NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Sample GSM306616 Query DataSets for GSM306616
Status Public on Jul 23, 2008
Title GSY508-CBS2156
Sample type genomic
 
Channel 1
Source name Scer 400ng + Sbay 300ng sonicated genomic DNA
Organism Saccharomyces cerevisiae
Characteristics reference: Scer 400ng + Sbay 300ng sonicated genomic DNA
Extracted molecule genomic DNA
Extraction protocol not provided
Label Cy3
Label protocol not provided
 
Channel 2
Source name GSY508 genomic DNA, 350 ng, HaeIII cut
Organism Saccharomyces cerevisiae
Characteristics strain name: GSY508=CBS2156=CBS457
Extracted molecule genomic DNA
Extraction protocol not provided
Label Cy5
Label protocol not provided
 
 
Hybridization protocol not provided
Scan protocol Feature Extraction; Software and parameters for feature extraction.; Protocol Type = Feature Extraction; Parameter Datafile type = Agilent result file; Software: type: feature extraction; Performer: Barbara,,Dunn
Description Simple annotation: Beer, DNA
Image: http://smd.stanford.edu/MicroArray/gifs/2006-10/70565.gif
Strain Name: GSY508=CBS2156=CBS457
Data processing VALUE is log10(test/reference)
 
Submission date Jul 21, 2008
Last update date May 21, 2009
Contact name Barbara Dunn
E-mail(s) bdunn@stanford.edu
Phone 650-498-5995
Organization name Stanford University
Department Genetics
Street address -
City Stanford
State/province CA
ZIP/Postal code 94305
Country USA
 
Platform ID GPL7077
Series (1)
GSE12177 Saccharomyces pastorianus strains comparison

Data table header descriptions
ID_REF ID_REF
AGILENT_RAW.G_MEAN_SIGNAL Mean foreground intensity Ch 1.; Type: float; Scale: linear_scale
AGILENT_RAW.G_MEDIAN_SIGNAL Median foreground intensity Ch 1.; Type: float; Scale: linear_scale
AGILENT_RAW.R_MEAN_SIGNAL Mean foreground intensity Ch 2.; Type: float; Scale: linear_scale
AGILENT_RAW.R_MEDIAN_SIGNAL Median foreground intensity Ch 2.; Type: float; Scale: linear_scale
AGILENT_RAW.G_MEAN_BG Mean background intensity Ch 1.; Type: float; Scale: linear_scale; Background
AGILENT_RAW.G_MEDIAN_BG Median background intensity Ch 1.; Type: float; Scale: linear_scale; Background
AGILENT_RAW.R_MEAN_BG Mean background intensity Ch 2.; Type: float; Scale: linear_scale; Background
AGILENT_RAW.R_MEDIAN_BG Median background intensity Ch 2.; Type: float; Scale: linear_scale; Background
AGILENT_RAW.G_NUM_PIX Total number of pixels used to compute feature statistics; ie. Total number of inlier pixels per spot, computed independently for the green channel. The number of inlier pixels are the same in both channels.; Type: integer; Scale: linear_scale
AGILENT_RAW.R_NUM_PIX Total number of pixels used to compute feature statistics; ie. Total number of inlier pixels per spot, computed independently for the red channel. The number of inlier pixels are the same in both channels.; Type: integer; Scale: linear_scale
AGILENT_RAW.G_PIX_SDEV Standard deviation of all inlier pixels per feature; this is computed independently for the green channel; Type: float; Scale: linear_scale
AGILENT_RAW.R_PIX_SDEV Standard deviation of all inlier pixels per feature; this is computed independently for the red channel; Type: float; Scale: linear_scale
AGILENT_RAW.G_BG_NUM_PIX Total number of pixels used to compute Local background statistics per spot; ie. Total number of BG inlier pixels. This number is calculated independently for the green channel.; Type: integer; Scale: linear_scale
AGILENT_RAW.R_BG_NUM_PIX Total number of pixels used to compute Local background statistics per spot; ie. Total number of BG inlier pixels. This number is calculated independently for the red channel.; Type: integer; Scale: linear_scale
AGILENT_RAW.G_BG_PIX_SDEV Standard deviation of all inlier pixels per feature; this is computed independently for the green channel; Type: float; Scale: linear_scale
AGILENT_RAW.R_BG_PIX_SDEV Standard deviation of all inlier pixels per feature; this is computed independently for the red channel; Type: float; Scale: linear_scale
AGILENT_RAW.TOP Top coordinate of "box" containing spot in gif image; Type: integer; Scale: linear_scale
AGILENT_RAW.BOT Bottom coordinate of "box" containing spot in gif image; Type: integer; Scale: linear_scale
AGILENT_RAW.LEFT Left coordinate of "box" containing spot in gif image; Type: integer; Scale: linear_scale
AGILENT_RAW.RIGHT Right coordinate of "box" containing spot in gif image; Type: integer; Scale: linear_scale
AGILENT_RAW.POSITION_X X-coordinate of spot.; Type: float; Scale: linear_scale
AGILENT_RAW.POSITION_Y Y-coordinate of spot.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.BG_PIX_CORRELATION Ratio of estimated feature Background covariance in Red Green space to product of feature Standard Deviation in Red Green space. The covariance of two features measures their tendency to vary together, ie., co-vary. In this case, it is a cumulative quantitation of the tendency of pixels belonging to a particular feature's Background in Red and Green spaces to co-vary.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.BG_SUB_SIG_CORRELATION Ratio of estimated background subtracted feature signal covariance in Red Green space to product of background subtracted feature Standard Deviation in Red Green space.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_BG_SD_USED Standard deviation of background used in green channel; Type: float; Scale: linear_scale; Background
AGILENT_COMPUTED.G_BG_SUB_SIGNAL The net green signal following the subtraction of the background from the raw green mean signal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_BG_SUB_SIG_ERROR Propagated standard error as computed on net green background subtracted signal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_BG_USED Background value subtracted from the raw mean signal to generate the BG subtracted signal; this value is computed for the green channel. If global BG subtraction is used, the column is identical for every feature in a channel. Options: gBGSubSignal (gMeansignal - gBGUsed); Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_BG_SD_USED Standard deviation of background used in red channel; Type: float; Scale: linear_scale; Background
AGILENT_COMPUTED.R_BG_SUB_SIGNAL The net green signal following the subtraction of the background from the raw red mean signal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_BG_SUB_SIG_ERROR Propagated standard error as computed on net red background subtracted signal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_BG_USED Background value subtracted from the raw mean signal to generate the BG subtracted signal; this value is computed for the red channel. If global BG subtraction is used, the column is identical for every feature in a channel. Options: rBGSubSignal (rMeansignal - rBGUsed); Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_DYE_NORM_SIGNAL The dye normalized signal in the green channel.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_DYE_NORM_SIGNAL The dye normalized signal in the red channel.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_IS_GOOD_PM Feature passes gIsWellAboveBG and additionally the gPerfMatchSignal is positive and significant (t-test p value < 0.01) versus its gDelCtrlSignal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_IS_LOW_SPECIFICITY gPerfMatchSignal fails positive and significance t-test (0.01) versus its gDelCtrlSignal; and deletion control passes gIsWellAboveBG; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_IS_GOOD_PM Feature passes rIsWellAboveBG and additionally the rPerfMatchSignal is positive and significant (t-test p value < 0.01) versus its rDelCtrlSignal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_IS_LOW_SPECIFICITY rPerfMatchSignal fails positive and significance t-test (0.01) versus its rDelCtrlSignal; and deletion control passes rIsWellAboveBG; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_NUM_SAT_PIX Total number of saturated pixels per feature, computed for the green channel; Type: integer; Scale: linear_scale
AGILENT_COMPUTED.R_NUM_SAT_PIX Total number of saturated pixels per feature, computed for the red channel; Type: integer; Scale: linear_scale
AGILENT_COMPUTED.G_PROCESSED_SIGNAL The propagated feature signal in the green channel, used for computation of log ratio; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_PROCESSED_SIGNAL The propagated feature signal in the red channel, used for computation of log ratio; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_PVAL_FEAT_EQ_BG Log (base 10) of p-value from t-test of significance between green Mean signal and green background.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_PVAL_FEAT_EQ_BG Log (base 10) of p-value from t-test of significance between red Mean signal and red background.; Type: float; Scale: linear_scale
VALUE log10 (test/reference)
AGILENT_COMPUTED.LOG_RATIO_ERROR Error of the log ratio calculated according to the error model chosen.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.PIX_CORRELATION Ratio of estimated feature covariance in Red Green space to product of feature Standard Deviation ion Red Green space. The covariance of two features measures their tendency to vary together, ie., co-vary. In this case, it is a cumultive quantitation of the tendency of pixels belonging to a particular feature in Red and Green spaces to co-vary.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.P_VALUE_LOG_RATIO Log (base 10) of significance level of the Log Ratio computed for a feature.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.DYE_NORM_CORRELATION Dye normalized red and green pixel correlation.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_DYE_NORM_ERROR The standard error associated with the green dye normalized signal.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_DYE_NORM_ERROR The standard error associated with the red dye normalized signal.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.ERROR_MODEL Indicates the error model that the user chose for feature extraction. Options: 0 (Propagated model chosen by user or by software) | 1 (Universal error model chosen by user of software).; Type: integer; Scale: linear_scale
AGILENT_COMPUTED.G_IS_FOUND A boolean used to flag found (strong) features. The flag is applied independently to the green channel. A feature is considered found if the found spot centroid is within the bounds of the spot deviation limit with respect to corresponding nominal centroid. NOTE: Isfound was previously termed IsStrong.; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_FOUND A boolean used to flag found (strong) features. The flag is applied independently to the red channel. A feature is considered found if the found spot centroid is within the bounds of the spot deviation limit with respect to corresponding nominal centroid. NOTE: Isfound was previously termed IsStrong.; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_FEAT_NON_UNIF_OL Boolean flag indicating if a feature is a NonUniformity Outlier or not. A feature is non-uniform if the pixel noise of feature exceeds a threshold established for a "uniform" feature. Option 1 (Feature is a non-uniformity outlier in the green channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_FEAT_NON_UNIF_OL Boolean flag indicating if a feature is a NonUniformity Outlier or not. A feature is non-uniform if the pixel noise of feature exceeds a threshold established for a "uniform" feature. Option 1 (Feature is a non-uniformity outlier in the red channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_FEAT_POPN_OL Boolean flag indicating if a feature is a Population Outlier or not. Probes with replicate features on a microarray are examined using population statistics. A feature is a population outlier if its signal is less than a lower threshold or exceeds an upper threshold determined using the interquartile range (ie., IQR) of the population. Options: 1 (feature is a population outlier in the green channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_FEAT_POPN_OL Boolean flag indicating if a feature is a Population Outlier or not. Probes with replicate features on a microarray are examined using population statistics. A feature is a population outlier if its signal is less than a lower threshold or exceeds an upper threshold determined using the interquartile range (ie., IQR) of the population. Options: 1 (feature is a population outlier in the red channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_SATURATED Boolean flag indicating if a feature is saturated or not in the green channel. A feature is saturated IF 50% of the pixels in a feature are above the saturation threshold. Options: 1 (saturated) | 0 (not saturated); Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_SATURATED Boolean flag indicating if a feature is saturated or not in the red channel. A feature is saturated IF 50% of the pixels in a feature are above the saturation threshold. Options: 1 (saturated) | 0 (not saturated); Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_WELL_ABOVE_BG Boolean flag indicating if a feature is well above background or not. Feature passes if RIsPosAndSignif AND RBGSubSignal is greater than 2.6*RBG_SD.Boolean flag indicating if a feature is well above background or not. Feature passes if RIsPosAndSignif AND RBGSubSignal is greater than 2.6*RBG_SD.; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_WELL_ABOVE_BG Boolean flag indicating if a feature is well above background or not. Feature passes if RIsPosAndSignif AND RBGSubSignal is greater than 2.6*RBG_SD.Boolean flag indicating if a feature is well above background or not. Feature passes if RIsPosAndSignif AND RBGSubSignal is greater than 2.6*RBG_SD.; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_BG_NON_UNIF_OL Boolean flag indicating if a feature's Background is a NonUniformity Outlier or not. A feature is non-uniform if the pixel noise of feature exceeds a threshold established for a "uniform" feature. Option 1 (Feature's background is a non-uniformity outlier in the green channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_BG_NON_UNIF_OL Boolean flag indicating if a feature's Background is a NonUniformity Outlier or not. A feature is non-uniform if the pixel noise of feature exceeds a threshold established for a "uniform" feature. Option 1 (Feature's background is a non-uniformity outlier in the red channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_BG_POPN_OL Boolean flag indicating if a feature's Background is a Population Outlier or not. Probes with replicate features on a microarray are examined using population statistics. A feature's background is a population outlier if its signal is less than a lower threshold or exceeds an upper threshold determined using the interquartile range (ie., IQR) of the population. Options: 1 (feature Background is a population outlier in the green channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_BG_POPN_OL Boolean flag indicating if a feature's Background is a Population Outlier or not. Probes with replicate features on a microarray are examined using population statistics. A feature's background is a population outlier if its signal is less than a lower threshold or exceeds an upper threshold determined using the interquartile range (ie., IQR) of the population. Options: 1 (feature Background is a population outlier in the red channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_POS_AND_SIGNIF Boolean flag indicating if the mean signal of a feature is greater than the corresponding background and if this difference is significant. Significance is established via a 2-sided t-test against the user-settable maximum p-value (BGSub tab) Options: 1 (Feature is positive and significant above background in the green channel); Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_POS_AND_SIGNIF Boolean flag indicating if the mean signal of a feature is greater than the corresponding background and if this difference is significant. Significance is established via a 2-sided t-test against the user-settable maximum p-value (BGSub tab) Options: 1 (Feature is positive and significant above background in the red channel); Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.IS_USED_BG_ADJUST Boolean flag used to flag features used for computation of global Background offset; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.IS_NORMALIZATION Boolean flag which indicates if a feaure is used to measure dye bias. Options: 1 (Feature used) | 0 (Feature not used).; Type: boolean; Scale: linear_scale

Data table
ID_REF AGILENT_RAW.G_MEAN_SIGNAL AGILENT_RAW.G_MEDIAN_SIGNAL AGILENT_RAW.R_MEAN_SIGNAL AGILENT_RAW.R_MEDIAN_SIGNAL AGILENT_RAW.G_MEAN_BG AGILENT_RAW.G_MEDIAN_BG AGILENT_RAW.R_MEAN_BG AGILENT_RAW.R_MEDIAN_BG AGILENT_RAW.G_NUM_PIX AGILENT_RAW.R_NUM_PIX AGILENT_RAW.G_PIX_SDEV AGILENT_RAW.R_PIX_SDEV AGILENT_RAW.G_BG_NUM_PIX AGILENT_RAW.R_BG_NUM_PIX AGILENT_RAW.G_BG_PIX_SDEV AGILENT_RAW.R_BG_PIX_SDEV AGILENT_RAW.TOP AGILENT_RAW.BOT AGILENT_RAW.LEFT AGILENT_RAW.RIGHT AGILENT_RAW.POSITION_X AGILENT_RAW.POSITION_Y AGILENT_COMPUTED.BG_PIX_CORRELATION AGILENT_COMPUTED.BG_SUB_SIG_CORRELATION AGILENT_COMPUTED.G_BG_SD_USED AGILENT_COMPUTED.G_BG_SUB_SIGNAL AGILENT_COMPUTED.G_BG_SUB_SIG_ERROR AGILENT_COMPUTED.G_BG_USED AGILENT_COMPUTED.R_BG_SD_USED AGILENT_COMPUTED.R_BG_SUB_SIGNAL AGILENT_COMPUTED.R_BG_SUB_SIG_ERROR AGILENT_COMPUTED.R_BG_USED AGILENT_COMPUTED.G_DYE_NORM_SIGNAL AGILENT_COMPUTED.R_DYE_NORM_SIGNAL AGILENT_COMPUTED.G_IS_GOOD_PM AGILENT_COMPUTED.G_IS_LOW_SPECIFICITY AGILENT_COMPUTED.R_IS_GOOD_PM AGILENT_COMPUTED.R_IS_LOW_SPECIFICITY AGILENT_COMPUTED.G_NUM_SAT_PIX AGILENT_COMPUTED.R_NUM_SAT_PIX AGILENT_COMPUTED.G_PROCESSED_SIGNAL AGILENT_COMPUTED.R_PROCESSED_SIGNAL AGILENT_COMPUTED.G_PVAL_FEAT_EQ_BG AGILENT_COMPUTED.R_PVAL_FEAT_EQ_BG VALUE AGILENT_COMPUTED.LOG_RATIO_ERROR AGILENT_COMPUTED.PIX_CORRELATION AGILENT_COMPUTED.P_VALUE_LOG_RATIO AGILENT_COMPUTED.DYE_NORM_CORRELATION AGILENT_COMPUTED.G_DYE_NORM_ERROR AGILENT_COMPUTED.R_DYE_NORM_ERROR AGILENT_COMPUTED.ERROR_MODEL AGILENT_COMPUTED.G_IS_FOUND AGILENT_COMPUTED.R_IS_FOUND AGILENT_COMPUTED.G_IS_FEAT_NON_UNIF_OL AGILENT_COMPUTED.R_IS_FEAT_NON_UNIF_OL AGILENT_COMPUTED.G_IS_FEAT_POPN_OL AGILENT_COMPUTED.R_IS_FEAT_POPN_OL AGILENT_COMPUTED.G_IS_SATURATED AGILENT_COMPUTED.R_IS_SATURATED AGILENT_COMPUTED.R_IS_WELL_ABOVE_BG AGILENT_COMPUTED.G_IS_WELL_ABOVE_BG AGILENT_COMPUTED.G_IS_BG_NON_UNIF_OL AGILENT_COMPUTED.R_IS_BG_NON_UNIF_OL AGILENT_COMPUTED.G_IS_BG_POPN_OL AGILENT_COMPUTED.R_IS_BG_POPN_OL AGILENT_COMPUTED.G_IS_POS_AND_SIGNIF AGILENT_COMPUTED.R_IS_POS_AND_SIGNIF AGILENT_COMPUTED.IS_USED_BG_ADJUST AGILENT_COMPUTED.IS_NORMALIZATION
1 122.8814 122 79.44068 79 53.68116 54 66.00725 66 59 59 9.716826 6.444113 276 276 4.448469 6.063898 93 93 68 68 68.124 93.8372 -.0291666 0 4.44847 10.6271 4.6471 112.254 6.0639 -.688192 11.3947 80.1289 33.2189 -1.5966 null null null null 0 0 33.21894 26.34693 -8.53574003056629 -.0578326521623313 -.1006557081 .4418148425 .0231527 -.0863007607649502 0 14.5262 26.4356 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2 123 124 78.88136 78 53.49819 53 66.61372 66 59 59 8.562146 9.20473 277 277 4.516976 6.506315 94 94 89 89 89.313 94.0174 .00348979 0 4.51698 10.7373 4.64963 112.263 6.50631 -1.1936 11.3947 80.075 33.5095 -2.75862 null null null null 0 0 33.50949 26.24679 -8.69067650163373 -.104838330001772 -.1060916938 .439229901 -.214171 -.0919782418455804 0 14.5108 26.3352 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3 324.8621 324 864.1379 874 53.89209 54 65.93525 66 58 58 39.94929 90.34698 278 278 4.343036 6.522617 93 93 110 110 110.692 93.1966 .0507284 0 4.34304 212.586 21.7347 112.276 6.52262 784.13 79.2366 80.0079 662.077 1806.65 null null null null 0 0 662.0766 1806.653 -271.086128422064 -322.075766421738 .435966504 .07416379201 .372853 -8.38280968453603 0 67.6902 182.563 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
4 433.0893 430 454.1071 449.5 54.28223 54 66.18118 66 56 56 46.43364 39.48426 287 287 4.87542 6.421276 93 93 131 131 131.669 93.4492 .0205865 0 4.87542 320.801 32.3975 112.288 6.42128 374.166 39.1132 79.9407 996.736 858.427 null null null null 0 0 996.736 858.4273 -308 -221.53044600432 -.06487660734 .06325470636 .343044 -.515613407533252 0 100.66 89.7351 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
5 288.85 288.5 234.9167 232.5 54.53237 54 67.10791 67 60 60 32.53776 28.53739 278 278 4.531163 6.92006 93 93 153 153 153.342 93.2167 .0196911 0 4.53116 176.547 18.2251 112.303 6.92006 155.055 19.2421 79.8618 546.98 354.268 null null null null 0 0 546.9797 354.2677 -245.767529932966 -111.898445377636 -.1886396736 .07005013064 .261723 -2.14979243762551 0 56.4652 43.9642 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1
6 321.2037 317.5 608.7037 607.5 53.82332 54 67.90106 68 54 54 25.66503 66.69832 283 283 4.362626 7.059331 93 93 174 174 174.5 93.3621 -.00575107 0 4.36263 208.886 21.3729 112.317 7.05933 528.92 54.1055 79.7836 645.18 1202.98 null null null null 0 0 645.1802 1202.979 -268.6832959603 -268.163682215163 .2705770696 .0677395595 .356515 -4.18798509137382 0 66.0138 123.058 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
7 334.377 336 805.082 799 54.18909 54 66.70909 67 61 61 35.86789 84.09524 275 275 4.279542 6.506798 93 93 195 195 195.651 93.0092 .0605684 0 4.27954 222.051 22.6612 112.326 6.5068 725.362 73.4258 79.7197 683.493 1642.74 null null null null 0 0 683.4933 1642.742 -277.054362063196 -311.355535806624 .3808351726 .07159196841 .575542 -6.98280273754012 0 69.7534 166.289 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
8 403.807 399 381.9825 381 54.33684 54 66.48421 66 57 57 38.45101 41.93085 285 285 4.142558 6.550234 93 93 216 216 216.779 93.469 .0844139 0 4.14256 291.473 29.4963 112.334 6.55023 302.322 32.3082 79.6608 893.91 681.161 null null null null 0 0 893.9096 681.1605 -314.528219982482 -193.431926235589 -.1180441424 .0644253047 .390017 -1.17449506779199 0 90.4613 72.7937 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
9 312.6792 312 1359.113 1365 54.42049 55 66.85159 67 53 53 28.9062 111.2543 283 283 4.726176 5.978616 92 92 238 238 238.263 92.5 -.0100825 0 4.72618 200.339 20.5384 112.34 5.97862 1279.51 128.457 79.6041 611.901 2871.02 null null null null 0 0 611.9006 2871.021 -262.973536195464 -308 .6713554175 .08766251283 .339241 -13.7252652880465 0 62.7308 288.238 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
10 465.0727 465 806.4 799 54.54737 54 65.81754 66 55 55 45.66336 70.84715 285 285 4.495933 5.926935 93 93 259 259 259.328 93.2705 -.0163241 0 4.49593 352.727 35.5616 112.346 5.92694 726.851 73.5728 79.5494 1072.91 1621.72 null null null null 0 0 1072.906 1621.724 -308 -311.637138813722 .1794150228 .06426702325 .384704 -2.28042022263449 0 108.169 164.153 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1
11 179.9483 182 226.1207 223.5 54.57857 54.5 66.24286 66 58 58 20.19156 26.52908 280 280 4.932618 6.274339 92 92 280 280 280.5 92.7907 .074311 0 4.93262 67.597 8.13387 112.351 6.27434 146.635 18.5704 79.4854 204.695 325.621 null null null null 0 0 204.6954 325.6209 -122.848758894086 -105.785829300186 .2016041583 .08008036563 -.00902759 -1.92744401868958 0 24.6307 41.2377 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
12 406.8364 411 443.5455 442 54.68705 55 66.39209 66 55 55 37.27812 44.38711 278 278 4.78859 5.503613 93 93 301 301 301.496 93.6612 .0126177 0 4.78859 294.481 29.7936 112.355 5.50361 364.124 38.1536 79.4218 887.726 803.792 null null null null 0 0 887.7258 803.7915 -315.947968202118 -217.91206603821 -.04313544192 .06327689343 .313758 -.305015218409953 0 89.814 84.2229 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
13 344.5091 348 88.81818 89 54.95572 55 66.57196 67 55 55 40.55261 10.72051 271 271 4.6338 6.102321 92 92 322 322 322.765 92.5043 -.0605305 0 4.6338 232.151 23.6518 112.358 6.10232 9.45335 11.4339 79.3648 696.372 20.7758 null null null null 0 0 696.3724 24.9583 -283.159839308368 -1.49828773221421 -1.445626628 .1620552231 -.0278115 -18.3336211713423 0 70.9472 25.1284 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
14 428.4655 428.5 706.5517 700.5 55.09541 55 65.69258 65 58 58 44.6979 71.66373 283 283 5.090118 5.779106 93 93 343 343 343.685 93.2432 .00232663 0 5.09012 316.106 31.9327 112.359 5.77911 627.247 63.7513 79.3044 943.63 1370.29 null null null null 0 0 943.63 1370.289 -308 -291.427662885551 .1620105479 .06408516266 .320506 -1.94044512494832 0 95.3245 139.272 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1
15 488.7321 496.5 154.7143 150.5 55.32353 55 66.70956 67 56 56 65.36624 21.44991 272 272 5.076365 6.228152 92 92 365 365 365.009 92.7411 .0508353 0 5.07636 376.37 37.908 112.362 6.22815 75.4649 13.6671 79.2493 1117.69 164.012 null null null null 0 0 1117.692 164.012 -308 -46.7592386481697 -.8334463876 .1017482451 .249142 -15.5875322925663 0 112.574 29.7034 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
16 444.5536 443 152.7679 152 56.01434 56 67.02509 67 56 56 45.24717 16.01021 279 279 5.580008 6.290573 93 93 385 385 385.656 93.6778 -.105153 0 5.58001 332.189 33.5255 112.365 6.29057 73.573 13.5635 79.1949 981.566 158.914 null null null null 0 0 981.5656 158.9138 -308 -45.0788021855797 -.7907577407 .09929878601 .228101 -14.7763719002077 0 99.0626 29.2965 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
17 404.5 402 663.3036 667 55.06038 55 66.84528 67 56 56 45.51883 56.86728 265 265 5.012497 6.742183 92 92 407 407 407.486 92.4054 .0812017 0 5.0125 292.133 29.5615 112.367 6.74218 584.165 59.5175 79.1382 858.332 1255.67 null null null null 0 0 858.3324 1255.667 -314.840634361753 -281.701448197102 .16521905 .06429863619 .272907 -1.99213084426909 0 86.8563 127.933 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
18 246.463 247 841.037 848 55.52364 55 66.52364 67 54 54 28.21194 80.12018 275 275 5.377907 6.035962 92 92 428 428 428.452 92.6174 .102493 0 5.37791 134.094 14.1519 112.369 6.03596 761.958 77.0431 79.0789 391.884 1628.34 null null null null 0 0 391.884 1628.339 -208.83765369154 -318.120877210101 .6185873119 .08492928324 .571486 -12.4879423917395 0 41.3585 164.645 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
19 345.2182 348 643.9818 647 56.09489 56 66.53285 66 55 55 39.05869 58.62167 274 274 4.906276 6.739584 92 92 449 449 449.833 92.3509 -.112977 0 4.90628 232.855 23.7209 112.363 6.73958 564.968 57.6344 79.0136 676.717 1200.61 null null null null 0 0 676.7171 1200.614 -283.575662388412 -277.142320809588 .2489963296 .0667987133 .328852 -3.71367562189578 0 68.937 122.479 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
20 330.6271 332 252.6102 253 57.75451 57 67.74368 68 59 59 33.77456 27.13823 277 277 5.544062 6.810265 92 92 471 471 471.315 92.8306 .0706827 0 5.54406 218.271 22.291 112.356 6.81027 173.659 20.7705 78.9508 630.81 366.758 null null null null 0 0 630.8102 366.7579 -274.700660524364 -124.725782092886 -.2355192483 .06951646961 .313278 -3.1523429561385 0 64.4217 43.8661 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0

Total number of rows: 10807

Table truncated, full table size 4207 Kbytes.




Supplementary data files not provided
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap