Conserved Protein Domain Family
DMB-PRT_CobT

?
cl11435: DMB-PRT_CobT Superfamily 
Nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase (DMB-PRT), also called CobT
Nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase (DMB-PRT/CobT, not to be confused with the CobT subunit of cobaltochelatase, which does not belong to this group) catalyzes the synthesis of alpha-ribazole-5'-phosphate, from nicotinate mononucleotide (NAMN) and 5,6-dimethylbenzimidazole (DMB). This function is essential to the anaerobic biosynthesis pathway of cobalamin (vitamin B12), which is the largest and most complex cofactor in a number of enzyme-catalyzed reactions in bacteria, archaea and eukaryotes. Only eubacteria and archaebacteria can synthesize vitamin B12; multicellular organisms have lost this ability during evolution. DMB-PRT/CobT works sequentially with CobC (a phosphatase) to couple the lower ligand of cobalamin to a ribosyl moiety. DMB is the most common lower ligand of cobamides; other lower ligands include adenine, 5-methoxybenzimidazole or phenol. It has been suggested that earlier metabolic or enzymatic steps may control which lower ligand is available to DMB-PRT/CobT. In Salmonella enterica, for example, the lower ligand is DMB under aerobic conditions and adenine or 2-methyladenine under anaerobic conditions. Salmonella enterica DMB-PRT/CobT is a homodimer with two active sites, each active site is comprised of residues from both monomers. This group includes two distinct subfamilies, one archaeal-like, the other comprised of bacterial sequences.
Statistics
?
Accession: cl11435
PSSM Id: 472180
Name: DMB-PRT_CobT
Created: 29-May-2009
Updated: 4-Oct-2023
| Disclaimer | Privacy statement | Accessibility |
NCBI Home NCBI Search NCBI SiteMap