?
Anti-CRISPR type I subtype F11 (AcrIF11) AcrIF11 (also known as AcrF11) is an anti-CRISPR (Acr) protein that was discovered via the guilt-by association (GBA) method, and subsequently confirmed by functional assays to inhibit the type I-F CRISPR-Cas system. GBA is based on the strong co-occurrence and clustering of acr and anti-CRISPR associated (aca) genes through proximity and homology searches. AcrIF11 is often associated with genes encoding DNA-binding motifs, named Aca4 through Aca7. AcrIF11 is found in over 50 species of diverse proteobacteria; given its widespread nature it was used to discover acr loci encoding acr genes inhibiting types I-C and V-A CRISPR systems, where Acr proteins had not yet been found. Structure determination revealed that AcrIF11 binds NAD. The type I-F Csy complex is a crRNA-guided surveillance complex composed of a crRNA and nine Cas proteins (one Cas8f, one Cas5f, one Cas6f, and six Cas7f), which recruits a nuclease-helicase protein Cas3 for target degradation. CRISPR-Cas immune systems are used by certain prokaryotes and archaea to resist the invasion of foreign nucleic acids such as phages or plasmids. Anti-CRISPRs are small proteins which are the natural inhibitors for CRISPR-Cas systems; encoded on bacterial and archaeal viruses, they allow the virus to evade host CRISPR-Cas systems. The CRISPR-Cas-mediated adaptive immune response can be divided into three steps, including the acquisition of spacer derived from invading nucleic acids, crRNA processing, and target degradation. Theoretically, Acr proteins could suppress any step to disrupt the CRISPR-Cas system. Acr proteins are diverse with no common sequence or structural motif, and they inhibit a wide range of CRISPR-Cas systems with various inhibition mechanisms. CRISPR-Cas systems are divided into two classes (1 and 2) and six types (class 1: types I, III and IV; class 2: types II, V and VI). Class 1 systems utilize RNA-guided complexes consisting of multiple Cas proteins as the effector proteins to recognize and cleave target DNA. Type I CRISPR-Cas systems are the most widespread in nature, and the Cas protein composition of the employed CRISPR ribonucleoprotein (crRNP) complexes differs between seven subtypes (A to F, U). Acr families are named for their type and subtype which are numbered sequentially as they are discovered.
|