U.S. flag

An official website of the United States government

GTR Home > Conditions/Phenotypes > Tafenoquine response

Summary

Tafenoquine is an antimalarial agent that was approved by the FDA in 2018 for preventing malaria (brand name Arakoda, 100 mg tablets), and for the radical cure of malaria (brand name Krintafel, 150 mg tablets) caused by Plasmodium vivax (P. vivax). Malaria is caused by the Plasmodium parasite, which infects mosquitos and is spread to humans when an infected mosquito bites a person. In 2018 the World Health Organization (WHO) estimated 228 million cases of malaria occurred worldwide. There are several clinical patterns of malaria that are caused by different species of the parasite. In P. vivax malaria, the parasite can lie dormant in the liver as hypnozoites, until it emerges weeks or months later, to cause a relapse of malaria. In combination with an antimalarial active against the blood stage parasites, tafenoquine provides a radical cure of P. vivax by targeting its dormant liver stage, thus preventing malaria relapse. Tafenoquine is the second drug of its kind (with hypnozoiticidal activity) to be approved by the FDA. The first was primaquine, approved in 1952. Because of its longer half-life, tafenoquine can be dosed less frequently than primaquine, which may improve compliance. For example, when used for the radical cure of P. vivax malaria, tafenoquine is taken as a single 300 mg dose (in uncomplicated cases, in persons aged 16 years and older). In contrast, primaquine radical cure is recommended to be given daily over 14 days, or higher doses over 7 days. Tafenoquine, like primaquine, should not be used in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In the case of tafenoquine, an individual with <70% of normal G6PD activity is considered deficient and should not take the drug. Worldwide, approximately 400 million people have a deficiency of the G6PD enzyme, but most are asymptomatic and do not know they are at risk. A lack of G6PD in red blood cells makes the cells susceptible to damage by oxidative stress. Usually, only low levels of oxidative stress occur naturally, and so the condition is undetected. However, certain drugs, which include tafenoquine and primaquine, are oxidizing agents. In people with G6PD deficiency, these drugs cause irreparable oxidative damage to the red blood cells, which are then rapidly destroyed (hemolysis). This can lead to a potentially life-threatening deficiency of mature red blood cells (hemolytic anemia). The FDA-approved drug label for tafenoquine states that testing for G6PD must be performed before starting tafenoquine therapy, and that all individuals should be monitored for signs of hemolysis. In addition, because of the risk of tafenoquine causing fetal harm in a woman pregnant with a fetus with G6PD deficiency, pregnancy testing is highly recommended in women of reproductive age. Consequently, tafenoquine therapy is contraindicated in adults when the G6PD status is either unknown, intermediate or deficient, namely, enzyme activity lower than 70%, in pregnancy, and in breastfeeding mothers when the infant’s G6PD status is either unknown or deficient. To date, no safety studies have been reported in children. [from Medical Genetics Summaries]

Available tests

2 tests are in the database for this condition.

Genes See tests for all associated and related genes

  • Also known as: CNSHA1, G6PD1, G6PD
    Summary: glucose-6-phosphate dehydrogenase

Therapeutic recommendations

From Medical Genetics Summaries

This section contains excerpted1information on gene-based dosing recommendations. Neither this section nor other parts of this review contain the complete recommendations from the sources.

2018 Statement from the US Food and Drug Administration (FDA) for tafenoquine (Krintafel):

Hemolytic Anemia

Due to the risk of hemolytic anemia in patients with G6PD deficiency, G6PD testing must be performed before prescribing tafenoquine. Due to the limitations with G6PD tests, physicians need to be aware of residual risk of hemolysis and adequate medical support and follow-up to manage hemolytic risk should be available. Treatment with tafenoquine is contraindicated in patients with G6PD deficiency or unknown G6PD status. In clinical trials, declines in hemoglobin levels were reported in some G6PD-normal patients. Monitor patients for clinical signs or symptoms of hemolysis. Advise patients to discontinue tafenoquine and seek medical attention if signs of hemolysis occur.

G6PD Deficiency in Pregnancy and Lactation

Potential Harm to the Fetus

The use of tafenoquine during pregnancy may cause hemolytic anemia in a G6PD-deficient fetus. Even if a pregnant woman has normal levels of G6PD, the fetus could be G6PD deficient. Advise females of reproductive potential that treatment with tafenoquine during pregnancy is not recommended and to avoid pregnancy or use effective contraception during treatment and for 3 months after the last dose of tafenoquine. If a pregnancy is detected during tafenoquine use, discontinue tafenoquine as soon as possible and switch to an alternative prophylactic drug for malaria during pregnancy.

Potential Harm to the Breastfeeding Infant

A G6PD-deficient infant may be at risk for hemolytic anemia from exposure to tafenoquine through breast milk. Infant G6PD status should be checked before breastfeeding begins. Tafenoquine is contraindicated in breastfeeding women when the infant is found to be G6PD deficient or the G6PD status of the infant is unknown. Advise the woman with a G6PD-deficient infant or if the G6PD status of the infant is unknown not to breastfeed during treatment with tafenoquine and for 3 months after the final dose.

Methemoglobinemia

Asymptomatic elevations in methemoglobin have been observed in the clinical trials of tafenoquine. Institute appropriate therapy if signs or symptoms of methemoglobinemia occur. Carefully monitor individuals with nicotinamide adenine dinucleotide (NADH)-dependent methemoglobin reductase deficiency. Advise patients to discontinue tafenoquine and seek medical attention if signs of methemoglobinemia occur.

Please review the complete therapeutic recommendations that are located here: (2).

1 The FDA labels specific drug formulations. We have substituted the generic names for any drug labels in this excerpt. The FDA may not have labeled all formulations containing the generic drug. Certain terms, genes and genetic variants may be corrected in accordance to nomenclature standards, where necessary. We have given the full name of abbreviations, shown in square brackets, where necessary.

Suggested reading

  • Link text is missing.

Practice guidelines

  • CPIC, 2022
    Gammal et al, Expanded Clinical Pharmacogenetics Implementation Consortium Guideline for Medication Use in the Context of G6PD Genotype. 2 Sept 2022. Clin Pharmacol Ther.
  • DailyMed Drug Label, 2021
    DailyMed Drug Label, ARAKODA-tafenoquine tablet, film coated, 2021
  • DailyMed Drug Label, 2020
    DailyMed Drug label, KRINTAFEL, 2020

Consumer resources

IMPORTANT NOTE: NIH does not independently verify information submitted to the GTR; it relies on submitters to provide information that is accurate and not misleading. NIH makes no endorsements of tests or laboratories listed in the GTR. GTR is not a substitute for medical advice. Patients and consumers with specific questions about a genetic test should contact a health care provider or a genetics professional.