|
Status |
Public on Sep 12, 2013 |
Title |
Community composition of bacteria involved in fixed nitrogen loss in the water column of two major oxygen minimum zones in the ocean |
Platform organism |
uncultured bacterium |
Sample organisms |
synthetic construct; marine metagenome |
Experiment type |
Other
|
Summary |
The community composition (in terms of abundance, distribution and contribution of diverse clades) of bacteria involved in nitrogen transformations in the oxygen minimum zones may be related to the rates of fixed N loss in these systems. The abundance of both denirifying and anammox bacteria, and the assemblage composition of denitrifying bacteria were investigated in the Eastern Tropical South Pacific and the Arabian Sea using assays based on molecular markers for the two groups of bacteria. The abundance and distribution of bacteria associated with the fixed N removal processes denitrification and anammox were investigated using quantitative PCR for genes encoding nitrite reductase (nirK and nirS) in denitrifying bacteria and hydrazine oxidase(hzo) and 16S rRNA genesin anammox bacteria. All of these genes had depth distributions with maxima associated with the secondary nitrite maximum in low oxygen waters. NirS was mch more abundant than nirK, and much more abundant than the 16S rRNA gene from anammox bacteria. The ratio of hzo:16S rRNA for anammox was low and variable implying greater unexplored diversity in the the hzo gene. Assemblage composition of the abundant nirS-type denitrifiers was evaluated using a funcitonal gene microarray. Of the nirS archetypes represented on the microarray, very few occurred speficically in one region or depth interval, but the assemblages varied significantly. Community composition of denitrifiers based on microarray analysis of the nirS gene was most different between geographical regions. Within each region, the surface layer and OMZ assemblages clustered distinctly. Thus, in addition to spatial and temporal variation in denitrificaiton and anammox rates, both microbial abundance and community composition also vary between OMZ regions and depths.
|
|
|
Overall design |
Two color array (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5. Three replicate probes were printed for each archetype. Two replicate arrays were run on duplicate targets.
|
|
|
Contributor(s) |
Jayakumar A, Peng X, Ward B |
Citation |
Jayakumar A, Peng X, Ward BB (2013) Community composition of bacteria involved in fixed nitrogen loss in the water column of two major oxygen minimum zones in the ocean. Aquat Microb Ecol 70:245-259, DOI: 10.3354/ame01654
|
|
Submission date |
Sep 11, 2013 |
Last update date |
Dec 17, 2013 |
Contact name |
Xuefeng Peng |
Organization name |
Princeton University
|
Department |
Geosciences
|
Street address |
Guyot Hall
|
City |
Princeton |
State/province |
NJ |
ZIP/Postal code |
08544 |
Country |
USA |
|
|
Platforms (1) |
GPL17721 |
Princeton uncultured crenarchaeote nirS gene BC014 array |
|
Samples (25)
|
GSM1229184 |
water column DNA_Arabian Sea_Station 1_10m |
GSM1229185 |
water column DNA_Arabian Sea_Station 1_60m |
GSM1229186 |
water column DNA_Arabian Sea_Station 1_102m |
GSM1229187 |
water column DNA_Arabian Sea_Station 1_150m |
GSM1229188 |
water column DNA_Arabian Sea_Station 1_175m |
GSM1229189 |
water column DNA_Arabian Sea_Station 2_10m |
GSM1229190 |
water column DNA_Arabian Sea_Station 2_150m |
GSM1229191 |
water column DNA_Arabian Sea_Station 2_200m |
GSM1229192 |
water column DNA_Arabian Sea_Station 3_10m |
GSM1229193 |
water column DNA_Arabian Sea_Station 3_110m |
GSM1229194 |
water column DNA_Arabian Sea_Station 3_150m |
GSM1229195 |
water column DNA_ETSP_Station 12_20m |
GSM1229196 |
water column DNA_ETSP_Station 12_260m |
GSM1229197 |
water column DNA_ETSP_Station 14_20m |
GSM1229198 |
water column DNA_ETSP_Station 14_260m |
GSM1229199 |
water column DNA_ETSP_Station 19_20m |
GSM1229200 |
water column DNA_ETSP_Station 19_260m |
GSM1229201 |
water column DNA_ETSP_Station 20_20m |
GSM1229202 |
water column DNA_ETSP_Station 20_260m |
GSM1229203 |
water column DNA_ETSP_Station 24_20m |
GSM1229204 |
water column DNA_ETSP_Station 24_260m |
GSM1229205 |
water column DNA_ETSP_Station 26_20m |
GSM1229206 |
water column DNA_ETSP_Station 26_260m |
GSM1229207 |
water column DNA_ETSP_Station 31_55m |
GSM1229208 |
water column DNA_ETSP_Station 32_200m |
|
Relations |
BioProject |
PRJNA218885 |