D-Mandelate dehydrogenase (D-ManDH), identified as an enzyme that interconverts benzoylformate and D-mandelate, is a D-2-hydroxyacid dehydrogenase family member that catalyzes the conversion of c3-branched 2-ketoacids. D-ManDH exhibits broad substrate specificities for 2-ketoacids with large hydrophobic side chains, particularly those with C3-branched side chains. 2-hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Glycerate dehydrogenase catalyzes the reaction (R)-glycerate + NAD+ to hydroxypyruvate + NADH + H+. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain.