurodevelopment outcomes can be 
drawn from epidemiological data. 

­

­

­

­

­

The limitations of the epidemiological studies might 
be addressed by ES21 and Tox21 approaches. The follow­
ing paragraphs summarize the challenges and possible ap ­
proaches to addressing them. 

•  Studies testing children’s neuropsychological 
function at different ages are time-consuming and expen­
sive, and researchers have to balance various factors, such 
as the extent and variety of functional assessments, cohort 
size, and length of follow-up. Feasibility and costs are 
major concerns. Those problems are exemplified in the 
most recent review of epidemiological studies (Suades-
González et al. 2015), which still did not identify suffi ­
cient data to conduct quantitative meta-analyses because 
of heterogeneity in the methods used to assess exposures 
and outcomes. With respect to cognitive and psychomo­
tor development, Suades-González et al. (2015) decided 
that for only one exposure (PAHs) were there enough 
high-quality studies available to conclude that there was 
“sufficient evidence” of an association but not a causal 
relationship. For other air pollutants, modern exposure 
assessment and modeling—GIS or dispersion modeling 
supported by satellite data and ground-level monitoring 
networks—might facilitate adding comparable air-pol­
lution exposure measures to those completed or current 
expensive human studies of neurodevelopment (for ex­
ample, studies using neuroimaging or extensive func­
tional testing). Eventually, the research conducted might 
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TABLE B-4 Study Design of Epidemiological Studies That Have Investigated Neurodevelopmental Effects of Air Pollution 
Study Characteristics Exposure Details Principal Outcomes Investigated Selected Findings Reference 

N = 46,039 singleton 
births in Japan on 
January 10–17 or  
July 10–17, 2001 

N = 183 children, 
3 years old, born to 
black and Dominican 
women in New York, 
NY, mother–child 
pairs recruited in 
1998-2003 

N = 249 children, 
5 years old, born to 
black and Dominican 
women in New York, 
NY, mother–child 
pairs recruited 
1998–2003. 

Note: This cohort is  
the same as Perera  
et al. 2006. 

N = 326 children, 
born to black and 
Dominican women 
in New York, NY in 
1998–2006. 

Note: This cohort is  
the same as Perera  
et al. 2006. 

N = 214 children born 
to women in Krakow, 
Poland 

Evaluated maternal exposure to air 
pollution related to municipality-level 
traffic, including PM, NO2, CO, and 
SO2 in the 9 months before birth. Air-
pollution measurements were taken 
from general and roadside stations 
nationally. 

Evaluated prenatal exposure to 
airborne PAHs, secondhand tobacco 
smoke, and pesticides; PAHs were 
monitored during pregnancy with 
personal air sampling. 

Umbilical cord blood was taken at 
delivery, and maternal blood within 
2 days postpartum was analyzed for 
cotinine, heavy metals, and pesticides. 

PAHs were measured in women in 
their third trimester with a personal 
monitoring device during the daytime 
hours for 2 consecutive days; monitor 
was placed near the bed at night. 
Pumps operated continuously during 
this period, collecting vapors and 
particles ≤ 2.5 μm in diameter. 

PAH exposures were measured with 
personal ambient air monitors worn 
for 2 consecutive days and placed at 
the bedside at night during the third 
trimester of pregnancy. Housing 
disrepair was self-reported by mothers, 
and neighborhood characteristics were 
estimated within a 1-km network from 
the prenatal address overlaid with data 
from the 2000 US Census. Indicators 
measured included number of residents 
below the federal poverty line, high-
school diploma or equivalent degree 
attained, and low neighborhood 
English-language proficiency. 

Exposure to eight PAHs was measured 
with personal air monitors carried over 
a 48-hour period during the second or 
third trimester of pregnancy; monitors 
were kept at the bedside at night 
during this period. 

Milestone delays were measured 
through a series of questions 
administered at ages 2.5 and 5.5 
years. Questions were not validated 
or selected from an established 
scale, but have been used in previous 
studies. 

The Bayley Scales of Infant 
Development- Revised were used to 
assess cognitive and psychomotor 
development at ages 12, 24, and 
36 months to generate an MDI and 
corresponding PDI. Behavioral 
problems were measured on the  
Child Behavior Checklist. 

The WPPSI-R was used to determine 
verbal, performance, and full-scale  
IQ scores. 

The WPPSI-R was used to assess 
intelligence and neurodevelopment at 
of age 5 years. Spanish scores were 
excluded because of difference in 
the Spanish- and English-language 
versions. 

At age 5 years, RCPM were used to 
assess a child’s nonverbal reasoning 
ability. 

Estimated air-pollution exposure 
during gestation was positively 
associated with some risk of 
several developmental milestone 
delays at both ages—verbal and 
fine motor development at age 
2.5 years and behaviors related to 
inhibition and impulsivity at 5.5 
years. 

Prenatal exposure to PAHs of 
the mothers was not associated 
with PDI or behavioral problems. 
However, high prenatal exposure 
to PAHs (the upper quartile of the 
distribution) was associated with 
lower MDI at the age of 3 years, 
but not 1 or 2 years. 

Women who had higher exposure 
to PAHs during pregnancy were 
significantly more likely to have 
infants with lower full-scale and 
verbal IQ scores tested at the age 
of 5 years. After adjustment for 
maternal intelligence, quality of 
the home caretaking environment, 
environmental tobacco-smoke 
exposure, and other potential 
confounding factors, high PAH 
levels (above the median of 2.26 
ng/m3) were significantly and 
inversely associated with full-scale 
and verbal IQ scores but not with 
performance IQ scores. 

Prenatal PAH exposure above 
the median was significantly 
associated with lower total 
WPPSI-R and verbal scores. 
The mean differences were 3.5 
total points and 3.9 verbal points 
between high and low PAH 
exposure groups, respectively. 

A higher prenatal exposure  
(above the median of 17.96  
ng/m3) to airborne PAHs (range, 
1.8–272.2 ng/m3) was significantly 
associated with decreased RCPM 
scores at the age of 5 years, 
after adjustment for potential 
confounding variables. This 
corresponds to an estimated 
average decrease of 3.8 IQ points. 

Yorifuji et al. 2016 

Perera et al. 2006 

Perera et al. 2009 

Lovasi et al. 2014 

Edwards et al. 2010 
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N = 1,257 US 
children, 6–15 years 
old; data collected 
from 2001–2004 
cycles of NHANES. 

PAH exposure was based on urinary 
metabolite concentrations measured in 
the 2001–2002 and 2003–2004 cycles. 

Outcomes were measured by 
parental reporting of (1) ever doctor-
diagnosed ADHD (2) ever doctor- or 
school representative-identified 
LD and (3) receipt of SE or early 
intervention services. 

Higher concentrations of fluorine 
PAH metabolites in children were 
associated with 2-fold increased 
odds of needing SE, somewhat more
in males than in females. 

Abid et al. 2014 

 

N = 202 children 
in Boston, MA, 
participating in 
a prospective 
birth cohort study 
(1986–2001) 

Exposure to BC was estimated with a 
model on the basis of child’s residence 
during study follow-up. Data collected 
from more than 80 locations in the 
greater Boston area were used to 
complete a spatiotemporal LUR model 
to predict 24-hour measures of traffic 
exposure. 

Cognitive tests were administered 
at ages 8–11 years and included 
the K-BIT (assesses verbal and 
nonverbal intelligence) and the 
WRAML (evaluates a child’s ability 
to actively learn and memorize a 
variety of information). 

With adjustment for 
sociodemographic factors, birth 
weight, blood lead concentration, 
and tobacco smoke, BC exposure 
was associated with decreases in the 
vocabulary (˗2.2), matrices (˗4.0), 
and composite intelligence quotient 
(˗3.4) scores of the K-BIT and visual 
subscale (˗5.4) and general index 
(˗3.9) of the WRAML. 

Suglia et al. 2008 

N = 174 children,  
7–14 years old in 
Boston, MA. 

Traffic-related black carbon (BC) 
concentrations were estimated over 
child’s lifetime using a spatiotemporal 
model for 24-hour measures of BC 
based on 6,021 observations from 
>2,079 unique exposure days at 82 
locations in greater Boston area. 
Models took into consideration warm 
(May–October) and cold (November– 
April) seasons. 

The Conners’ CPT was used to 
assess attention disorders and 
neurological functioning at ages 
7–14 years. 

In this population of urban school-
aged children, there was a positive 
association between higher BC and 
increased commission errors and 
lower HRT, even after adjustment 
for child IQ, age, sex, and other 
variables. Sex-stratified analysis 
showed statistically significant 
associations between BC and both 
commission errors and HRT in 
boys, but BC was not significantly 
associated with any outcomes in 
girls. 

Chiu et al. 2013 

Note: This cohort is 
the same cohort as 
Suglia et al. 2008 

N = 9,482 children 
in six European 
population-based 
birth cohorts: 
the Netherlands, 
Germany, France, 
Italy, Greece, and 
Spain; mother–infant 
pairs recruited in 
1997-2008. 

LUR models were used to estimate 
NOx in all study regions and PM with 
diameter <2.5, <10, and 2.5–10 μm, 
and PM2.5 absorbance in subregions. 
Monitoring campaigns took place 
primarily from October 2008 to 
January 2011.   

Cognitive and psychomotor 
development was assessed 
at ages 1–6 years. Different 
neuropsychological tests for 
cognitive and psychomotor 
development were administered, 
including McArthur Communicative 
Development Inventory, Bayley 
Scales of Infant Development I–III 
editions, Denver Developmental 
Screening Test II, McCarthy Scales 
of General Cognition, and Ages and 
Stages Questionnaire. 

Air-pollution exposure during 
pregnancy, particularly NO2 (of 
which traffic is a major source) and 
PM2.5, was associated with delayed 
psychomotor development in 
children (˗0.68 points in the global 
development score) for each  
10 μg/m3 increase in NO2). 
Cognitive development measured  
at similar ages was not related to  
air-pollution exposure during 
pregnancy. 

Guxens et al. 2014 

NOx was measured at least three times 
per week for 2 weeks within 1 year. 
PM2.5 absorbance was measured in a 
subgroup of regions by reflectance of 
PM2.5 filters. To obtain final analyses, 
a back-extraction procedure was used 
to estimate the concentrations during 
each pregnancy of each woman. 

N = 520 mother– 
child pairs in three 
regional centers in 
South Korea studied 
in January 1, 2006– 
December 31, 2008 

Exposure to PM10 and NO2 during 
pregnancy was estimated with 
inverse distance-weighting method. 
A mini-volume air sampler was used 
to measure outdoor ambient PM10; a 
passive sampler was used to measure 
outdoor ambient NO2; sampling was 
performed over 24 hours. 

The Korean Bayley Scale of Infant 
Development II was used to measure
neurodevelopment progress. Results 
were expressed as MDI and PDI at 6,
12, and 24 months. 

There was a negative association 
 between maternal exposure to PM10  

and MDI and PDI throughout the 
 first 24 months of life. Maternal 

NO2 exposure was associated with 
impairment of PDI but not with 
cognitive function. A multiple-linear
regression model showed significant 
effects of prenatal air-pollution 
exposure (PM10 and NO2) on 
MDI and PDI at 6 months, but no 
significant associations were found 
at 12 and 24 months. 

Kim et al. 2014 

­
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N = 533 mother– 
infant pairs in 29 
villages or cities 
in Taiwan selected 
in October 2003– 
January 2004; 
followed up at 6  
and 18 months. 

N = 133 children 
born March 4, 
2002–June 19, 2002, 
in three Tongliang, 
China county 
hospitals; followed 
for 2 years 

N = 150 children 
born March 4, 
2002–June 19, 
2002, compared 
with a cohort of 158 
children born March 
2, 2005–May 23, 
2005; both cohorts 
consisted of children 
born in Tongliang, 
China. 

Note: This cohort  
is the same as Tang  
et al. 2008 

Hourly ambient concentrations of 
CO, O3, PM10, SO2, NO2, THCs, and 
NMHCs were measured at the Taiwan 
Air Quality Monitoring Network. 
Participant exposure was considered 
to be the average taken during the 
period 7 am to 7 pm. Air-pollutant 
exposure for each child was measured 
by linking data from the air-quality 
monitoring stations of the town to the 
exposure period from the beginning of 
gestation to 18 months after birth. The 
gestational period was divided into 3 
trimesters, and the postpartum ranges 
were birth–6 months, 7–12 months, 
and 13–18 months. 

Study carried out in an area in 
China with a seasonally operated 
coal-fired power plant. PAH–DNA  
adducts, Pb, and Hg were measured 
in umbilical-cord blood samples 
collected at delivery. HPLC was used 
to analyze B[a]P–DNA adducts in 
extracted white blood cell DNA. A  
PE-800 Zeeman atomic absorption 
spectrometer with background 
correction system was used to 
measure Pb in samples. 

Two mini-volume samplers were 
used at three sites in Tongliang in 
March 2002–February 2003 and in 
March 2005–February 2006 to collect 
72-hour PAH samples. Overall PAH 
concentrations were measured by 
analyzing B[a]P–DNA adducts in 
extracted white blood cells collected 
from the umbilical cord at delivery 
and from the mother within 1 day 
postpartum. 

Neurodevelopmental performance 
was measured by parent responses 
to a screening instrument, the 
TBCS. The scale consists of four 
developmental divisions: gross 
motor, fine motor, language/ 
communication, and social/self­
care abilities. Parents completed 
two neurobehavioral development 
scales at each interview; responses 
consisted of never, sometimes, 
and all the time. Scales have good 
predictive validity, and dimensions 
correlate with the Bayley Scales of 
Infant Development. 

Physical, emotional, and behavioral 
development of 2-year-old children 
was measured with the GDS. 
Children received DQs for each of 
motor behavior, language behavior, 
personal behavior, and social 
behavior. 

Birth weight, length, and head 
circumference were measured at 
birth or more than once after birth if 
the child was delivered by cesarean 
section. Neurodevelopment was 
measured with the GDS at the age 
of 2 years. As above, DQs were 
developed for motor, adaptive, 
language, and social behavior. 

Various indexes of ambient air 
pollution, even low SO2 exposure, 
during pregnancy and up to the age 
of 12 months were associated with 
poor subclinical neurodevelopment 
(neurobehavioral effects and poor 
gross motor development) in early 
childhood. 

Increased cord adduct concentration 
was inversely associated with 
decreases in the motor area DQ, 
language area DQ, and average 
DQ after adjustment for cord lead 
concentration, environmental tobacco 
smoke, sex, gestational age, and 
maternal education level. High cord 
blood lead was also significantly 
associated with decreased social area 
DQ and average DQ. The frequency 
of developmental delay ranged from 
9.1% (social) to 13.6% (motor), with 
an average score of 6.4%. 

The power plant was closed between 
the recruitment of the two cohorts. 
Patterns of developmental delay in 
all DQ areas except language were 
improved in the 2005 post-shutdown 
cohort compared with the 2002 
cohort. 

Lin et al. 2014 

Tang et al. 2008 

Tang et al. 2014 

Abbreviations: ADHD, attention deficit hyperactivity disorder; BC, black carbon; CO, carbon monoxide; CPT, Continuous Performance Test; DQ, 
developmental quotient; GDS, Gesell Developmental Schedules; Hg, mercury; HPLC, high-performance liquid chromatography; HRT, hit reaction 
time; K-BIT, Kaufman Brief Intelligence Test; LD, learning disability; LUR, land-use regression; MDI, mental-development index; NHANES, Na
tional Health and Nutrition Examination Survey; NMHC, nonmethane hydrocarbon; NOx, nitrogen oxides; NO2, nitrogen dioxide; O3, ozone; PAH, 
polyaromatic hydrocarbon; Pb, lead; PDI, psychomotor-development index; PM, particulate matter; RCPM, Raven Coloured Progressive Matrices; 
SE, special education; SO2, sulfur dioxide; TBCS, Birth Cohort Study Scale; THC, total hydrocarbon; WPPSI-R, Wechsler Preschool and Primary 
Scale of Intelligence-Revised; WRAML, Wide Range Assessment of Memory and Learning. 
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provide sufficient sample size, appropriate exposure gra­
dients, and possibly information about source-specific 
or chemical-specific pollution components to generate 
results that allow quantitative or causal evaluation of air 
pollutants and neurodevelopment. 

•  Key limitations in many DNT studies of air pol­
lution are that they cannot address multiple air-pollutant 
exposures (mixtures) and most likely can ascertain po­
tential confounders only incompletely, given the limited 
knowledge of social and cultural determinants of neuro­
development and the strong association of neurodevelop­
ment with socioeconomic status (SES). GIS could help 
to disentangle the role of SES by allowing, for example, 
area-level adjustment for correlates of SES. Computer-re­
source–intensive multilevel spatial modeling in a Bayes­
ian framework might also allow addressing spatially cor­
related confounders and pollutant mixtures (Coker et al. 
2015, 2016). 

•  In future studies with smaller samples, it might 
be possible to use personal air monitoring or biomarker 
approaches that include new sensor technologies if in­
struments are small and lightweight and if measurements 
are less expensive and thus feasible. The new approaches 
would allow monitoring over extended periods in preg­
nancy or early life. With the exception of PAH adducts, 
there are no good biomarkers for toxic PM components. 
Monitoring only particles does not allow assessment of 
the toxicity of their components, and particle composition 
probably depends on the sources that generate the parti­
cles. However, combining continuous particle monitoring 
with repeated collection of relevant biosamples (such as 
maternal and infant blood, urine, and placenta) would also 
allow the use of -omics tools to find new exposure bio ­
markers in human samples and possibly some biomarkers 
predictive of outcomes (see, for example, Janssen et al. 
2015; Saenen et al. 2015). Nontargeted approaches might 
be useful for identifying new biomarkers. 

General Considerations Related to Developmental 
Neurotoxicity and Possible Assessment Approaches 

Historically, establishing causal linkages between 
neurodevelopmental disorders and environmental expo­
sures, such as exposure to air pollution, has been diffi ­
cult for a variety of reasons, including the need for large 
populations in epidemiological studies, the complexity 
of capturing the full array of relevant exposures before 
and during pregnancy, the long latency between exposure 
and effect (particularly for neurodegenerative disorders), 
the lack of defining pathology of some disorders (such 
as schizophrenia or autism spectrum disorder), and in ­
herent limitations of animal models and in vitro assays. 
Perspectives and strategies for assessing DNT more com­
prehensively have been published by various stakeholders 
and will not be recapitulated here (Aschner et al. 2010; 

Bal-Price et al. 2015; Felter et al. 2015). This discussion 
highlights the unique challenges associated with trying 
to assess DNT and provides some possible approaches to 
doing so. 

The most notable challenge unique to brain and be­
havioral targets is the dynamic complexity of the develop­
ing brain and a fundamental lack of understanding of the 
etiology of complex behavioral disorders, such as intel­
lectual disability and emotional impairment. A disease-
centric approach to DNT risk assessment is particularly 
challenging and unlikely to be feasible because many 
neural disorders, especially neuropsychiatric disorders, 
are syndromes with a spectrum of hallmark features and 
lack defining neuropathology or clear etiology. Thus, it 
is not plausible or rational to use a framework that at­
tempts to make clear linkages between exposure, DNT 
mechanisms, and neural disease. Only a few such models 
have been proposed for DNT, and they are all too gen­
eral (for example, oxidative stress) and do not explain the 
pathology well. Furthermore, the evidence does not sup­
port their acceptance with confidence, particularly in the 
neuroscience community. Instead, risk assessment of and 
chemical screening for DNT will have to be conducted in 
recognition that in the absence of an extraordinary situa­
tion (major accident or industrial exposure) clear linkages 
between exposure and a clinically diagnosed neural dis­
ease will be challenging. 

Although perspectives on how to improve DNT risk 
assessment in a regulatory context differ, there is general 
agreement that testing for DNT should focus on evolu­
tionarily conserved, fundamental events in neurodevelop­
ment. Those events include neural induction, cell migra­
tion, axonal guidance, synapse formation and pruning, 
and apoptosis. Perturbation of the critical events underlies 
the primary deficits in neural disorders. Given that per­
spective, developmental neurotoxicants would be iden­
tified by their capacity to alter the fundamental events, 
regardless of their specific cellular or molecular mecha ­
nisms. Examples in which that perspective has yielded 
critical insight in connection with air pollution include 
evidence that PM2.5 induces oxidative stress in homoge­
nates of rat brain regions and disrupts blood–brain barrier 
integrity, thereby enhancing neurotoxicity by activated 
macrophages and microglia (Fagundes et al. 2015; Liu et 
al. 2015). In mice, developmental exposure to ultrafine 
particles induced sex-specific neurotoxicity (including 
excitotoxicity and glial activation) and behavioral chang­
es indicative of heightened impulsivity and hyperactiv­
ity—behavioral changes also associated with exposure of 
children to air pollution (Allen et al. 2014). Furthermore, 
in utero exposure to B[a]P during peak periods of neuro­
genesis in mice leads to behavioral learning deficits (Mc-
Callister et al. 2016). 

Rapidly evolving experimental, epidemiological, 
computational, and toxicity-screening strategies are poised 
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to assess neurotoxicity and neuroendocrine disruption bet
ter and to fill critical testing gaps. Thus, DNT  is a topic in  
which the application of Tox21 approaches would be par
ticularly opportune and advantageous. For example, neu
roinflammatory responses to air pollution have now been  
observed in human, animal, and in vitro studies (Costa et  
al. 2014); the results suggest the potential for contribu
tions of Tox21 approaches that include the use of animal  
models and human tissues to assess DNT risks posed by  
air pollution and other exposures. 

­

­
­

­

Tox21 approaches, including DNT assays, could also 
be used to address the challenges of identifying the air-
pollution components that are contributing to neural dis­
ease. They could allow rapid testing of specific particle 
neurotoxicity and could help to identify markers of par­
ticle sources responsible for greater toxicity. For example, 
little is known about what PAHs are present in exposure 
mixtures; environmental samples can contain hundreds 
of individual parent or substituted PAHs, and bioactivity 
and toxicity of PAHs depend heavily on chemical struc­
ture (Wang et al. 2011). New methods could increase our 
understanding of the structure and toxicity relationships 
of neurobehavioral deficits if the full suite of chemicals 
present in samples could be identified and their individual 
or composite activities understood. Specifically, a suite 
of in vitro and high-throughput integrated systems could 
be used to classify PAHs by identifying their biological 
targets or pathways. Those systems could initially use un­
targeted global assessments—such as proteomics, metab­
olomics, transcriptomics, and epigenomics—to identify 
activity signatures for chemical classification and model­
ing. Recent studies in zebrafish, for example, evaluated 
and compared the developmental toxicity of 38 oxy-PAHs 
and revealed patterns of responses associated with PAH 
structural features (Knecht et al. 2013). In addition, full-
genome RNA-sequence studies in zebrafish revealed that 
even for PAHs that produce toxicity through binding and 
activation of the AHR, subtle differences in PAH structure 
yield different overall developmental gene-expression 
changes and indicate that measuring P450 induction as a 
measure of AHR activation might be problematic (Goo-
dale et al. 2015). Once targets of individual PAHs are 
identified, Tox21 approaches might be exploited further 
to predict how mixtures of PAH interact to produce neuro­
toxicity. In vitro functional assays of nervous-system de­
velopment and function could be implemented to identify 
chemicals and mixtures that alter end points relevant to 
the nervous system. High-throughput integrated systems, 
such as zebrafish, might play a pivotal role in connecting 
identified molecular-response data with neurobehavioral 
measures (Truong et al. 2014; Reif et al. 2016). Optimiza­
tion and scale up of assays that probe more complex be­
haviors in adult zebrafish (discussed in Chapter 3) should 
provide new avenues to link chemical exposures to func­
tionally relevant neurobehavioral end points. 

Using 21st Century Science to Improve Risk-Related Evaluations 

Despite enthusiasm for improving testing approaches 
and the emergence of new assays for DNT, implementa
tion has been slow. For example, lack of assay coverage 
in EPA’s ToxCast for neurotoxicity end points or neuronal 
targets is a well-recognized limitation. An initial attempt 
to use the ToxCast data to rank tested chemicals in terms 
of neurotoxicity failed because of poor assay coverage of 
suitable end points and low reliability of existing assays 
(Filer et al. 2014). Stakeholder meetings and workshops 
have helped to identify better ways to integrate emerging 
tools and approaches for DNT but require the inclusion of 
more neuroscientists and developmental endocrinologists 
to ensure that fundamental pathways in neurophysiology 
are evaluated and that sexual dimorphisms, region-specif
ic sensitivity, and dynamic critical windows of exposure 
are considered in assay development (Crofton et al. 2014; 
McPartland et al. 2015). A battery of assays that incorpo
rates the most up-to-date neuroscience tools and principles 
and that provides data relevant for regulatory science and 
risk-based decision platforms will be needed. Identifying 
and leveraging the most promising approaches and tech
nologies will require active engagement of experts in dis
ciplines outside traditional toxicology, especially the neu
rosciences. Accomplishing a multidisciplinary approach 
and encouraging a multidisciplinary research program 
for assay development and evaluation can be achieved by 
coordinating with relevant scientific societies and groups 
that have the needed expertise and with relevant funding 
agencies, such as the National Institute of Environmental 
Health Sciences. 

­

­

­

­
­
­

How the adult human brain accomplishes complex 
cognitive and social processing remains mysterious and 
is the focus of intense research that is using a broad ar
ray of tools. Even less is known about when key aspects 
of the complex systems are organized in development 
or about how sexual dimorphisms emerge (Reinius and 
Jazin 2009; Yang and Shah 2014; Hawrylycz et al. 2015; 
Loke et al. 2015). The role of glia is also gaining substan
tial attention because these cells, particularly astrocytes 
and microglia, appear to play a more fundamental role 
in neural development than previously thought (Schwarz 
and Bilbo 2012; Schitine et al. 2015). Thus, assessments 
of neurodevelopmental consequences of chemical expo
sures must be undertaken with the understanding and ac
ceptance of the fact that fundamental understanding about 
how the brain develops remains to be achieved, let alone 
how it enables us to engage in uniquely human behaviors 
and what contributes to the cognitive and social capacities 
that define our species. More research is needed on DNT, 
particularly given its critical consequences and society’s 
high level of concern about its adverse effects. Addressing 
the challenges associated with DNT will require collab
orative engagement of a broad array of disciplines, from 
neuroscientists who can address fundamental questions 
about the vulnerability of the brain to exogenous chemi

­

­

­
­

­

­
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cal exposures to population scientists who can assess the 
effects of chemical exposures in human populations. 
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Case Studies on Site-Specific Assessments 


As discussed in Chapter 5, understanding the risk as
sociated with a spill or a hazardous waste site requires
identifying and quantifying the chemicals present, char
acterizing the chemical toxicity, and estimating the mix
ture toxicity and associated risk. This appendix provides
a case study related to each element. The first case study
describes approaches for refining exposure estimates for
known chemicals at a hypothetical site and approaches for 
identifying the uncharacterized  chemicals at the site. The
second addresses the generation of toxicity data and ex
posure information on a data-poor chemical after its acci
dental release. The third explores a biological read-across
approach for assessing mixtures at a hypothetical site. 

­
 

­
­
 
 
 

 
­
­
 

IDENTIFYING CHEMICALS AT A SITE 

For this case study, the setting is a large, historically 
contaminated site that comprises land and surface water 
near a major population center (for example, Love Canal, 
the Portland Harbor, or the Houston Ship Channel). Re­
cent site characterization has produced an extensive set of 
environmental monitoring data for air, water, and soil at 
the site. The data cover multiple times and are geographi­
cally distributed throughout the site. Biomonitoring data 
are available from serum, urine, and hair in a representa­
tive sample of people who live and work in the area sur­
rounding the site. The biomonitoring data are geographi­
cally distributed but in some cases limited to single times. 

Targeted analytical chemistry produced concentra­
tion data on about 50 toxicologically well-characterized 
chemicals in environmental media and human blood, 
urine, and hair (see Table C-1). The chemicals represent 
four major chemical classes: polycyclic aromatic hydro­
carbons, industrial chemicals and solvents, plasticizers, 
and pesticides. Information on metabolism and pharma­
cokinetics of many of the chemicals in rodents and hu­
mans is available. Assessments of external exposure of 
the population around the site (children, adults, and senior 
adults) to each chemical by the oral, dermal, and inha­
lation routes, where appropriate, have been conducted. 
Nontargeted analyses of the same environmental and bio­
monitoring samples revealed 5,000 unidentified substanc­

es in the environmental media, 3,000 in serum, 2,000 in 
urine, and 800 in hair; 300 of the unidentified analytes are 
common to the environmental media and all biomonitor
ing samples (see Figure C-1). 

­

For this case study, the tasks become refining expo­
sure assessment of the known chemicals, translating the 
external-exposure predictions into internal-exposure pre­
dictions, and identifying the unknown chemicals at the 
site. The following sections explore those various tasks. 

Assessment of Known Chemicals 
and Chemical Mixtures 

The initial step in this case study would be to as
semble existing  exposure data on the identified (known) 
chemicals and refine their exposure estimates for testing. 
The relative composition, variability, and concentration 
ranges of the chemicals in the various media would be 
assessed and quantified, taking into account the exposure 
routes of interest. For example, testing designed to evalu
ate risks associated with dermal exposures might focus 
on concentrations of chemicals in soil, water, and air that 
would come into contact with skin. Similarly, mixtures 
that should be evaluated for inhalation toxicity in portal­
of-entry tissues (lung tissue) might best be defined by air 
concentrations of mixture components. Alternatively, oral 
exposures for toxicity testing could initially be defined by 
the composition and concentrations of components of soil 
and water or other media that might be ingested and ab
sorbed in sufficient amounts to influence total exposure. 

­

­

­

Once exposures have been defined, the task is to 
translate exposures from external measures to internal 
predictions to appropriate concentrations for in vitro test
ing with pharmacokinetic models or measurements ob
tained from biomonitoring. The accuracy of the model 
estimates will be determined partly by the amount of in
formation available on absorption, distribution, metabo
lism, and excretion (ADME) processes. Cheminformatic 
and high-throughput systems can provide information on, 
for example, metabolism by hepatocytes, absorption by 
caco-2 cells, and binding to plasma proteins that could be 
used to estimate pharmacokinetic parameters (Wetmore 

­
­

­
­
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TABLE C-1  Site-Specific Chemicals Identified by Targeted Chemistry Analysis  
Class  Ranka  Chemical  Name  
Polycyclic aromatic hydrocarbons	  10  Benzo(B)fluoranthene  

38  Benzo(A)anthracene  
80  Naphthalene  
138  Fluoranthene  
168  Acenaphthene  
185  Dibenzofuran  
255  Pyrene  

High-production-volume industrial  chemicals 	 30  Benzidine  
54  Pentachlorophenol  
84  2,4,6-Trichlorophenol  
98  2,4-Dinitrotoluene  
101 4,6-Dinitro-o-cresol  
137  1,2,3-Trichlorobenzene  
142  2,4,5-Trichlorophenol  
172  Cresol,  para  ­
181  Phenol  
195  Cresol,  ortho  ­
206  n-Nitrosodiphenylamine  
260  2,6-Dinitrotoluene  

Plasticizers  58  Di-n-butyl phthalate  
77  Di(2-ethylhexyl)phthalate  
266  Bis(2-ethylhexyl)adipate  

Pesticides 	 13  DDT,  P,P’  ­
18  Dieldrin 
25  Aldrin 
26  DDD, P,P’­
28  Heptachlor 
34  γ-Hexachlorocyclohexane 
37  Disulfuron 
40  Endrin 
41  Diazinon 
44  Endosulfan 
47  Heptachlor epoxide 
53  DDT, O,P’­
55  Methoxychlor 
65  Chlorpyriphos 
89  2,4-Dinitrophenol 
99  Ethion 
103  Dimethylarsinic acid 
131  Azinphos-methyl 
144  Dicofol 
148  Parathion 
155  Trifluralin 
166  Phorate 
200  Ethoprop 
232  Dimethoate 
244  2,4-D Acid 
246  Butylate 
250  Diuron 
269  Metolachlor 
272  Carbaryl 

aRank is from the ATSDR 2015 Substance Priority List in which rank is based on frequency, toxicity, and potential for human 
exposure at Superfund sites. 
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et al. 2012, 2014). Genetic analysis of single-nucleotide 
polymorphisms related to human pharmacokinetics could 
provide information on variability in pharmacokinetic 
parameters in the population of concern. Ultimately, the 
pharmacokinetic parameters are helpful for evaluating 
the relationships between external and internal exposures 
and guiding selection of test concentrations. The data on 
individual chemical and mixture exposure and the related 
pharmacokinetic data would ideally be used to establish 
test concentrations or exposures for the appropriate in 
vivo or in vitro test systems that reflect the composition 
of real-world exposures at the site. 

Assessment of Chemicals of Unknown Identity 

Nontargeted analyses of samples from the site re
vealed 5,000 unidentified chemicals in the environmental 
media, 3,000 in serum, 2,000 in urine, and 800 in hair 
(see Figure C-1). All sample types had 300 unidentified 
chemicals in common. One key challenge in nontargeted 
analysis of complex samples is to identify the unidenti
fied chemicals accurately. Without chemical identifica
tions, the ability to quantify exposure, conduct toxicity 
testing, and evaluate the plausibility of exposure–disease 
associations is extremely limited. To identify unknowns, 
standard reference materials for industrial and other 
chemicals and their metabolites are needed. Analytical 
features of the standard reference materials—such as elu
tion time, exact mass, isotopic signature, and fragmen
tation pattern from, for example, gas chromatography 
(GC), liquid chromatography (LC), and tandem mass 
spectrometry (MS/MS)—can be matched to analytical 
features in the sample to identify the chemicals of inter
est. Chemical-identity libraries that contain the analytical 
spectra of reference standards are growing, particularly 
for endogenous metabolites (for example, the Human Me
tabolome Database, HMD), but more progress needs to 

­

­
­

­
­

­

­

be made before nontargeted analyses can become routine. 
The following discussion provides approaches for making 
progress in this field. 

Two general approaches—an experimentally driven 
approach and another driven by cheminformatics (Horai 
et al. 2009; Neumann and Bocker 2010)—have been sug­
gested to overcome the obstacles presented by the lack of 
chemical-identity libraries. In the experimentally driven 
approach, chemical-identity libraries similar to the HMD 
that include exact mass, elution times, isotopic signature, 
and mass fragmentation patterns (see Figure C-2) could be 
created for ToxCast and other chemicals. To support that 
effort, the US Environmental Protection Agency (EPA) 
has obtained authentic chemical standards for thousands 
of ToxCast chemicals and placed them in a chemical re­
pository. Development of a complete chemical-identity 
library for the ToxCast chemicals (and addition of this 
information to such databases as the HMD) would enable 
measurements of these chemicals in environmental me­
dia and human biofluids. However, a major limitation in 
the experimental approach is the absence of standards for 
common environmental degradation products or metabo­
lites that are likely to be found in biofluids. As chemical-
identity libraries grow, archived GC, LC-MS, or MS/MS 
spectra can be searched to make new identifications. 

Nuclear magnetic resonance (NMR) methods pres
ent another experimental approach to identification of 
unknown chemical features. The methods hold great 
promise because NMR analysis allows identification and 
quantitation of chemicals without an authentic standard. 
A  noted limitation of the approach is its need for relative
ly high concentrations of target chemicals in the sample 
(1 µM; Bingol and Brüschweiler 2015) and its relatively 
low throughput. Advanced labeling techniques (Clen
dinen et al. 2015) and methods that involve combinations 
of NMR, MS, and other analytical techniques, however, 

­

­

­

FIGURE C-1 Hypothetical distribu­
tion of unidentified analytes in environ­
mental media and biomonitoring sam­
ples. Analysis revealed a total of 5,000 
analytes in the environmental samples, 
3,000 in the serum samples, 2,000 in 
the urine samples, and 800 in the hair 
samples. The four sample types had 300 
analytes in common. 
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show promise for future applications (Bingol and Brüsch ­
weiler 2015). 

Ion-mobility spectrometry–mass spectrometry (IMS­
MS) analysis is another promising experimental approach 
for library-building and rapid identification of chemi­
cal features of unknowns (Ewing et al. 2016; May et al. 
2016). In IMS-MS analyses, chemicals separate on the 
basis of their collisional cross-sectional (CCS) area dur­
ing flow through a nitrogen- or helium-filled tube with a 
charge separation. Separation times are in the millisec­
onds and allow the potential for very high-throughput 
sample analysis. One potential advantage of IMS-MS 
over other analytical approaches for chemical identifica­
tion for which authentic standards do not exist is that the 
CCS area can be calculated in silico with good accuracy 
(2–5% error; Paglia et al. 2014). The high throughput of 
the IMS-MS techniques and the possibilities of in silico 
library-building could produce large libraries of known 
chemicals, metabolites, and degradation products even if 
the chemical standards are not available. Those libraries 
could then be used to assign provisional identifications or 
identifications with probability statements. Furthermore, 
IMS-MS chemical fragmentation patterns can be matched 
to those in existing databases, such as the HMD, for im­
proved chemical identification. 

The other general approach is based on cheminfor­
matics and can circumvent the challenges associated with 
limited chemical-identity libraries and the lack of stan­
dard reference materials. Applied in concert with emerg­
ing analytical chemistry approaches and computational 
methods, cheminformatics holds great potential for rapid 
identification or classification of unknown analytes. For 
example, quantitative structure–activity relationship 
methods that compare chromatographic behaviors of 
unknown analytes could be combined with other data to 
provide predictions about select chemical properties of 

the analytes. Computational approaches based on physi­
cochemical properties have been used to predict elution 
times (Shah et al. 2010; Kangas et al. 2012), MS-MS 
fragmentation patterns (Heinonen et al. 2008; Wolf et al. 
2010; Perdivara et al. 2013), and CCS area (Paglia et al. 
2014). Using one or more of the analytical approaches 
with other cheminformatic tools for predicting metabo­
lism and environmental degradation products (Dimitrov 
et al. 2010) might help to create in silico libraries that 
grow in breadth and accuracy and can be used to transi­
tion from nontargeted to targeted analysis. 

The approaches described here represent essential 
methods for making the rapid transition from nontar­
geted to targeted analysis. For site-specific assessments 
with many unidentified chemicals, the approaches would 
provide a means of identifying analytes progressively for 
later hazard or risk assessment. For this case study, the 
committee assumed that the approaches applied to the en­
vironmental media, serum, urine, and hair samples would 
yield a list of 300 chemicals that are found with greatest 
consistency and at the highest concentrations in all sam­
ples (see Figure C-1). Chemicals that are found in envi­
ronmental media and biological samples will constitute a 
logical choice for targeted toxicity testing because they 
might have a higher exposure potential than chemicals 
found only in environmental media. 

As the number of identified chemicals increases, 
the data could be used to identify signatures of exposure 
to chemicals and mixtures. Such efforts would help to 
strengthen the exposure narrative and identify real-world 
mixtures for toxicity testing. The approaches for ranking 
based on hazard and bioactivity reported by Rager et al. 
(2016) (see Figures 2-7 and 2-8) are potentially applicable 
in some context of complex exposures. Other ES21 tools 
would then be used as needed and as described in Chapter 
2 and the above section to provide better exposure char-

FIGURE C-2 GC, LC, and ion-mobility 
spectrometry–MS/MS platforms allow 
the use of multiple types of data—in
cluding isotopic signature, elution time, 
fragmentation pattern, ionization source, 
collision cross-sectional area, and physi
cochemical properties—to identify  un
known chemicals. 

­

­
­
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acterization through a more complete understanding of 
exposure pathways, fate and transport, and biokinetics. 

CHARACTERIZING TOXICITY AFTER 

A CHEMICAL RELEASE 


This case study considers the environmental release 
of a chemical that has few toxicity data and approaches 
for characterizing toxicity rapidly to inform decision-
making. 4-Methylcyclohexanemethanol (MCHM) was 
the major component of a chemical mixture that was 
spilled into the Elk River about 1 mile upstream of a wa­
ter-intake facility for the city of Charleston, West Virginia, 
in 2014. The immediate public-health response was a “do 
not drink” order, but there was not enough information to 
provide guidance on what types of adverse health effects 
might be expected from MCHM or at what exposure lev­
els. Primarily because hazard data were sparse, an accept­
able concentration of MCHM in water being consumed 
by the local population and the potential risks associated 
with exposures to it could not be easily estimated. A few 
models and data streams that could be used in such situ­
ations are described below. The discussion provides gen­
eral guidance but is not intended to be exhaustive. For 
example, only the exposure scenario related to drinking 
of tap water is presented here. In emergency scenarios, 
advice would also be given on whether people, including 
children and infants, could bathe in the water and whether 
the water could be used for cooking, washing clothes, and 
cleaning and provided to pets. Furthermore, although the 
focus is on MCHM, other chemicals at concentrations of 
at least 1% were present in the spilled material, includ­
ing 4-(methoxymethyl)cyclo-hexanemethanol (4–22%), 
methyl 4-methylcyclohexane carboxylate (5%), 1,4-cy­
clohexanedimethanol (1–2%), and glycol phenyl ethers 
(propylene and dipropylene, whose concentrations were 
unknown). 

Measured and model-predicted chemical-property 
information that is relevant for estimating MCHM envi­
ronmental fate and toxicokinetics and for conducting an 
exposure assessment can be obtained from publicly avail­
able databases and software, including EPA’s EPI Suite™ 
program (EPA 2011), which is primarily used here to ob­
tain chemical property, fate, and bioaccumulation infor­
mation. MCHM is a relatively small (128.2 g/mol) neutral 
organic chemical that has a solubility limit of about 2,000 
mg/L and an octanol–water partition coefficient (KOW) of 
about 350 (EPA 2011). It is a relatively volatile chemical 
(vapor pressure of about 8 Pa); however, its water solu­
bility results in an air–water partition coefficient (KAW) 
of about 0.0003 (EPA 2011). Screening-level evaluative 
mass-balance fate models that are included in EPI Suite 
(EPA 2011) indicate that once released to surface water, 
such as a river, MCHM is not distributed significantly 
from water to air or sediment. The biodegradation half-

life in surface water is estimated to be about 15 days (EPA  
2011). Predicted bioaccumulation factor for MCHM in 
fish is about 20 L/kg (relatively low), and the biotrans
formation half-life in fish is less than 1 day (relatively 
short). Those screening data indicate low persistence and 
bioaccumulation of MCHM in the environment; chemical 
concentrations in the river and in possible food sources 
from the river would be expected to decrease relatively 
quickly. Long-term, chronic exposures to local residents 
would not be expected. More sophisticated and resource-
intensive models could be used to provide more refined 
situation-specific calculations for the expected change in 
environmental concentrations over time. For example, 
modeling tools could be used to estimate the time that 
it would take for concentrations in the river at the water-
intake facility to decrease. Similar tools could be applied 
for the water-distribution system (after intake at the treat
ment facility). 

­

­

Measured MCHM concentrations in drinking water 
in the first 2 days after the spill were about 1–4 mg/L  
(Foreman et al. 2015; Whelton et al. 2015). To determine 
the safety of the water for consumption, such sensitive 
populations as young infants and lactating and pregnant 
women would need to be considered. The 95th percen
tile drinking-water intakes by lactating women, preg
nant women, and young infants are 0.055 L/kg-day (EPA  
2011), 0.043 L/kg-day (EPA 2011), and 0.24 L/kg-day 
(EPA 2008), respectively. Given an MCHM concentra
tion of 2 mg/L, the estimated acute (48-hour) intake in 
drinking water would be 0.48 mg/kg-day for the most 
exposed group, young infants. Lactating women would 
take in 0.11 mg/kg-day. Water concentrations in Charles
ton tap water declined to less than 1 mg/L 5 days after 
the spill and continued to decline to about 0.002 mg/L  
3 weeks after the spill (Foreman et al. 2015). Thus, the 
MCHM intake 3 weeks after the spill by the 95th per
centile drinking-water consumers would have declined 
to 0.48 μg/kg-day in young infants and 0.11 μg/kg-day 
in lactating women. The predicted half-life of MCHM in 
humans is about 2 hours (Arnot et al. 2014), so internal 
concentrations are expected to decrease relatively quickly 
after exposure events because MCHM is not persistent or 
bioaccumulative in humans. 

­
­

­

­

­

A number of symptoms were reported in the commu­
nity either through emergency-room visits or in follow-up 
surveillance by the Centers for Disease Control and Pre­
vention and the Kanawha Charleston Health Department. 
Vomiting, nausea, diarrhea, and sore throat were most as­
sociated with reported drinking of the water, whereas skin 
irritation and rash were associated with bathing (Whelton 
et al. 2015). At the time of the spill, animal data were 
available on acute and subacute toxicity, site-of-contact 
irritation, skin sensitization, and genotoxicity, but there 
was no information on potential developmental toxicity 
or long-term health effects. The information generated af­



 

 
 

 
 
 
 
 

 

 
 

 

 

 

 

 

   

Appendix C 167 

ter the spill primarily used Tox21 tools described in Chap­
ter 3 and provide a good example of how these tools can 
be used qualitatively to provide support for public-health 
decisions. The following discussion provides several ap­
proaches for estimating or evaluating MCMH toxicity. 

A rapid approach for estimating the potential for 
adverse effects is chemical structural comparison with 
known toxicants. Published methods can be used to deter­
mine whether there are reports in the literature on chemi­
cals that have similar structural features. Wu et al. (2013) 
published a decision tree for developmental toxicity that 
was based on a chemical structural analysis of about 900 
chemicals. The decision tree contained no precedents for 
developmental toxicity of chemicals that had the structural 
features of MCMH. Although that approach does not pro­
vide a definitive answer, it is a rapid means of determining 
whether a chemical has a signal for developmental toxici­
ty. It is also possible to look for structurally similar chemi­
cals in large toxicology databases, such as those amalgam­
ated under EPA’s Aggregated Computational Toxicology 
Resource program. In this case, no chemicals that had high 
structural similarity to MCHM were identified. 

The National Toxicology Program (NTP) undertook 
a number of short-term assays intended to determine 
whether MCHM has activity against targets of concern 
(NTP 2016a). The testing included in vitro assays in 27 
cell types, querying activity on signaling pathways rel­
evant for development, rapid-turnaround assays in Cae-
norhabditis elegans and zebrafish embryos, and a 5-day 
toxicogenomics study in rats. No signals were generated 
from any in vitro assays up to relatively high concentra­
tions (almost 100 µM) or in assays with C. elegans or ze­
brafish, although a minor contaminant of MCHM did have 
some activity in zebrafish embryos at about 100 µM. The 
toxicogenomics study was used to generate a biological 
no-observed-effect level (NOEL) for gene expression that 
is reported to be in the range of 6-99 mg/kg-day (the range 
is attributed to different methods used for data analysis). 
That screening-level study used six doses from 0.1 to 500 
mg/kg-day (administered orally) for 5 days and evaluated 
gene expression in liver and kidney. A biological response 
was reported in liver at 6–99 mg/kg-day with no effect on 
kidney gene expression (NTP 2016b). The acute 95th per­
centile water-consumption exposure intake rates of 0.48 
mg/kg-day for infants and 0.11 mg/kg-day for lactating 
women are lower than the NOEL for gene expression by 
factors of about 12–200 and 60–1,000, respectively. The 
committee notes that longer-term exposures were much 
lower. Because this example did not account for other ex­
posure routes, which could add to ingestion exposure, the 
findings support the do-not-drink order issued for the en ­
tire service area (Whelton et al. 2015). Data gaps regard­
ing other exposure routes could have been addressed by 
testing gene expression after administering the chemical 
by other relevant routes or by using physiologically based 

pharmacokinetic models to estimate the contribution of 
dermal and inhalation exposure to the total systemic con­
centration. Policy on interpreting the data streams will 
need to be created; this example is informative in describ­
ing the types of data that can be generated quickly to sup­
port risk-management decisions. 

In summary, although the data differed from a stan­
dard toxicology evaluation, they were sufficient to indi­
cate that MCHM was not structurally similar to known 
developmental toxicants or genotoxicants and that it did 
not have biological activity consistent with that of a potent 
developmental or systemic toxicant. A few animal studies 
that reported a sensitive readout (global gene expression) 
identified an MCHM concentration that was without bio­
logical effect, and that information supports a NOEL of 
about 100 mg/kg-day or somewhat lower, depending on 
the method of analysis. Exposure estimates derived from 
measurements of drinking water could be compared with 
the NOEL and other hazard data, and models could be 
used to provide initial indications of the time required for 
environmental concentrations to decrease to acceptable 
concentrations after a spill. 

PREDICTING TOXICITY OF
 
REAL-WORLD CHEMICAL MIXTURES
 

Once chemicals at a site or part of a spill have been 
identified, the first question to address is whether toxicity 
data on them exist. For some chemicals, there are health 
assessments, such as those generated by the Integrated 
Risk Information System program, the International 
Agency for Research on Cancer monographs program, 
and the Report on Carcinogens program. Some assess
ments might be out of date or have notable limitations, 
so there might be some benefit of using Tox21 tools and 
approaches described in Chapter 3 to produce additional 
hazard and dose–response data, perhaps focused on previ
ously identified end points of concern or to provide miss
ing data on variability. Many chemicals, however, will not 
have been assessed or not have many toxicity data, such 
as MCHM (described in the case study above). For those 
chemicals, there would be clear cost and time advantages 
of using Tox21 tools and approaches described in Chapter 
3. For example, the potential for identified substances to 
pose a human health hazard can be estimated quantitative
ly or qualitatively by chemical structure–activity model
ing (Sutter et al. 2013), by combining structural informa
tion and bioactivity profiling (Low et al. 2011, 2013), by 
assessing bioactivity with in vitro assays that represent 
a wide array of tissues and biological targets (Judson et 
al. 2014), by establishing appropriate points of departure 
followed by in vitro to in vivo extrapolation (Judson et al. 
2011), and by using population-based and other in vitro 
models to derive chemical-specific variability estimates 
(Abdo et al. 2015a,b). Although the toxicity evaluation 
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would initially be performed on an individual-chemical 
basis, real-world exposures are to the chemical mixtures 
that have been detected in environmental samples. Add
ing complexity to the situation is that many of the chemi
cals in a mixture will not have been identified. This case 
study provides an approach for investigating the potential 
hazard posed by such mixtures. 

­
­

For the toxicity assessment of complex mixtures ob­
served in environmental samples, tissues, and biofluids, 
such as in the first case study described in this appen ­
dix, a biological read-across approach (Low et al. 2013; 
Grimm et al. 2016) that relies on bioactivity-profiling 
data from various in vitro toxicity assays, high-content 
screening assays, and possibly high-throughput genomic 
analyses could be used to probe potential hazards. A bio ­
logical read-across might be the most expedient approach 
for identifying potential human health hazards posed by 
the uncharacterized mixtures. Heterogeneity of tissue or 
organ toxicity, interindividual variability, and other fac­
tors can be addressed through bioactivity profiling of real-
world mixtures by using human cell models in monocul­
ture, co-cultures of various cell types, or more complex 
tissue-on-a-chip models. 

Figure C-3 provides an overview of the biological 
read-across approach. Generally, chemical representa­
tives of various toxicant classes, such as those listed in 
Table C-1, should be tested in a panel of in vitro assays 
that will also be used to test the environmental samples 
to establish the range of responses. Likewise, “designed” 

mixtures can be created—for example, on the basis of 
chemical-use patterns or other exposure-based data—and 
tested. The testing will yield a database of the biologi­
cal effects of persistent environmental pollutants from a 
panel of diverse in vitro assays that can be used to move 
the unknown mixtures into classes of known chemicals 
or designed mixtures and to conduct the read-across to 
predict potential human health hazards posed by the real-
world mixtures as described further below. 

The database of bioactivity readouts from represen­
tative chemicals and designed mixtures can be used as 
a training set for the classification models that evaluate 
differences between chemicals or chemical classes. The 
results of that activity can then be used to compare (read­
across) the environmental mixtures that have unknown 
chemical composition with representative chemicals or 
designed mixtures. For example, a series of machine­
learning–based models could be constructed that define 
biological spaces that separate one class from all others 
(one-vs-all) or separate a single class from another class 
(one-vs-one). Ultimately, a real-world environmental 
mixture can be profiled in the same assay battery, and 
the resulting bioactivity readout can be used to obtain a 
quantitative estimate and qualitative response related to 
whether the mixture behaves like a particular toxicant or 
toxicant class in a specific assay or assay battery. 

Ultimately, high-dimensional in vitro toxicity or tran­
scriptomic data can be used to read-across a particular 
mixture of unknown chemical composition to known ref-
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FIGURE C-3 Biological read-across that provides an approach to assessing the hazard posed by complex mixtures. 
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erence chemicals or chemical combinations and establish 
a “biological analogue” that consists of a mixture of ref­
erence chemicals for which existing toxicity benchmarks 
are available. If the read-across–based mixture is used as 
a surrogate for the original mixture, standard methods for 
deriving cumulative risk estimates that are based on indi­
vidual chemical exposure estimates and decision bench­
mark methods can be applied. Although the read-across 
mixture might have a different chemical composition 
from the real-world mixture, one can assume that their 
biological similarity based on the in vitro toxicity testing 
is adequate for informing environmental decisions. 

Tox21 methods of evaluating mixtures can be used 
to establish dose–response relationships for various bio­
activity by evaluating serial dilutions of the mixture or 
extracts. The resulting data can be compared with the bio­
activity of the samples collected at different locations at 
the site or adjacent areas or with the bioactivity of histori­
cal samples from the same site. A challenge in this method 
is similar to the one that exists for extrapolating in vitro 
exposure to in vivo exposure. In vitro–in vivo extrapola­
tion (IVIVE) methods are now used to estimate the daily 
human oral dose, called the oral equivalent dose, neces­
sary to achieve steady-state in vivo blood concentrations 
equivalent to the points of departure derived from the in 
vitro assays (NRC 2014). IVIVE-adjusted data from in vi ­
tro assays can be directly compared with exposure infor­
mation and improve chemical priority-setting by adding 
a risk context to the high-throughput in vitro screening 
(Wetmore et al. 2013). However, IVIVE research efforts 
have focused on individual chemicals, not on mixtures. 
A study of comparative analysis of in vitro cytotoxicity 
of pesticide mixtures with potential human exposures is 
an example of computing oral equivalent doses for mix­
tures by using the reverse-dosimetry approach (Abdo et 
al. 2015a). In that study, incorporation of dosimetry with 
in vitro data and conversion to an oral equivalent dose of 
each mixture allowed a risk-relevant ranking of the mix­
tures that considered chemical pharmacokinetic behavior; 
additional exposure data were used to adjust the poten­
cies. However, additional experimental and methodologi­
cal work is needed to bridge in vitro testing data on mix­
tures and exposure estimates. 
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Case Study on Assessment of New Chemistries
 

The case study in this appendix describes a hypothet­
ical scenario in which there are three choices of “new” 
chemicals for use in the manufacture of a product that will 
result in human exposure. Initial testing shows that the 
chemicals in question will most likely leach out of the 
product and possibly end up in food or water that will 
be ingested by people. In addition, contact with skin dur­
ing the regular handling of the product is a possible route 
of human exposure. Finally, the chemical might become 
aerosolized and inhaled by workers in the manufacturing 
facility or as a result of indoor consumer use of the prod­
uct. Therefore, chemical exposure is possible through in­
halation, ingestion, and dermal pathways, and the chemi­
cal could pose a threat to human health. 

For illustrative purposes, the committee chose to 
use three related drugs (weak acids)—ibuprofen, ibuf­
enac and diclofenac—on which various amounts of in 
vitro data are publicly available. Table D-1 provides the 
chemical structures and selected physicochemical proper­
ties. To reflect a possible real-world scenario, a key as­
sumption of this case study is that only the in silico and 
in vitro data presented here are available for the screening 
assessment; in vivo and clinical data are presumed to be 
“not yet available.” However, because the adverse effects 
of the chemicals on people have been studied, one can 
compare the results of the approach with actual human-
safety outcomes. The example is intended to illustrate 
how available and emerging screening-level tools and 
data (read-across, screening-level models, and available 
high-throughput in vitro data) could be applied to inform 
decision-making and to identify some of the key data 
gaps and sources of uncertainty that are relevant to risk 
assessments. The committee notes that most practical ap­
proaches for assessing chemical similarity would exclude 
diclofenac from this comparison because of the chlorine 
and amine moieties that are not present in the other two 
chemicals. The committee includes it here for the sake 
of illustration, but it should be noted that there are limits 
to how dissimilar chemicals can be used in a read-across 
scenario. 

STRUCTURAL ALERTS 

All molecules that contain an arylacetic acid group 
can undergo acyl glucuronidation, a major metabolic con­
jugation pathway in mammals for chemicals that contain 
these groups. Acyl glucuronides have been implicated— 
although it is not definitively proved—as a cause of ad­
verse effects in humans because they form protein adducts 
(Shipkova et al. 2003) (see Figure D-1) . Common risk 
concerns are liver injury and hypersensitivity reactions 
(Regan et al. 2010). The relative reactivity and half-life of 
the acyl glucuronide has been suggested as a differentiat­
ing factor between chemicals that cause adverse events 
and ones that are of less concern. Other researchers sug­
gest that arylacetic acids can undergo coenzyme A (CoA) 
conjugation, and interference of the CoA conjugates with 
lipid metabolism and other cellular processes can lead to 
the observed toxicity (Darnell and Weidolf 2013). The 
metabolic scheme might need to be confirmed experimen­
tally to reduce uncertainty (Patlewicz et al. 2015). 

IN VITRO DATA 

To ensure data consistency among the chemicals in 
question, in vitro data were gathered only from the Tox-
Cast website, and they are summarized in Table D-2 (EPA 
2016). Only assays that yielded activity below a 10 µM 
threshold are considered because they constitute 20% of 
the observed assay activity for diclofenac and would most 
likely be the cause of the toxicity used to set assay doses. 
It is important to note that the assays used in the ToxCast 
program do not represent the entire spectrum of biologi­
cal processes that might be relevant to human health (that 
is, all possible adverse effects of exposure to chemicals); 
therefore, there are likely to be gaps in knowledge of how 
the three chemicals would interact in a biological system. 
To give some context to the values in Table D-2, diclof­
enac was tested in a zebrafish toxicity screen and had a 
lowest effect level of 64 μM (Truong et al. 2014). 

Data on ibufenac are not available, but given its 
structural similarity to ibuprofen and comparable physi­
cochemical properties, one would expect ibufenac to have 
an in vitro activity profile similar to that of ibuprofen. 
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TABLE D-1  Chemical  Structures  and  Selected  Measured  and  Predicted  Propertiesa  

Molar mass (g/mol) 206.3 192.3 296.2 

log KOW 
b 3.97 3.35 4.51 

log KAW 
c -5.21 -5.33 -9.71 

pKad 4.4 4.4 4.2 

logD (pH 7.4)e 0.45 0.22 1.37 

Air half-life (h) 10.8 12.7 0.78 

Predicted whole-body 
biotransformation half-life (h) 
(chemical similarity score) 

3.6 (0.36, low similarity) 2.1 (0.24, low similarity) 14.9 (0.36, low similarity) 

aPhysicochemical properties are from EPA’s EPI Suite™ (EPA 2011) and ACD Labs (ACD 2015). The whole-body bio­
transformation half-lives shown here are predicted from structure by using a screening-level quantitative structure–activity 
relationship (QSAR) model (Arnot et al. 2014a). Various methods can be used to determine the applicability domain of a QSAR 
prediction. Here, the chemical similarity score is a measure of the similarity, in structure and properties, of a predicted chemical 
to chemicals in the training dataset on the basis of a nearest-neighbors approach (Brown et al. 2012). The three chemicals have 
similar molar mass and partitioning and dissociation properties, and absorption efficiencies are expected to be similar in the 
chemicals but different for each exposure pathway.
blog KOW (or logP) is the log10 of the octanol–water partition coefficient of the neutral species. 
clog KAW is log10 of the air–water partition coefficient of the neutral species. 
dpKa is the log10 of the acid dissociation constant. 
elogD is the log10 of the distribution coefficient of neutral and ionic species between octanol and water at pH 7.4. 

FIGURE D-1 Metabolism of 1-O-β-glucuronide. Source: Stepan et al. 2011. 



 Appendix D 173 

 

 

   

TABLE D-2 Data from In Vitro Assay in Which Chemicals  Had Activity Below 10 µM  
Assay Activity  Platform  Diclofenac AC50  (µM)  Ibuprofen AC50  (µM)  
Decrease in interleukin 8  (IL-8)  BioSeek  –  0.002  

Decrease in matrix  metalloproteinase-1 (MMP-1)  BioSeek  –  0.003  

Suppression of prostaglandin E2 secretion (PGE2)  BioSeek  0.010  1.203  

Inhibition of cyclooxygenase 1 (COX1)  NovaScreen  0.163  3.0  

Inhibition of cyclooxygenase 2 (COX2)  NovaScreen  0.215  30.0  

Increase in cell proliferation  BioSeek  –  0.251  

Binding of peroxisome proliferator-activated receptor   
gamma (PPAR-γ)  

NovaScreen  0.523  –  

Decrease in collagen III  BioSeek  26.108  3.509  

Decrease in interleukin 6  (IL-6)  BioSeek  –  3.977  

Increase in  thrombomodulin  BioSeek  4.742  17.674  

Activation of pregnane X receptor (PXR)  Attagene  7.438  –  

Decrease in low-density lipoprotein (LDL) receptor  BioSeek  –  7.637  

Increase in macrophage colony-stimulating factor  (M-CSF)  BioSeek  –  7.639  

Decrease in  monocyte chemotactic protein 1 (MCP1)  BioSeek  7.704  –  

Activation  of PPAR-γ  Attagene  8.256  39.710  

Activation of glucocorticoid receptor (GR)  NovaScreen  8.671  –  

Activation of estrogen receptor element (ERE)  Attagene  –  9.566  
Source: Data from PubChem. Available at https://pubchem.ncbi.nlm.nih.gov/. 

Suppression of Prostaglandin Synthesis 

Diclofenac is a potent inhibitor of cyclooxgenase 
1 and 2 (COX1 and COX2), and inhibition of these en­
zymes can decrease prostaglandin biosynthesis (Vane 
1971). Decreased secretion of prostaglandin E2 (PGE2) 
was observed in the Bioseek platform. Ibuprofen is a 
weak nonspecific inhibitor of COX1 (IC50, about 18 µM) 
and COX2 (IC50, about 370 µM) (Noreen et al. 1998) but 
also showed a similar suppression of PGE2 in the BioSeek 
platform. PGE2 is linked to suppression of T-cell recep­
tor signaling and inflammation responses (Wiemer et al. 
2011). However, PGE2 is also a vasodilator, so suppres­
sion of its secretion might lead to an increase in blood 
pressure and to cardiac toxicity (Strong and Bohr 1967). 

Drugs that inhibit COX1 or COX2, such as celecoxib 
and rofecoxib, have been linked with causing cardiovas­
cular events (Johnsen et al. 2005), and rofecoxib, a selec­
tive COX2 inhibitor, was withdrawn from the US market 
after being linked to heart attacks and strokes. Inhibitors of 
COX1 have been linked to causing ulceration and bleed­
ing in the gastrointestinal tract as a result of suppressing 
the secretion of the protective prostaglandins PGE2 and 
PGI2 (Süleyman et al. 2007). Inhibitors of COX1 might 

also affect renal function by changing the role of prosta­
glandins on renal hemodynamics and glomerular filtration 
rate (GFR) (DuBois et al. 1998; Morita 2002). 

Diclofenac and ibuprofen increase thrombomodulin 
(TM) in the BioSeek platform. TM is a cell-surface recep­
tor for thrombin on endothelial cells that is involved in 
blood coagulation (Gerlitz et al. 1993). Increases in TM 
might increase clotting times but similarly reduce the risk 
of stroke and myocardial infarction (Esmon et al. 1982). 

The low-density lipoprotein (LDL) receptor mediates 
the endocytosis of LDL. The accumulation of LDL in the 
blood is involved in the development of atherosclerosis, 
which is the process responsible for most cardiovascular 
diseases (Hobbs et al. 1992). A decrease in the LDL re­
ceptor might lead to an increased risk of cardiovascular 
events in people who are predisposed to atherosclerosis 
or who have cardiovascular conditions. 

Liver Effects 

Diclofenac is shown to increase the activity of the 
pregnane X receptor (PXR). PXR is a nuclear receptor 
that has important roles in integrating pathways related 
to fatty acid, lipid, and glucose metabolism (Wada et al. 

https://pubchem.ncbi.nlm.nih.gov/
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2009). It also senses the presence of foreign substances 
and responds by upregulating proteins involved in their 
oxidation and others involved in their clearance (Kliewer 
2003), and it is a transcriptional regulator of the cyto­
chrome P450 gene CYP3A4, a major metabolizing en­
zyme for many drugs that is highly expressed in the liver. 

Both diclofenac and ibuprofen activate the peroxi
some proliferator–activated receptor gamma (PPAR-γ) 
that regulates fatty acid storage and glucose metabo
lism, although only at relatively high concentrations in 
the case of ibuprofen. The genes activated by PPAR-γ 
increase lipid uptake and adipogenesis by fat cells (Zou 
et al. 2016). PPAR-γ agonists have been used in the treat
ment of hyperlipidemia and hyperglycemia and therefore 
might induce hypoglycemia in healthy subjects (Spiegel
man 1998; Rangwala and Lazar 2004). Some drugs that 
were designed to activate PPAR-γ have been linked with 
hepatotoxicity (troglitazone: Watkins 2005), cardiovas
cular events (rosiglitazone: Singh et al. 2007), and an 
increased incidence of in bladder cancer (pioglitazone: 
Ferwana et al. 2013). However, no direct link has been 
established between the activation of PPAR-γ and those 
adverse events. 

­

­

­

­

­

Immune-Response Effects 

Diclofenac and ibuprofen have effects on various cel­
lular processes that are involved in inflammation and tis ­
sue repair. For example, diclofenac decreases the expres­
sion of monocyte chemotactic protein 1 (MCP1). MCP1 
promotes movement of monocytes, memory T cells, and 
dendritic cells to sites of inflammation (Mukaida et al. 
1998; Xue et al. 2015). 

Similarly, diclofenac is an agonist of the glucocorti­
coid receptor (GR), which is expressed in almost every 
cell in the body and regulates genes that control develop­
ment, metabolism, and immune response (Rhen and Ci­
dlowski 2005; Lu et al. 2006). The activated GR complex 
prevents the movement of transcription factors from the 
cytosol into the nucleus, resulting in changes in expres­
sion of nuclear anti-inflammatory proteins and cytosolic 
proinflammatory proteins. 

Ibuprofen decreases the secretion of Interleukin 8 
(IL-8) as measured in the BioSeek platform. IL-8 is a che­
mokine that is produced by macrophages and other cell 
types, such as epithelial cells, airway smooth muscle cells 
(Hedges et al. 2000), and endothelial cells. IL-8 induces 
chemotaxis in neutrophils and causes them to migrate to­
ward sites of infection and promotes phagocytosis at the 
infection site. It is also a potent promoter of angiogenesis 
and an important mediator of the immune reaction in the 
innate immune system response. Ibuprofen decreases the 
secretion of IL-6, which acts as a pro-inflammatory cyto ­
kine and an anti-inflammatory myokine (Schöbitz et al. 
1994). 

HAZARD IDENTIFICATION 

On the basis of the available in vitro data, structural 
comparisons, and knowledge of structural alerts, a key 
safety concern about all three chemicals would be liver 
injury through the formation of reactive acyl glucuronides 
or acyl coenzyme A conjugates that would cause tissue 
damage and impaired organ function. Relative reactivity 
of the acyl conjugates would play an important role in de­
termining the risk of liver injury. Chemicals that have al ­
kyl substitutions at the α-carbon atom have been shown to 
have lower reactivity with protein nucleophiles; this sug­
gests that inherent electronic and steric effects affect the 
overall rate of acyl glucuronide rearrangement (Stepan et 
al. 2011) and so could have a profound effect on the re­
activity of the conjugates in the case of ibuprofen (Wang 
et al. 2004; Walker et al. 2007; Baba and Yoshioka 2009). 
The risk of liver injury could be increased by induction 
of cytochrome P-450s through activation of PXR and by 
lipid dysfunction as a result of activation of PPAR-γ. 

Cardiovascular toxicity in the form of increased blood 
pressure and increased clotting times and renal damage 
or gastrointestinal bleeding caused by the suppression of 
prostaglandin secretion are also of concern with diclof­
enac and ibuprofen and by inference, ibufenac. 

As discussed in Chapter 3, for inhibitors of G-protein– 
coupled receptors, the anticipated pharmacological re
sponse is often observed in vivo at plasma concentrations  
up to 3 times the measured IC50 of the chemical in ques
tion (McGinnity et al. 2007). As a general rule of thumb,  
a 100-fold difference between the measured IC50 or the  
inhibition constant in a cell-free assay and the circulating  
plasma C  free1

max  concentration could be considered to be 
adequate to pose minimal risk of toxicity from a pharma
cological interaction. It is worth noting that for more phe
notypic cellular responses, such as those measured by the  
BioSeek platform, more research is required to establish  
an appropriate translation from in vitro to in vivo.   

­

­

­
­

EXPOSURE ASSESSMENT 

In this hypothetical case study, the three chemicals 
of interest have not been used in commercial products; 
therefore, there are no monitoring data, and there are no 
emissions and use data on which to formulate a typical 
risk-based evaluation. However, the available premarket 
toxicity or bioactivity data identified above can be used to 
develop parameters for exposure models that can “back­
calculate” the rates of chemical use for various scenarios 
that correspond to specific hazard thresholds. The select­
ed threshold for such simulations could be a concentration 
from a bioassay in the case of ibuprofen or diclofenac or a 
read-across value in the case of ibufenac determined from 

1Cmax free is the maximum measured or observed concentration 
of the fraction of the chemical that is unbound to plasma proteins. 
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in vivo, in vitro, or computational methods or a no-effect 
threshold method, such as one that uses a threshold of 
toxicological concern. 

The general exposure-assessment approach outlined 
here is analogous to the critical-emission-rate concept 
that has been applied in ecological assessments (Arnot et 
al. 2006) and to concepts applied in reverse toxicokinet­
ics that is used to calculate intake rates expressed as oral 
equivalent doses (OEDs;2 mg/kg-day) from the in vitro 
testing data (Rotroff et al. 2010). In the present case, toxi­
cokinetic models are combined with indoor-fate models 
to back-calculate the rates of chemical use that corre­
spond to illustrative exposure scenarios. The simulations 
can consider various assumptions and contexts for ex­
posure and chemical or product scenarios. The exposure 
models used in such simulations can vary in complexity 
according to the amount of data needed to satisfy all the 
parameter requirements. In that regard, tiered modeling 
strategies might be helpful. 

In this example, a one-compartment, whole-body 
toxicokinetic model that considers primary routes of ex­
posure and intake (dermal, ingestion, and inhalation) and 
routes of elimination (for example, exhalation, renal ex­
cretion, biotransformation, egestion, and desquamation) 
is linked to a representative indoor environment (Arnot et 
al. 2014b) to back-calculate the rates of chemical use for 
three hypothetical exposure scenarios: 

•	 Scenario 1. The chemical is released to air in a 
defined indoor environment. Exposure pathways include 
inhalation, dermal permeation (from passive diffusion in 
air), and nondietary ingestion (from hand-to-surface and 
surface-to-mouth contact). 

•	 Scenario 2. The chemical is applied directly to 
skin and assumed to be left on indefinitely. Exposure 
pathways include dermal permeation and inhalation (from 
volatilization of the chemical from dermal application). 

•	 Scenario 3. The chemical is ingested. 

Simplifying assumptions are steady-state calcula­
tions and no charged species (that is, no explicit calcula­
tion for charged species; only the neutral form is simulat­
ed). The latter assumption is similar to recent hazard and 
risk-based calculations that used ToxCast data in which 
the potential for chemical dissociation was ignored; that 
is, acids and bases were treated as nondissociating neutral 
organics (Rotroff et al. 2010; Wetmore et al. 2012; Shin et 
al. 2015). 

The first step is to translate the in vitro bioassay 
concentrations (Cin vitro) that correspond to the observed 
bioactivity to in vivo concentrations (Cin vivo). Here, the 
committee uses the same assumptions as in recent appli­

2The OED is the chemical intake rate that corresponds to an as­
sumed steady-state blood concentration related to the in vitro bio­
activity. 

cations of ToxCast data for OED calculations: Cin vivo, blood  
= Cin vitro (Rotroff et al. 2010; Wetmore et al. 2012; Shin 
et al. 2015). However, more explicit calculations should 
be used to account for differences in the in vitro and in 
vivo systems; for example, free dissolved concentrations 
rather than assumed nominal in vitro concentrations could 
be used (see discussion in Chapter 2). The steady-state 
volume of distribution is assumed to be 0.5 L/kg (35 L) 
for the three chemicals to relate blood concentrations to 
whole-body concentrations. Models for volume of distri
bution and other methods to address differential concen
trations among and within tissues could be considered. 
The lowest AC50 from the available ToxCast assays is se
lected as the hazard threshold on which to base parameter 
values for the exposure model. That value for ibuprofen 
and ibufenac is 0.002 µM, and the selected threshold for 
diclofenac is 0.01 µM (see Table D-2). 

­
­

­

The second step is to select the parameters needed for 
the exposure models to calculate chemical fate in various 
environments. For the sake of illustration, the committee 
assumes an adult human in a single room, although in­
fants and children have greater breathing rates relative to 
body weight; the evaluative model requires the following 
chemical-specific information: KOW, KAW, and degrada­
tion half-lives in air (see Table D-1). Quantitative struc­
ture–activity relationship (QSAR) models are used here 
to predict whole-body biotransformation half-life data. 
Half-lives could also be determined by scaling in vitro as­
say data derived from hepatocytes to liver (see, for exam­
ple, Rotroff et al. 2010) or whole-body half-life estimates. 
In addition, hepatic, renal, or other compartment-specific 
QSAR models could be used to provide parameter values 
for pharmacokinetic models that are used for exposure as­
sessment. Ideally, multiple lines of evidence (for exam­
ple, various measured and predicted estimates) will show 
concordance in key information used in the model simula­
tions (chemical partitioning properties and reaction half-
lives), and this concordance will foster confidence in the 
assessment results. If chemicals are shown to have high 
environmental persistence, adding far-field human-expo ­
sure models to the assessment is warranted to account for 
possible far-field exposure pathways (chemical dispersed 
and diffused into food and water). 

RISK CHARACTERIZATION 

The results of the back-calculation simulations are 
summarized in Table D-3. The calculations yield the in­
door air release (Scenario 1), application (Scenario 2), 
and ingestion (Scenario 3) rates in milligrams per day cor­
responding to the selected in vitro bioactivity-assay data 
(assumed threshold values). The results could be used 
for interim guidance on use scenarios for each chemical 
and for comparative analyses between the three candidate 
chemicals. If one assumes that all three chemicals are 
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TABLE D-3  Indoor Release (Scenario 1), Application (Scenario 2), and Ingestion (Scenario 3) Rates (mg/d) 
Corresponding to Selected In  Vitro Bioactivity Data  
Chemical  Scenario 1: Release to Indoor Air  Scenario 2: Application Directly to Skin  Scenario 3: Ingestion  

Diclofenac  10  1.1  0.14  
Ibufenac  1.8  0.15  0.13  
Ibuprofen  1.9  0.16  0.08  

used in the same quantity, the chemicals and scenarios 
with the lowest rates correspond to the greatest potential 
to achieve the in vitro bioactivity threshold. For example, 
for diffuse release to air in an indoor environment (Sce­
nario 1), diclofenac shows the highest emission or release 
rate and, so could pose the lowest potential concern of the 
three chemicals. Of the three exposure scenarios, Scenar­
io 3 results in the lowest use and application rates for all 
chemicals. Overall, the ranges of values are not large be­
cause the chemicals have similar properties for partition­
ing, reaction, and bioactivity (that is, the same bioactivity 
value is used for ibuprofen and ibufenac on the basis of 
structural read-across). 

The values in Table D-3 do not show the uncertainty 
in the calculations and do not account for interindividual 
variability in the pharmacokinetics and pharmacodynam­
ics that one would expect in a large diverse population. 
The results of this example are illustrative, but the general 
concept can be helpful in determining putative use and re­
lease scenarios for premarket chemicals. The application 
of exposure models to back-calculate emission and use 
rates corresponding to a toxic threshold or bioactivity can 
also be useful for evaluating commercial chemicals when 
emission and use rates are unknown or highly uncertain. 
Ultimately, confidence in the calculated emission and use 
rates depends on the confidence in and suitability of the 
toxicity (threshold) data and the exposure-model esti­
mates. For the three chemicals in this example, measured 
volumes of distribution are about one-third to one-half the 
assumed values, and half-lives in adults are one-seventh 
to one-half the values used in this premarket assessment 
(Obach et al. 2008). For risk-based decision-making, ad­
ditional analyses for various life stages and alternative use 
scenarios should be considered as warranted. 

To put the exposure estimates in Table D-3 into con­
text, the typical over-the-counter medicines that contain 
ibuprofen recommend an oral dose of 200–400 mg ev­
ery 4 hours with a maximum dose of 1,200 mg in any 
24-hour period for persons over 12 years old.3 However, 
doctors can prescribe ibuprofen to be given orally at up to 

3,200 mg/day in doses of up to 800 mg at any one time.4 

Similarly, ibuprofen has been approved in Europe for ad
ministration to children 3 to 6 months of age at a starting 
dose of 50 mg taken orally three times a day. Ibuprofen is 
contraindicated in pregnant women in their third trimes
ter, and doctors recommend that women during the first 6 
months of pregnancy not take it, if that is possible. 

­

­

Diclofenac is approved for use by prescription, and 
the maximum recommended daily oral dose is 150 mg in 
adults; it is not recommended for use in children under 
12 years old. It is also contraindicated for use by preg­
nant women. Ibufenac was withdrawn from the market 
because of severe hepatotoxicity and jaundice in patients 
taking the drug. At the time, the maximum recommended 
daily oral dose of ibufenac was 750 mg. 

In Europe, both ibuprofen and diclofenac were ap­
proved for use as a topical gel (ibuprofen, 5% w/w gel; di­
clofenac, 2.32% w/w gel). A maximum daily application 
of the diclofenac gel was 8 g, which is equivalent to 160 
mg of the active ingredient. Similarly, the recommended 
application of the ibuprofen gel was up to 125 mg, four 
times per day, which is equivalent to 25 mg of the active 
ingredient. However, only 22% of the dose is absorbed 
through the skin. Compared with the oral route of admin­
istration of ibuprofen, the plasma exposure is considered 
to be much lower and unlikely to cause systemic side ef­
fects. 

The estimated oral and dermal exposures in the pres­
ent example would be substantially below the therapeutic 
doses for most populations, including children. However, 
it should be noted that at therapeutic doses, some side ef­
fects and adverse events are observed with various, albeit 
relatively low, frequencies that might not necessarily be 
considered tolerable in an environmental or occupational 
risk assessment in which long-term, low-level exposures 
of a broad population demographic have to be considered. 
Similarly, conclusions cannot be drawn at this time about 
whether the estimated doses would ensure the protection 
of the most sensitive group—pregnant women. 

4See http://www.accessdata.fda.gov/drugsatfda_docs/anda/2001/ 
3See https://www.medicines.org.uk/emc/medicine/15681. 76-112_Ibuprofen.pdf. 

https://www.medicines.org.uk/emc/medicine/15681
http://www.accessdata.fda.gov/drugsatfda_docs/anda/2001/76-112_Ibuprofen.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/anda/2001/76-112_Ibuprofen.pdf
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A Bayesian Example: Predicting Dose–Response Relationships 
from High-Throughput Data and Chemical Structure 

This appendix illustrates the use of Bayesian meth­
ods to address a common problem in the analysis of high-
throughput data that have relatively large measurement 
error for the purpose of characterizing dose–response 
relationships. Bayesian methods can be particularly use­
ful for synthesizing data and quantifying uncertainty. To 
illustrate the utility of Bayesian methods for datasets that 
have diverse features, the committee provides an analy­
sis that links two types of data that are captured in two 
distinct datasets. The first dataset contains measurements 
of dose–response relationships of 969 chemicals on one 
specific end point related to the activation of the nuclear 
pregnane X receptor (PXR) pathway. PXR is involved in 
the sensing of and initiation of metabolism in response 
to xenobiotics that enter the body and has a role in lipid 
homeostasis. Activation of the PXR pathway is associ­
ated with beneficial and injurious processes, and mea­
surements of the activation of PXR provide information 
about the biological activity of a chemical. The data on 
PXR activation were taken from the US Environmental 
Protection Agency ToxCast Phase II data in the AttaGene 
test system, which uses a HepG2 human liver hepatoma 
cell line to measure transcription factor activity through 
gene expression (Judson et al. 2010a,b). The second data­
set contains information about the structures of the tested 
chemicals. It characterizes each chemical structure ac ­
cording to 39 features, which are the major principal fea ­
tures extracted from 770 chemical descriptors produced 
by the Mold2 program (Hong et al. 2008). The features 
describe the structure of each of the 969 chemicals in the 
dataset. The exercise involves the quantitative structure– 
activity relationship (QSAR) task of relating chemical 
structure to a dose–response curve. The information can 
be used to reduce the uncertainty in the dose–response 
relationship for PXR activation measured for a chemical 
and to predict the dose–response relationship for an un­
tested chemical. 

The task of relating chemical structures to dose– 
response curves is challenging because of the large num­
ber of potentially relevant chemical features and the lack 
of prior knowledge relating the features to the dose–re­
sponse curves for the outcome being studied (PXR activa­
tion). Simple statistical QSAR models that do not allow 
for interactions among the structural features are expected 
to have poor performance and to underestimate the uncer­
tainty in the prediction. In contrast, more complex statisti­
cal approaches, such as flexible Bayesian models, allow 
relationships between different types of data to be un­
known beforehand while borrowing information and al­
lowing learning of lower-dimensional structure. By fitting 
a single Bayesian hierarchical model to the entire set of 
chemical-structure descriptors and dose–response curves, 
the model can adapt the width of the uncertainty bands 
accordingly and accurately reflect the scope of available 
information. This full Bayesian approach thus extends the 
standard QSAR concept of domain of applicability and 
provides flexible and adaptive measures of uncertainty. 

Figure E-1 shows the raw dose–response data for 
PXR activation by the chemicals under consideration. As 
expected for so many chemicals that have broadly differ­
ent chemical structures, the dose–response relationships 
are highly variable. To predict dose–response values of 
a new chemical only on the basis of information avail­
able on its chemical structure, it is important to predict 
the dose–response curve with a good appraisal of the 
uncertainty in the prediction. The accuracy of a predic­
tion depends partly on whether a chemical in the training 
dataset is similar in structure to the new chemical under 
consideration. 

To capture nonlinear relationships between dose and 
response and how the shapes of the relationships are as­
sociated with different chemical structures, two assump­
tions are made: that each dose–response curve is continu­
ous (that is, no “jumps”) and that when two chemicals 
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FIGURE E-1 Dose–response records of PXR activation for 969 chemicals represented in the AttaGene ToxCast Phase II data. Dose is pre­
sented as concentration (μM) and response as fold increase or decrease in transcription. 

are structurally alike (defined by a distance metric) their 
dose–response curves are similar. 

Nonparametric Bayesian approaches provide a con
venient framework for applying the two assumptions for 
curve estimation. Specifically, the dose–response curves 
are allowed to be completely unknown instead of our 
assuming that the curves follow a particular parametric 
form, such as a Hill function.  That is accomplished by 
choosing a prior probability distribution for the entire 
curve. There is a rich literature on such priors; the Gauss
ian processes (GPs) provide a commonly used choice that 
is routinely used for many applications. For example, GPs 
are used routinely in epidemiological studies that collect 
information on spatial locations to incorporate “random 
effects” that characterize unmeasured spatially indexed 
covariates, which might act as confounders. 

­

­

In the present setting, a GP prior is chosen that allows 
the dose–response curves to change flexibly according to 
chemical dose and chemical-structural features. Under 
the Bayesian nonparametric model used, two response 
measurements are assumed to be highly correlated a priori 
when the doses are similar and the chemical structures 
are similar, and the correlation gradually decays as doses 
and structural features move farther apart. The GP  prior is 
chosen to allow wide uncertainty in the unknown curves 
before including information in the database. If one gen­

erated samples from the prior, the credible bands (Bayes
ian versions of confidence bands) would be wide. How
ever, if the prior distribution is updated with information 
in the full dataset (not just for a single chemical but for 
all 969 chemicals), a much more accurate estimate of the 
curve and narrower credible bands are obtained. 

­
­

Figure E-2 shows, after fitting of the model, the es­
timated dose–response curve and 95% credible bands 
for one chemical with the observed PXR dose–response 
data on that chemical. The figure shows that the estimated 
curve provides a good fit to the data with narrow uncer­
tainty bands. The estimated curve differs somewhat from 
that obtained by estimating the dose–response curve non-
parametrically on the basis of data only on that chemi­
cal (not shown); in particular, the uncertainty bands are 
narrower, and the curve is shifted slightly from a simple 
interpolation of the means at each dose. Those properties 
reflect the borrowing of information on chemicals that 
have related structures. 

In addition to improving estimation of the dose–re­
sponse curve for chemicals on which there are direct 
dose–response data, the approach can be used to predict 
dose–response curves for chemicals on which there is in­
formation only on structural features. For a chemical that 
has a known structure but lacks dose–response data, the 
actual experimental data can be replaced with a model­
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FIGURE E-2 Estimated dose–response curve (solid line) for PXR activation and 95% credible interval (dashed lines) for one chemical. The 
credible interval is for the mean curve and so is not expected to enclose most of the data points (circles). The estimated dose–response curve 
is based on the full QSAR and PXR datasets for 969 chemicals in addition to the data points shown. Dose is presented as concentration (μM) 
and response as fold increase or decrease in transcription. 

based statistical prediction. That prediction will be more 
accurate for chemicals that are structurally similar to 
chemicals in the database. 

To illustrate the performance of the Bayesian model­
ing, the committee used data on 800 chemicals as training 
data on which to base the relationships between chemical 
structure and PXR dose–response relationship by fitting a 
Bayesian hierarchical model. The committee set aside the 
structure and PXR dose–response data on the remaining 
169 chemicals. To illustrate predictive accuracy, the com­
mittee then compared the predicted curves and credible 
bands with the held-out data. 

Figure E-3 shows predicted PXR dose–response re­
lationships for two chemicals drawn from the 169 chemi­
cals that were not used in the development of the Bayesian 
predictive model. Thus, the data points shown in the fig ­
ure were not used in predicting the dose–response curve 
and estimating the uncertainty bands. Note also that the 
uncertainty bands are wider than those shown in Figure 
E-2, as expected because the bands in Figure E-2 include 
direct observations of the dose–response curve, and the 
dose–response prediction in Figure E-3 bases the estimat­
ed relationship only on chemical-structure information. 
For one chemical, shown first in Figure E-3, there is not a 
strong observed relationship between chemical dose and 

PXR activation, and the predicted dose–response relation
ship accordingly reflects a lack of clear dose-response, at 
least at lower doses. The dose-response relationship for 
the second chemical is more defined, as are the direct ob
servations of the dose-response relationship that were not 
used to create the curve shown. The curve and confidence 
bands provide a relatively good fit to the observations. 

­

­

Although Figure E-3 shows only two chemicals for 
illustration, good performance was observed across the 
169 “test” chemicals. In cases in which the estimated 
dose–response curve had wide uncertainty bands indi­
cating uncertainty in the prediction, the bands were wide 
enough to contain the curves providing a good fit to the 
observed data on the chemical. 

This example illustrates the utility of Bayesian meth­
ods for data integration. Primary advantages are flex ­
ibility, the ability to borrow information from different 
data types, and uncertainty quantification. The commit­
tee used a nonparametric Bayesian approach with a GP 
prior; there is an increasing literature on applying simi­
lar approaches in a rich variety of applications, and there 
are many packages for routinely fitting GP-based models 
in practice (Vanhatalo et al. 2013). As illustrated in this 
example, flexible Bayesian hierarchical modeling avoids 
overly restrictive parametric assumptions that might not 
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FIGURE E-3 The predicted dose–response curves (solid line) and 95% credible intervals (dashed lines) for PXR activation for two chemi­
cals. Dose is presented as concentration (μM) and response as fold increase or decrease in transcription. The predictions, based only on 
chemical structures, match the observed responses (circles) well. That is, data on the chemicals shown were not used to build the Bayesian 
model used to make the predictions. 

be justifiable biologically while allowing incorporation 
of information from different data sources adaptively. In 
this context, adaptively means that one learns the similari
ties in the data sources and how much it makes sense to 
use the sources as reflected in the uncertainty bands. The 
increasingly large databases of results for a variety of as
says and chemicals can thus be used to inform the current 
analysis and interpretation and eventually can support the 
collection of fewer data on future chemicals as the rela
tionships among chemicals and disparate end points are 
increasingly understood and reflected in good predictive 
models. 

­

­

­
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