NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE65787 Query DataSets for GSE65787
Status Public on Jul 17, 2015
Title Evidence from mRNA-Sequencing that Acute Olanzapine Infusion is Initiating a Skeletal Muscle Fiber Type Transition In Rat Gastrocnemius
Organism Rattus norvegicus
Experiment type Expression profiling by high throughput sequencing
Summary The purpose of this study was to examined the acute actions of the second generation antipsychotic (SGA), olanzapine, on skeletal muscle (gastrocnemius) of Sprague Dawley Rats. SGAs cause metabolic side effects including leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. These effects are preceded by glucose intolerance and increased FFA flux and metabolism in peripheral tissues. Skeletal muscle is a likely target of glucose intolerance, therefore understanding how olanzapine affects the skeletal muscle transcriptome could elucidate approaches for mitigating these side effects. Male Sprague-Dawley rats freely fed on normal chow with comparable body weights (vehicle: 373±9g, olanzapine: 388±11g, p=0.34) were infused with vehicle or olanzapine for 24h using a dosing regimen leading to mild hyperglycemia (vehicle, 98±2mg/dl; olanzapine 127±4mg/dl, p=0.0023). For the olanzapine group, the venous catheter was attached to a syringe pump (Model NE-300) filled with olanzapine (Dr. Reddy’s Laboratories Ltd, Hyderabad, India) in sterile saline (infusion: 1mg/100g BW loading dose for 0.5h and then 0.04mg/100g/h continuously for 23.5h). Gastrocnemius was then surgically removed under isoflurane anesthesia (carried with 100% O2), and frozen between two aluminum blocks cooled to the temperature of liquid nitrogen and then stored at -80oC until RNA was isolated. With anesthesia gas flow continuing, the animals were euthanized by cutting the diaphram and removing the heart. The mRNA was isolated from from these muscles and used for RNA-Seq followed by alignment of the data with the rat genome assembly 5.0. To determine significant differences in FPKM values between control and olanzapine groups, the DEGexp function of the DEGseq 1.18.0 R package was used with the Likelihood Ratio Test (LRT) and default parameters. In the uploaded excel file, P values with p<0.05 and p<0.001 are shown for each row in different columns indicated by the number 1. The value 0 indicates the row is not significantly different.
 
Overall design Comparison of vehicle (n=3) and olanzapine infused (n=3) rats.
 
Contributor(s) Lynch CJ, Salzberg AC, Kawasawa YI
Citation(s) 25893406
Submission date Feb 09, 2015
Last update date May 15, 2019
Contact name Yuka Imamura Kawasawa
E-mail(s) yui102@psu.edu
Organization name Penn State University
Department College of Medicine, Pharmacology
Street address 500 University Dr.
City Hershey
State/province PA
ZIP/Postal code 17033
Country USA
 
Platforms (1)
GPL18694 Illumina HiSeq 2500 (Rattus norvegicus)
Samples (6)
GSM1606370 Rat 3 Vehicle
GSM1606371 Rat 4 Olanzapine 24h
GSM1606372 Rat 9 Vehicle
Relations
BioProject PRJNA275016
SRA SRP053407

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE65787_FileS1_Yuka020915.xlsx.gz 4.2 Mb (ftp)(http) XLSX
SRA Run SelectorHelp
Processed data are available on Series record
Raw data are available in SRA

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap