U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Cover of The clinical effectiveness and cost-effectiveness of point-of-care tests (CoaguChek system, INRatio2 PT/INR monitor and ProTime Microcoagulation system) for the self-monitoring of the coagulation status of people receiving long-term vitamin K antagonist therapy, compared with standard UK practice: systematic review and economic evaluation

The clinical effectiveness and cost-effectiveness of point-of-care tests (CoaguChek system, INRatio2 PT/INR monitor and ProTime Microcoagulation system) for the self-monitoring of the coagulation status of people receiving long-term vitamin K antagonist therapy, compared with standard UK practice: systematic review and economic evaluation

Health Technology Assessment, No. 19.48

, , , , , , , , and .

Author Information and Affiliations
Southampton (UK): NIHR Journals Library; .

Headline

The study found that, for people receiving long-term vitamin K antagonist therapy, self-monitoring is safe and clinically effective, compared with standard monitoring. Self-monitoring appears to be also cost-effective because it reduces the incidence of thromboembolic events. Trials are needed to investigate long-term outcomes of self-monitoring.

Abstract

Background:

Self-monitoring (self-testing and self-management) could be a valid option for oral anticoagulation therapy monitoring in the NHS, but current evidence on its clinical effectiveness or cost-effectiveness is limited.

Objectives:

We investigated the clinical effectiveness and cost-effectiveness of point-of-care coagulometers for the self-monitoring of coagulation status in people receiving long-term vitamin K antagonist therapy, compared with standard clinic monitoring.

Data sources:

We searched major electronic databases (e.g. MEDLINE, MEDLINE In Process & Other Non-Indexed Citations, EMBASE, Bioscience Information Service, Science Citation Index and Cochrane Central Register of Controlled Trials) from 2007 to May 2013. Reports published before 2007 were identified from the existing Cochrane review (major databases searched from inception to 2007). The economic model parameters were derived from the clinical effectiveness review, other relevant reviews, routine sources of cost data and clinical experts’ advice.

Review methods:

We assessed randomised controlled trials (RCTs) evaluating self-monitoring in people with atrial fibrillation or heart valve disease requiring long-term anticoagulation therapy. CoaguChek® XS and S models (Roche Diagnostics, Basel, Switzerland), INRatio2® PT/INR monitor (Alere Inc., San Diego, CA USA), and ProTime Microcoagulation system® (International Technidyne Corporation, Nexus Dx, Edison, NJ, USA) coagulometers were compared with standard monitoring. Where possible, we combined data from included trials using standard inverse variance methods. Risk of bias assessment was performed using the Cochrane risk of bias tool. A de novo economic model was developed to assess the cost-effectiveness over a 10-year period.

Results:

We identified 26 RCTs (published in 45 papers) with a total of 8763 participants. CoaguChek was used in 85% of the trials. Primary analyses were based on data from 21 out of 26 trials. Only four trials were at low risk of bias. Major clinical events: self-monitoring was significantly better than standard monitoring in preventing thromboembolic events [relative risk (RR) 0.58, 95% confidence interval (CI) 0.40 to 0.84; p = 0.004]. In people with artificial heart valves (AHVs), self-monitoring almost halved the risk of thromboembolic events (RR 0.56, 95% CI 0.38 to 0.82; p = 0.003) and all-cause mortality (RR 0.54, 95% CI 0.32 to 0.92; p = 0.02). There was greater reduction in thromboembolic events and all-cause mortality through self-management but not through self-testing. Intermediate outcomes: self-testing, but not self-management, showed a modest but significantly higher percentage of time in therapeutic range, compared with standard care (weighted mean difference 4.44, 95% CI 1.71 to 7.18; p = 0.02). Patient-reported outcomes: improvements in patients’ quality of life related to self-monitoring were observed in six out of nine trials. High preference rates were reported for self-monitoring (77% to 98% in four trials). Net health and social care costs over 10 years were £7295 (self-monitoring with INRatio2); £7324 (standard care monitoring); £7333 (self-monitoring with CoaguChek XS) and £8609 (self-monitoring with ProTime). The estimated quality-adjusted life-year (QALY) gain associated with self-monitoring was 0.03. Self-monitoring with INRatio2 or CoaguChek XS was found to have ≈ 80% chance of being cost-effective, compared with standard monitoring at a willingness-to-pay threshold of £20,000 per QALY gained.

Conclusions:

Compared with standard monitoring, self-monitoring appears to be safe and effective, especially for people with AHVs. Self-monitoring, and in particular self-management, of anticoagulation status appeared cost-effective when pooled estimates of clinical effectiveness were applied. However, if self-monitoring does not result in significant reductions in thromboembolic events, it is unlikely to be cost-effective, based on a comparison of annual monitoring costs alone. Trials investigating the longer-term outcomes of self-management are needed, as well as direct comparisons of the various point-of-care coagulometers.

Study registration:

This study is registered as PROSPERO CRD42013004944.

Funding:

The National Institute for Health Research Health Technology Assessment programme.

Contents

Article history

The research reported in this issue of the journal was commissioned and funded by the HTA programme on behalf of NICE as project number 13/06/01. The protocol was agreed in June 2013. The assessment report began editorial review in December 2013 and was accepted for publication in March 2014. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors’ report and would like to thank the reviewers for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

Declared competing interests of authors

none

Copyright © Queen’s Printer and Controller of HMSO 2015. This work was produced by Sharma et al. under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Included under terms of UK Non-commercial Government License.

Bookshelf ID: NBK304007DOI: 10.3310/hta19480

Views

  • PubReader
  • Print View
  • Cite this Page
  • PDF version of this title (3.8M)

Other titles in this collection

Related information

Similar articles in PubMed

See reviews...See all...

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...