 |
 |
GEO help: Mouse over screen elements for information. |
|
Status |
Public on Dec 31, 2010 |
Title |
The effect of IAN on E. coli O157:H7 EHEC biofilm formation |
Organism |
Escherichia coli |
Experiment type |
Expression profiling by array
|
Summary |
Intercellular signal indole and its derivative hydroxyindoles inhibit Escherichia coli biofilm and diminish Pseudomonas aeruginosa virulence. However, indole and bacterial indole derivatives were unstable in microbial community due to the widespread of diverse oxygenases that could quickly degrade them. Hence, we sought to identify novel non-toxic, stable, and potent indole derivatives from plant sources for inhibiting biofilm formation of E. coli O157:H7 and P. aeruginosa PAO1. Here, plant auxin 3-indolylacetonitrile (IAN) was found to inhibit biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth. IAN inhibited biofilms more effectively than indole for both E. coli and P. aeruginosa. Additionally, IAN decreased the production of virulence factor pyocyanin in P. aeruginosa. DNA microarray analysis indicated that IAN repressed genes involved in curli formation and glycerol metabolism, while IAN induced indole-related genes and prophage genes in E. coli. It appears that IAN inhibits biofilm formation of E. coli by reducing curli formation and inducing indole production. Furthermore, unlike bacterial indole derivatives, plant-originated IAN was stable in the presence of either E. coli or P. aeruginosa.
|
|
|
Overall design |
For the microarray experiments, E. coli O157:H7 were inoculated in 25 ml of LB medium in 250 ml shake flasks with overnight cultures that were diluted 1:100. IAN (100 μg/ml) dissolved in 25 μl DMSO or 25 μl DMSO alone as a control was added. Cells were cultured in LB at 37C with 250 rpm shaking until an absorbance of 1.0 at 600 nm. Cells were immediately chilled with dry ice and 95% ethanol (to prevent RNA degradation) for 30 sec before centrifugation in 50 ml centrifuge tubes at 13,000 g for 2 min; cell pellets were frozen immediately with dry ice and stored -80°C. RNA was isolated using Qiagen RNeasy mini Kit (Valencia, CA, USA). RNA quality was assessed by Agilent 2100 bioanalyser using the RNA 6000 Nano Chip (Agilent Technologies, Amstelveen, The Netherlands), and quantity was determined by ND-1000 Spectrophotometer (NanoDrop Technologies, Inc., DE, USA).
|
|
|
Contributor(s) |
Lee J, Lee J |
Citation(s) |
20649646 |
|
Submission date |
Jan 12, 2010 |
Last update date |
Mar 08, 2019 |
Contact name |
Jintae Lee |
E-mail(s) |
jtlee@ynu.ac.kr
|
Phone |
82-53-810-2533
|
Organization name |
Yeungnam University
|
Department |
Chemical engineering
|
Lab |
Biotechnology
|
Street address |
214-1 Daedong
|
City |
Gyeongsan-Si |
State/province |
Gyeongsangbuk-Do |
ZIP/Postal code |
712-749 |
Country |
South Korea |
|
|
Platforms (1) |
GPL3154 |
[E_coli_2] Affymetrix E. coli Genome 2.0 Array |
|
Samples (2) |
GSM495718 |
EDL 933 at 37oC at OD 1.0 |
GSM495719 |
EDL 933 with 0.1 mg/ml IAN at 37oC at OD 1.0 |
|
Relations |
BioProject |
PRJNA122065 |
Supplementary file |
Size |
Download |
File type/resource |
GSE19842_RAW.tar |
2.0 Mb |
(http)(custom) |
TAR (of CEL, CHP) |
Processed data included within Sample table |
Processed data provided as supplementary file |
|
|
|
|
 |