U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Myopathy

MedGen UID:
10135
Concept ID:
C0026848
Disease or Syndrome
Synonym: Muscle disorders
SNOMED CT: Disorder of muscle (129565002); Myopathic disease (129565002); Myopathy (129565002); Disorder of skeletal AND/OR smooth muscle (129565002)
 
HPO: HP:0003198
Monarch Initiative: MONDO:0005336
OMIM®: 590030; 590075

Definition

A disorder of muscle unrelated to impairment of innervation or neuromuscular junction. [from HPO]

Term Hierarchy

CClinical test,  RResearch test,  OOMIM,  GGeneReviews,  VClinVar  

Conditions with this feature

Glycogen storage disease type III
MedGen UID:
6641
Concept ID:
C0017922
Disease or Syndrome
Glycogen storage disease type III (GSD III) is characterized by variable liver, cardiac muscle, and skeletal muscle involvement. GSD IIIa is the most common subtype, present in about 85% of affected individuals; it manifests with liver and muscle involvement. GSD IIIb, with liver involvement only, comprises about 15% of all affected individuals. In infancy and early childhood, liver involvement presents as hepatomegaly and failure to thrive, with fasting ketotic hypoglycemia, hyperlipidemia, and elevated hepatic transaminases. In adolescence and adulthood, liver disease becomes less prominent. Most individuals develop cardiac involvement with cardiac hypertrophy and/or cardiomyopathy. Skeletal myopathy manifesting as weakness may be evident in childhood and slowly progresses, typically becoming prominent in the third to fourth decade. The overall prognosis is favorable but cannot be predicted on an individual basis. Long-term complications such as muscular and cardiac symptoms as well as liver fibrosis/cirrhosis and hepatocellular carcinoma may have a severe impact on prognosis and quality of life. To date, it is unknown if long-term complications can be alleviated and/or avoided by dietary interventions.
Pigmentary pallidal degeneration
MedGen UID:
6708
Concept ID:
C0018523
Disease or Syndrome
Pantothenate kinase-associated neurodegeneration (PKAN) is a type of neurodegeneration with brain iron accumulation (NBIA). The phenotypic spectrum of PKAN includes classic PKAN and atypical PKAN. Classic PKAN is characterized by early-childhood onset of progressive dystonia, dysarthria, rigidity, and choreoathetosis. Pigmentary retinal degeneration is common. Atypical PKAN is characterized by later onset (age >10 years), prominent speech defects, psychiatric disturbances, and more gradual progression of disease.
Marinesco-Sjögren syndrome
MedGen UID:
6222
Concept ID:
C0024814
Disease or Syndrome
Marinesco-Sjögren syndrome (MSS) is characterized by cerebellar ataxia with cerebellar atrophy, dysarthria, nystagmus, early-onset (not necessarily congenital) cataracts, myopathy, muscle weakness, and hypotonia. Additional features may include psychomotor delay, hypergonadotropic hypogonadism, short stature, and various skeletal abnormalities. Children with MSS usually present with muscular hypotonia in early infancy; distal and proximal muscular weakness is noticed during the first decade of life. Later, cerebellar findings of truncal ataxia, dysdiadochokinesia, nystagmus, and dysarthria become apparent. Motor function worsens progressively for some years, then stabilizes at an unpredictable age and degree of severity. Cataracts can develop rapidly and typically require lens extraction in the first decade of life. Although many adults have severe disabilities, life span in MSS appears to be near normal.
MULTIPLE ENDOCRINE NEOPLASIA, TYPE IIB
MedGen UID:
9959
Concept ID:
C0025269
Neoplastic Process
Multiple endocrine neoplasia type 2 (MEN2) includes the following phenotypes: MEN2A, FMTC (familial medullary thyroid carcinoma, which may be a variant of MEN2A), and MEN2B. All three phenotypes involve high risk for development of medullary carcinoma of the thyroid (MTC); MEN2A and MEN2B involve an increased risk for pheochromocytoma; MEN2A involves an increased risk for parathyroid adenoma or hyperplasia. Additional features in MEN2B include mucosal neuromas of the lips and tongue, distinctive facies with enlarged lips, ganglioneuromatosis of the gastrointestinal tract, and a marfanoid habitus. MTC typically occurs in early childhood in MEN2B, early adulthood in MEN2A, and middle age in FMTC.
Batten-Turner congenital myopathy
MedGen UID:
10158
Concept ID:
C0027127
Disease or Syndrome
Myotonia congenita is characterized by muscle stiffness present from childhood; all striated muscle groups including the extrinsic eye muscles, facial muscles, and tongue may be involved. Stiffness is relieved by repeated contractions of the muscle (the "warm-up" phenomenon). Muscles are usually hypertrophic. Whereas autosomal recessive (AR) myotonia congenita is often associated with more severe manifestations (such as progressive minor distal weakness and attacks of transient weakness brought on by movement after rest), autosomal dominant (AD) myotonia congenita is not. The age of onset varies: in AD myotonia congenita onset is usually in infancy or early childhood; in AR myotonia congenita the average age of onset is slightly older. In both AR and AD myotonia congenita onset may be as late as the third or fourth decade of life.
Juvenile myopathy, encephalopathy, lactic acidosis AND stroke
MedGen UID:
56485
Concept ID:
C0162671
Disease or Syndrome
MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is a multisystem disorder with protean manifestations. The vast majority of affected individuals develop signs and symptoms of MELAS between ages two and 40 years. Common clinical manifestations include stroke-like episodes, encephalopathy with seizures and/or dementia, muscle weakness and exercise intolerance, normal early psychomotor development, recurrent headaches, recurrent vomiting, hearing impairment, peripheral neuropathy, learning disability, and short stature. During the stroke-like episodes neuroimaging shows increased T2-weighted signal areas that do not correspond to the classic vascular distribution (hence the term "stroke-like"). Lactic acidemia is very common and muscle biopsies typically show ragged red fibers.
MERRF syndrome
MedGen UID:
56486
Concept ID:
C0162672
Disease or Syndrome
MERRF (myoclonic epilepsy with ragged red fibers) is a multisystem disorder characterized by myoclonus (often the first symptom) followed by generalized epilepsy, ataxia, weakness, exercise intolerance, and dementia. Onset can occur from childhood to adulthood, occurring after normal early development. Common findings are ptosis, hearing loss, short stature, optic atrophy, cardiomyopathy, cardiac dysrhythmias such as Wolff-Parkinson-White syndrome, and peripheral neuropathy. Pigmentary retinopathy, optic neuropathy, diabetes mellitus, and lipomatosis have been observed.
Childhood hypophosphatasia
MedGen UID:
65089
Concept ID:
C0220743
Congenital Abnormality
Hypophosphatasia is characterized by defective mineralization of growing or remodeling bone, with or without root-intact tooth loss, in the presence of low activity of serum and bone alkaline phosphatase. Clinical features range from stillbirth without mineralized bone at the severe end to pathologic fractures of the lower extremities in later adulthood at the mild end. While the disease spectrum is a continuum, seven clinical forms of hypophosphatasia are usually recognized based on age at diagnosis and severity of features: Perinatal (severe): characterized by pulmonary insufficiency and hypercalcemia. Perinatal (benign): prenatal skeletal manifestations that slowly resolve into one of the milder forms. Infantile: onset between birth and age six months of clinical features of rickets without elevated serum alkaline phosphatase activity. Severe childhood (juvenile): variable presenting features progressing to rickets. Mild childhood: low bone mineral density for age, increased risk of fracture, and premature loss of primary teeth with intact roots. Adult: characterized by stress fractures and pseudofractures of the lower extremities in middle age, sometimes associated with early loss of adult dentition. Odontohypophosphatasia: characterized by premature exfoliation of primary teeth and/or severe dental caries without skeletal manifestations.
Elevated circulating creatine kinase concentration
MedGen UID:
69128
Concept ID:
C0241005
Finding
An elevation of the level of the enzyme creatine kinase (also known as creatine phosphokinase (CK; EC 2.7.3.2) in the blood. CK levels can be elevated in a number of clinical disorders such as myocardial infarction, rhabdomyolysis, and muscular dystrophy.
Hereditary xanthinuria type 1
MedGen UID:
82771
Concept ID:
C0268118
Disease or Syndrome
Xanthinuria, which was first described by Dent and Philpot (1954), is characterized by excretion of large amounts of xanthine in the urine and a tendency to form xanthine stones. Uric acid is strikingly diminished in serum and urine. Two clinically similar but distinct forms of xanthinuria are recognized. In type I (XAN1) there is an isolated deficiency of xanthine dehydrogenase, and in type II (XAN2; 603592) there is a dual deficiency of xanthine dehydrogenase and aldehyde oxidase (603592). Type I patients can metabolize allopurinol, whereas type II patients cannot (Simmonds et al., 1995). Xanthinuria also occurs in molybdenum cofactor deficiency (252150). Type II xanthinuria is caused by mutation in the MOCOS gene (613274), which encodes the enzyme that sulfurates the molybdenum cofactor for XDH and AOX1 (602841).
Glycogen storage disease type X
MedGen UID:
120613
Concept ID:
C0268149
Disease or Syndrome
Phosphoglycerate mutase deficiency is a disorder that primarily affects muscles used for movement (skeletal muscles). Beginning in childhood or adolescence, affected individuals experience muscle aches or cramping following strenuous physical activity. Some people with this condition also have recurrent episodes of myoglobinuria. Myoglobinuria occurs when muscle tissue breaks down abnormally and releases a protein called myoglobin, which is processed by the kidneys and released in the urine. If untreated, myoglobinuria can lead to kidney failure.\n\nIn some cases of phosphoglycerate mutase deficiency, microscopic tube-shaped structures called tubular aggregates are seen in muscle fibers. It is unclear how tubular aggregates are associated with the signs and symptoms of the disorder.
Triglyceride storage disease with ichthyosis
MedGen UID:
82780
Concept ID:
C0268238
Disease or Syndrome
Chanarin-Dorfman syndrome (CDS) is a rare autosomal recessive nonlysosomal inborn error of neutral lipid metabolism. Patients present with an nonbullous erythrodermic form of ichthyosis, with variable involvement of other organs, such as liver, central nervous system, eyes, and ears. Intracellular triacylglycerol droplets are present in most tissues, and diagnosis can be confirmed by a simple blood smear, in which the characteristic lipid droplets are observed in the cytoplasm of granulocytes (summary by Lefevre et al., 2001).
Inborn glycerol kinase deficiency
MedGen UID:
82803
Concept ID:
C0268418
Disease or Syndrome
NR0B1-related adrenal hypoplasia congenita includes both X-linked adrenal hypoplasia congenita (X-linked AHC) and Xp21 deletion (previously called complex glycerol kinase deficiency). X-linked AHC is characterized by primary adrenal insufficiency and/or hypogonadotropic hypogonadism (HH). Adrenal insufficiency is acute infantile onset (average age 3 weeks) in approximately 60% of affected males and childhood onset (ages 1-9 years) in approximately 40%. HH typically manifests in a male with adrenal insufficiency as delayed puberty (i.e., onset age >14 years) and less commonly as arrested puberty at about Tanner Stage 3. Rarely, X-linked AHC manifests initially in early adulthood as delayed-onset adrenal insufficiency, partial HH, and/or infertility. Heterozygous females very occasionally have manifestations of adrenal insufficiency or hypogonadotropic hypogonadism. Xp21 deletion includes deletion of NR0B1 (causing X-linked AHC) and GK (causing glycerol kinase deficiency), and in some cases deletion of DMD (causing Duchenne muscular dystrophy). Developmental delay has been reported in males with Xp21 deletion when the deletion extends proximally to include DMD or when larger deletions extend distally to include IL1RAPL1 and DMD.
Acetyl-CoA: carboxylase deficiency
MedGen UID:
124338
Concept ID:
C0268603
Disease or Syndrome
Acetyl-CoA carboxylase-alpha deficiency (ACACAD) is an autosomal recessive disorder characterized by hypotonia and global developmental delay (summary by Shafieipour et al., 2023).
HNSHA due to aldolase A deficiency
MedGen UID:
82895
Concept ID:
C0272066
Disease or Syndrome
Aldolase A deficiency is an autosomal recessive disorder associated with hereditary hemolytic anemia (Kishi et al., 1987).
Deficiency of butyryl-CoA dehydrogenase
MedGen UID:
90998
Concept ID:
C0342783
Disease or Syndrome
Most infants with short-chain acyl-CoA dehydrogenase deficiency (SCADD) identified through newborn screening programs have remained well, and asymptomatic relatives who meet diagnostic criteria are reported. Thus, SCADD is now viewed as a biochemical phenotype rather than a disease. A broad range of clinical findings was originally reported in those with confirmed SCADD, including severe dysmorphic facial features, feeding difficulties / failure to thrive, metabolic acidosis, ketotic hypoglycemia, lethargy, developmental delay, seizures, hypotonia, dystonia, and myopathy. However, individuals with no symptoms were also reported. In a large series of affected individuals detected on metabolic evaluation for developmental delay, 20% had failure to thrive, feeding difficulties, and hypotonia; 22% had seizures; and 30% had hypotonia without seizures. In contrast, the majority of infants with SCADD have been detected by expanded newborn screening, and the great majority of these infants remain asymptomatic. As with other fatty acid oxidation deficiencies, characteristic biochemical findings of SCADD may be absent except during times of physiologic stress such as fasting and illness. A diagnosis of SCADD based on clinical findings should not preclude additional testing to look for other causes.
Renal carnitine transport defect
MedGen UID:
90999
Concept ID:
C0342788
Disease or Syndrome
Systemic primary carnitine deficiency (CDSP) is a disorder of the carnitine cycle that results in defective fatty acid oxidation. It encompasses a broad clinical spectrum including the following: Metabolic decompensation in infancy typically presenting between age three months and two years with episodes of hypoketotic hypoglycemia, poor feeding, irritability, lethargy, hepatomegaly, elevated liver transaminases, and hyperammonemia triggered by fasting or common illnesses such as upper respiratory tract infection or gastroenteritis. Childhood myopathy involving heart and skeletal muscle with onset between age two and four years. Pregnancy-related decreased stamina or exacerbation of cardiac arrhythmia. Fatigability in adulthood. Absence of symptoms. The latter two categories often include mothers diagnosed with CDSP after newborn screening has identified low carnitine levels in their infants.
McLeod neuroacanthocytosis syndrome
MedGen UID:
140765
Concept ID:
C0398568
Disease or Syndrome
McLeod neuroacanthocytosis syndrome (designated as MLS throughout this review) is a multisystem disorder with central nervous system (CNS), neuromuscular, cardiovascular, and hematologic manifestations in males: CNS manifestations are a neurodegenerative basal ganglia disease including movement disorders, cognitive alterations, and psychiatric symptoms. Neuromuscular manifestations include a (mostly subclinical) sensorimotor axonopathy and muscle weakness or atrophy of different degrees. Cardiac manifestations include dilated cardiomyopathy, atrial fibrillation, and tachyarrhythmia. Hematologically, MLS is defined as a specific blood group phenotype (named after the first proband, Hugh McLeod) that results from absent expression of the Kx erythrocyte antigen and weakened expression of Kell blood group antigens. The hematologic manifestations are red blood cell acanthocytosis and compensated hemolysis. Alloantibodies in the Kell and Kx blood group system can cause strong reactions to transfusions of incompatible blood and severe anemia in affected male newborns of Kell-negative mothers. Females heterozygous for XK pathogenic variants have mosaicism for the Kell and Kx blood group antigens. Although they usually lack CNS and neuromuscular manifestations, some heterozygous females may develop clinical manifestations including chorea or late-onset cognitive decline.
Leber optic atrophy
MedGen UID:
182973
Concept ID:
C0917796
Disease or Syndrome
Leber hereditary optic neuropathy (LHON) typically presents in young adults as bilateral, painless, subacute visual failure. The peak age of onset in LHON is in the second and third decades of life, with 90% of those who lose their vision doing so before age 50 years. Very rarely, individuals first manifest LHON in the seventh and eighth decades of life. Males are four to five times more likely to be affected than females, but neither sex nor mutational status significantly influences the timing and severity of the initial visual loss. Neurologic abnormalities such as postural tremor, peripheral neuropathy, nonspecific myopathy, and movement disorders have been reported to be more common in individuals with LHON than in the general population. Some individuals with LHON, usually women, may also develop a multiple sclerosis-like illness.
NARP syndrome
MedGen UID:
231285
Concept ID:
C1328349
Disease or Syndrome
Mitochondrial DNA (mtDNA)-associated Leigh syndrome and NARP (neurogenic muscle weakness, ataxia, and retinitis pigmentosa) are part of a continuum of progressive neurodegenerative disorders caused by abnormalities of mitochondrial energy generation. Leigh syndrome (or subacute necrotizing encephalomyelopathy) is characterized by onset of symptoms typically between ages three and 12 months, often following a viral infection. Decompensation (often with elevated lactate levels in blood and/or CSF) during an intercurrent illness is typically associated with psychomotor retardation or regression. Neurologic features include hypotonia, spasticity, movement disorders (including chorea), cerebellar ataxia, and peripheral neuropathy. Extraneurologic manifestations may include hypertrophic cardiomyopathy. About 50% of affected individuals die by age three years, most often as a result of respiratory or cardiac failure. NARP is characterized by proximal neurogenic muscle weakness with sensory neuropathy, ataxia, and pigmentary retinopathy. Onset of symptoms, particularly ataxia and learning difficulties, is often in early childhood. Individuals with NARP can be relatively stable for many years, but may suffer episodic deterioration, often in association with viral illnesses.
Myopathy with storage of glycoproteins and Glycosaminoglycans
MedGen UID:
371846
Concept ID:
C1834532
Disease or Syndrome
Bethlem myopathy
MedGen UID:
331805
Concept ID:
C1834674
Disease or Syndrome
Bethlem myopathy-1 (BTHLM1) is a congenital muscular dystrophy characterized by distal joint laxity and a combination of distal and proximal joint contractures. Weakness usually begins in mid-childhood or adolescence, but progression is slow and ambulation is retained into adulthood (summary by Butterfield et al., 2013). Genetic Heterogeneity of Bethlem Myopathy See Bethlem myopathy-1B (BTHLM1B; 620725), caused by mutation in the COL6A2 gene (120240) on chromosome 21q22; Bethlem myopathy-1C (620726), caused by mutation the COL6A3 gene (120250) on chromosome 2q37; and Bethlem myopathy-2 (BTHLM2; 616471), caused by mutation in the COL12A1 gene (120320) on chromosome 6q13-q14.
Muscular dystrophy, Barnes type
MedGen UID:
322468
Concept ID:
C1834688
Disease or Syndrome
Nemaline myopathy 6
MedGen UID:
373095
Concept ID:
C1836472
Disease or Syndrome
Nemaline myopathy-6 is an autosomal dominant skeletal muscle disorder characterized by childhood onset of slowly progressive proximal muscle weakness, exercise intolerance, and slow movements with stiff muscles. Patients are unable to run or correct themselves from falling over. Histopathologic changes seen on skeletal muscle biopsy include nemaline rods, cores devoid of oxidative enzyme activity, and predominance of hypertrophic type 1 fibers. There is no cardiac or respiratory involvement (summary by Sambuughin et al., 2010).
Autosomal dominant limb-girdle muscular dystrophy type 1G
MedGen UID:
322993
Concept ID:
C1836765
Disease or Syndrome
Autosomal dominant limb-girdle muscular dystrophy-3 (LGMDD3) is characterized by slowly progressive proximal muscle weakness affecting the upper and lower limbs. Onset is usually in adulthood, but can occur during the teenage years. Affected individuals may also develop cataracts before age 50 (summary by Vieira et al., 2014). For a phenotypic description and a discussion of genetic heterogeneity of autosomal dominant limb-girdle muscular dystrophy, see LGMDD1 (603511).
Lethal infantile mitochondrial myopathy
MedGen UID:
374077
Concept ID:
C1838876
Disease or Syndrome
A rare mitochondrial oxidative phosphorylation disorder characterised by progressive generalised hypotonia, progressive external ophthalmoplegia and severe lactic acidosis, which result in early fatality (days to months after birth). Patients may present with lethargy and areflexia and may associate additional features, such as cardiomyopathy, renal dysfunction, liver involvement and seizures.
X-linked myopathy with excessive autophagy
MedGen UID:
374264
Concept ID:
C1839615
Disease or Syndrome
X-linked myopathy with excessive autophagy (XMEA) is an X-linked recessive skeletal muscle disorder characterized by childhood onset of progressive muscle weakness and atrophy primarily affecting the proximal muscles. While onset is usually in childhood, it can range from infancy to adulthood. Many patients lose ambulation and become wheelchair-bound. Other organ systems, including the heart, are clinically unaffected. Muscle biopsy shows intracytoplasmic autophagic vacuoles with sarcolemmal features and a multilayered basal membrane (summary by Ramachandran et al., 2013; Kurashige et al., 2013, and Ruggieri et al., 2015). Danon disease (300257), caused by mutation in the LAMP2 gene (309060) on chromosome Xq24, is a distinct disorder with similar pathologic features.
Myosin storage myopathy
MedGen UID:
374868
Concept ID:
C1842160
Disease or Syndrome
Autosomal dominant myosin storage congenital myopathy-7A (CMYP7A) is a skeletal muscle disorder with wide phenotypic variability. The age at symptom onset can range from early childhood to late adulthood. Affected individuals have proximal muscle weakness affecting the upper and lower limbs and distal muscle weakness of the lower limbs, resulting in gait difficulties and scapular winging (scapuloperoneal myopathy). Additional features may include thin habitus, high-arched palate, foot drop, pes cavus, calf pseudohypertrophy, and decreased reflexes. The severity is also variable: some patients develop respiratory insufficiency, joint contractures, and scoliosis in the first decades, whereas others are clinically unaffected, but show subtle signs of the disorder on examination. Serum creatine kinase may be normal or elevated. The disease is usually slowly progressive and most patients remain ambulatory. Skeletal muscle biopsy can show different abnormalities, including hyaline bodies, type 1 fiber predominance, congenital fiber-type disproportion (CFTD), and nonspecific myopathic changes with myofibrillar disarray. Intrafamilial variability is common (Dye et al., 2006; Pegoraro et al., 2007; review by Tajsharghi and Oldfors, 2013). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000).
Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis
MedGen UID:
375302
Concept ID:
C1843851
Disease or Syndrome
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+").
Fingerprint body myopathy
MedGen UID:
337026
Concept ID:
C1844560
Disease or Syndrome
Fingerprint body myopathy is a congenital benign muscle disorder characterised by congenital hypotonia and weakness and by the presence of numerous fingerprint bodies located at the periphery of the muscle fibers. Prevalence is unknown. Less than 20 patients have been described. Few sporadic cases have been observed, as well as cases of recessive transmission.
Infantile-onset X-linked spinal muscular atrophy
MedGen UID:
337123
Concept ID:
C1844934
Disease or Syndrome
X-linked infantile spinal muscular atrophy (XL-SMA) is characterized by congenital hypotonia, areflexia, and evidence of degeneration and loss of anterior horn cells (i.e., lower motor neurons) in the spinal cord and brain stem. Often congenital contractures and/or fractures are present. Intellect is normal. Life span is significantly shortened because of progressive ventilatory insufficiency resulting from chest muscle involvement.
X-linked myotubular myopathy-abnormal genitalia syndrome
MedGen UID:
335354
Concept ID:
C1846169
Disease or Syndrome
A rare chromosomal anomaly, partial deletion of the long arm of chromosome X, with characteristics of a combination of clinical manifestations of X-linked myotubular myopathy and a 46,XY disorder of sex development. Patients present with a severe form of congenital myopathy and abnormal male genitalia.
Distal myopathy with anterior tibial onset
MedGen UID:
335706
Concept ID:
C1847532
Disease or Syndrome
A rare genetic neuromuscular disease with characteristics of a progressive muscle weakness starting in the anterior tibial muscles, later involving lower and upper limb muscles, associated with an increased serum creatine kinase levels and absence of dysferlin on muscle biopsy. There is evidence the disease is caused by homozygous mutation in the gene encoding dysferlin (DYSF) on chromosome 2p13. Patients become wheelchair dependent.
Lethal congenital glycogen storage disease of heart
MedGen UID:
337919
Concept ID:
C1849813
Disease or Syndrome
A rare glycogen storage disease with fetal or neonatal onset of severe cardiomyopathy with non-lysosomal glycogen accumulation and fatal outcome in infancy. Patients present with massive cardiomegaly, severe cardiac and respiratory complications and failure to thrive. Non-specific facial dysmorphism, bilateral cataracts, macroglossia, hydrocephalus, enlarged kidneys and skeletal muscle involvement have been reported in some cases.
Hereditary myopathy with lactic acidosis due to ISCU deficiency
MedGen UID:
342573
Concept ID:
C1850718
Disease or Syndrome
Hereditary myopathy with lactic acidosis (HML) is an autosomal recessive muscular disorder characterized by childhood onset of exercise intolerance with muscle tenderness, cramping, dyspnea, and palpitations. Biochemical features include lactic acidosis and, rarely, rhabdomyolysis. It is a chronic disorder with remission and exacerbation of the muscle phenotype (summary by Sanaker et al., 2010).
Neutral lipid storage myopathy
MedGen UID:
339913
Concept ID:
C1853136
Disease or Syndrome
Neutral lipid storage disease with myopathy (NLSDM) is an autosomal recessive muscle disorder characterized by adult onset of slowly progressive proximal muscle weakness affecting the upper and lower limbs and associated with increased serum creatine kinase; distal muscle weakness may also occur. About half of patients develop cardiomyopathy later in the disease course. Other variable features include diabetes mellitus, hepatic steatosis, hypertriglyceridemia, and possibly sensorineural hearing loss. Leukocytes and muscle cells show cytoplasmic accumulation of triglycerides (summary by Reilich et al., 2011). Neutral lipid storage disease with myopathy belongs to a group of disorders termed neutral lipid storage disorders (NLSDs). These disorders are characterized by the presence of triglyceride-containing cytoplasmic droplets in leukocytes and in other tissues, including bone marrow, skin, and muscle. Chanarin-Dorfman syndrome (CDS; 275630) is defined as NLSD with ichthyosis (NLSDI). Patients with NLSDM present with myopathy but without ichthyosis (summary by Fischer et al., 2007).
Myopathy, proximal, and ophthalmoplegia
MedGen UID:
381340
Concept ID:
C1854106
Disease or Syndrome
Congenital myopathy-6 with ophthalmoplegia (CMYP6) is a relatively mild muscle disorder characterized by childhood onset of symptoms. The disorder is either slowly progressive or nonprogressive, and affected individuals retain ambulation, although there is variable severity. CMYP6 can show both autosomal dominant and autosomal recessive inheritance; the phenotype is similar in both forms (summary by Lossos et al., 2005 and Tajsharghi et al., 2014). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000).
Nemaline myopathy 5
MedGen UID:
344273
Concept ID:
C1854380
Disease or Syndrome
Autosomal recessive severe infantile nemaline myopathy-5A (NEM5A) is a skeletal muscle disorder characterized by symptom onset soon after birth or in early infancy. Affected infants show axial hypotonia, stiffness, rigid spine with progressive kyphosis, pectus deformities, and contractures or limited movement of the large joints. Some patients show transient tremors. There is muscle atrophy and poor gross motor development. Respiratory insufficiency develops in the first years of life, often leading to death. Muscle biopsy shows nemaline rods (Johnston et al., 2000; Geraud et al., 2021). For a discussion of genetic heterogeneity of nemaline myopathy, see NEM2 (256030).
Stromme syndrome
MedGen UID:
340938
Concept ID:
C1855705
Disease or Syndrome
Stromme syndrome is an autosomal recessive congenital disorder affecting multiple systems with features of a ciliopathy. Affected individuals typically have some type of intestinal atresia, variable ocular abnormalities, microcephaly, and sometimes involvement of other systems, including renal and cardiac. In some cases, the condition is lethal in early life, whereas other patients show normal survival with or without mild cognitive impairment (summary by Filges et al., 2016).
Vici syndrome
MedGen UID:
340962
Concept ID:
C1855772
Disease or Syndrome
With the current widespread use of multigene panels and comprehensive genomic testing, it has become apparent that the phenotypic spectrum of EPG5-related disorder represents a continuum. At the most severe end of the spectrum is classic Vici syndrome (defined as a neurodevelopmental disorder with multisystem involvement characterized by the combination of agenesis of the corpus callosum, cataracts, hypopigmentation, cardiomyopathy, combined immunodeficiency, microcephaly, and failure to thrive); at the milder end of the spectrum are attenuated neurodevelopmental phenotypes with variable multisystem involvement. Median survival in classic Vici syndrome appears to be 24 months, with only 10% of children surviving longer than age five years; the most common causes of death are respiratory infections as a result of primary immunodeficiency and/or cardiac insufficiency resulting from progressive cardiac failure. No data are available on life span in individuals at the milder end of the spectrum.
Heart-hand syndrome, Slovenian type
MedGen UID:
341859
Concept ID:
C1857829
Disease or Syndrome
A rare autosomal dominant form of heart-hand syndrome, first described in members of a Slovenian family. The syndrome has characteristics of adult onset, progressive cardiac conduction disease, tachyarrhythmias that can lead to sudden death, dilated cardiomyopathy and brachydactyly, with the hands less severely affected than the feet. Muscle weakness and/or myopathic electromyographic findings have been observed in some cases.
Sengers syndrome
MedGen UID:
395228
Concept ID:
C1859317
Disease or Syndrome
Sengers syndrome is an autosomal recessive mitochondrial disorder characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Mental development is normal, but affected individuals may die early from cardiomyopathy (summary by Mayr et al., 2012). Skeletal muscle biopsies of 2 affected individuals showed severe mtDNA depletion (Calvo et al., 2012).
Carnitine deficiency, myopathic
MedGen UID:
347852
Concept ID:
C1859318
Disease or Syndrome
Cardiomyopathy associated with myopathy and sudden death
MedGen UID:
395232
Concept ID:
C1859328
Disease or Syndrome
Triosephosphate isomerase deficiency
MedGen UID:
349893
Concept ID:
C1860808
Disease or Syndrome
Triosephosphate isomerase deficiency (TPID) is an autosomal recessive multisystem disorder characterized by congenital hemolytic anemia, and progressive neuromuscular dysfunction beginning in early childhood. Many patients die from respiratory failure in childhood. The neurologic syndrome is variable, but usually includes lower motor neuron dysfunction with hypotonia, muscle weakness and atrophy, and hyporeflexia. Some patients may show additional signs such as dystonic posturing and/or spasticity. Laboratory studies show intracellular accumulation of dihydroxyacetone phosphate (DHAP), particularly in red blood cells (summary by Fermo et al., 2010).
Stormorken syndrome
MedGen UID:
350028
Concept ID:
C1861451
Disease or Syndrome
Stormorken syndrome is an autosomal dominant disorder characterized by mild bleeding tendency due to platelet dysfunction, thrombocytopenia, anemia, asplenia, tubular aggregate myopathy, congenital miosis, and ichthyosis. Additional features may include headache or recurrent stroke-like episodes (summary by Misceo et al., 2014).
Hypertrophic cardiomyopathy 4
MedGen UID:
350526
Concept ID:
C1861862
Disease or Syndrome
Nonfamilial hypertrophic cardiomyopathy tends to be milder. This form typically begins later in life than familial hypertrophic cardiomyopathy, and affected individuals have a lower risk of serious cardiac events and sudden death than people with the familial form.\n\nThe symptoms of familial hypertrophic cardiomyopathy are variable, even within the same family. Many affected individuals have no symptoms. Other people with familial hypertrophic cardiomyopathy may experience chest pain; shortness of breath, especially with physical exertion; a sensation of fluttering or pounding in the chest (palpitations); lightheadedness; dizziness; and fainting.\n\nIn familial hypertrophic cardiomyopathy, cardiac thickening usually occurs in the interventricular septum, which is the muscular wall that separates the lower left chamber of the heart (the left ventricle) from the lower right chamber (the right ventricle). In some people, thickening of the interventricular septum impedes the flow of oxygen-rich blood from the heart, which may lead to an abnormal heart sound during a heartbeat (heart murmur) and other signs and symptoms of the condition. Other affected individuals do not have physical obstruction of blood flow, but the pumping of blood is less efficient, which can also lead to symptoms of the condition. Familial hypertrophic cardiomyopathy often begins in adolescence or young adulthood, although it can develop at any time throughout life.\n\nWhile most people with familial hypertrophic cardiomyopathy are symptom-free or have only mild symptoms, this condition can have serious consequences. It can cause abnormal heart rhythms (arrhythmias) that may be life threatening. People with familial hypertrophic cardiomyopathy have an increased risk of sudden death, even if they have no other symptoms of the condition. A small number of affected individuals develop potentially fatal heart failure, which may require heart transplantation.\n\nHypertrophic cardiomyopathy is a heart condition characterized by thickening (hypertrophy) of the heart (cardiac) muscle. When multiple members of a family have the condition, it is known as familial hypertrophic cardiomyopathy. Hypertrophic cardiomyopathy also occurs in people with no family history; these cases are considered nonfamilial hypertrophic cardiomyopathy. 
Diaphyseal medullary stenosis-bone malignancy syndrome
MedGen UID:
350613
Concept ID:
C1862177
Disease or Syndrome
Diaphyseal medullary stenosis with malignant fibrous histiocytoma is an autosomal dominant bone dysplasia characterized by pathologic fractures due to abnormal cortical growth and diaphyseal medullary stenosis. The fractures heal poorly, and there is progressive bowing of the lower extremities. In 2 families, affected individuals also showed a limb-girdle myopathy, with muscle weakness and atrophy. Approximately 35% of affected individuals develop an aggressive form of bone sarcoma consistent with malignant fibrous histiocytoma or osteosarcoma. Thus, the disorder may be considered a tumor predisposition syndrome (summary by Camacho-Vanegas et al., 2012).
Axial osteomalacia
MedGen UID:
354730
Concept ID:
C1862372
Disease or Syndrome
Congenital myasthenic syndrome 5
MedGen UID:
400481
Concept ID:
C1864233
Disease or Syndrome
Congenital myasthenic syndromes (CMS) are a group of inherited disorders affecting the neuromuscular junction. Patients present clinically with onset of variable muscle weakness between infancy and adulthood. These disorders have been classified according to the location of the defect: presynaptic, synaptic, and postsynaptic. Endplate acetylcholinesterase deficiency is an autosomal recessive congenital myasthenic syndrome characterized by a defect within the synapse at the neuromuscular junction (NMJ). Mutations in COLQ result in a deficiency of acetylcholinesterase (AChE), which causes prolonged synaptic currents and action potentials due to extended residence of acetylcholine in the synaptic space. Treatment with ephedrine may be beneficial; AChE inhibitors and amifampridine should be avoided (summary by Engel et al., 2015). For a discussion of genetic heterogeneity of CMS, see CMS1A (601462).
Megaconial type congenital muscular dystrophy
MedGen UID:
355943
Concept ID:
C1865233
Disease or Syndrome
Megaconial-type congenital muscular dystrophy (MDCMC) is an autosomal recessive disorder characterized by early-onset muscle wasting and impaired intellectual development. Some patients develop fatal cardiomyopathy. Muscle biopsy shows peculiar enlarged mitochondria that are prevalent toward the periphery of the fibers but are sparse in the center (summary by Mitsuhashi et al., 2011).
Mitochondrial trifunctional protein deficiency
MedGen UID:
370665
Concept ID:
C1969443
Disease or Syndrome
Long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency and trifunctional protein (TFP) deficiency are caused by impairment of mitochondrial TFP. TFP has three enzymatic activities – long-chain enoyl-CoA hydratase, long-chain 3-hydroxyacyl-CoA dehydrogenase, and long-chain 3-ketoacyl-CoA thiolase. In individuals with LCHAD deficiency, there is isolated deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase, while deficiency of all three enzymes occurs in individuals with TFP deficiency. Individuals with TFP deficiency can present with a severe-to-mild phenotype, while individuals with LCHAD deficiency typically present with a severe-to-intermediate phenotype. Neonates with the severe phenotype present within a few days of birth with hypoglycemia, hepatomegaly, encephalopathy, and often cardiomyopathy. The intermediate phenotype is characterized by hypoketotic hypoglycemia precipitated by infection or fasting in infancy. The mild (late-onset) phenotype is characterized by myopathy and/or neuropathy. Long-term complications include peripheral neuropathy and retinopathy.
Glycogen storage disease due to phosphoglycerate kinase 1 deficiency
MedGen UID:
410166
Concept ID:
C1970848
Disease or Syndrome
Phosphoglycerate kinase-1 deficiency is an X-linked recessive condition with a highly variable clinical phenotype that includes hemolytic anemia, myopathy, and neurologic involvement. Patients can express 1, 2, or all 3 of these manifestations (Shirakawa et al., 2006).
Early-onset myopathy with fatal cardiomyopathy
MedGen UID:
435983
Concept ID:
C2673677
Disease or Syndrome
Salih myopathy is characterized by muscle weakness (manifest during the neonatal period or in early infancy) and delayed motor development; children acquire independent walking between ages 20 months and four years. In the first decade of life, global motor performance is stable or tends to improve. Moderate joint and neck contractures and spinal rigidity may manifest in the first decade but become more obvious in the second decade. Scoliosis develops after age 11 years. Cardiac dysfunction manifests between ages five and 16 years, progresses rapidly, and leads to death between ages eight and 20 years, usually from heart rhythm disturbances.
Combined immunodeficiency due to STIM1 deficiency
MedGen UID:
440575
Concept ID:
C2748557
Disease or Syndrome
Immunodeficiency-10 (IMD10) is an autosomal recessive primary immunodeficiency characterized by onset of recurrent infections in childhood due to defective T- and NK-cell function, although the severity is variable. Affected individuals may also have hypotonia, hypohidrosis, or dental enamel hypoplasia consistent with amelogenesis imperfecta (summary by Parry et al., 2016).
Combined immunodeficiency due to ORAI1 deficiency
MedGen UID:
440578
Concept ID:
C2748568
Disease or Syndrome
Immunodeficiency-9 (IMD9) is an autosomal recessive disorder characterized by early onset of recurrent infections due to defective T-cell activation. Affected individuals also have congenital myopathy resulting in muscle weakness as well as features of ectodermal dysplasia, including soft dental enamel (summary by McCarl et al., 2009).
Myopathy, congenital, with fiber-type disproportion, X-linked
MedGen UID:
440714
Concept ID:
C2749128
Disease or Syndrome
Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 5
MedGen UID:
413981
Concept ID:
C2751319
Disease or Syndrome
Four phenotypes comprise the RRM2B mitochondrial DNA maintenance defects (RRM2B-MDMDs): RRM2B encephalomyopathic MDMD, the most severe phenotype, usually manifesting shortly after birth as hypotonia, poor feeding, and faltering growth requiring hospitalization. Subsequent assessments are likely to reveal multisystem involvement including sensorineural hearing loss, renal tubulopathy, and respiratory failure. Autosomal dominant progressive external ophthalmoplegia (adPEO), typically adult onset; other manifestations can include ptosis, bulbar dysfunction, fatigue, and muscle weakness. RRM2B autosomal recessive progressive external ophthalmoplegia (arPEO), a typically childhood-onset predominantly myopathic phenotype of PEO, ptosis, proximal muscle weakness, and bulbar dysfunction. RRM2B mitochondrial neurogastrointestinal encephalopathy (MNGIE)-like, characterized by progressive ptosis, ophthalmoplegia, gastrointestinal dysmotility, cachexia, and peripheral neuropathy. To date, 78 individuals from 52 families with a molecularly confirmed RRM2B-MDMD have been reported.
Congenital cataract-progressive muscular hypotonia-hearing loss-developmental delay syndrome
MedGen UID:
416525
Concept ID:
C2751320
Disease or Syndrome
Congenital cataract-progressive muscular hypotonia-hearing loss-developmental delay syndrome is a rare, genetic, mitochondrial myopathy disorder characterized by congenital cataract, progressive muscular hypotonia that particularly affects the lower limbs, reduced deep tendon reflexes, sensorineural hearing loss, global development delay and lactic acidosis. Muscle biopsy reveals reduced complex I, II and IV respiratory chain activity.
Autosomal recessive severe congenital neutropenia due to G6PC3 deficiency
MedGen UID:
414066
Concept ID:
C2751630
Disease or Syndrome
G6PC3 deficiency is characterized by severe congenital neutropenia which occurs in a phenotypic continuum that includes the following: Isolated severe congenital neutropenia (nonsyndromic). Classic G6PC3 deficiency (severe congenital neutropenia plus cardiovascular and/or urogenital abnormalities). Severe G6PC3 deficiency (classic G6PC3 deficiency plus involvement of non-myeloid hematopoietic cell lines, additional extra-hematologic features, and pulmonary hypertension; known as Dursun syndrome). Neutropenia usually presents with recurrent bacterial infections in the first few months of life. Intrauterine growth restriction (IUGR), failure to thrive (FTT), and poor postnatal growth are common. Other findings in classic and severe G6PC3 deficiency can include inflammatory bowel disease (IBD) resembling Crohn's disease, and endocrine disorders (growth hormone deficiency, hypogonadotropic hypogonadism, and delayed puberty).
Emery-Dreifuss muscular dystrophy 5, autosomal dominant
MedGen UID:
414111
Concept ID:
C2751805
Disease or Syndrome
Any autosomal dominant Emery-Dreifuss muscular dystrophy in which the cause of the disease is a mutation in the SYNE2 gene.
DPM3-congenital disorder of glycosylation
MedGen UID:
414534
Concept ID:
C2752007
Disease or Syndrome
Limb-girdle muscular dystrophy-dystroglycanopathy type C15 (MDDGC15) is an autosomal recessive disorder characterized by progressive proximal muscle weakness, manifest initially as unsteady gait, but later including more distal muscles, and dilated cardiomyopathy. The age at onset varies widely from the first decade to adulthood; those with earlier onset may have delayed motor development. Laboratory studies show increased serum creatine kinase and muscle biopsy shows dystrophic features with decreased alpha-dystroglycan (DAG1; 128239). Biochemical studies often show evidence of abnormal N-glycosylation of serum proteins, consistent with a congenital disorder of glycosylation (CDG) (summary by Svahn et al., 2019). For a discussion of genetic heterogeneity of muscular dystrophy- dystroglycanopathy type C, see MDDGC1 (609308). For a discussion of the classification of CDGs, see CDG1A (212065).
Malignant hyperthermia, susceptibility to, 2
MedGen UID:
419301
Concept ID:
C2930981
Finding
Malignant hyperthermia susceptibility (MHS) is a pharmacogenetic disorder of skeletal muscle calcium regulation associated with uncontrolled skeletal muscle hypermetabolism. Manifestations of malignant hyperthermia (MH) are precipitated by certain volatile anesthetics (i.e., halothane, isoflurane, sevoflurane, desflurane, enflurane), either alone or in conjunction with a depolarizing muscle relaxant (specifically, succinylcholine). The triggering substances cause uncontrolled release of calcium from the sarcoplasmic reticulum and may promote entry of extracellular calcium into the myoplasm, causing contracture of skeletal muscles, glycogenolysis, and increased cellular metabolism, resulting in production of heat and excess lactate. Affected individuals experience acidosis, hypercapnia, tachycardia, hyperthermia, muscle rigidity, compartment syndrome, rhabdomyolysis with subsequent increase in serum creatine kinase (CK) concentration, hyperkalemia with a risk for cardiac arrhythmia or even cardiac arrest, and myoglobinuria with a risk for renal failure. In nearly all cases, the first manifestations of MH (tachycardia and tachypnea) occur in the operating room; however, MH may also occur in the early postoperative period. There is mounting evidence that some individuals with MHS will also develop MH with exercise and/or on exposure to hot environments. Without proper and prompt treatment with dantrolene sodium, mortality is extremely high.
Malignant hyperthermia, susceptibility to, 3
MedGen UID:
418956
Concept ID:
C2930982
Finding
Malignant hyperthermia susceptibility (MHS) is a pharmacogenetic disorder of skeletal muscle calcium regulation associated with uncontrolled skeletal muscle hypermetabolism. Manifestations of malignant hyperthermia (MH) are precipitated by certain volatile anesthetics (i.e., halothane, isoflurane, sevoflurane, desflurane, enflurane), either alone or in conjunction with a depolarizing muscle relaxant (specifically, succinylcholine). The triggering substances cause uncontrolled release of calcium from the sarcoplasmic reticulum and may promote entry of extracellular calcium into the myoplasm, causing contracture of skeletal muscles, glycogenolysis, and increased cellular metabolism, resulting in production of heat and excess lactate. Affected individuals experience acidosis, hypercapnia, tachycardia, hyperthermia, muscle rigidity, compartment syndrome, rhabdomyolysis with subsequent increase in serum creatine kinase (CK) concentration, hyperkalemia with a risk for cardiac arrhythmia or even cardiac arrest, and myoglobinuria with a risk for renal failure. In nearly all cases, the first manifestations of MH (tachycardia and tachypnea) occur in the operating room; however, MH may also occur in the early postoperative period. There is mounting evidence that some individuals with MHS will also develop MH with exercise and/or on exposure to hot environments. Without proper and prompt treatment with dantrolene sodium, mortality is extremely high.
B4GALT1-congenital disorder of glycosylation
MedGen UID:
419310
Concept ID:
C2931009
Disease or Syndrome
Congenital disorders of glycosylation (CDG) are a group of hereditary multisystem disorders that are commonly associated with severe psychomotor and mental retardation. The characteristic biochemical abnormality of CDGs is the hypoglycosylation of glycoproteins, which is routinely determined by isoelectric focusing (IEF) of serum transferrin. Type I CDG comprises those disorders in which there is a defect in the assembly of lipid-linked oligosaccharides or their transfer onto nascent glycoproteins, whereas type II CDG comprises defects of trimming, elongation, and processing of protein-bound glycans (summary by Hansske et al., 2002). For a general discussion of CDGs, see CDG1A (212065).
Nephropathic cystinosis
MedGen UID:
419735
Concept ID:
C2931187
Disease or Syndrome
Cystinosis comprises three allelic phenotypes: Nephropathic cystinosis in untreated children is characterized by renal Fanconi syndrome, poor growth, hypophosphatemic/calcipenic rickets, impaired glomerular function resulting in complete glomerular failure, and accumulation of cystine in almost all cells, leading to cellular dysfunction with tissue and organ impairment. The typical untreated child has short stature, rickets, and photophobia. Failure to thrive is generally noticed after approximately age six months; signs of renal tubular Fanconi syndrome (polyuria, polydipsia, dehydration, and acidosis) appear as early as age six months; corneal crystals can be present before age one year and are always present after age 16 months. Prior to the use of renal transplantation and cystine-depleting therapy, the life span in nephropathic cystinosis was no longer than ten years. With these interventions, affected individuals can survive at least into the mid-forties or fifties with satisfactory quality of life. Intermediate cystinosis is characterized by all the typical manifestations of nephropathic cystinosis, but onset is at a later age. Renal glomerular failure occurs in all untreated affected individuals, usually between ages 15 and 25 years. The non-nephropathic (ocular) form of cystinosis is characterized clinically only by photophobia resulting from corneal cystine crystal accumulation.
Myopathy, autophagic vacuolar, infantile-onset
MedGen UID:
419364
Concept ID:
C2931230
Disease or Syndrome
Infantile-onset autophagic vacuolar myopathy is characterized by increased cardiac and skeletal muscle glycogen with normal acid maltase (GAA; 606800). Skeletal muscle biopsy shows characteristic intracytoplasmic vacuoles that stain for sarcolemmal proteins and complement proteins. Similar pathologic findings are seen in Danon disease (300257), caused by mutation in the LAMP2 gene (309060) on chromosome Xq24, and X-linked myopathy with excessive autophagy (XMEA; 310440), which has been mapped to Xq28.
Optic atrophy with or without deafness, ophthalmoplegia, myopathy, ataxia, and neuropathy
MedGen UID:
478179
Concept ID:
C3276549
Disease or Syndrome
Syndromic optic atrophy, also known as DOA+ syndrome, is a neurologic disorder characterized most commonly by an insidious onset of visual loss and sensorineural hearing loss in childhood with variable presentation of other clinical manifestations including progressive external ophthalmoplegia (PEO), muscle cramps, hyperreflexia, and ataxia. There appears to be a wide range of intermediate phenotypes (Yu-Wai-Man et al., 2010).
Distal myopathy with posterior leg and anterior hand involvement
MedGen UID:
481352
Concept ID:
C3279722
Disease or Syndrome
Williams distal myopathy is an autosomal dominant slowly progressive muscular disorder characterized by distal muscle weakness and atrophy affecting the upper and lower limbs. Onset occurs around the third to fourth decades of life, and patients remain ambulatory even after long disease duration. Muscle biopsy shows nonspecific changes with no evidence of rods, necrosis, or inflammation (summary by Duff et al., 2011). Mutation in the FLNC gene can also cause myofibrillar myopathy-5 (MFM5; 609524), which shows a different pattern of muscle involvement and different histologic changes.
Distal myopathy, Tateyama type
MedGen UID:
482073
Concept ID:
C3280443
Disease or Syndrome
CAV3-related distal myopathy is one form of distal myopathy, a group of disorders characterized by weakness and loss of function affecting the muscles farthest from the center of the body (distal muscles), such as those of the hands and feet. People with CAV3-related distal myopathy experience wasting (atrophy) and weakness of the small muscles in the hands and feet that generally become noticeable in adulthood. A bump or other sudden impact on the muscles, especially those in the forearms, may cause them to exhibit repetitive tensing (percussion-induced rapid contraction). The rapid contractions can continue for up to 30 seconds and may be painful. Overgrowth (hypertrophy) of the calf muscles can also occur in CAV3-related distal myopathy. The muscles closer to the center of the body (proximal muscles) such as the thighs and upper arms are normal in this condition.
Ehlers-Danlos syndrome, kyphoscoliotic and deafness type
MedGen UID:
482790
Concept ID:
C3281160
Disease or Syndrome
FKBP14 kyphoscoliotic Ehlers-Danlos syndrome (FKBP14-kEDS) is characterized by congenital muscle hypotonia and weakness (typically improving during childhood), progressive scoliosis, joint hypermobility, hyperelastic skin, gross motor developmental delay, myopathy, and hearing impairment. Most affected children achieve independent walking between ages two and four years. A decline of motor function in adulthood may be seen, but affected individuals are likely to be able to participate in activities of daily living in adulthood and maintain independent walking. Occasional features underlying systemic connective tissue involvement include aortic rupture and arterial dissection, subdural hygroma, insufficiency of cardiac valves, bluish sclerae, bladder diverticula, inguinal or umbilical herniae, and premature rupture of membranes during pregnancy. Rarer findings may include bifid uvula with submucous or frank cleft palate, speech/language delay without true cognitive impairment, and rectal prolapse.
Mitochondrial DNA deletion syndrome with progressive myopathy
MedGen UID:
767513
Concept ID:
C3554599
Disease or Syndrome
PEOA6 is characterized by muscle weakness, mainly affecting the lower limbs, external ophthalmoplegia, exercise intolerance, and mitochondrial DNA (mtDNA) deletions on muscle biopsy. Symptoms may appear in childhood or adulthood and show slow progression (summary by Ronchi et al., 2013). For a general phenotypic description and a discussion of genetic heterogeneity of autosomal dominant progressive external ophthalmoplegia, see PEOA1 (157640).
Hypokalemic periodic paralysis, type 1
MedGen UID:
811387
Concept ID:
C3714580
Disease or Syndrome
Hypokalemic periodic paralysis (hypoPP) is a condition in which affected individuals may experience paralytic episodes with concomitant hypokalemia (serum potassium <3.5 mmol/L). The paralytic attacks are characterized by decreased muscle tone (flaccidity) more marked proximally than distally with normal to decreased deep tendon reflexes. The episodes develop over minutes to hours and last several minutes to several days with spontaneous recovery. Some individuals have only one episode in a lifetime; more commonly, crises occur repeatedly: daily, weekly, monthly, or less often. The major triggering factors are cessation of effort following strenuous exercise and carbohydrate-rich evening meals. Additional triggers can include cold, stress/excitement/fear, salt intake, prolonged immobility, use of glucosteroids or alcohol, and anesthetic procedures. The age of onset of the first attack ranges from two to 30 years; the duration of paralytic episodes ranges from one to 72 hours with an average of nearly 24 hours. Long-lasting interictal muscle weakness may occur in some affected individuals and in some stages of the disease and in myopathic muscle changes. A myopathy may occur independent of paralytic symptoms and may be the sole manifestation of hypoPP.
Muscle AMP deaminase deficiency
MedGen UID:
811508
Concept ID:
C3714933
Disease or Syndrome
Myoadenylate deaminase deficiency (MMDD) is an autosomal recessive condition that can manifest as exercise-induced muscle pain, occasionally associated with rhabdomyolysis and/or increased serum creatine kinase, or even infantile hypotonia. However, the finding of homozygous mutations among asymptomatic individuals have suggested to some (e.g., Verzijl et al., 1998) that AMPD1 deficiency may be a harmless entity (summary by Castro-Gago et al., 2011). Genetta et al. (2001) stated that AMPD1 deficiency is the most prevalent genetic disease in humans, the number of people heterozygous approaching 10% of Caucasians and individuals of African descent (Sabina et al., 1989). A small percentage of homozygous-deficient individuals, approximately 1.8% of the population, display symptoms of chronic fatigue and lost productivity as well as a predisposition to stress-related ailments, including heart disease and stroke, according to Genetta et al. (2001).
Inclusion body myopathy with early-onset Paget disease with or without frontotemporal dementia 2
MedGen UID:
815798
Concept ID:
C3809468
Disease or Syndrome
Inclusion body myopathy associated with Paget disease of bone (PDB) and/or frontotemporal dementia (IBMPFD) is characterized by adult-onset proximal and distal muscle weakness (clinically resembling a limb-girdle muscular dystrophy syndrome), early-onset PDB, and premature frontotemporal dementia (FTD). Muscle weakness progresses to involve other limb and respiratory muscles. PDB involves focal areas of increased bone turnover that typically lead to spine and/or hip pain and localized enlargement and deformity of the long bones; pathologic fractures occur on occasion. Early stages of FTD are characterized by dysnomia, dyscalculia, comprehension deficits, and paraphasic errors, with minimal impairment of episodic memory; later stages are characterized by inability to speak, auditory comprehension deficits for even one-step commands, alexia, and agraphia. Mean age at diagnosis for muscle disease and PDB is 42 years; for FTD, 56 years. Dilated cardiomyopathy, amyotrophic lateral sclerosis, and Parkinson disease are now known to be part of the spectrum of findings associated with IBMPFD.
Inclusion body myopathy with early-onset Paget disease with or without frontotemporal dementia 3
MedGen UID:
815799
Concept ID:
C3809469
Disease or Syndrome
Inclusion body myopathy associated with Paget disease of bone (PDB) and/or frontotemporal dementia (IBMPFD) is characterized by adult-onset proximal and distal muscle weakness (clinically resembling a limb-girdle muscular dystrophy syndrome), early-onset PDB, and premature frontotemporal dementia (FTD). Muscle weakness progresses to involve other limb and respiratory muscles. PDB involves focal areas of increased bone turnover that typically lead to spine and/or hip pain and localized enlargement and deformity of the long bones; pathologic fractures occur on occasion. Early stages of FTD are characterized by dysnomia, dyscalculia, comprehension deficits, and paraphasic errors, with minimal impairment of episodic memory; later stages are characterized by inability to speak, auditory comprehension deficits for even one-step commands, alexia, and agraphia. Mean age at diagnosis for muscle disease and PDB is 42 years; for FTD, 56 years. Dilated cardiomyopathy, amyotrophic lateral sclerosis, and Parkinson disease are now known to be part of the spectrum of findings associated with IBMPFD.
Myopathy, tubular aggregate, 1
MedGen UID:
860163
Concept ID:
C4011726
Disease or Syndrome
Tubular aggregates in muscle, first described by Engel (1964), are structures of variable appearance consisting of an outer tubule containing either one or more microtubule-like structures or amorphous material. They are a nonspecific pathologic finding that may occur in a variety of circumstances, including alcohol- and drug-induced myopathies, exercise-induced cramps or muscle weakness, and inherited myopathies. Tubular aggregates are derived from the sarcoplasmic reticulum (Salviati et al., 1985) and are believed to represent an adaptive mechanism aimed at regulating an increased intracellular level of calcium in order to prevent the muscle fibers from hypercontraction and necrosis (Martin et al., 1997; Muller et al., 2001). Genetic Heterogeneity of Tubular Aggregate Myopathy See also TAM2 (615883), caused by mutation in the ORAI1 gene (610277) on chromosome 12q24.
LIPE-related familial partial lipodystrophy
MedGen UID:
863306
Concept ID:
C4014869
Disease or Syndrome
Familial partial lipodystrophy type 6 (FPLD6) is characterized by abnormal subcutaneous fat distribution, with variable excess accumulation of fat in the face, neck, shoulders, axillae, back, abdomen, and pubic region, and reduction in subcutaneous fat of the lower extremities. Progressive adult-onset myopathy is seen in some patients, and there is variable association with diabetes, hypertriglyceridemia, low high-density lipoprotein (HDL) cholesterol, and hepatic steatosis (Zolotov et al., 2017). For a general phenotypic description and a discussion of genetic heterogeneity of familial partial lipodystrophy (FPLD), see 151660.
Combined oxidative phosphorylation defect type 24
MedGen UID:
864080
Concept ID:
C4015643
Disease or Syndrome
Combined oxidative phosphorylation deficiency-24 (COXPD24) is an autosomal recessive mitochondrial disorder with wide phenotypic variability. Most patients present in infancy with delayed neurodevelopment, refractory seizures, hypotonia, and hearing impairment due to auditory neuropathy. Less common features may include cortical blindness, renal dysfunction, and/or liver involvement, suggestive of Alpers syndrome (MTDPS4A; 203700). Patients with the severe phenotype tend to have brain abnormalities on imaging, including cerebral atrophy and hyperintensities in the basal ganglia and brainstem, consistent with Leigh syndrome. Laboratory values may be normal or show increased lactate and evidence of mitochondrial respiratory chain defects, particularly in muscle. Some patients achieve little developmental milestones and may die in infancy or early childhood. However, some patients have a less severe phenotype manifest only by myopathy (summary by Sofou et al., 2015, Vanlander et al., 2015, and Mizuguchi et al., 2017). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060).
Severe hypotonia-psychomotor developmental delay-strabismus-cardiac septal defect syndrome
MedGen UID:
902080
Concept ID:
C4225196
Disease or Syndrome
Severe hypotonia-psychomotor developmental delay-strabismus-cardiac septal defect syndrome is a rare, genetic, non-dystrophic congenital myopathy disorder characterized by a neonatal-onset of severe generalized hypotonia associated with mild psychomotor delay, congenital strabismus with abducens nerve palsy, and atrial and/or ventricular septal defects. Cryptorchidism is commonly reported in male patients and muscle biopsy typically reveals increased variability in muscle fiber size.
Klippel-Feil anomaly-myopathy-facial dysmorphism syndrome
MedGen UID:
894399
Concept ID:
C4225285
Disease or Syndrome
Klippel-Feil syndrome-4 with nemaline myopathy and facial dysmorphism (KFS4) is an autosomal recessive disorder characterized mainly by severe hypotonia apparent from infancy. Klippel-Feil anomaly is primarily defined by fusion of the cervical spine, with associated low posterior hairline and limited neck mobility being observed in about half of patients (summary by Alazami et al., 2015). For a general description and a discussion of genetic heterogeneity of Klippel-Feil syndrome, see KFS1 (118100).
Lethal congenital contracture syndrome 9
MedGen UID:
903881
Concept ID:
C4225303
Disease or Syndrome
Any lethal congenital contracture syndrome in which the cause of the disease is a mutation in the ADGRG6 gene.
Bethlem myopathy 2
MedGen UID:
907426
Concept ID:
C4225313
Disease or Syndrome
Bethlem myopathy-2 (BTHLM2) is characterized by congenital hypotonia and myopathy. Motor development is delayed, but muscle strength improves with age, and patients are able to achieve ambulation. Proximal joint contractures that improve over time, as well as joint hyperlaxity, are also present. Muscle biopsy shows mild variability in fiber diameter, without degeneration or regeneration (Zou et al., 2014; Hicks et al., 2014). For a discussion of genetic heterogeneity of Bethlem myopathy, see BTHLM1 (158810).
Congenital myasthenic syndrome 2C
MedGen UID:
903254
Concept ID:
C4225373
Disease or Syndrome
Congenital myasthenic syndrome associated with AChR deficiency is a disorder of the postsynaptic neuromuscular junction (NMJ) characterized clinically by early-onset muscle weakness with variable severity. Electrophysiologic studies show low amplitude of the miniature endplate potential (MEPP) and current (MEPC) resulting from deficiency of AChR at the endplate. Treatment with cholinesterase inhibitors or amifampridine may be helpful (summary by Engel et al., 2015). For a discussion of genetic heterogeneity of CMS, see CMS1A (601462).
Congenital myasthenic syndrome 2A
MedGen UID:
908185
Concept ID:
C4225374
Disease or Syndrome
Slow-channel congenital myasthenic syndrome (SCCMS) is a disorder of the postsynaptic neuromuscular junction (NMJ) characterized by early-onset progressive muscle weakness. The disorder results from kinetic abnormalities of the acetylcholine receptor channel, specifically from prolonged opening and activity of the channel, which causes prolonged synaptic currents resulting in a depolarization block. This is associated with calcium overload, which may contribute to subsequent degeneration of the endplate and postsynaptic membrane. Treatment with quinine, quinidine, or fluoxetine may be helpful; cholinesterase inhibitors and amifampridine should be avoided (summary by Engel et al., 2015). For a discussion of genetic heterogeneity of CMS, see CMS1A (601462).
Congenital myasthenic syndrome 4A
MedGen UID:
908188
Concept ID:
C4225413
Disease or Syndrome
Slow-channel congenital myasthenic syndrome (SCCMS) is a disorder of the postsynaptic neuromuscular junction (NMJ) characterized by early-onset progressive muscle weakness. The disorder results from kinetic abnormalities of the acetylcholine receptor channel, specifically from prolonged opening and activity of the channel, which causes prolonged synaptic currents resulting in a depolarization block. This is associated with calcium overload, which may contribute to subsequent degeneration of the endplate and postsynaptic membrane. Treatment with quinine, quinidine, or fluoxetine may be helpful; acetylcholinesterase inhibitors and amifampridine should be avoided (summary by Engel et al., 2015). For a discussion of genetic heterogeneity of CMS, see CMS1A (601462).
Adducted thumbs-arthrogryposis syndrome, Christian type
MedGen UID:
929724
Concept ID:
C4304055
Disease or Syndrome
A type of arthrogryposis with characteristics of congenital cleft palate, microcephaly, craniostenosis and arthrogryposis. Additional features include facial dysmorphism. Velopharyngeal insufficiency with difficulties in swallowing, increased secretion of the nose and throat, prominent occiput, generalised muscular hypotonia with mild cyanosis and no spontaneous movements, seizures, torticollis, areflexia, intellectual disability, hypertrichosis of the lower extremities, and scleroedema are also observed. The disease often leads to early death. Transmission is autosomal recessive. No new cases have been described since 1983.
Charcot-Marie-Tooth disease axonal type 2CC
MedGen UID:
934757
Concept ID:
C4310790
Disease or Syndrome
Axonal Charcot-Marie-Tooth disease type 2CC is an autosomal dominant peripheral neuropathy that predominantly affects the lower limbs, resulting in muscle weakness and atrophy and gait impairment. Other features include distal sensory impairment and less severe involvement of the upper limbs. The age at onset and severity are variable (summary by Rebelo et al., 2016). For a phenotypic description and a discussion of genetic heterogeneity of axonal CMT type 2, see CMT2A (118210).
Myopathy with abnormal lipid metabolism
MedGen UID:
934789
Concept ID:
C4310822
Disease or Syndrome
Lipid storage myopathy due to FLAD1 deficiency is an autosomal recessive inborn error of metabolism that includes variable mitochondrial dysfunction. The phenotype is extremely heterogeneous: some patients have a severe disorder with onset in infancy and cardiac and respiratory insufficiency resulting in early death, whereas others have a milder course with onset of muscle weakness in adulthood. Some patients show significant improvement with riboflavin treatment (summary by Olsen et al., 2016).
Combined oxidative phosphorylation deficiency 33
MedGen UID:
1623699
Concept ID:
C4540209
Disease or Syndrome
COXPD33 is an autosomal recessive multisystem disorder resulting from a defect in mitochondrial energy metabolism. The phenotype is highly variable, ranging from death in infancy to adult-onset progressive external ophthalmoplegia (PEO) and myopathy. A common finding is cardiomyopathy and increased serum lactate (summary by Feichtinger et al., 2017). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060).
Inclusion body myopathy with Paget disease of bone and frontotemporal dementia type 1
MedGen UID:
1641069
Concept ID:
C4551951
Disease or Syndrome
Inclusion body myopathy associated with Paget disease of bone (PDB) and/or frontotemporal dementia (IBMPFD) is characterized by adult-onset proximal and distal muscle weakness (clinically resembling a limb-girdle muscular dystrophy syndrome), early-onset PDB, and premature frontotemporal dementia (FTD). Muscle weakness progresses to involve other limb and respiratory muscles. PDB involves focal areas of increased bone turnover that typically lead to spine and/or hip pain and localized enlargement and deformity of the long bones; pathologic fractures occur on occasion. Early stages of FTD are characterized by dysnomia, dyscalculia, comprehension deficits, and paraphasic errors, with minimal impairment of episodic memory; later stages are characterized by inability to speak, auditory comprehension deficits for even one-step commands, alexia, and agraphia. Mean age at diagnosis for muscle disease and PDB is 42 years; for FTD, 56 years. Dilated cardiomyopathy, amyotrophic lateral sclerosis, and Parkinson disease are now known to be part of the spectrum of findings associated with IBMPFD.
Muscular dystrophy, limb-girdle, autosomal dominant 4
MedGen UID:
1648316
Concept ID:
C4748295
Disease or Syndrome
Autosomal dominant limb-girdle muscular dystrophy-4 (LGMDD4) is characterized by onset of proximal muscle weakness in young adulthood. Affected individuals often have gait difficulties; some may have upper limb involvement. Other features include variably increased serum creatine kinase, myalgia, and back pain. The severity and expressivity of the disorder is highly variable, even within families (summary by Vissing et al., 2016). For a discussion of genetic heterogeneity of autosomal dominant limb-girdle muscular dystrophy, see 603511.
Mitochondrial complex 1 deficiency, nuclear type 11
MedGen UID:
1648356
Concept ID:
C4748769
Disease or Syndrome
Mitochondrial complex 1 deficiency, nuclear type 14
MedGen UID:
1648440
Concept ID:
C4748777
Disease or Syndrome
Mitochondrial complex 1 deficiency, nuclear type 15
MedGen UID:
1648320
Concept ID:
C4748778
Disease or Syndrome
Mitochondrial complex 1 deficiency, nuclear type 21
MedGen UID:
1648383
Concept ID:
C4748792
Disease or Syndrome
Mitochondrial complex 1 deficiency, nuclear type 25
MedGen UID:
1648366
Concept ID:
C4748806
Disease or Syndrome
Combined oxidative phosphorylation defect type 11
MedGen UID:
1682397
Concept ID:
C5190991
Disease or Syndrome
Combined oxidative phosphorylation deficiency-21 (COXPD11) is a severe multisystemic autosomal recessive disorder characterized by neonatal hypotonia and lactic acidosis. Affected individuals may have respiratory insufficiency, foot deformities, or seizures, and all reported patients have died in infancy. Biochemical studies show deficiencies of multiple mitochondrial respiratory enzymes (summary by Garcia-Diaz et al., 2012). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060).
Myasthenic syndrome, congenital, 25, presynaptic
MedGen UID:
1683288
Concept ID:
C5193027
Disease or Syndrome
Congenital myasthenic syndrome-25 (CMS25) is an autosomal recessive neuromuscular disorder characterized by hypotonia and generalized muscle weakness apparent from birth. Affected individuals have feeding difficulties and delayed motor development, usually never achieving independent ambulation. Additional variable features include eye movement abnormalities, joint contractures, and rigid spine. Pyridostigmine treatment may be partially effective (summary by Shen et al., 2017). For a discussion of genetic heterogeneity of CMS, see CMS1A (601462).
Emery-Dreifuss muscular dystrophy 1, X-linked
MedGen UID:
1720295
Concept ID:
C5243475
Disease or Syndrome
Emery-Dreifuss muscular dystrophy inherited in an X-linked recessive pattern and caused by mutations in the EMD gene, encoding emerin.
Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency 1
MedGen UID:
1748867
Concept ID:
C5399977
Disease or Syndrome
Mitochondrial complex IV deficiency nuclear type 2 (MC4DN2) is an autosomal recessive multisystem metabolic disorder characterized by the onset of symptoms at birth or in the first weeks or months of life. Affected individuals have severe hypotonia, often associated with feeding difficulties and respiratory insufficiency necessitating tube feeding and mechanical ventilation. The vast majority of patients develop hypertrophic cardiomyopathy in the first days or weeks of life, which usually leads to death in infancy or early childhood. Patients also show neurologic abnormalities, including developmental delay, nystagmus, fasciculations, dystonia, EEG changes, and brain imaging abnormalities compatible with a diagnosis of Leigh syndrome (see 256000). There may also be evidence of systemic involvement with hepatomegaly and myopathy, although neurogenic muscle atrophy is more common and may resemble spinal muscular atrophy type I (SMA1; 253300). Serum lactate is increased, and laboratory studies show decreased mitochondrial complex IV protein and activity levels in various tissues, including heart and skeletal muscle. Most patients die in infancy of cardiorespiratory failure (summary by Papadopoulou et al., 1999). For a discussion of genetic heterogeneity of mitochondrial complex IV (cytochrome c oxidase) deficiency, see 220110.
Arthrogryposis multiplex congenita 2, neurogenic type
MedGen UID:
1725686
Concept ID:
C5435650
Disease or Syndrome
Spinal muscular atrophy (SMA) is characterized by muscle weakness and atrophy resulting from progressive degeneration and irreversible loss of the anterior horn cells in the spinal cord (i.e., lower motor neurons) and the brain stem nuclei. The onset of weakness ranges from before birth to adulthood. The weakness is symmetric, proximal > distal, and progressive. Before the genetic basis of SMA was understood, it was classified into clinical subtypes based on maximum motor function achieved; however, it is now apparent that the phenotype of SMN1-associated SMA spans a continuum without clear delineation of subtypes. With supportive care only, poor weight gain with growth failure, restrictive lung disease, scoliosis, and joint contractures are common complications; however, newly available targeted treatment options are changing the natural history of this disease.
Myopathy, congenital, with diaphragmatic defects, respiratory insufficiency, and dysmorphic facies
MedGen UID:
1764743
Concept ID:
C5436530
Disease or Syndrome
Congenital myopathy-17 (CMYP17) is an autosomal recessive muscle disorder. Affected individuals present at birth with hypotonia and respiratory insufficiency associated with high diaphragmatic dome on imaging. Other features include poor overall growth, pectus excavatum, dysmorphic facies, and renal anomalies in some. The severity of the disorder is highly variable: some patients may have delayed motor development with mildly decreased endurance, whereas others have more severe hypotonia associated with distal arthrogryposis and lung hypoplasia, resulting in early death (summary by Watson et al., 2016 and Lopes et al., 2018). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000).
Muscular dystrophy-dystroglycanopathy (congenital with impaired intellectual development), type B, 15
MedGen UID:
1755743
Concept ID:
C5436552
Disease or Syndrome
Myopathy, distal, 5
MedGen UID:
1798944
Concept ID:
C5567521
Disease or Syndrome
Distal myopathy-5 (MPD5) is an autosomal recessive, slowly progressive muscle disorder characterized by adolescent onset of distal muscle weakness and atrophy predominantly affecting the lower limbs. Other features include facial weakness and hyporeflexia. Patients remain ambulatory even after long disease duration (summary by Park et al., 2016).
Carey-Fineman-Ziter syndrome 1
MedGen UID:
1804638
Concept ID:
C5676876
Disease or Syndrome
Carey-Fineman-Ziter syndrome-1 (CFZS1) is a multisystem congenital disorder characterized by hypotonia, Moebius sequence (bilateral congenital facial palsy with impairment of ocular abduction), Pierre Robin complex (micrognathia, glossoptosis, and high-arched or cleft palate), delayed motor milestones, and failure to thrive. More variable features include dysmorphic facial features, brain abnormalities, and intellectual disability. It has been postulated that many clinical features in CFZS1 may be secondary effects of muscle weakness during development or brainstem anomalies (summary by Pasetti et al., 2016). Di Gioia et al. (2017) determined that CFZS1 represents a slowly progressive congenital myopathy resulting from a defect in myoblast fusion. Genetic Heterogeneity of Carey-Fineman-Ziter Syndrome Carey-Fineman-Ziter syndrome-2 (CFZS2) is caused by mutation in the MYMX gene (619912) on chromosome 6p21.
Combined oxidative phosphorylation deficiency 55
MedGen UID:
1806598
Concept ID:
C5676915
Disease or Syndrome
Combined oxidative phosphorylation deficiency-55 (COXPD55) is characterized by global developmental delay, hypotonia, short stature, and impaired intellectual development with speech disabilities in childhood. Indolent progressive external ophthalmoplegia phenotype has been described in 1 patient (summary by Olahova et al., 2021). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060).

Professional guidelines

PubMed

Hallowell RW, Danoff SK
Chest 2023 Jun;163(6):1476-1491. Epub 2023 Feb 9 doi: 10.1016/j.chest.2023.01.031. PMID: 36764512
Marco JL, Collins BF
Best Pract Res Clin Rheumatol 2020 Aug;34(4):101503. Epub 2020 Apr 11 doi: 10.1016/j.berh.2020.101503. PMID: 32284267
Sasaki H, Kohsaka H
Mod Rheumatol 2018 Nov;28(6):913-921. Epub 2018 May 9 doi: 10.1080/14397595.2018.1467257. PMID: 29669460

Recent clinical studies

Etiology

Gondal MUR, Mehmood RS, Khan RP, Malik J
Curr Probl Cardiol 2024 Mar;49(3):102381. Epub 2024 Jan 7 doi: 10.1016/j.cpcardiol.2024.102381. PMID: 38191102
Cheung K, Rathbone A, Melanson M, Trier J, Ritsma BR, Allen MD
J Appl Physiol (1985) 2021 May 1;130(5):1479-1489. Epub 2021 Mar 18 doi: 10.1152/japplphysiol.00019.2021. PMID: 33734888Free PMC Article
Qu H, Guo M, Chai H, Wang WT, Gao ZY, Shi DZ
J Am Heart Assoc 2018 Oct 2;7(19):e009835. doi: 10.1161/JAHA.118.009835. PMID: 30371340Free PMC Article
Mohassel P, Mammen AL
J Neuromuscul Dis 2018;5(1):11-20. doi: 10.3233/JND-170282. PMID: 29480216Free PMC Article
Abd TT, Jacobson TA
Expert Opin Drug Saf 2011 May;10(3):373-87. Epub 2011 Feb 23 doi: 10.1517/14740338.2011.540568. PMID: 21342078

Diagnosis

Gao Y, Peng L, Zhao C
Mol Cell Biochem 2024 Feb;479(2):393-417. Epub 2023 Apr 20 doi: 10.1007/s11010-023-04735-x. PMID: 37079208
Ashton C, Paramalingam S, Stevenson B, Brusch A, Needham M
Intern Med J 2021 Jun;51(6):845-852. doi: 10.1111/imj.15358. PMID: 34155760
Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S, Hackman P, Udd B
Acta Myol 2020 Dec;39(4):245-265. Epub 2020 Dec 1 doi: 10.36185/2532-1900-028. PMID: 33458580Free PMC Article
Selva-O'Callaghan A, Alvarado-Cardenas M, Pinal-Fernández I, Trallero-Araguás E, Milisenda JC, Martínez MÁ, Marín A, Labrador-Horrillo M, Juárez C, Grau-Junyent JM
Expert Rev Clin Immunol 2018 Mar;14(3):215-224. Epub 2018 Feb 23 doi: 10.1080/1744666X.2018.1440206. PMID: 29473763Free PMC Article
Suresh E, Wimalaratna S
Postgrad Med J 2013 Aug;89(1054):470-7. Epub 2013 Apr 17 doi: 10.1136/postgradmedj-2013-131752. PMID: 23596213

Therapy

Weber T
Front Immunol 2021;12:658399. Epub 2021 Mar 17 doi: 10.3389/fimmu.2021.658399. PMID: 33815421Free PMC Article
Raizner AE
Methodist Debakey Cardiovasc J 2019 Jul-Sep;15(3):185-191. doi: 10.14797/mdcj-15-3-185. PMID: 31687097Free PMC Article
Qu H, Guo M, Chai H, Wang WT, Gao ZY, Shi DZ
J Am Heart Assoc 2018 Oct 2;7(19):e009835. doi: 10.1161/JAHA.118.009835. PMID: 30371340Free PMC Article
Kamel H, Healey JS
Circ Res 2017 Feb 3;120(3):514-526. doi: 10.1161/CIRCRESAHA.116.308407. PMID: 28154101Free PMC Article
Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, Blumenthal R, Danesh J, Smith GD, DeMets D, Evans S, Law M, MacMahon S, Martin S, Neal B, Poulter N, Preiss D, Ridker P, Roberts I, Rodgers A, Sandercock P, Schulz K, Sever P, Simes J, Smeeth L, Wald N, Yusuf S, Peto R
Lancet 2016 Nov 19;388(10059):2532-2561. Epub 2016 Sep 8 doi: 10.1016/S0140-6736(16)31357-5. PMID: 27616593

Prognosis

Gutiérrez Gutiérrez G, Díaz-Manera J, Almendrote M, Azriel S, Eulalio Bárcena J, Cabezudo García P, Camacho Salas A, Casanova Rodríguez C, Cobo AM, Díaz Guardiola P, Fernández-Torrón R, Gallano Petit MP, García Pavía P, Gómez Gallego M, Gutiérrez Martínez AJ, Jericó I, Kapetanovic García S, López de Munaín Arregui A, Martorell L, Morís de la Tassa G, Moreno Zabaleta R, Muñoz-Blanco JL, Olivar Roldán J, Pascual Pascual SI, Peinado Peinado R, Pérez H, Poza Aldea JJ, Rabasa M, Ramos A, Rosado Bartolomé A, Rubio Pérez MÁ, Urtizberea JA, Zapata-Wainberg G, Gutiérrez-Rivas E
Neurologia (Engl Ed) 2020 Apr;35(3):185-206. Epub 2019 Apr 16 doi: 10.1016/j.nrl.2019.01.001. PMID: 31003788
Nascimento Osorio A, Medina Cantillo J, Camacho Salas A, Madruga Garrido M, Vilchez Padilla JJ
Neurologia (Engl Ed) 2019 Sep;34(7):469-481. Epub 2018 Mar 9 doi: 10.1016/j.nrl.2018.01.001. PMID: 29526319
Hermans G, Van den Berghe G
Crit Care 2015 Aug 5;19(1):274. doi: 10.1186/s13054-015-0993-7. PMID: 26242743Free PMC Article
Latronico N, Bolton CF
Lancet Neurol 2011 Oct;10(10):931-41. doi: 10.1016/S1474-4422(11)70178-8. PMID: 21939902
Melli G, Chaudhry V, Cornblath DR
Medicine (Baltimore) 2005 Nov;84(6):377-385. doi: 10.1097/01.md.0000188565.48918.41. PMID: 16267412

Clinical prediction guides

Leung AKC, Lam JM, Alobaida S, Leong KF, Wong AHC
Curr Pediatr Rev 2021;17(4):273-287. doi: 10.2174/1573396317666210426105045. PMID: 33902423
Tankisi H, de Carvalho M, Z'Graggen WJ
J Clin Neurophysiol 2020 May;37(3):205-207. doi: 10.1097/WNP.0000000000000658. PMID: 32358246
Tieu J, Lundberg IE, Limaye V
Best Pract Res Clin Rheumatol 2016 Feb;30(1):149-68. Epub 2016 May 26 doi: 10.1016/j.berh.2016.04.007. PMID: 27421222
Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, Larsson L
Physiol Rev 2015 Jul;95(3):1025-109. doi: 10.1152/physrev.00028.2014. PMID: 26133937Free PMC Article
Abd TT, Jacobson TA
Expert Opin Drug Saf 2011 May;10(3):373-87. Epub 2011 Feb 23 doi: 10.1517/14740338.2011.540568. PMID: 21342078

Recent systematic reviews

Paik JJ, Lubin G, Gromatzky A, Mudd PN Jr, Ponda MP, Christopher-Stine L
Clin Exp Rheumatol 2023 Mar;41(2):348-358. Epub 2022 Jun 28 doi: 10.55563/clinexprheumatol/hxin6o. PMID: 35766013Free PMC Article
Voet NB, van der Kooi EL, van Engelen BG, Geurts AC
Cochrane Database Syst Rev 2019 Dec 6;12(12):CD003907. doi: 10.1002/14651858.CD003907.pub5. PMID: 31808555Free PMC Article
Chavez LO, Leon M, Einav S, Varon J
Crit Care 2016 Jun 15;20(1):135. doi: 10.1186/s13054-016-1314-5. PMID: 27301374Free PMC Article
Mehrholz J, Pohl M, Kugler J, Burridge J, Mückel S, Elsner B
Cochrane Database Syst Rev 2015 Mar 4;(3):CD010942. doi: 10.1002/14651858.CD010942.pub2. PMID: 25737049
Finkelstein Y, Aks SE, Hutson JR, Juurlink DN, Nguyen P, Dubnov-Raz G, Pollak U, Koren G, Bentur Y
Clin Toxicol (Phila) 2010 Jun;48(5):407-14. doi: 10.3109/15563650.2010.495348. PMID: 20586571

Supplemental Content

Table of contents

    Clinical resources

    Practice guidelines

    • PubMed
      See practice and clinical guidelines in PubMed. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.
    • Bookshelf
      See practice and clinical guidelines in NCBI Bookshelf. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.

    Consumer resources

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...