Xeroderma pigmentosum group B- MedGen UID:
- 78643
- •Concept ID:
- C0268136
- •
- Disease or Syndrome
Xeroderma pigmentosum (XP) is characterized by: Acute sun sensitivity (severe sunburn with blistering, persistent erythema on minimal sun exposure) with marked freckle-like pigmentation of the face before age two years; Sunlight-induced ocular involvement (photophobia, severe keratitis, atrophy of the skin of the lids, ocular surface neoplasms); Greatly increased risk of sunlight-induced cutaneous neoplasms (basal cell carcinoma, squamous cell carcinoma, melanoma) within the first decade of life. Approximately 25% of affected individuals have neurologic manifestations (acquired microcephaly, diminished or absent deep tendon stretch reflexes, progressive sensorineural hearing loss, progressive cognitive impairment, and ataxia). The most common causes of death are skin cancer, neurologic degeneration, and internal cancer. The median age at death in persons with XP with neurodegeneration (29 years) was found to be younger than that in persons with XP without neurodegeneration (37 years).
Cockayne syndrome type 2- MedGen UID:
- 155487
- •Concept ID:
- C0751038
- •
- Disease or Syndrome
Cockayne syndrome (referred to as CS in this GeneReview) spans a continuous phenotypic spectrum that includes: CS type I, the "classic" or "moderate" form; CS type II, a more severe form with symptoms present at birth; this form overlaps with cerebrooculofacioskeletal (COFS) syndrome; CS type III, a milder and later-onset form; COFS syndrome, a fetal form of CS. CS type I is characterized by normal prenatal growth with the onset of growth and developmental abnormalities in the first two years. By the time the disease has become fully manifest, height, weight, and head circumference are far below the fifth percentile. Progressive impairment of vision, hearing, and central and peripheral nervous system function leads to severe disability; death typically occurs in the first or second decade. CS type II is characterized by growth failure at birth, with little or no postnatal neurologic development. Congenital cataracts or other structural anomalies of the eye may be present. Affected children have early postnatal contractures of the spine (kyphosis, scoliosis) and joints. Death usually occurs by age five years. CS type III is a phenotype in which major clinical features associated with CS only become apparent after age two years; growth and/or cognition exceeds the expectations for CS type I. COFS syndrome is characterized by very severe prenatal developmental anomalies (arthrogryposis and microphthalmia).
Cockayne syndrome type 1- MedGen UID:
- 155488
- •Concept ID:
- C0751039
- •
- Disease or Syndrome
Cockayne syndrome (referred to as CS in this GeneReview) spans a continuous phenotypic spectrum that includes: CS type I, the "classic" or "moderate" form; CS type II, a more severe form with symptoms present at birth; this form overlaps with cerebrooculofacioskeletal (COFS) syndrome; CS type III, a milder and later-onset form; COFS syndrome, a fetal form of CS. CS type I is characterized by normal prenatal growth with the onset of growth and developmental abnormalities in the first two years. By the time the disease has become fully manifest, height, weight, and head circumference are far below the fifth percentile. Progressive impairment of vision, hearing, and central and peripheral nervous system function leads to severe disability; death typically occurs in the first or second decade. CS type II is characterized by growth failure at birth, with little or no postnatal neurologic development. Congenital cataracts or other structural anomalies of the eye may be present. Affected children have early postnatal contractures of the spine (kyphosis, scoliosis) and joints. Death usually occurs by age five years. CS type III is a phenotype in which major clinical features associated with CS only become apparent after age two years; growth and/or cognition exceeds the expectations for CS type I. COFS syndrome is characterized by very severe prenatal developmental anomalies (arthrogryposis and microphthalmia).
UV-sensitive syndrome 1- MedGen UID:
- 764087
- •Concept ID:
- C3551173
- •
- Disease or Syndrome
UV-sensitive syndrome-1 (UVSS1) is an autosomal recessive disorder characterized by cutaneous photosensitivity and mild freckling, without an increased risk of skin tumors. Patient cells show impaired recovery of RNA synthesis (RRS) after UV irradiation due to defective preferential repair of DNA damage in actively transcribing genes, although unscheduled DNA repair is normal. The cellular findings are consistent with a defect in transcription-coupled nucleotide excision repair (TC-NER) of UV damage (summary by Horibata et al., 2004).
Genetic Heterogeneity of UV-Sensitive Syndrome
See also UVSS2 (614621), caused by mutation in the ERCC8 gene (609412) on chromosome 5q12, and UVSS3 (614640), caused by mutation in the UVSSA gene (614632) on chromosome 4p16.
UV-sensitive syndrome 2- MedGen UID:
- 766212
- •Concept ID:
- C3553298
- •
- Disease or Syndrome
UV-sensitive syndrome-2 (UVSS2) is an autosomal recessive disorder characterized by cutaneous photosensitivity and increased freckling, without an increased risk of skin tumors. Patient cells show impaired recovery of RNA synthesis (RRS) after UV irradiation due to defective preferential repair of DNA damage in actively transcribing genes, although unscheduled DNA repair is normal. The cellular findings are consistent with a defect in transcription-coupled nucleotide excision repair (TC-NER) of UV damage (summary by Nardo et al., 2009).
See also Cockayne syndrome type A (CSA; 216400), an allelic disorder with a more severe phenotype including neurologic symptoms and skeletal abnormalities.
For a general phenotypic description and a discussion of genetic heterogeneity of UVSS, see UVSS1 (600630).
UV-sensitive syndrome 3- MedGen UID:
- 766242
- •Concept ID:
- C3553328
- •
- Disease or Syndrome
UV-sensitive syndrome-3 is an autosomal recessive disorder characterized by cutaneous photosensitivity and slight dyspigmentation, without an increased risk of skin tumors. Patient cells show impaired recovery of RNA synthesis (RRS) after UV irradiation due to defective preferential repair of DNA damage in actively transcribing genes, although unscheduled DNA repair is normal. The cellular findings are consistent with a defect in transcription-coupled nucleotide excision repair (TC-NER) of UV damage (summary by Itoh et al., 1994 and Nakazawa et al., 2012).
For a general phenotypic description and a discussion of genetic heterogeneity of UVSS, see UVSS1 (600630).