Endophilins play roles in synaptic vesicle formation, virus budding, mitochondrial morphology maintenance, receptor-mediated endocytosis inhibition, and endosomal sorting. They are classified into two types, A and B. Vertebrates contain three endophilin-A isoforms (A1, A2, and A3). Endophilin-A proteins are enriched in the brain and play multiple roles in receptor-mediated endocytosis. They tubulate membranes and regulate calcium influx into neurons to trigger the activation of the endocytic machinery. They are also involved in the sorting of plasma membrane proteins, actin filament assembly, and the uncoating of clathrin-coated vesicles for fusion with endosomes. Endophilins contain an N-terminal N-BAR domain (BAR domain with an additional N-terminal amphipathic helix), followed by a variable region containing proline clusters, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.