U.S. flag

An official website of the United States government

GTR Home > Conditions/Phenotypes

Refine your search

Results: 1 to 20 of 65


Neonatal encephalomyopathy-cardiomyopathy-respiratory distress syndrome

Primary coenzyme Q10 (CoQ10) deficiency is usually associated with multisystem involvement, including neurologic manifestations such as fatal neonatal encephalopathy with hypotonia; a late-onset slowly progressive multiple-system atrophy-like phenotype (neurodegeneration with autonomic failure and various combinations of parkinsonism and cerebellar ataxia, and pyramidal dysfunction); and dystonia, spasticity, seizures, and intellectual disability. Steroid-resistant nephrotic syndrome (SRNS), the hallmark renal manifestation, is often the initial manifestation either as isolated renal involvement that progresses to end-stage renal disease (ESRD), or associated with encephalopathy (seizures, stroke-like episodes, severe neurologic impairment) resulting in early death. Hypertrophic cardiomyopathy (HCM), retinopathy or optic atrophy, and sensorineural hearing loss can also be seen. [from GeneReviews]


Autosomal recessive Alport syndrome

In Alport syndrome (AS) a spectrum of phenotypes ranging from progressive renal disease with extrarenal abnormalities to isolated hematuria with a non-progressive or very slowly progressive course is observed. Approximately two thirds of AS is X-linked (XLAS); approximately 15% is autosomal recessive (ARAS), and approximately 20% is autosomal dominant (ADAS). In the absence of treatment, renal disease progresses from microscopic hematuria (microhematuria) to proteinuria, progressive renal insufficiency, and end-stage renal disease (ESRD) in all males with XLAS, and in all males and females with ARAS. Progressive sensorineural hearing loss (SNHL) is usually present by late childhood or early adolescence. Ocular findings include anterior lenticonus (which is virtually pathognomonic), maculopathy (whitish or yellowish flecks or granulations in the perimacular region), corneal endothelial vesicles (posterior polymorphous dystrophy), and recurrent corneal erosion. In individuals with ADAS, ESRD is frequently delayed until later adulthood, SNHL is relatively late in onset, and ocular involvement is rare. [from GeneReviews]


Kartagener syndrome

Primary ciliary dyskinesia is a genetically heterogeneous autosomal recessive disorder resulting from loss of function of different parts of the primary ciliary apparatus, most often dynein arms. Kartagener (pronounced KART-agayner) syndrome is characterized by the combination of primary ciliary dyskinesia and situs inversus (270100), and occurs in approximately half of patients with ciliary dyskinesia. Since normal nodal ciliary movement in the embryo is required for normal visceral asymmetry, absence of normal ciliary movement results in a lack of definitive patterning; thus, random chance alone appears to determine whether the viscera take up the normal or reversed left-right position during embryogenesis. This explains why approximately 50% of patients, even within the same family, have situs inversus (Afzelius, 1976; El Zein et al., 2003). Genetic Heterogeneity of Primary Ciliary Dyskinesia Other forms of primary ciliary dyskinesia include CILD2 (606763), caused by mutation in the DNAAF3 gene (614566) on 19q13; CILD3 (608644), caused by mutation in the DNAH5 gene (603335) on 5p15; CILD4 (608646), mapped to 15q13; CILD5 (608647), caused by mutation in the HYDIN gene (610812) on 16q22; CILD6 (610852), caused by mutation in the TXNDC3 gene (607421) on 7p14; CILD7 (611884), caused by mutation in the DNAH11 gene (603339) on 7p15; CILD8 (612274), mapped to 15q24-q25; CILD9 (612444), caused by mutation in the DNAI2 gene (605483) on 17q25; CILD10 (612518), caused by mutation in the DNAAF2 gene (612517) on 14q21; CILD11 (612649), caused by mutation in the RSPH4A gene (612647) on 6q22; CILD12 (612650), caused by mutation in the RSPH9 gene (612648) on 6p21; CILD13 (613193), caused by mutation in the DNAAF1 gene (613190) on 16q24; CILD14 (613807), caused by mutation in the CCDC39 gene (613798) gene on 3q26; CILD15 (613808), caused by mutation in the CCDC40 gene (613799) on 17q25; CILD16 (614017), caused by mutation in the DNAL1 gene (610062) on 14q24; CILD17 (614679), caused by mutation in the CCDC103 gene (614677) on 17q21; CILD18 (614874), caused by mutation in the DNAAF5 gene (614864) on 7p22; CILD19 (614935), caused by mutation in the LRRC6 gene (614930) on 8q24; CILD20 (615067), caused by mutation in the CCDC114 gene (615038) on 19q13; CILD21 (615294), caused by mutation in the DRC1 gene (615288) on 2p23; CILD22 (615444), caused by mutation in the ZMYND10 gene (607070) on 3p21; CILD23 (615451), caused by mutation in the ARMC4 gene (615408) on 10p; CILD24 (615481), caused by mutation in the RSPH1 gene (609314) on 21q22; CILD25 (615482), caused by mutation in the DYX1C1 gene (608706) on 15q21; CILD26 (615500), caused by mutation in the C21ORF59 gene (615494) on 21q22; CILD27 (615504), caused by mutation in the CCDC65 gene (611088) on 12q13; CILD28 (615505), caused by mutation in the SPAG1 gene (603395) on 8q22; CILD29 (615872), caused by mutation in the CCNO gene (607752) on 5q11; CILD30 (616037), caused by mutation in the CCDC151 gene (615956) on 19p13; CILD32 (616481), caused by mutation in the RSPH3 gene (615876) on 6q25; CILD33 (616726), caused by mutation in the GAS8 gene (605178) on 16q24; CILD34 (617091), caused by mutation in the DNAJB13 gene (610263) on 11q13; CILD35 (617092), caused by mutation in the TTC25 gene (617095) on 17q21; CILD36 (300991), caused by mutation in the PIH1D3 gene (300933) on Xq22; CILD37 (617577), caused by mutation in the DNAH1 gene (603332) on 3p21; CILD38 (618063), caused by mutation in the CFAP300 gene (618058) on 11q22; CILD39 (618254), caused by mutation in the LRRC56 gene (618227) on 11p15; CILD40 (618300), caused by mutation in the DNAH9 gene (603330) on 17p12; CILD41 (618449), caused by mutation in the GAS2L2 gene (611398) on 17q12; CILD42 (618695), caused by mutation in the MCIDAS gene (614086) on 5q11; CILD43 (618699), caused by mutation in the FOXJ1 gene (602291) on 17q25; CILD44 (618781), caused by mutation in the NEK10 gene (618726) on 3p24; CILD45 (618801), caused by mutation in the TTC12 gene (610732) on 11q23; CILD46 (619436), caused by mutation in the STK36 gene (607652) on 2q35; CILD47 (619466), caused by mutation in the TP73 gene (601990) on 1p36; CILD48 (620032), caused by mutation in the NME5 gene (603575) on chromosome 5q31; CILD49 (620197), caused by mutation in the CFAP74 gene (620187) on chromosome 1p36; CILD50 (620356), caused by mutation in the DNAH7 gene (610061) on chromosome 2q32; and CILD51 (620438), caused by mutation in the BRWD1 gene (617824) on chromosome 21q22. Ciliary abnormalities have also been reported in association with both X-linked and autosomal forms of retinitis pigmentosa. Mutations in the RPGR gene (312610), which underlie X-linked retinitis pigmentosa (RP3; 300029), are in some instances (e.g., 312610.0016) associated with recurrent respiratory infections indistinguishable from immotile cilia syndrome; see 300455. Afzelius (1979) gave an extensive review of cilia and their disorders. There are also several possibly distinct CILDs described based on the electron microscopic appearance of abnormal cilia, including CILD with transposition of the microtubules (215520), CILD with excessively long cilia (242680), and CILD with defective radial spokes (242670). [from OMIM]


Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A1

Congenital muscular dystrophy-dystroglycanopathy with brain and eye anomalies (type A), which includes both the more severe Walker-Warburg syndrome (WWS) and the slightly less severe muscle-eye-brain disease (MEB), is a genetically heterogeneous autosomal recessive disorder with characteristic brain and eye malformations, profound mental retardation, congenital muscular dystrophy, and early death. The phenotype commonly includes cobblestone (type II) lissencephaly, cerebellar malformations, and retinal malformations. More variable features include macrocephaly or microcephaly, hypoplasia of midline brain structures, ventricular dilatation, microphthalmia, cleft lip/palate, and congenital contractures (Dobyns et al., 1989). Those with a more severe phenotype characterized as Walker-Warburg syndrome often die within the first year of life, whereas those characterized as having muscle-eye-brain disease may rarely acquire the ability to walk and to speak a few words. These are part of a group of disorders resulting from defective glycosylation of DAG1 (128239), collectively known as 'dystroglycanopathies' (Godfrey et al., 2007). Genetic Heterogeneity of Congenital Muscular Dystrophy-Dystroglycanopathy with Brain and Eye Anomalies (Type A) Muscular dystrophy-dystroglycanopathy with brain and eye anomalies (type A) is genetically heterogeneous and can be caused by mutation in other genes involved in DAG1 glycosylation: see MDDGA2 (613150), caused by mutation in the POMT2 gene (607439); MDDGA3 (253280), caused by mutation in the POMGNT1 gene (606822); MDDGA4 (253800), caused by mutation in the FKTN gene (607440); MDDGA5 (613153), caused by mutation in the FKRP gene (606596); MDDGA6 (613154), caused by mutation in the LARGE gene (603590); MDDGA7 (614643), caused by mutation in the ISPD gene (CRPPA; 614631); MDDGA8 (614830) caused by mutation in the GTDC2 gene (POMGNT2; 614828); MDDGA9 (616538), caused by mutation in the DAG1 gene (128239); MDDGA10 (615041), caused by mutation in the TMEM5 gene (RXYLT1; 605862); MDDGA11 (615181), caused by mutation in the B3GALNT2 gene (610194); MDDGA12 (615249), caused by mutation in the SGK196 gene (POMK; 615247); MDDGA13 (615287), caused by mutation in the B3GNT1 gene (B4GAT1; 605517); and MDDGA14 (615350), caused by mutation in the GMPPB gene (615320). [from OMIM]


Spastic tetraplegia-thin corpus callosum-progressive postnatal microcephaly syndrome

Spastic tetraplegia, thin corpus callosum, and progressive microcephaly is an autosomal recessive neurodevelopmental disorder characterized by onset of those features and severely impaired global development in early infancy. Most patients are unable to achieve independent walking or speech; some patients have seizures (summary by Srour et al., 2015 and Heimer et al., 2015). [from OMIM]


Familial hyperinsulinism

The severity of congenital hyperinsulinism varies widely among affected individuals, even among members of the same family. About 60 percent of infants with this condition experience a hypoglycemic episode within the first month of life. Other affected children develop hypoglycemia by early childhood. Unlike typical episodes of hypoglycemia, which occur most often after periods without food (fasting) or after exercising, episodes of hypoglycemia in people with congenital hyperinsulinism can also occur after eating.\n\nCongenital hyperinsulinism is a condition that causes individuals to have abnormally high levels of insulin. Insulin is a hormone that helps control levels of blood glucose, also called blood sugar. People with this condition have frequent episodes of low blood glucose (hypoglycemia). In infants and young children, these episodes are characterized by a lack of energy (lethargy), irritability, or difficulty feeding. Repeated episodes of low blood glucose increase the risk for serious complications such as breathing difficulties, seizures, intellectual disability, vision loss, brain damage, and coma. [from MedlinePlus Genetics]


Hermansky-Pudlak syndrome 3

Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, a bleeding diathesis, and, in some individuals, pulmonary fibrosis, granulomatous colitis, or immunodeficiency. Ocular findings include reduced iris pigment with iris transillumination, reduced retinal pigment, foveal hypoplasia with significant reduction in visual acuity (usually in the range of 20/50 to 20/400), nystagmus, and increased crossing of the optic nerve fibers. Hair color ranges from white to brown; skin color ranges from white to olive and is usually a shade lighter than that of other family members. The bleeding diathesis can result in variable bruising, epistaxis, gingival bleeding, postpartum hemorrhage, colonic bleeding, and prolonged bleeding with menses or after tooth extraction, circumcision, and other surgeries. Pulmonary fibrosis, a restrictive lung disease, typically causes symptoms in the early thirties and can progress to death within a decade. Granulomatous colitis is severe in about 15% of affected individuals. Neutropenia and/or immune defects occur primarily in individuals with pathogenic variants in AP3B1 and AP3D1. [from GeneReviews]


Autism spectrum disorder - epilepsy - arthrogryposis syndrome

Arthrogryposis, impaired intellectual development, and seizures (AMRS) is an autosomal recessive disorder characterized by skeletal abnormalities, including arthrogryposis, short limbs, and vertebral malformations, impaired intellectual development, and seizures consistent with early-onset epileptic encephalopathy in some patients. Other features may include cleft palate, micrognathia, posterior embryotoxon, talipes valgus, rocker-bottom feet, and dysmorphic facies (Edmondson et al., 2017; Marini et al., 2017). [from OMIM]


Dyskeratosis congenita, autosomal recessive 5

Dyskeratosis congenita and related telomere biology disorders (DC/TBD) are caused by impaired telomere maintenance resulting in short or very short telomeres. The phenotypic spectrum of telomere biology disorders is broad and includes individuals with classic dyskeratosis congenita (DC) as well as those with very short telomeres and an isolated physical finding. Classic DC is characterized by a triad of dysplastic nails, lacy reticular pigmentation of the upper chest and/or neck, and oral leukoplakia, although this may not be present in all individuals. People with DC/TBD are at increased risk for progressive bone marrow failure (BMF), myelodysplastic syndrome or acute myelogenous leukemia, solid tumors (usually squamous cell carcinoma of the head/neck or anogenital cancer), and pulmonary fibrosis. Other findings can include eye abnormalities (epiphora, blepharitis, sparse eyelashes, ectropion, entropion, trichiasis), taurodontism, liver disease, gastrointestinal telangiectasias, and avascular necrosis of the hips or shoulders. Although most persons with DC/TBD have normal psychomotor development and normal neurologic function, significant developmental delay is present in both forms; additional findings include cerebellar hypoplasia (Hoyeraal Hreidarsson syndrome) and bilateral exudative retinopathy and intracranial calcifications (Revesz syndrome and Coats plus syndrome). Onset and progression of manifestations of DC/TBD vary: at the mild end of the spectrum are those who have only minimal physical findings with normal bone marrow function, and at the severe end are those who have the diagnostic triad and early-onset BMF. [from GeneReviews]


Peroxisome biogenesis disorder 5A (Zellweger)

The peroxisomal biogenesis disorder (PBD) Zellweger syndrome (ZS) is an autosomal recessive multiple congenital anomaly syndrome. Affected children present in the newborn period with profound hypotonia, seizures, and inability to feed. Characteristic craniofacial anomalies, eye abnormalities, neuronal migration defects, hepatomegaly, and chondrodysplasia punctata are present. Children with this condition do not show any significant development and usually die in the first year of life (summary by Steinberg et al., 2006). For a complete phenotypic description and a discussion of genetic heterogeneity of Zellweger syndrome, see 214100. Individuals with PBDs of complementation group 5 (CG5, equivalent to CG10 and CGF) have mutations in the PEX2 gene. For information on the history of PBD complementation groups, see 214100. [from OMIM]


Fanconi anemia complementation group C

Fanconi anemia (FA) is characterized by physical abnormalities, bone marrow failure, and increased risk for malignancy. Physical abnormalities, present in approximately 75% of affected individuals, include one or more of the following: short stature, abnormal skin pigmentation, skeletal malformations of the upper and/or lower limbs, microcephaly, and ophthalmic and genitourinary tract anomalies. Progressive bone marrow failure with pancytopenia typically presents in the first decade, often initially with thrombocytopenia or leukopenia. The incidence of acute myeloid leukemia is 13% by age 50 years. Solid tumors – particularly of the head and neck, skin, and genitourinary tract – are more common in individuals with FA. [from GeneReviews]


Myelodysplastic syndrome

Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematologic stem cell disorders characterized by ineffective hematopoiesis resulting in low blood counts, most commonly anemia, and a risk of progression to acute myeloid leukemia (AML; 601626). Blood smears and bone marrow biopsies show dysplastic changes in myeloid cells, with abnormal proliferation and differentiation of 1 or more lineages (erythroid, myeloid, megakaryocytic). MDS can be subdivided into several categories based on morphologic characteristics, such as low-grade refractory anemia (RA) or high-grade refractory anemia with excess blasts (RAEB). Bone marrow biopsies of some patients show ringed sideroblasts (RARS), which reflects abnormal iron staining in mitochondria surrounding the nucleus of erythrocyte progenitors (summary by Delhommeau et al., 2009 and Papaemmanuil et al., 2011). [from OMIM]


Retinitis pigmentosa 59

Any retinitis pigmentosa in which the cause of the disease is a mutation in the DHDDS gene. [from MONDO]


Pyruvate dehydrogenase E3 deficiency

The phenotypes of dihydrolipoamide dehydrogenase (DLD) deficiency are an overlapping continuum that ranges from early-onset neurologic manifestations to adult-onset liver involvement and, rarely, a myopathic presentation. Early-onset DLD deficiency typically manifests in infancy as hypotonia with lactic acidosis. Affected infants frequently do not survive their initial metabolic decompensation, or die within the first few years of life during a recurrent metabolic decompensation. Children who live beyond the first two to three years frequently exhibit growth deficiencies and residual neurologic deficits (intellectual disability, spasticity, ataxia, and seizures). In contrast, isolated liver involvement can present as early as the neonatal period and as late as the third decade. Evidence of liver injury/failure is preceded by nausea and emesis and frequently associated with encephalopathy and/or coagulopathy. Acute metabolic episodes are frequently associated with lactate elevations, hyperammonemia, and hepatomegaly. With resolution of the acute episodes affected individuals frequently return to baseline with no residual neurologic deficit or intellectual disability. Liver failure can result in death, even in those with late-onset disease. Individuals with the myopathic presentation may experience muscle cramps, weakness, and an elevated creatine kinase. [from GeneReviews]


Bardet-Biedl syndrome 2

BBS2 is an autosomal recessive ciliopathy characterized by retinal degeneration, polydactyly, renal disease, hypogonadism, obesity, dysmorphic features, and variable degrees of cognitive impairment (Innes et al., 2010). Mutation in the BBS2 gene is the third most frequent cause of BBS, accounting for approximately 8% of cases (Zaghloul and Katsanis, 2009). For a general phenotypic description and a discussion of genetic heterogeneity of Bardet-Biedl syndrome, see BBS1 (209900). [from OMIM]


Glycogen storage disease due to glucose-6-phosphatase deficiency type IA

Glycogen storage disease type I (GSDI) is characterized by accumulation of glycogen and fat in the liver and kidneys resulting in hepatomegaly and nephromegaly. Severely affected infants present in the neonatal period with severe hypoglycemia due to fasting intolerance. More commonly, untreated infants present at age three to four months with hepatomegaly, severe hypoglycemia with or without seizures, lactic acidosis, hyperuricemia, and hypertriglyceridemia. Affected children typically have doll-like faces with full cheeks, relatively thin extremities, short stature, and a protuberant abdomen. Xanthoma and diarrhea may be present. Impaired platelet function and development of reduced or dysfunctional von Willebrand factor can lead to a bleeding tendency with frequent epistaxis and menorrhagia in females. Individuals with untreated GSDIb are more likely to develop impaired neutrophil and monocyte function as well as chronic neutropenia resulting in recurrent bacterial infections, gingivitis, periodontitis, and genital and intestinal ulcers. Long-term complications of untreated GSDI include short stature, osteoporosis, delayed puberty, renal disease (including proximal and distal renal tubular acidosis, renal stones, and renal failure), gout, systemic hypertension, pulmonary hypertension, hepatic adenomas with potential for malignancy, pancreatitis, and polycystic ovaries. Seizures and cognitive impairment may occur in individuals with prolonged periods of hypoglycemia. Normal growth and puberty are expected in treated children. Most affected individuals live into adulthood. [from GeneReviews]


Congenital plasminogen activator inhibitor type 1 deficiency

Untreated complete plasminogen activator inhibitor 1 (PAI-1) deficiency is characterized by mild-to-moderate bleeding, although in some instances bleeding can be life threatening. Most commonly, delayed bleeding is associated with injury, trauma, or surgery; spontaneous bleeding does not occur. While males and females with complete PAI-1 deficiency are affected equally, females may present more frequently with clinical manifestations or earlier in life than males due to menorrhagia and postpartum hemorrhage. Fewer than ten families with complete PAI-1 deficiency have been reported to date. The incidence of complete PAI-1 deficiency is higher than expected in the genetic isolate of the Old Order Amish population of eastern and southern Indiana due to a pathogenic founder variant. In one family from this Old Order Amish population, seven individuals had cardiac fibrosis ranging from minimal-to-moderate (6 individuals) to severe (1). [from GeneReviews]


PHGDH deficiency

Phosphoglycerate dehydrogenase deficiency is an autosomal recessive inborn error of L-serine biosynthesis that is characterized by congenital microcephaly, psychomotor retardation, and seizures (summary by Jaeken et al., 1996). [from OMIM]

Results: 1 to 20 of 65

IMPORTANT NOTE: NIH does not independently verify information submitted to the GTR; it relies on submitters to provide information that is accurate and not misleading. NIH makes no endorsements of tests or laboratories listed in the GTR. GTR is not a substitute for medical advice. Patients and consumers with specific questions about a genetic test should contact a health care provider or a genetics professional.